March 2022

M.Sc. PhysicsSemester-I (Reappear)

Mathematical Physics (PHL-101)

Time: 90 Minutes

Instructions:

Q5

- 1. It is compulsory to answer all the questions (1 marks each) of Part -A in short.
- 2. Answer any three questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

<u>PART -A</u>

Q1	(a)	Find the roots of $z^4 + 1 = 0$.	(1)
	(b)	Separate ln(x+iy) into its real and imaginary parts.	(1)
	(c)	Show that the function $U = x^2 - y^2$ is harmonic.	(1)
	(d)		(1)
	(e)	Prove that $P_n(1) = 1$.	(1)
	(f)	Show that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.	(1)
	(g)	Show that the diagonal elements of a skew-Hermitian matrix are zero or purely imaginary.	(1)
	(h)	Show that eigen values of a unitary matrix are unimodular.	(1)
	(i)	If $F{f(t)} = F(s)$ then show that $F{f(x-a)} = e^{isx}F(s)$.	(1)
	(j)	If $L{f(t)} = L(s)$ then show that $L{f(at)} = \frac{1}{a}L\left(\frac{s}{a}\right)$.	(1)
<u>PART –B</u>			
Q2	(a)	Obtain CR conditions in polar form for an analytic complex functions.	(3)
	(b)	Find the residue of the function $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at its double pole.	(2)
Q3		Expand $f(z) = \frac{7z-2}{z^3-z^2-2z}$ in a Laurent series valid for $ z+1 > 3$	(5)
Q4		$\sum_{i=1}^{l} \sum_{j=1}^{l} L(z_i) L(Q) = 0$	(5)

For Bessel's function of order n, show that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = 0$, where α and β are the roots of $J_{n}(x) = 0$. (5)

Determine the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 0 & 2 \\ 3 & -1 \end{bmatrix}$. Obtain a matrix *P* which diagonalizes the matrix *A* and also verify *P*-*iAP* = *D* where *D* is the diagonal matrix.

- Q5 (a) Show that the matrix $A = \begin{bmatrix} \frac{\sqrt{2}}{2} & -i\frac{\sqrt{2}}{2} & 0\\ i\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$ is a unitary matrix.
 - (b) Prove that the eigen value of a skew-Hermitian matrix is either zero or purely (2) imaginary.
- Q6 (a) Find the Fourier transform of the function $f(x) = \begin{cases} 1 \text{ for } |x| < a \\ 0 \text{ for } |x| > a \end{cases}$ (2)
 - (b) Evaluate the integral $\int_{0}^{\infty} t^{3}e^{-t} \sin t \, dt$ using Laplace transformation.
