YMCA UNIVERSITY OF SCIENCE AND TECHNOLOGY FARIDABAD

M.SC (PHYSICS) SEM-I EXAMINATION (under CBS)

MATHEMATICAL PHYSICS (PHY-101)

Time: 3 hr

1

Note: Note: Part-A consists of Question No.1 which is compulsory. Attempt any four from Part-B.

Part-A

- Separate into real and imaginary parts sin (x + iy)(a)
 - (b) What is the necessary and sufficient condition(s) for f(z) to be analytic?
 - Differentiate between Simply connected and Multiply connected regions. (c)
 - State and prove the change of scale property of Fourier transform. (d)
 - Find the Laplace transform of *tcosat*. (e)
 - Find the inverse Laplace transform of (f)

For any matrix A, prove that AA' and A'A are both symmetric. (g)

- What is a Triangular matrix?... (h) ·
- Differentiate between Abelian and non-Abelian group. (i)
- What is the need of integral transforms? (2x10)(j)

Part-B

2. (a) If
$$u(x, y) = x^2 - y^2$$
 is the real part of an analytic function $f(z) = u + iy$, find u.

(3)

State and prove Cauchy's Integral Theorem for the function of a complex (b)2 (4)valuable.

2 (c) Evaluate
$$\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$$
 (3)

(5)Find the Fourier sine and cosine transform of xe^{-ax} (a) 3.

$\frac{s^2 - 3s + 4}{s^3}$

M.Marks:60

3	(b)	State and prove Parseval's Identity for Fourier Transforms.	(5)
4.	(a)	Obtain Laplace transform of the function: $f(t) = sint, 0 < t < \pi$	
		$= 0, t \ge \pi$	(5)
4	(b)	Evaluate inverse Laplace transform of $\int_{s}^{\infty} \tan^{-1}(\frac{2}{s^{2}}) ds$	(5)
5	(a)	Derive the Laurent's series expansion for the function of a complex	variable.
5	(b)	Describe any three properties of LaplaceTransforms.	(5) (5)
6	(a)	Prove that if G be an infinite cyclic group, then G has exactly two ge	nerators. (4)
6	(b)	If a group has four elements, show that it must be abelian.	(3)
6	(c)	Show that any two characteristic vectors (Eigen vectors) correspondin distinct Eigen values of a Hermitian matrix are orthogonal.	g to two (3)
7	(a)	Let G be finite non-abelian group of order with the property that G ha subgroup of order k for each positive integer k dividing n. Prove that G a simple group	s a G is not (5)
7	(b)	Prove that	
.	•. • •	$\frac{2}{\pi} \int_0^\infty F_s(s) G_s(s) ds = \int_0^\infty f(x) g(x) dx$ where the symbols have their usual meanings.	(5)

.