YMCA UNIVERSITY OF SCIENCE AND TECHNOLOGY, FARIDABAD

M.Sc.(Mathematics) I Semester (Under CBS)(May-2018)

Real Analysis (MTH-501)

M.Marks:60

Time: 3 hours

Note: Question paper has two parts, Part-I and Part-II. All questions in Part-I are compulsory. Part-II has six questions out of which four questions have to be attempted by the students.

Part-I

Note: All Questions are compulsory (word limit 20-40 only)

Que.1(a)State Cauchy's criterion for uniform convergence of sequence of functions.

- (b)State Weierstrass approximation theorem.
- (c)Define Norm of partition and refinement of partition.
- (d)State necessary condition for a function to be R-S integrable.
- (e) Find the radius of convergence of the given series: $\sum \frac{(n+1)}{(n+2)(n+3)} x^n$.
- (f)If $\overline{\lim} |a_n|^{1/n} = \frac{1}{R}$, then prove that the series $\sum a_n x^n$ is convergent (absolutely) for |x| < R and divergent for |x| > R.
- (g)If $f(x,y) = 2x^2-xy+2y^2$, then find $\partial f/\partial x$ and $\partial f/\partial y$ at the point (1,2).
- (h)State inverse function theorem.
- (i)Define Borel sets with examples.
- (j)State classical lebesgue dominated convergence theorem.

 $(2 \times 10=20)$

Part-II

Que.2(a) State and prove Dirichelt's test for uniform convergence of series of functions. (5)

(b)Let $\langle f_n \rangle$ be a sequence of real valued function defined on the closed interval [a,b] and let $f_n \in R[a,b]$, for $n \in N$. If $\langle f_n \rangle$ converges uniformly to the function f on [a,b].

$$f \in R[a,b]$$
 and $\int_a^b f(x)dx = \lim_a^b \int_a^b f_n(x)dx$. MTH[0]

Que.3(a)State and prove mean value theorem for integral calculus.

(5)

(5) .

(b) If $f \in R(\alpha_1)$ and $f \in R(\alpha_2)$, then prove that $f \in R(\alpha_1 + \alpha_2)$ and

$$\int_{a}^{b} f d(\alpha_1 + \alpha_2) = \int_{a}^{b} f d\alpha_1 + \int_{a}^{b} f d\alpha_2 . \tag{5}$$

Que.4(a)State and prove uniqueness theorem for power series.

(5)

(b) If a power series $\sum a_n x^n$ converges for |x| < R and if we define a function $f(x) = \sum a_n x^n$,

|x| < R, then prove that $\sum a_n x^n$ converges uniformly on $[-R+\in R-\in]$, no matter which $\in > 0$ is choosen and that the function f is continuous and differentiable on (-R,R) and f'(x) = $\sum na_n x^{n-1}$ |x| < R. (5)

Que.5(a) Check the continuity of the function at the origin:

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 (5)

(b) Show that the function $f(x,y) = 2x^4 - 3x^2y + y^2$ has neither a maximum nor a minimum at (0,0). (5)

Que.6(a)If A_1 and A_2 are measurable subsets of [a,b] then prove that both $A_1 \cup A_2$ and $A_1 \cap A_2$ are measurable. (5)

- (b)Prove that the function f on [a,b] is measurable iff one of the following conditions hold:
- (i) $\{x : f(x) > \alpha\}$ is measurable set for every real α .

(ii)
$$\{x : f(x) \ge \alpha \}$$
 is measurable set for every real α . (5)

Que.7(a)Expand $x^2y + 3y-2$ in powers of (x-1) and (y+2) using Taylor's expansion. (5)

(b) If P* is a refinement of P, then prove that $L(P,f,\alpha) \leq L(P^*,f,\alpha)$ and

$$U(P^*,f,\alpha) \le U(P,f,\alpha)$$
 (5)