YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY, FARIDABAD

M.Sc. Mathematics ,Ist semester Differential Equations (MTH-505)

Time: 3 Hours

Max. Marks: 60

(2)

Instructions:

- 1. It is compulsory to answer all the questions (2 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART -A

Q1 (a) Solve $(y \cos x + 1) dx + \sin x dy = 0$.

- (b) Solve $(D^2 4D + 3)y = e^x \cos 2x$. (2)
- (c) Find the characteristic values of $\frac{dx}{dt} = 6x 3y$, $\frac{dy}{dt} = 2x + y$. (2)
- (d) Find adjoint equation of $t^2 \frac{d^2x}{dt^2} + 7t \frac{dx}{dt} + 8x = 0$. (2)
- (e) When do we call a critical point a saddle point.
- (f) Give an example of non linear differential equation.
 - (g) State Sturm separation theorem.
- (h) Define the term Wronskian. How is it used to check linear dependence of vector functions.
 - (i) Define Lipchitz condition w.r.t. y.
 - (j) Prove that $P_n(1)=1$.

PART B

Q1 (a) Solve by Frobenius method, $2x^2y'' + xy' + (x^2-3)y = 0$ in $0 \le x \le R$

(b) Find series solution of $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (x^2 + 2)y = 0$ in powers of x about the point x_0 . [5+5]

Q2(a) State and prove Sturm comparison theorem.

(b) Find eigen values and eigen functions of Sturm Liouville problem $X''+\lambda X=0$, X'(0)=0, X'(L)=0. [5+5]

Q3 (a)Consider the system by Liapunov's direct method

 $\frac{dx}{dt} = -x + y^2$, $\frac{dy}{dt} = -y + x^2$ and E defined by $E(x, y) = x^2 + y^2$.

(b) Find the first three approximations of $\frac{dy}{dx} = x + y$, y(0) = 1. [5+5]

Q4(a) State and prove the existence and uniqueness theorem for first order equation.

[10]

Q5(a) Find the nature of critical point (0,0)of the system

$$\frac{dx_2}{dt} = 3x_1 - 8x_2$$

 $\frac{dx_1}{dt} = 2x_1 - 7x_2$, determine whether the point is stable.

[5]

Q5(b) Find series solution of $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (x^2 - 4)y = 0$

Q6(a)Prove that $\frac{d}{dx}(x^nJ_n(x)) = x^nJ_{n-1}(x)$. Q6 (b) Find the general solution of the differential equation

$$\frac{dx_1}{dt} = 5x_1 - x_2$$

 $\frac{dx_2}{dt} = 3x_1 + x_2$

[5+5]