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ABSTRACT

Fixed point theory has always been an area of great interest for researchers. The
theory is not only limited to metric spaces but is also enjoyed in various spaces
including partial metric spaces, G-metric spaces, Menger PM-Spaces, PGM-Spaces,
fuzzy metric spaces, etc. Recently, this theory has been receiving attention of authors
in various spaces equipped with a partial order. Now-a-days, an important branch of
this theory, popularly known as “coupled fixed point theory” is being readily explored
by researchers.

Over last few decades, several interesting results involving distinct contractive/
contraction conditions have been formulated by different authors in various spaces.
Present work deals with the investigation of coupled fixed points for mappings
subjected to different conditions in various spaces. Our aim is to generalize and
extend the already existing works present in the literature. The contractions are
designed by us in such a way that weakens some notable works of different authors.

During literature review, we came across some errors and omissions. Correcting
errors in the existing work requires counter examples and strong arguments. We have
provided proper illustrations to support our arguments while correcting the errors and
omissions in the existing work.

Authors are continuously framing their results using different techniques. These
techniques require a proper analysis for implementation in one’s own work. While
framing our results, it has been found that a recently developed technique to compute
coupled coincidence points may be improved and the improvement has been provided
in the current work.

Different authors have employed distinct conditions on the mappings and the
spaces to formulate their fixed point/ common fixed point/ coupled fixed point/
coupled common fixed point results. Among these conditions the condition of
continuity, commutativity, compatibility, the containment of range spaces of the
involved mappings into one another, the completeness of the space or range subspaces
are the main assumptions taken into account by researchers to develop their results.

In the present work, we have tried to relax and replace some of the above

mentioned conditions by some more natural conditions.



Very recently, authors have introduced new notions of property (E.A.), (CLRg)
property, common property (E.A.) and (CLRgy) property in fixed point theory. In the
present work, we have also designed these notions for problems in coupled fixed point
theory.



TABLE OF CONTENTS

Page No.
Candidate’s Declaration i
Certificate of the supervisors ii
Acknowledgement ii
Abstract \Y;
Table of Contents Vi
List of Abbreviations and Notations X
CHAPTER - I. INTRODUCTION 1-13
1.1 An Overview of Fixed Point Theory 1
1.2 Metric Spaces and Partially Ordered Sets 2
1.3 Partial Metric Spaces 5
1.4 G-Metric Spaces 5
1.5 Menger PM-Spaces and PGM-Spaces 6
1.6 Fuzzy Metric Spaces 8
1.7 Objective of the Present Work 10
1.8 Methodology Adopted for the Present Work 10
1.9 Organization of Present Work 11
CHAPTER - Il. LITERATURE REVIEW 14-42
2.1 Metrical Survey of Fixed Point and Coupled Fixed Point Theory 14
2.2 Survey in Partial Metric Spaces 27
2.3 Survey in G-Metric Spaces 30
2.4 Survey in Menger PM-Spaces and PGM-Spaces 34
2.5 Survey in Fuzzy Metric Spaces 38
FRAMEWORK OF CHAPTER - 111 43
CHAPTER - I1l. COUPLED FIXED POINTS FOR
SYMMETRIC CONTRACTIVE CONDITIONS 44-74
3.1 Introduction 44

Vi



3.2 Coupled Common Fixed Points for (¢, 1) — Contractive
Condition 46
3.3 Coupled Fixed Points for (¢, ) — Contractive Condition 56
3.4 Coupled Fixed Points for Symmetric (¢, 1) — Weakly
Contractive Condition in Partial Metric Spaces 62
3.5 Applications 70
FRAMEWORK OF CHAPTER - IV 75

CHAPTER - IV. COUPLED FIXED POINTS UNDER

SYMMETRIC CONTRACTIONS 76-105
4.1 Introduction 76
4.2 Coupled Common Fixed Points for Generalized

Symmetric Contraction 79

4.3 Coupled Common Fixed Points for (a, 1) — Weak Contractions 87
4.4  Application to Integral Equations 97
4.5 Application to Results of Integral Type 104
FRAMEWORK OF CHAPTER -V 106

CHAPTER - V. COUPLED FIXED POINTS IN

G-METRIC SPACES 107-130
5.1 Introduction 107
5.2 Coupled Common Fixed Points for (¢, ) — Contractive

Conditions 109

5.3 Coupled Common Fixed Points under New Nonlinear
Contraction 119
5.4 Application to Integral Equations 127
FRAMEWORK OF CHAPTER - VI 131

CHAPTER - VI. ANEW TECHNIQUE AND ERRORS

IN SOME RECENT PAPERS 132-164
6.1 Introduction 132
6.2 A New Technique to Compute Coupled Coincidence Points 134

vii



6.3 Improvement of Some Coupled Coincidence Point Results 142
6.4 Generalization of a Coupled Coincidence Point Result
in Menger PM-Spaces 147
6.5 Improvement of a Coupled Coincidence Point Result
in G-Metric Spaces 151
6.6 Remarks on Some Recent Papers Concerning
Coupled Coincidence Points 153
6.7 An Error in a Recent Paper in PGM-Spaces 159
6.8 Some Errors in a Recent Paper on Weakly Related Mappings 161
FRAMEWORK OF CHAPTER - VII 165
CHAPTER - VII. FIXED POINT AND COUPLED FIXED
POINT RESULTS 166-193
7.1 Some Recent Contractions 166
7.2 Generalized Weak (ip > ¢) — Contractions 168
7.3 Application of Generalized Weak (3 > ¢) —
Contractions to Coupled Fixed Point Problems 178
7.4 New Generalized Nonlinear Contractive Condition
in Coupled Fixed Point Theory 182
FRAMEWORK OF CHAPTER - VIII 194
CHAPTER - VIII. COUPLED FIXED POINTS IN
FM-SPACES 195--232
8.1 Introduction 195
8.2 Variants of Weakly Commuting and Compatible Mappings 197
8.3 Results for Weakly Compatible Mappings 212
8.4 Property: (E.A.), (CLRg), Common Property (E.A.) and (CLRsy) 219
8.5 Application to Metric Spaces 230
CONCLUSION 233-234
SCOPE FOR FURTHER WORK 235

REFERENCES

viii

236-249



BRIEF BIO-DATA OF THE RESEARCH SCHOLAR 250

LIST OF PUBLICATIONS OUT OF THESIS 251-254



© © N o g B~ w N RF

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.

R

poset
W.r.t.
POMS
R+
POPMS
POGMS
N

/\+

POMPMS
KMFMS
GVFMS
BCP

R™\ {0}
CF-¥
CCF-Y
POCMS
ADF
MMP
MgMP
POCPMS
POCGMS
POCMPMS
W.L.O.G.
MSMP
MSgMP
wC
R-WC
R-WC(Af)
R-WC(A,)

LIST OF ABBREVIATIONS AND NOTATIONS

Set Of All Real Numbers

Partially Ordered Set

With Respect To

Partially Ordered Metric Space

Set Of All Non-Negative Real Numbers
Partially Ordered Partial Metric Space
Partially Ordered G-Metric Space

Set Of All Natural Numbers

Set Of All Menger Distance Distribution
Functions

Partially Ordered Menger PM-Space
KM-Fuzzy Metric Space

GV-Fuzzy Metric Space

Banach Contraction Principle

Set Of All Positive Real Numbers
Family Of All Comparison Functions
Family Of All (c)-Comparison Functions
Partially Ordered Complete Metric Space
Altering Distance Function

Mixed Monotone Property

Mixed g-Monotone Property

Partially Ordered Complete Partial Metric Space
Partially Ordered Complete G-Metric Space
Partially Ordered Complete Menger PM-Space

Without Loss Of Generality
Mixed Strict Monotone Property
Mixed Strict g-Monotone Property
Weakly commuting

R-weakly commuting

R-weakly commuting of type (Ar)
R-weakly commuting of type (A,)



31.
32.
33.
34.
35.
36.
37.

