240102

December, 2019
M.Sc. (Mathematics) - Ist SEMESTER ABSTRACT ALGEBRA (MATH 17-102)

Time : 3 Hours]
[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part- B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

1. (a) Define normal and composition series with an example.
(b) Explain permutation group with example.
(c) If p is a prime number and G is a non-abelian group order p^{3}, then prove that the center Z of G has exactly p elements.
(d) Find all non-isomorphic abelian group of order 16.
(e) If $o(G)=p^{n}(p$ is prime and $n>1)$ and if H is a subgroup of G of order p^{n-1}, then $H<G$.
(f) Let R denote the set of all real-valued continuous functions on $[0,1]$. Let $t, g \in R$. Define

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x), \\
& (f \cdot g)(x)=f(x) \cdot g(x), \quad \forall x \in[0,1] .
\end{aligned}
$$

Then, R is a commutative ring with unity.
(g) Show that the intersection of two prime ideals of a ring R may not be a prime ideal of R.
(h) Prove that every field is a P.I.D. (Principal Ideal Domain).
(i) Show that $[Q(\sqrt{2}): Q]=2$.
(j) Discuss the irreducibility of $f(x)=x^{4}+1$, over rationals.

PART - B

2. (a) Let G be a group and $N \triangleleft G$ such that both N and G / N are solvable, then G is also solvable.
(b) Prove that a group G is solvable iff $G^{k}=\{e\}$, for some $k \geq 1$.
3. (a) Prove that any two composition series of a finite group G are isomorphic.
(b) Prove that any two sylow p-subgroups of a finite group G are conjugate.
4. (a) If p is a prime number and p^{m} divides $o(G)$, then G has a subgroup of order p^{m}.
(b) If G is the internal direct product of its subgroups

$$
\begin{equation*}
H_{1}, H_{2}, \ldots, H_{n}, \text { then } G \approx H_{1} \times H_{2} \times \ldots \times H_{n} . \tag{10}
\end{equation*}
$$

5. (a) Prove that any homomorphism of a field is either an isomorphism or takes each element into 0 .
(b) Show that $\langle x+2\rangle$ is a maximal ideal of $Q[x]$ and hence $\frac{Q[x]}{\langle x+2\rangle}$ is a field.
6. (a) Prove or disprove that $Z[\sqrt{-5}]$ is a U.F.D. (Unique Factorization Domain).
(b) Find the degree of the splitting field of $x^{3}-2$ over Q.
7. (a) Every finite extension of a field F is an algebraic extension. However, the converse is not true.
(b) Construct a field having 121 elements.
