March 2022

M.Sc. PhysicsSemester-I (Reappear)
 Mathematical Physics (PHL-101)

Time: 90 Minutes

Max. Marks:25
Instructions: 1. It is compulsory to answer all the questions (1marks each) of Part -A in short.
2. Answer any three questions from Part $-B$ in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART -A

Q1 (a) Find the roots of $z^{4}+1=0$.
(b) Separate $\ln (x+i y)$ into its real and imaginary parts.
(c) Show that the function $U=x^{2}-y^{2}$ is harmonic.
(d) Evaluate $\int_{C} \frac{d z}{z(z+\pi i)} d z$ where C is a circle $|z+3 i|=1$, by Cauchy's integral formula.
(e) Prove that $P_{n}(1)=1$.
(f) Show that $J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$.
(g) Show that the diagonal elements of a skew-Hermitian matrix are zero or purely imaginary.
(h) Show that eigen values of a unitary matrix are unimodular.
(i) If $F\{f(t)\}=F(s)$ then show that $F\{f(x-a)\}=e^{i s x} F(s)$.
(j) If $L\{f(t)\}=L(s)$ then show that $L\{f(a t)\}=\frac{1}{a} L\left(\frac{s}{a}\right)$.

PART - B

Q2 (a) Obtain CR conditions in polar form for an analytic complex functions.
(b) Find the residue of the function $f(z)=\frac{z^{2}}{(z+1)^{2}(z-2)}$ at its double pole.

Q3 Expand $f(z)=\frac{7 z-2}{z^{3}-z^{2}-2 z}$ in a Laurent series valid for $|z+1|>3$

Q4
For Bessel's function of order n, show that $\int_{0}^{1} x J_{n}(\alpha x) . J_{n}(\beta x) d x=0$, where α and β are the roots of $J_{n}(x)=0$.

Determine the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{cc}0 & 2 \\ 3 & -1\end{array}\right]$. Obtain a matrix P which diagonalizes the matrixA and also verify $P^{-1} A P=D$ where D is the diagonal matrix.

Q5 (a)
Show that the matrix $A=\left[\begin{array}{ccc}\frac{\sqrt{2}}{2} & -i \frac{\sqrt{2}}{2} & 0 \\ i \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1\end{array}\right]$ is a unitary matrix.
(b) Prove that the eigen value of a skew-Hermitian matrix is either zero or purely imaginary.

Q6 (a) Find the Fourier transform of the function $f(x)=\left\{\begin{array}{l}1 \text { for }|x|<a \\ 0 \text { for }|x|>a\end{array}\right.$
(b) Evaluate the integral $\int_{0}^{\infty} t^{3} e^{-t} \sin t d t$ using Laplace transformation.