R-WC(P)
COM(A)
COM(B)
COM(P)
COM(C)
COM(Ay)
COM(A,)

R-weakly commuting of type (P)
Compatible of type (A)
Compatible of type (B)
Compatible of type (P)
Compatible of type (C)
Compatible of type (Ag)
Compatible of type (A,)

Xi



CHAPTER - |
INTRODUCTION

1.1 AN OVERVIEW OF FIXED POINT THEORY

In mathematics, very often situation arises where the solutions of a system of
equations cannot be found in an explicit and convenient way. Naturally, some
general questions arise, viz.

“Does the given system of equations has a solution?”
“How many different solutions exist for the given system of equations?”

These questions after being answered are followed by a new question, “If the
solution exists, what is the exact or approximate solution of the given system of
equations?” This leads to the origination of the theory of fixed points. The problem
of solving the system of equations can be reduced to the problem of computing the
fixed points or common fixed points of self mapping(s) defined over some
appropriate space X.

Mathematically, the point of intersection of the curve y = hix with the line y = %
yields the fixed point of the curve y = hx. In particular, the solution of the equation
hiw = % gives the fixed point for the self mapping h defined on the abstract set X. A
point a € X is called a fixed point of the mapping h defined on X, if it remains
invariant under the mapping h, that is, if ha = a.

The theory dealing with fixed points of certain mapping(s) is called fixed point
theory and can be seen as a fair combination of topology, analysis and geometry.
Over the last five decades, this theory has been used as an important and dominant
tool to study the phenomena of nonlinear analysis. The theory has a wide range of
applications in various disciplines including physics, chemistry, biology,
engineering, economics, game theory etc.

For the last quarter of the twentieth century, there has been a considerable
interest among researchers to study fixed points for mappings satisfying certain
contractive or contraction conditions in various spaces. Several interesting results
concerning the computation of fixed points have been established in various spaces.
Now-a-days, authors are not only taking interest in developing fixed point results for
self mappings but also for the mappings with domain as the product space X x X and

co-domain being the space X, under consideration. The theory of fixed points dealing



with such mappings is, however, called coupled fixed point theory and the fixed
points for such mappings are called coupled fixed points. Present study deals with the
computation of coupled fixed points in various spaces. In the subsequent sections of
this chapter, we will study some spaces (metric spaces, partial metric spaces, G-
metric spaces, Menger PM-Spaces, PGM-Spaces and fuzzy metric spaces) in which
we will develop our results in the subsequent chapters. Collectively, we call these

spaces as abstract spaces.

1.2 METRIC SPACES AND PARTIALLY ORDERED SETS

In the study of fixed point theory, the notion of metric plays an important role.
The word metric has actually been derived from the word metor, which means
measure. In 1906, the famous French mathematician, M. Frechet (1878-1973), in his
doctoral thesis submitted to the University of Paris, pioneered the notion of metric
spaces.
Definition 1.2.1. Let X be a non-empty set and d: X x X — R be a function such that

for », y, z € X, the following conditions hold:

() dee.y)=0;

(i) deuy)=0=x=y;

@iii) d(», y) =d(y, »); (symmetric property)
(iv) d(»,y) <d(x, 2) + d(z Y). (triangular inequality)

The function d is called a metric on X and together with X is called the metric space,
represented by (X, d). The elements of X are called points and the function d(x, y)
denotes the distance between the points »x and y.

For instance, let X = R (the set of real numbers) and d: X x X — R be a function
defined by d(x, y) = |[x —y| for », y € X, then (X, d) is a metric space and this metric
is popularly known as the usual metric.

In a mathematical system, partially ordered set (poset) signifies the idea of
ordering of elements of a set. A poset consists of a set together with a binary relation
w.r.t. which for certain pairs of elements in the set, one of the element precedes the
other (and such elements are called comparable). Such a relation is called a partial
order. In a poset, for some pairs of elements, it may also happen that neither element

precedes the other.



Formally, we now state some definitions.
Definition 1.2.2. An ordered pair is a pair of objects or elements taken in a specific
order. For example, (y, z) is an ordered pair in y and z, where y is called the first
element and z is called the second element.
Definition 1.2.3. Let 'Y and Z be two non-empty sets. The cartesian product of 'Y
and Z, denoted by 'Y X Z, is the set of all the ordered pairs (y, z) in which the first
element y is from the set’Y and the second element z is from the set Z.
In symbols, we write'Y X Z = {(y, z): y €'Y and z € Z}.
Definition 1.2.4. A binary relation on a set"Y is the collection of ordered pairs of
elements of Y.
Definition 1.2.5. A partial order or non-strict partial order is a binary relation <
over a set X which satisfies for all », y, z in X, the following conditions:

(i) »=<wx

(i) ifx<yandy=<x thenx=Yy;

(i) ifx<yandy<z thenn <z

A poset is defined as, “A set with a partial order”. In general, if X is a non-empty
set with a partial order <, then we denote the poset by (X, <). Further, the elements
%, y of a poset (X, <) are said to be comparable if either x < yory < ».
Definition 1.2.6. A strict partial order < is a binary relation over a set X which
satisfies for all , y, z in X, the following conditions:

(1) notx <wx;

(i) ifx<yandy <z thenx < z;

(i) ifx <y, thennoty < x.

Also, for a partial order < on the non-empty set X, the strict partial order < on X
is defined as » <y, which means that x < y but x # y for %, y in X.

The inverse or converse > of a partial order relation < is said to satisfy » >y iff
y < «. Clearly, the inverse of a partial order relation is itself a partial order relation.
The order dual of a poset is the same set with the partial order relation replaced by its
own inverse.
Definition 1.2.7. A total order or linear order is a binary relation < over a set X
which satisfies for all %, y, z in X, the following conditions:

(i) ifx<syandy=<x,thenn=y;

(i) ifx<yandy<zthenx <z



(i) w<yory=<m.
A set paired with a total order is called a totally ordered set.
Definition 1.2.8. Let"Y be a subset of a poset (X, <), then
(1) anelementl €Y is called a lower bound of "Y iff
IS xforallxwe’Y;
(i) anelementu €Y is called an upper bound of Y iff
x<uforallx €Y.
Definition 1.2.9. A self mapping h defined on a poset (X, <) is called
Q) order preserving (monotonically increasing), if
for %, y € X with y < %, we have hy < hx;
(i) order reversing (monotonically decreasing), if
for », y € X with y < %, we have hy > hx;
(iii)  strictly increasing, if
for %, y € X with y < », we have hy < hx;
(iv)  strictly decreasing, if
for %, y € X withy < », we have hy > hx.
A self mapping h defined on a poset (X, <) is called monotone if it is either order
preserving or order reversing.
If (X, <) is a poset, then the relation = defined on X x X by
®Y)E(Uv)exsuyzyv,
for (%, y), (u, v) € X x X, is also a partial order relation and (X X X, ) is a poset.
If we have (u, v) E (%, y), then we may also write (%, y) =2 (u, v). In this case, we
say that
yY)2@U,v)enz=Uy=sV.
For the sake of convenience, we use the symbol < in place of = and 3> in place of 3.

Now, we say that (%, y) and (u, v) are comparable if (x, y) < (u, v) or (», y) = (u, v).

Now-a-days, researchers are giving much attention to the partially ordered metric
space (POMS). POMS refers to a metric space endowed with a partial order. If (X, d)
is a metric space and “<” is a partial order on X, then POMS is represented by
(X, =, d) and can be defined as:

Let X be a non-empty set. Then, (X, <, d) is called a POMS if:
(1) (X, <) isaposet; (i) (X, d) is a metric space.



