YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY, FARIDABAD

M.Sc. PHYSICS 1st SEMESTER (UNDER CBS)

MATHEMATICAL PHYSICS (PH-501)

Time: 3 Hours

Max. Marks: 60

- *Note:* 1. It is compulsory to answer the questions of Part -1. Limit your answers within 20-40 word in this part.
 - 2. Answer any four questions from Part -2 in detail.
 - 3. Different parts of the same question are to be attempted adjacent to each other.

<u> PART -1</u>

Q1	(a)	Find the modulus and principal argument of $-\sqrt{3-i}$	(2)
	(b)	State the Cauchy Riemann conditions.	(2)
	(c)	What is a harmonic function?	(2)
	(d)	Find the Laplace transform of <i>tcosat</i> .	(2)
	(e)	Prove that $L\{e^{at}\} = \frac{1}{s-a}$	(2)
	(f)	What is the kernel in Fourier Transform?	(2)
	(g)	What is the shifting property of Fourier transform?	(2)
	(h)	Define a multiply connected region.	(2)
	(i)	What do you understand by the term singularity?	(2)
	(j)	Is sinz analytic everywhere? Give reasons.	(2)

<u> PART -2</u>

Q2	(a)	State and prove Cauchy's Integral formula for the function of a complex variable.	(5)
	(b)	Derive the Laurent's series expansion for the function of a complex variable.	(5)

Q3 (a) Show that the Fourier sine transform of
$$\frac{x}{1+x^2}$$
 is $\sqrt{\frac{n}{2}} ase^{-as}$ (5)

- (b) Find the Fourier sine and cosine transform of xe^{-ax}
- Q4 (a) Prove that (5) ${}^{2}\int_{-\infty}^{\infty} F(x)G(x)dx = \int_{-\infty}^{\infty} f(x)g(x)dx$

 $\frac{2}{\pi}\int_0^\infty F_s(s)G_s(s)ds = \int_0^\infty f(x)g(x)dx$

where the symbols have their usual meanings.

(b) Determine the poles and the residue at simple pole of the function

$$f(z) = \frac{z^2}{(z-1)^2(z+2)}$$

Q5 (a) Using Parseval's Identity, prove that $\int_0^\infty \frac{t^2}{(4+t^2)(9+t^2)} dt = \frac{\pi}{10}$

- (b) Evaluate the following integrals by Laplace Transform: $\int_0^\infty \left(\frac{e^{-2t} - e^{-3t}}{t}\right) dt$
- Q6 (a) What do understand by convolution of two functions f(x)*g(x)? Hence derive the (5) convolution theorem for Fourier Transform.
 - (b) State and prove any two properties of Laplace transform.

Q7 Write short note on:

- (a) Bessel function
- (b) Jordon's Lemma

(5)

(5)

(5x2)

(5)

(5)

(5)