Roll No.

ł

ŝ

Total Pages : 5

240304

December, 2019 M.Sc. (Mathematics) - III SEMESTER Operations Research (MATH17-116)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

- (a) Describe the various objectives of OR. Write any *two* merits of OR. (1.5)
 - (b) How do you identify the presence of multiple optima in simplex Method. (1.5)
 - (c) What do you mean by infeasibility and unbounded in linear programming? Illustrate graphically. (1.5)
 - (d) What is unbalanced Transportation problem? How do you start in this case. (1.5)

240304/80/111/296

[P.T.O. 17/12

(e)	What is degeneracy in transportation	problem?
	How is it resolved?	(1.5)
(f)	Define assignment problem and give its ma	thematical
	formulation.	(1.5)
(g)	Discuss the algebraic method for solving 2	2×2 games
Ϋ́,	by taking a suitable example.	(1.5)
(h)	What is the significance of utility as a basis o	f decision-
	making?	(1.5)
(i)	Explain EOQ in inventory.	(1.5)
(j)	What are the advantages of proper i	nventory
	management?	(1.5)

PART - B

2.	(a)	Solve the following LPP by graphical method:	
		$\operatorname{Max} z = 2x_1 + x_2$	
		Subject to the constraints:	
		$x_1 + 2x_2 \le 10, x_1 + x_2 \le 6, x_1 - x_2 \le 2,$	
		$x_1 - 2x_2 \le 1$ and $x_1, x_2 \ge 0$.	(7)
	(b)	Solve the following LPP by Big-M method:	
		May = 2x x	

Max $z = 3x_1 - x_2$ Subject to the constraints: $2x_1 + x_2 \le 2, x_1 + 3x_2 \le 3, x_2 \le 4$ and $x_1, x_2 \ge 0$. (8)

240304/80/111/296

2

- 3. (a) Solve the following LPP using Simplex Method Max $z = 30x_1 + 23x_2 + 29x_3$ Subject to : $6x_1 + 5x_2 + 3x_3 \le 26$ $4x_1 + 2x_2 + 5x_3 \le 7$ $x_1, x_2, x_3 \ge 0.$ (7) (b) Solve the following LPP using Dual Simplex Method
 - Max $z = -2x_1 x_3$ Subject to :

$$x_{1} + x_{2} - x_{3} \ge 5$$

$$x_{1} - 2x_{2} + 4x_{3} \ge 8$$

$$x_{1}, x_{2}, x_{3} \ge 0.$$
(8)

4. Find the optimum solution of the following transportation problem(IBFS by Vogels approximation method)

$\begin{array}{c} \text{To} \rightarrow \\ \text{From } \downarrow \end{array}$	W ₁	W ₂	W ₃	W ₄	W ₅	Plant capacity
F ₁	7	6	4	5	9	40
F ₂	8	5	6	7	8	30
F ₃	6	8	9	6	5	20
F ₄	5	7	7	8	6	10
Requirements	30	30	15	20	5	

240304/80/111/296

3

[P.T.O.

5. (a) Find the optimal solution (cost minimizing) of the following assignment problem:

$Jobs \rightarrow$	I	П	ш	IV	v	
Machines ↓						
Α	11	10	18	5	9	
В	14	13	12	19	6	
С	5	3	4	2	4	
D	15	18	17	9	12	
Е	10	11	19	6	14	

(7)

- (b) Prove that if an LPP has an optimal feasible solution, its dual also has optimal feasible solution. (8)
- 6. (a) What are inventory models? Enumerate various types of inventory models and describe them briefly. (7)
 - (b) What are the advantages and disadvantages of increased inventory? Briefly explain the objectives that must be fulfilled by an inventory control system.
 (8)

240304/80/111/296

7. (a) Explain the principle of dominance in game theory and solve the following game:

		B ₃	B ₄	B ₅
10	4	2	9	1
7	6	5	7	8
3	5	4	4	9
6	7	3	3	2
	7 3	7 6 3 5	7 6 5 3 5 4	7 6 5 7 3 5 4 4

(7)

(b) Solve the following game graphically:

Player $B \rightarrow$ Player $A \downarrow$	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆
A ₁	8	-4	-8	1	6	-8
A ₂	-7	-5	-1	-6	-3	4
						(8)

240304/80/111/296