1.3 PARTIAL METRIC SPACES

In 1994, Matthews [1] introduced the concept of partial metric spaces as a
generalization of metric spaces, in which self distance of a point may not be zero.
According to Matthews, “Metric spaces are certainly Hausdorff and consequently,
cannot be used to study non-Hausdorff topologies”. In fact, Matthews [1] introduced
an approach to extend metric tools to non-Hausdorff topologies. The notion of partial
metric spaces given by Matthews [1] is as follows:

Definition 1.3.1 ([1]). A partial metric on a non-empty set X is a function
b: X x X —» R* such that for all %, y, z in X, the following holds:

bl. %=y & p(x %) = b(x. y) =b(y, y);

b2. b(x, %) < (%, y);

b3. b(x, y) =Db(y, »);

b4 b0t y) <b(%, 2) + b(z, ) - b(z 2).

A partial metric space is a pair (X, p) such that the set X is non-empty and p is a
partial metric on X. Clearly, if p(x, y) = 0, then » = y. But the distance of any point
from itself need not be zero.

Alike to the fixed point results in POMS, authors are also formulating fixed point
and coupled fixed point results in the partially ordered partial metric space (POPMS).
In general, POPMS refers to a partial metric space (X, p) endowed with the partial
order < and is represented by (X, <, p). POPMS can be defined as:

Let X be a non-empty set. Then, (X, <, p) is called a POPMS if:
(i) (X, <) isaposet; (if) (X, p) is a partial metric space.

1.4 G-METRIC SPACES

In order to generalize the notion of distance, Gahler [2] in 1963 introduced the
concept of 2-metric spaces. Afterwards, several fixed point results came into
existence in these spaces. Hsiao [3] showed that all such results were trivial. Later on,
Ha et al. [4] proved that a 2-metric need not be a continuous function in its variables,
whereas an ordinary metric is, further there has been no easy relationship between the
results obtained in the setting of these two structures.

On the other hand, in 1984, B.C. Dhage [5] in his doctral thesis introduced the
concept of D-metric spaces as a generalization of ordinary metric space.

Corresponding to every metric space, there exists a D-metric space. The converse is



however, not true in general. Geometrically, a 2-metric represents the area of a
triangle, whereas a D-metric represents the perimeter of a triangle.

In 2003, Mustafa and Sims [6] demonstrated that most of the claims concerning
the fundamental topological properties of D-metric spaces were incorrect. In order to
overcome the weaknesses of Dhages’s theory, Mustafa and Sims [7] in 2006
formulated a more vital generalization of metric spaces, termed as the generalized
metric space (G-metric space).

Definition 1.4.1 ([7]). Let X be a non-empty set and G: X X X x X - R* be a
function satisfying the following properties:

(G1)G(»%,y,2)=0ifn=y=1z

(G2) 0 <G(x%, %, y) forall », y € X with x # y;

(G3) G(%, %, Y) < G(n, Y, z) forall »,y, z€ Xwith z # y;

(G4) G(»%, Y, 2) =G, z,¥) =G(y, z, ) =...  (symmetry in all three variables);

(G5) G(», Y, 2) <G(%, a,a) + G(a,y, z) forall »,y, z, a € X.

(rectangle inequality)
Then, the function G is called a generalized metric on X (G-metric on X) and the
pair (X, G) is termed as a G-metric space.

Fixed point theory in this structure was initiated by Mustafa et al. [8], following
which, different authors proved several fixed point results in this set up.

Following the recent trends in fixed point theory, researchers are also enjoying
fixed point and coupled fixed point results in the partially ordered G-metric space
(POGMS). POGMS refers to the G-metric space (X, G) endowed with a partial order
< and is represented by (X, <, G). It can be defined as:

Let X be a non-empty set. Then, (X, <, G) is called a POGMS if:
(1) (X, <) is aposet; (i) (X, G) is a G-metric space.

1.5 MENGER PM-SPACES AND PGM-SPACES

For years, researchers are continuously making efforts to generalize the structure
of metric space under different conditions. There have been a number of
generalizations of metric space out of which, an important one is the Menger
probabilistic metric space (Menger PM-space or Menger space). In 1942, the study
of probabilistic metric space (PM-space) was initiated by Menger [9] under the name
of statistical metrics. Since then, the theory of PM-spaces has been developed in many

directions, particularly by Schweizer and Sklar [10, 11] as Menger PM-spaces. In fact,

6



the PM-space is the probabilistic generalization of the metric space in which a
distribution function F,  is associated with every pair of elements %, y rather than
associating the distance d(x, y) between » and y. For t > O, F, , represents the
probability that the distance between % and y is less than f. The perception of
PM-space corresponds to those situations where the distance between two points is
not known exactly but we know the probabilities of the possible values of the
distance. This probabilistic generalization of metric spaces is of fundamental
importance in probabilistic functional analysis [12].

In 1966, Sehgal [13] in his doctoral dissertation initiated the study of fixed points
in PM-spaces by proving the contraction principle in these spaces. Afterwards,
various authors have done much work in these spaces.

Definition 1.5.1 ([11]). A function f: R* — [0, 1] is called a distribution function if
it is left-continuous and non-decreasing with inf,cg f(») = 0. If addionally, f(0) = 0,
then f is called a distance distribution function. A distance distribution function f

that satisfies flim f(©) =1is called a Menger distance distribution function. The set

of all Menger distance distribution functions is denoted by A*.
Definition 1.5.2 ([10, 11]). A triangular norm (t-norm) is a binary operation
A: [0, 1] x [0, 1] = [0, 1] satisfying:

(i) Aa, b) = A(b, a);

(i) A(A(a, b), c) = A(a, A(b, €));

(i) A, 1) =q;

(iv) A(a,b) < A(c, d), whenevera<candb <dforalla,b,c, de |0, 1].
A t-norm is continuous if it is continuous as a function. A t-norm A is said to be
positive if A(a, b) > 0 for all a, b € (0, 1]. Some examples of the continuous t-norm
are Ap(a, b) = ab and Ay, (a, b) = min{a, b} for a, b € [0, 1].

Note that, a t-norm can also be denoted by the symbol *.

sup
0<t<1

type t-norm (H-type t-norm or t-norm of H-type), if the family of functions
{AP (6)}; is equi-continuous at £ = 1, where AP*1(£) = A(t, AP (£)) = £ A (AP (D)), p =
1,2, ...and t € [0, 1].

The t-norm A, is an example of t-norm of H-type.

Definition 1.5.3 ([14]). Let A(E ) = 1. At-norm A is said to be a HadZi¢



Remark 1.5.1 ([14]). A t-norm A is a H-type t-norm iff for any o € (0, 1), there exists
o(o) € (0, 1) such that AP (£) > (1 — o) forall p € N, when £ > (1 — o).
Definition 1.5.4 ([10, 11]). A Menger PM-space is a triple (X, F, A), where X is a
non-empty set, A is a continuous t-norm and F is a mapping from X x X into A* such
that, if F,, denotes the value of F at the pair (x, y), the following conditions hold for
all®,y,ze Xand t, s >0:

(PM;) F (O =1iffx=y;

(PMz)  Foy(©) = Fy . (O);

(PM3)  F,,(E+ ) = A(F,, (D), F,,(s)).

In present work, a partially ordered Menger PM-space (POMPMS) refers to the
Menger PM-space (X, F, A) endowed with a partial order < and is represented by
(X, <, F, A). POMPMS can be defined as:

Let X be a non-empty set. Then, (X, <, F, A) is called a POMPMS if:
(i) (X, <) isaposet; (i) (X, F, A) is a Menger PM-space.

