240103

December, 2019
 M.Sc. (Mathematics) - I SEMESTER Ordinary Differential Equations (MATH17-103)

Time: 3 Hours]
[Max. Marks : 75

Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
2. Answer any four questions from Part $-B$ in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

1. (a) Define equicontinuous family of functions.
(b) Find the general solution of

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+25 y=0 . \tag{1.5}
\end{equation*}
$$

(c) Write two disadvantages of Euler's method.
(d) Find the adjoint equation of

$$
\begin{equation*}
(2 t+1) \frac{d^{2} x}{d t^{2}}+t^{3} \frac{d x}{d t}+x=0 \tag{1.5}
\end{equation*}
$$

(e) Solve

$$
\begin{equation*}
\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x} . \tag{1.5}
\end{equation*}
$$

(f) Define critical point of a linear autonomous system.
(g) Find the curves passing through $(0,1)$ and satisfying $\sin \left(\frac{d y}{d x}\right)=c$, where cis a constant.
(h) Write Lipschitz condition with respect to y .
(i) Give an example of a 3rd order, linear, nonhomogeneous differential equation.
(j) Define Wronskian for n real functions $f_{1} f_{2}, \ldots, f_{n}$.

PART - B

2. (a) Use Picard's method to find three successive approximations of the solution of the differential equation

$$
\frac{d y}{d x}=y-x, \quad y(0)=2,
$$

Show that the iterative solution approaches the exact solution.
(b) Show that the following initial value problem has a unique solution and hence find the solution

$$
\begin{equation*}
\frac{d y}{d x}=3 x^{2}, \quad y(0)=0 . \tag{5}
\end{equation*}
$$

3. (a) State and prove Cauchy-Peano existence theorem. (8)
(b) Find the power series solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}+2\right) y=0 \tag{7}
\end{equation*}
$$

in powers of x.
4. (a) State and prove Sturm separation theorem.
(b) Find the characteristic value and the characteristic function of the Sturm-Liouville problem

$$
\begin{equation*}
\frac{d}{d x}\left(x \frac{d y}{d x}\right)+\frac{\lambda}{x} y=0, \quad y(1)=0, \quad y\left(e^{\pi}\right)=0 . \tag{8}
\end{equation*}
$$

5. (a) Determine the nature of the critical point $(0,0)$ of the following nonlinear system

$$
\begin{align*}
& \frac{d x}{d t}=x+4 y-x^{2}, \\
& \frac{d y}{d t}=6 x-y+2 x y \tag{8}
\end{align*}
$$

Also, determine the stability of the critical point.
(b) Verify that the function E defined by $\mathrm{E}(x, y)=x^{2}+y^{2}$, is a Liapunov function for the following system

$$
\begin{align*}
& \frac{d x}{d t}=-x+y^{2} \\
& \frac{d y}{d t}=-y+x^{2} \tag{7}
\end{align*}
$$

6. (a) Find the general solution of the linear system

$$
\begin{align*}
& \frac{d x}{d t}=6 x-3 y \\
& \frac{d y}{d t}=2 x+y \tag{7}
\end{align*}
$$

(b) Consider the linear system

$$
\begin{aligned}
& \frac{d x}{d t}=3 x+4 y \\
& \frac{d y}{d t}=2 x+y
\end{aligned}
$$

Show that $x=2 e^{5 t}, y=e^{5 t}$ and $x=e^{-t}, y=-e^{-t}$ are solutions of the above system. Also prove that these two solutions are linearly independent on every interval $a \leq t \leq b$, and write the general solution of the system.
7. (a) Find the series solution of

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-\left(x^{2}+5 / 4\right) y=0 \tag{8}
\end{equation*}
$$

about $x=0$, by Frobenius method.
(b) Solve $\cos \theta d r+\left(r \sin \theta-\cos ^{2} \theta\right) d \theta=0$.