Recently, Zhou et al. [15] provided a probabilistic version of G-metric spaces and
proved some fixed point results in it.
Definition 1.5.5 [15]. A Menger probabilistic G-metric space (PGM-space) is a
triple (X, G*, A), where X is a non-empty set, A is a continuous t-norm and G” is a
mapping from X x X x X into A* (G, , denote the value of G" at the point (x, y, z))
satisfying the following conditions for all %, y, z, a € X and f, s > O:

(PGM-1) Gy (O =1liffu=y=z

(PGM-2) Gy (©) = G,y ,(6) where y # z;

(PGM-3) Gry, (0 =Gy 1y (©) = Gy, (O = ..

(PGM-4) Gy +5) = A(Gra(s), Gl (D))

As in Menger PM-spaces, the theory of fixed points is growing rapidly in PGM-

spaces also.

1.6 FUZZY METRIC SPACES
In 1965, Zadeh [16] lead the beginning of a new era by introducing the concept of
fuzzy sets. The abstraction of the notion of distance under fuzzy situation has been

stimulated by various authors in distinct ways (see, Deng [17], Erceg [18], Kaleva and
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Seikkala [19], Kramosil and Michalek [20], George and Veeramani [21, 22]). In 1975,
Kramosil and Michalek [20] introduced the concept of fuzzy metric spaces. Later on,
George and Veeramani [21, 22] with a view point to obtain the Hausdorff topology in
these spaces modified the concept of fuzzy metric spaces due to Kramosil and
Michalek [20].

Afterwards, various authors established several fixed point results in fuzzy metric
spaces in the sense of George and Veeramani [21, 22], one can refer for more details
the work done by Gregori and Sapena [23], Murthy et al. [24], Singh and Chauhan
[25], etc.

Definition 1.6.1 ([16]). A fuzzy set A in X is a function with domain X and values in
[0, 1].

Definition 1.6.2. ([20]). A fuzzy metric space in the sense of Kramosil and Michalek
(KM-fuzzy metric space) is a triple (X, M, *), where X is a non-empty set, * is a
continuous t-norm and M is a fuzzy set on X% x R™ satisfying for all %, y, z € X and
f, s > 0, the following conditions:

(KM-1) M(x,y,0)=0;

(KM-2) M(xn,y, ) =1iffx=y;

(KM-3) M™M(x, Yy, £) = M(y, %, £);

(KM-4) M(x, z, f+s) = M(x,Y,£) *x M(y, z, s);

(KM-5) M(n,Y,.): Rt - [0, 1] is left continuous.

George and Veeramani [21, 22] modified this notion of fuzzy metric spaces as
follows:
Definition 1.6.3 ([21, 22]). The 3-tuple (X, M, *) is called a fuzzy metric space in
the sense of George and Veeramani (GV-fuzzy metric space) if X is an arbitrary
non-empty set, * is a continuous t-norm and M is a fuzzy set on X* x R*\ {0}
satisfying the following conditions for each », y, z € X and f, s > O:

(FM-1) M(x,y, £)>0;

(FM-2) M(x,y,6)=1iffx=y;

(FM-3)  M(x,y, ) = M(y, , ©);

(FM-4) M(x, z, £+ s) = M(xn, Y, £) x M(y, z, s);

(FM-5) M(n,y,.): Rt \ {0} - [0, 1] is continuous.



For brevity, we call KM-fuzzy metric space as KMFMS and GV-fuzzy metric
space as GVFMS.

Some authors including Jain et al. [26], Choudhury et al. [27], Choudhury and
Das [28], and others, have also used the following additional condition to formulate
their results in GVFMS:

(FM-6) M(%,y,f) > last— oo forxn,yeEX.
Presently, authors are formulating fixed point results in these spaces

enthusiastically.

1.7 OBJECTIVE OF THE PRESENT WORK

e We aim to extend, unify and generalize the results of various authors present
in the literature of coupled fixed point theory in various abstract spaces.

e Try to define nonlinear contractions in such-a-way that extend and generalize
the previous results present in the literature.

e Tryto improve the technique used to compute coupled coincidence points.

e Try to modify and rectify errors present in the already existing results.

e To study the relation between the ordinary fixed point and coupled fixed point
results.

e Recently, Aamri and El-Moutawakil [29] introduced the concept of property
(E.A.) and subsequently, Sintunavarat and Kumam [30] introduced the
concept of (CLRg) property for obtaining fixed points. We aim to study these
notions for the problems in coupled fixed point theory and to extend these
notions to common property (E.A.) and (CLRgsy) property for problems in
coupled fixed point theory.

1.8 METHODOLOGY ADOPTED FOR THE PRESENT WORK
Banach fixed point theorem is a fundamental tool in “fixed point theory”, which

guarantees the existence and uniqueness of fixed points of certain self map(s) on
metric spaces and thereby provides a constructive method to find fixed points.
Generally, the following steps are followed:

Step 1. To find a common coincidence point for one pair of maps;

Step 2. To find a common coincidence point for the second pair using 1% step;

Step 3. To show that pair wise coincidence points are equal,

Step 4. To show that common coincidence point is a common fixed point;
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Step 5. To show the uniqueness.

Further, the Inductive, Deductive, Heuristic, Analytic and Synthetic approaches
are also used to prove the results.

1.9 ORGANIZATION OF PRESENT WORK

Present work deals with the aim to fulfil the objectives mentioned in section 1.7.
The work is divided into eight chapters and each chapter has many sub-sections.

CHAPTER - | is the introduction part and consists of nine sections. Section 1.1
provides an overview of the fixed point theory. In section 1.2, we study the notions of
metric spaces and partially ordered sets. Section 1.3 accounts the partial metric
spaces. In section 1.4, we study the notion of G-metric spaces. Section 1.5 gives an
introduction to Menger PM-spaces and PGM-spaces. Similarly, section 1.6 gives the
introduction of fuzzy metric spaces. In section 1.7, we discuss the objectives of the
current study. Section 1.8 accounts the methodology adopted for the present work. In
section 1.9, organization of the present work is given.

CHAPTER - Il provides a deep insight into the literature review which
motivates to carry out the present research. It consists of five sections. Section 2.1
provides a metrical survey of fixed point theory which comprehends fixed point
results as well as coupled fixed point results in POMS. Section 2.2 indulges literature
survey in partial metric spaces. The survey of literature in G-metric spaces has been
presented in section 2.3. Section 2.4 grants the literature review of coupled fixed
point theory in Menger PM-spaces and PGM-spaces. Section 2.5 corresponds the
relevant analysis of literature in fuzzy metric spaces.

CHAPTER - IlI deals with (¢, ¥) — contractive conditions in POMS and
POPMS. The contractive conditions under consideration are symmetric in nature and
weaken some of the already existing contractive conditions present in the literature.
This chapter consists of five sections. Section 3.1 gives a brief introduction to
symmetric contractive conditions. In section 3.2, we establish the existence and
uniqueness of coupled common fixed points under a (¢, ¥) — contractive condition
for mappings with mixed g-monotone property (MgMP) in POMS. Section 3.3
consists of coupled fixed point results under a (¢, ¥) — contractive condition in
POMS. In section 3.4, we establish coupled fixed point result for symmetric (¢, ) —

weakly contractive condition in the setup of POPMS. In the last section 3.5, an
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application to the existence and uniqueness of the solution of an integral equation is
discussed. In this section, a result of the integral type is also given.

CHAPTER - IV deals with some generalized and weak symmetric contractions
in POMS. This chapter has five sections. Section 4.1 gives a brief introduction to
some symmetric contractions. In section 4.2, we establish some coupled common
fixed point results under the notion of generalized symmetric g-Meir-Keeler type
contractions. Section 4.3 consists of coupled common fixed point results for mixed g-
monotone mappings satisfying (a, ) — weak contractions. In section 4.4, as
applications of the results proved in various sections of this chapter, the solution of
integral equations is discussed. In the last section 4.5, an application to the result of
the integral type is also given.

In CHAPTER -V, we establish some coupled coincidence and coupled common
fixed point results in the setup of POGMS for mixed g-monotone mappings. The
results obtained generalize and extend works of various authors present in the
literature. This chapter consists of four sections. Section 5.1 gives a brief introduction
to coupled fixed point results in G-metric spaces. In section 5.2, we establish some
coupled coincidence and coupled common fixed point results for mixed g-monotone
mappings satisfying (¢, ) — contractive conditions in POGMS. Section 5.3 consists
of some coupled coincidence and coupled common fixed point results for mixed g-
monotone mappings satisfying new generalized nonlinear contractions in the setup of
POGMS. At last, in section 5.4, as application of the obtained results, we discuss the
solution of integral equations.

In CHAPTER - VI, we give a new technique to compute coupled coincidence
points in various spaces. Also, we rectify some errors present in the recent papers on
coupled coincidence and coupled common fixed points in some spaces. This chapter
has eight sections. Section 6.1 gives a brief introduction to some previous results. In
section 6.2, we discuss a new technique to compute coupled coincidence points. The
technique discussed in this section improves a recent technique present in the
literature. In section 6.3, using the technique given in section 6.2, we improve some
recent coupled coincidence point results in POMS. Section 6.4 consists of the
generalization of a recent coupled coincidence point result for probabilistic ¢ -
contraction in POMPMS by using the technique given in section 6.2. In section 6.5,

using the technique given in section 6.2, we generalize a result in POGMS. Section
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6.6 consists of some remarks on some recent papers concerning coupled coincidence
points. In section 6.7, we point out and rectify an error in a recent paper on
probabilistic ¢ — contraction in PGM-spaces. In section 6.8, we point out and rectify
some errors in a recent paper on weakly related mappings in POMS.

In CHAPTER - VII, we prove some fixed point and coupled fixed point results
in POMS. The results obtained are generalizations of a number of existing works.
This chapter consists of four sections. Section 7.1 gives the introduction to some
already existing contractions in POMS. In section 7.2, we prove some fixed point
results for generalized weak (¥ > ¢) — contraction mappings in POMS. Section 7.3
consists of the application of the results established in section 7.2 to coupled fixed
point results. In section 7.4, we establish some coupled coincidence point and coupled
common fixed point results for the pair of mappings lacking MgMP.

In CHAPTER - VIII, we discuss some results for w-compatible (weakly
compatible) mappings, variants of weakly commuting and compatible mappings,
mappings with property (E.A.), (CLRg) property, common property (E.A.) and
(CLRgy) property in context of coupled fixed point theory. This chapter deals with
results in fuzzy metric spaces with some corresponding results in metric spaces. This
chapter has five sections. Section 8.1 constitutes the introductory part. In section 8.2,
we discuss variants of weakly commuting and compatible mappings in coupled fixed
point theory in fuzzy metric spaces and metric spaces. Section 8.3 consists of coupled
fixed point results for weakly compatible mappings, variants of weakly commuting
and compatible mappings in fuzzy metric spaces. In section 8.4, we study the notions
of property (E.A.), (CLRg) property, common property (E.A.) and (CLRgt) property
and utilize these notions to generalize some existing results in coupled fixed point
theory in fuzzy metric spaces. Section 8.5 is the application part which consists of the
metrical version of some results proved in fuzzy metric spaces in the earlier sections
of this chapter.

In the last, the presented work is culminated with conclusion and scope for

further work.
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CHAPTER -1
LITERATURE REVIEW

2.1. METRICAL SURVEY OF FIXED POINT AND COUPLED FIXED POINT
THEORY

The notion of metric space was introduced by M. Frechet (1878-1973) in his
doctoral thesis and this notion plays an important role in the study of topology and
functional analysis.

Now-a-days, the study of metrical fixed point theory is receiving great attention
of researchers due to its broad area of applications in various disciplines. An early
fixed point result in topology was formulated by Brouwer [31] in 1912, which states,
“Any continuous function from the closed unit ball in n-dimensional Euclidean space
to itself must have a fixed point”. This result was further extended by Schauder [32]
in 1930 to closed, bounded and convex subsets of Banach spaces.

On the other hand, in 1922, S. Banach [33] gave one of the most important fixed
point theorem, famously known as Banach fixed point theorem or Banach contraction
principle (BCP). A self mapping h defined on a metric space (X, d) is called a
contraction mapping if

d(hx, hy) <k d(x, y), forall v,y e Xand 0 <k < 1.

BCP states, “Every contraction mapping on a complete metric space has a unique
fixed point”. This contraction principle has many applications which are scattered
throughout in almost all the branches of mathematics. BCP has been enjoyed and
extended by various authors over the years in different directions. In 1969, an
important generalization of BCP was formulated by Boyd and Wong [34], by
considering a non-linear contraction of the form:

d(hx, hy) < z/)(d,(%, y)), where 1 being some appropriate function on R,

Following the view point of Boyd and Wong [34], different authors generalized
and extended BCP by considering different assumptions on . This was the beginning
of a new era of functions which are now-a-days popularly known as comparison
functions. In connection with the function ¥: R* — R, different authors have
considered some of the following properties:

(cf-i) 1 is non-decreasing;

(cf-ii) Y(f) <fforall £>0;
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(cf-iii) Y(0) =0;
(cf-iv) Y is continuous;
(cf-v) r}i_r)gt/)“ & =0forall f=0;

(cf-vi) Yo W™ (£) converges for all £> 0, Y™ is the nth iterate of y;
(cf-vii) Y@ =0ifff=0;
(cf-viii)  (f) >0 for f € RT\{0};
(cf-ix) rli_)nfll,b(i“) <t for each > 0;
efx)  limp(D) = o;
(cf-xi) Y is lower semi-continuous.
Clearly, it follows that
(cf-1) and (cf-ii) implies (cf-iii);
(cf-ii) and (cf-iv) implies (cf-iii);
(cf-i) and (cf-v) implies (cf-ii).
A function vy satisfying (cf-i) and (cf-v), that is, y is non-decreasing and

limy" () =0 for all £ > 0 is said to be a comparison function. In the present work,

n—co

we denote by CF-¥, the family of all comparison functions.

A function v satisfying (cf-i) and (cf-vi), that is, y is non-decreasing and
YooY () converges for all £ > 0 is said to be a (c)-comparison function. In the

present work, we denote by CCF-¥, the family of all (c)-comparison functions.

The study of these functions has been carried out by various authors (see [35],
[36], [37]). Clearly, “any (c)-comparison function is a comparison function” and “any
comparison function satisfies (cf-iii)”. Different authors modified these comparison
functions as per the requirement of their work.

In 1969, Meir and Keeler [38] generalized BCP by using a strict contraction
condition which after their name is popularly known as Meir-Keeler contraction.
Theorem 2.1.1 ([38]). Let (X, d) be a complete metric space and h: X — X be a given
mapping. Suppose for any ¢ > 0, there exists § (&) > 0 such that

e<d»y) <e+ d(e) = d(hx, hy) <e, (2.1.1)
for all », y € X. Then, h has a unique fixed point », € X and for all » € X, the

sequence {h"«} converges to .
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In 1973, Geraghty [39] gave an interesting generalization of BCP using the class
R of the functions B: Rt — [0, 1) satisfying the condition:
B(£,) = 1implies f, - 0.
Theorem 2.1.2 ([39]). Let (X, d) be a complete metric space and h be a self-mapping
on X such that there exists § € R satisfying

d(hn, hy) < B(d(%, y))d(x, y), (2.12)
for all %, y € X. Then, the sequence {x,} defined by %, = hx,_; for eachn > 1
converges to the unique fixed point of h in X.

Recently, the theory of fixed points has been receiving much attention in POMS.
Ran and Reurings [40] established an analogue of BCP in POMS. The significant
feature of the work produced in [40] was that the contractive condition on the
nonlinear map was assumed to hold only for the elements that were comparable w.r.t.
partial order. Further, in [40], the authors assumed the following assumption on the
poset (X, <):

Assumption 2.1.1 ([40]). X has the property: “every pair %, Y € X has a lower bound

and an upper bound”.

In the present study, a partially ordered complete metric space (POCMS)
refers to the complete metric space endowed with a partial order. In particular,
(X, <, d) is called a POCMS, if X is a non-empty set such that:

Q) (X, <) is a poset;

(i) disametric on X such that (X, d) is a complete metric space.

Recall that, a partially ordered metric space (POMS) refers to the metric space

endowed with a partial order.

Following is the main result in [40]:
Theorem 2.1.3 ([40]). Let (X, <, d) be a POCMS with Assumption 2.1.1. If h is a

monotone and continuous self-mapping on X and there exists k, 0 < k < 1 such that

d(hGo), h(y)) < kd(%y), (2.1.3)
for » > y. If there exists », € X such that
o < h(xg) or vy = h(xg), (2.1.4)

then, h has a unique fixed point x. Moreover, for every »« € X, limh" (x) = %.

Nieto and Loépez [41] extended the results of Ran and Reurings [40]. In [41],

authors presented an extension of BCP in POMS that permits to consider the
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discontinuous functions also. Further, Nieto and Lépez [41] also proved the existence
of solution for the following first-order periodic problem:
v'(€) = K(E v(D), tel= [O,T]}
v(0) = v(T),
where T >0, and K: [ X R — R is a continuous function.

(2.1.5)

The main result given by Nieto and Lépez [41] is as follows:

Theorem 2.1.4 ([41]). Let (X, <, d) be a POCMS. Let h be a non-decreasing and
continuous self-mapping on X such that there exists k € [0, 1) with

d(hx, hy) <kd(x,y), forall x >y. (2.1.6)
If there exists %y € X with % < (%), then 1 has a fixed point.

Interestingly, Theorem 2.1.4 still holds if the continuity hypothesis of h is
replaced by the following assumption on X:

Assumption 2.1.2 ([41]). X has the property: “if a non-decreasing sequence
{»,} = %, then », < » for all n”.

In [40], authors proved the uniqueness of fixed point by considering
Assumption 2.1.1. In [41], it was asserted that the uniqueness of fixed point can be
achieved by considering the following hypothesis which is weaker than
Assumption 2.1.1.

Assumption 2.1.3 ([41]). X has the property: “every pair of elements has a lower
bound or an upper bound”.

Also, in [41] it was asserted that Assumption 2.1.3 is equivalent to the following
assumption:

Assumption 2.1.4 ([41]). X has the property: “for every %, y € X, there exists 7z € X
which is comparable to » and y”.

A slight modification of the results proved in [41] was produced in [42] by
considering the following assumption:

Assumption 2.1.5 ([42]). X has the property: “if {x,} — » is a sequence in X whose

consecutive terms are comparable, then there exists a subsequence {unk}keN of

{x, }nen Such that every term is comparable to the limit »”.

Using Assumption 2.1.5, authors in [42] proved the following result:
Theorem 2.1.5 ([42]). Let (X, <, d) be a POCMS with Assumption 2.1.3. Let h be a
non-increasing self mapping on X such that there exists k € [0, 1) satisfying (2.1.6).

Suppose either
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(a) his continuous or  (b) X assumes Assumption 2.1.5.
If there exists xg € X with % < h(xg) 0or % > h(xg), then h has a unique fixed point.

Generalizing BCP has always been a heavily investigated research branch. Weak
and generalized contractions are the generalizations of the Banach contraction
mapping, which have been studied over the years by various authors using the altering
distance functions. These functions are sometimes referred as control functions,
basically introduced by Khan et al. [43] in 1984.

Definition 2.1.1 ([43]). An altering distance function is a function ¢: Rt - R*
which satisfies (cf-i), (cf-iv) and (cf-vii), that is

(y;) ¥ is non-decreasing and continuous;

W) YO =0iff€=0.

For brevity, we call altering distance function as ADF.

Alber and Guerre-Delabriere [44], studied weak contractions in Hilbert spaces
and proved the existence of fixed points therein. Later on, Rhoades [45] utilized weak
contractions in complete metric spaces and proved the following result:

Theorem 2.1.6 ([45]). Let h be a self-mapping defined on a complete metric space
(X, d) satisfying for all %, y € X, the following condition:

d(ha, hy) < d(%y) = P(dGey)), (2.1.7)
where y: R* - R* is strictly increasing function satisfying (cf-iii). Then, h has a
unique fixed point in X.

In 2008, Dutta and Choudhury [46] generalized Theorem 2.1.6 under a more
generalized contraction and proved the following interesting result:

Theorem 2.1.7 ([46]). Let (X, d) be a complete metric space and h be a self mapping
on X satisfying

Y(de hy)) < Y(d@y)) — d(dy), (2.1.8)
where ¢ and ¢ are ADF. Then, h has a unique fixed point.

On the other hand, Harjani and Sadarangani [47, 48] investigated fixed points for
weak and generalized contractions in the metric spaces endowed with a partial order
by using the ADF.

Theorem 2.1.8 ([47]). Let (X, =<, d) be a POCMS and h be a non-decreasing and

continuous self-mapping on X such that
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for all », y € X with » >y, where ¥: R* —» R* is a function satisfying (cf-i), (cf-iii),
(cf-iv), (cf-viii) and (cf-x). If there exists %, € X with %y < hxy, then h has a fixed
point.
Theorem 2.1.9 ([48]). Let (X, <, d) be a POCMS and h be a non-decreasing and
continuous self-mapping on X such that

¥(d(hx, hy)) < (dGy)) — ¢(dGe y)), (2.1.10)
for all %, y € X with » >y, where i and ¢ are ADF. If there exists »y € X with % <
hx, then h has a fixed point.

An important category in fixed point theory is the family of problems dealing
with common fixed points. In 1976, Jungck [49] formulated a common fixed point
result using the concept of commuting mappings.

Let (X, d) be a metric space, then, we have the following definitions due to
Jungck [49]:

Definition 2.1.2 ([49]). (i) For the self mappings h and g defined on X, an element
a € X is called coincidence point of h and g if ha = ga and common fixed point of h
and gifha=ga=a.

(if) The mappings h, g: X — X are said to be commuting if higx = ghx, for all » € X.
In this case, we say that the mappings h, g commutes and the pair (h, g) is
commuting.

The concept of commuting maps has been generalized by different authors in
many ways. An important generalization of this notion was introduced in [50], known
as “weak compatibility”.

Definition 2.1.3 ([50]). Two maps h, g: X — X are said to be weakly compatible
(weak compatible) if hgx = ghx, whenever hix= gx, where » € X.
In this case, we say that the pair (h, g) is weak compatible or weakly compatible.

In their remarkable work, Agarwal et al. [51] presented some new results for
generalized nonlinear contractions. Results proved in [51] are given below:

Theorem 2.1.10 ([51]). Let (X, <, d) be a POCMS. Assume there is a function
Y: Rt - R satisfying (cf-i) and (cf-v). Also, suppose that h is a non-decreasing self-

mapping on X with
d(te, hy) < (max {d(x, ), dGe 1), d(y, hy), 5[40 hy) +d(3, m0]}), (2.1.12)

for all % > y. Also, suppose either

(a) his continuous or (b) X assumes Assumption 2.1.2.
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If there exists an %, € X with % < hix, then h has a fixed point.
Theorem 2.1.11 ([51]). Let (X, <, d) be a POCMS. Assume there exists a function
Y: RY - R* satisfying (cf-ii) and (cf-iv) and also suppose h is a non-decreasing self-
mapping on X with

(e, hy) < yp(max{d(x,y), d(x, o), d(y, hy)}), (2.1.12)
for all » 3> y. Also, suppose either

(a) his continuous or  (b) X assumes Assumption 2.1.2.

If there exists an %, € X such that %, < hx,, then h has a fixed point.

Recently, Ciri¢ et al. [52] introduced the notion of g-monotone mapping and
utilized it to prove a common fixed point result for generalized nonlinear contractions.
Definition 2.1.4 ([52]). Suppose (X, <) is a poset and h, g are self-mappings on X.
Then h is said to be g-non-decreasing if for %, y € X,

gx < gy implies hix < hy.
If g is the identity map on X, then h is said to be a non-decreasing mapping.

In their work, Ciri¢ et al. [52] assumed the following assumption on X:
Assumption 2.1.6 ([52]). X has the property: “if {gx,} < X is a non-decreasing
sequence with gx, — gz in g(X), then gx,, < gz, gz < ggz for all n € N hold”.

The main result given by Ciri¢ et al. [52] is as follows:

Theorem 2.1.12 ([52]). Let (X, <, d) be a POCMS. Assume there is a function
¢: Rt - R* satisfying (cf-ii) amd (cf-iv). Suppose that h, g be two self-mappings on
X such that h(X) < g(X), h is g-non-decreasing and

p(d(en gy)), o(d(gn, o)), ¢(d(gy, hy)),
d}(h%r hY) < max © (d_,(gx, hy)+d(gy, hx)) ) (2113)
2

for all #, y € X with g» > gy. Also suppose X assumes Assumption 2.1.6 and g(X) is
closed. If there exists %, € X with gx, < hxg, then h and g have a coincidence.
Further, if h and g commutes at their coincidence points, then h and g have a common
fixed point.

On the other hand, Amini-Harandi and Emami [53] extended Geraghty’s result
(see, Theorem 2.1.2) in the setting of metric spaces endowed with a partial order as
follows:

Theorem 2.1.13 ([53]). Let (X, <, d) be a POCMS, h be an increasing self-mapping
on X and there exists an element x, € X with % < hix,. Suppose that there exists 8 €

R such that the mapping h satisfy (2.1.2) for all %, y € X with » > y. Assume either
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(a) 1 is continuous or  (b) X assumes Assumption 2.1.2.
Besides, if for each %, y € X, there exists z € X comparable to % and y, then h has a
unique fixed point.

Now-a-days, authors are taking keen interest to extend, generalize and unify fixed
point results for the self-mappings on uni-dimensional space X to the results for the
mappings having X X X as domain, whereas, X being the co-domain. The first
attempt in this direction was made by Guo and Lakshmikantham [54] but the line of
research in this direction grew rapidly with the worth mentioning work of Bhaskar
and Lakshmikantham [55], where they introduced the mixed monotone property and
proved some coupled fixed point results for mappings with this property.

Definition 2.1.5 ([54, 55]). An element (%, y) € X x X is called a coupled fixed
point of the mapping F: X x X — X if F(x, y) = » and E(y, %) = .
Definition 2.1.6 ([55]). Let (X, <) be a poset. The mapping F: X X X — X is said to
have the mixed monotone property, if F(x, y) is monotone non-decreasing in x and
monotone non-increasing in y, that is, for any %, y € X,

%1, %y € X, w < ny implies F(xy,y) < E(xy, Y)
and V1, Y2 €X, y1 Syz implies E(x, y;) = F(x, y2).
For brevity, we call mixed monotone property as MMP.
If a mapping F has MMP, then F is said to be a mixed monotone mapping or
operator.

Bhaskar and Lakshmikantham [55] proved the following result:

Theorem 2.1.14 ([55]). Let (X, <, d) be a POCMS and F: X x X — X be a
continuous mapping having the MMP on X. Assume there exists a k € [0, 1) such that

for», yin X withx > uandy < v, we have

d(ECe, ), E(u, v)) < %[d)(%, u) + d(y, v)I- (2.1.14)
Suppose that X has the following property:
(P1) “there exist two elements »q, Yo € X With %y < F(xg, yo) and yo = F(yq, %0)”,
then, F has a coupled fixed point in X.

It has also been shown in [55] that the continuity assumption of the mapping F in
Theorem 2.1.14 can be replaced by considering the following assumption on X:
Assumption 2.1.7 ([55]). X has the property:

Q) “if a non-decreasing sequence {x,},—o € X converges to x, then », < %

for all n”;
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(i) “if a non-increasing sequence {y,}s—, € X converges to y, theny <y, for
all n”.

Likewise, in order to produce the existence of coupled coincidence points some
authors including Choudhury et al. [56], Karapinar et al. [57] and others replaced the
continuity hypothesis of the mapping F by the following assumption:

Assumption 2.1.8 ([56]). X has the property:
Q) “if a non-decreasing sequence {x, };—o € X converges to x, then gx, < gx
for all n”;
(i) “if a non-increasing sequence {y, }o—o € X converges to y, then gy < gy,
for all n”.

Using ADF, Harjani et al. [58] presented the following result which extends

Theorem 2.1.9 for mappings satisfying MMP:
Theorem 2.1.15 ([58]). Let (X, <, d) be a POCMS and F: X x X — X be a mapping
having MMP on X such that
o (d(FGe ), B(u, V) < p(max{d(x, ), d(y, V)
— p(max{d(x, u), d(y, V)}), (2.1.15)
for all » > u, y < v, where ¢, ¢ are ADF. Suppose either
(@) F is continuous, or  (b) X assumes Assumption 2.1.7.
If X has property (P1), then F has a coupled fixed point in X.

On the other hand, Lakshmikantham and Ciri¢ [59] extended the notion of mixed
monotone property to mixed g-monotone property and generalized the results of
Bhaskar and Lakshmikantham [55] for a pair of commutative maps. Since then, the
concept has been of great interest for researchers.

Definition 2.1.7 ([59]). Let (X, <) ba a poset and F: X X X — X, g: X — X be two
mappings. The mapping F is said to have the mixed g-monotone property, if F(x, y)
IS monotone g-non-decreasing in » and is monotone g-non-increasing in y, that is, for
%, Y EX,

%1, %y € X, ang < guy  implies  F(xg, y) < F(%p, Y)
and 1, ¥2 €X, gy1 <gy> implies F(x, y1) > F(x, y2).
For brevity, we call mixed g-monotone property as MgMP.
If a mapping F has MgMP, then F is said to be a mixed g-monotone mapping or

operator.
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Definition 2.1.8 ([59]). Let F: X x X — X and g: X — X be two mappings, an
element (%, y) € X x X is called a

Q) coupled coincidence point of F and g, if F(x, y) = gx and F(y, ») = gy.

(i)  coupled common fixed point of F and g, if F(x, y) = gx = » and E(y, ») =

gy=y.

If (%, y) € X X X is a coupled coincidence point of F and g, then (gx, gy) is said to be
point of coupled coincidence of F and g.
Further, if » € X be such that F(x, %) = g» = x, then % is called a common fixed point
of Fand g.
Definition 2.1.9 ([59]). The mappings F: X x X — X and g: X — X are said to be
commutative if gF(x, y) = F(g», gy) for all %, y € X.
In this case, we say that F, g commutes and the pair (F, g) is said to be commutative.
Theorem 2.1.16 ([59]). Let (X, <, d) be a POCMS. Assume there is a function
. Rt —» R* satisfying (cf-ii) and (cf-ix). Also suppose that F: X x X — X and
g: X — X be two mappings such that F has MgMP and

d(FGoy), E(u, v)) < g (et dener) (2.1.16)

for all %, y, u, v € X for which gx < gu and gy > gv. Also suppose F(X X X) € g(X),
g is continuous and commutes with F and suppose either

(@) Fiscontinuous, or (b) X assumes Assumption 2.1.7.
Suppose that X has the following property:
(P2) “there exist two elements »,, yo € X such that gxy < F(xg, yo) and gy, >
F(yo, %0)”.
Then, F and g have a coupled coincidence point in X.

Later on, Choudhury and Kundu [60] introduced the notion of compatible
mappings in coupled fixed point theory and utilized the notion to improve the results
of Lakshmikantham and Ciri¢ [59].

Definition 2.1.10 ([60]). The mappings F: X x X — X and g: X — X are said to be
compatible if

lim d(gF(n, yn), F(grn, gYyn)) =0, limd(gE(yn, %n), E(gYn, g%,)) =0,
whenever {»,} and {y,} are sequences in X such that rllig}OF(}cn_,yn) = rlliiﬁlog%“ =n

and limE(y,,»,) = limgy, =y for some x, y € X.
n—oo n—-oo

In this case, we say that the pair (F, g) is compatible.
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Theorem 2.1.17 ([60]). Let (X, =<, d) be a POCMS. Assume there is a function
. Rt —» R* satisfying (cf-ii) and (cf-ix). Also suppose that F: X x X — X and
g: X = X be two mappings with F having MgMP and satisfy (2.1.16) for all %, y, u, v
€ X with gx < gu and gy > gv. Further, suppose F(X X X) € g(X), the pair (F, g) is
compatible, g is continuous and monotone increasing. Also, suppose either

(@) Fiscontinuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P2), then F and g have a coupled coincidence point in X.

In their nice work, Choudhury et al. [56] extended the work of Bhaskar and
Lakshmikantham [55] for a pair of compatible mappings and improved the results of
Harjani et al. [58] under the following result:

Theorem 2.1.18 ([56]). Let (X, <, d) be a POCMS. Let ¢: Rt —» R* be a function
satisfying (cf-iv) and (cf-vii) and i be an ADF. Let F: X x X = X and g: X — X be
two mappings such that F has MgMP on X and

¥ (d(FGoy), E(u, v))) < w(max{d(gn, gu), d(gy, gv)})

— ¢(max{d(gx, gu), d(gy, gv)}), (2.1.17)
for all %, y, u, v € X for which gx > gu, gy < gv. Suppose F(X x X) € g(X), g be
continuous and the pair (F, g) is compatible. Suppose either

(a) F is continuous, or  (b) X assumes Assumption 2.1.8.
If X has the property (P2), then F and g have a coupled coincidence point in X.

On the other hand, Abbas et al. [61] introduced the concept of w-compatible
mappings, following which, some authors (see [62], [63]) established coupled
common fixed point results for the similar notion of weakly compatible mappings.
Definition 2.1.11 (i) ([61]). The mappings F: X X X — X and g: X — X are called
w-compatible, if gF(x, y) = F(gx, gy) whenever gx = F(x, y) and gy = F(y, ») for
%, Y EX.
Here, we say that the pair (F, g) is w-compatible.
(if) ([63]). The mappings F: X X X — X and g: X — X are said to be weakly
compatible if gF(x, y) = F(gn, gy) and gF(y, ») = F(gy, g»n) whenever gx = F(x, y)
and gy = F(y, ») for »,y € X.
In this case, we say that the pair (F, g) is called weakly compatible.

Interestingly, the concepts of w-compatible mappings and weakly compatible

mappings are equivalent.
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Remark 2.1.1. Compatible mappings are w-compatible, however, converse need not
be true in general.

On the other hand, by assigning y = » in the Definition 2.1.11, the concept of w*-
compatible mappings came into existence which has been enjoyed by various authors
(see, [64], [65], [66]).

Definition 2.1.12 ([61, 65]). The mappings F: X X X — X and g: X — X are called
w*- compatible, if gF(x%, ») = F(gx, gx) whenever gx = F(x, %) for » € X.

Then, we say that the pair (F, g) is w*-compatible.

Remark 2.1.2. w*- compatible mappings need not be compatible and w — compatible.

Luong and Thuan [67] generalized the results of Bhaskar and Lakshmikantham
[55] by using the following class of functions:

Definition 2.1.13 ([67]). Let @, denote the class of functions ¢: R — R* which
satisfy

(1) @ is continuous and non-decreasing;

(2) p(O) =0iff{=0;

(p3) P(+s) < () + @(s) forall f, s € RT,

Let @, denote the class of functions ¢: Rt — R* which satisfy (¢;), (¢,), (¢3) and
the condition:

(¢4) p(af) < ap(D).

Definition 2.1.14 ([67]). Let ¥ denote the class of functions y: R* — R* which
satisfy

(iy) %l_r)rilc Y () >0 forall +>0and fl_i)r&‘/’(f) =0.

Theorem 2.1.19 ([67]). Let (X, <, d) be a POCMS and F: X x X — X be a mapping
having the MMP on X. Suppose there exist ¢ € &4, Y € ¥ such that », y, u, v € X

with» > uandy < v, we have

o (4(FGu y), Fu, v))) < 50(d06 w) +d(y, v) -y (F22222), (2.1.18)
Suppose either
(a) Fiscontinuous,  or (b) X assumes Assumption 2.1.7.
If X has the property (P1), then F has a coupled fixed point in X.
Subsequently, Alotaibi and Alsulami [68] extended Theorem 2.1.19 for a pair of

compatible mappings under the following result:
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Theorem 2.1.20 ([68]). Let (X, <, d) be a POCMS and F: X X X — X, g: X - X be
two mapping such that F has the MgMP on X. Suppose there exist ¢ € @1, Y € ¥

such that for all %, y, u, v € X with gx > gu and gy < gv, we have
¢ (d(EGL y), B, v))) <5 0(d(en, gu) + d(gy, gv)

(gn, gw) +d(gy, gv)
—_ l/)(dz 2%, gu ;d:gy gv )’ (2119)

Suppose that F(X x X) € g(X), g is continuous and the pair (F, g) is compatible. Also,
suppose either
(a) Fiscontinuous, or (b) X assumes Assumption 2.1.7.

If X has the property (P2), then, F and g have a coupled coincidence point in X.

Luong and Thuan [69] gave the following result:
Theorem 2.1.21 ([69]) . Let (X, <, d) be a POCMS and F: X X X — X be the
mapping having MMP on X. Suppose there exist a, f = 0witha + f <landiL =0
such that

d(FCe, y), E(u, v)) < ad(x, u) + Bd(y, v)

d(F(x, y), w), d(F(u, v), %),}
d(FGe, y), %), d(F(u, v), u) )’

for all %, y, u, v € X with x > uand y < v. Also suppose either

4 i min{ (2.1.20)

(@) Fiscontinuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P1) then, F has a coupled fixed point in X.
On the other hand, Karapinar et al. [57] generalized Theorem 2.1.21 by giving the
following result:
Theorem 2.1.22 ([57]). Let (X, <, d) beaPOCMS and F: X X X = X, g: X = X be
two mappings such that F has the MgMP on X and satisfies the following condition:

d(FGx, y), F(u, v)) < p(max{d(gx, gu), d(gy, gv)})

dF0t y), gu), dE(u, v), g%),}
dFECe y), 20, dEU, v), gu) )’

for all %, y, u, v € X with gx > gu and gy < gv, where £ > 0, ¢: R* > Rt isa
continuous function with ¢(f) < f for all f >0 and ¢(f) = 0 iff f = 0. Also, assume

+ i min{ 2.1.21)

F(X x X) € g(X), the pair (F, g) is compatible and both F, g are continuous. If X has
the property (P2), then, F and g have a coupled coincidence point in X.
Rasouli and Bahrampour [70] proved the following result which can be seen as

an extension of Theorems 2.1.2 and 2.1.13 to coupled fixed point problems:
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Theorem 2.1.23 ([70]). Let (X, =<, d) be a POCMS and F: X X X = X be a
continuous mapping having MMP on X such that

d(FCu y), F(u, v)) < B(max{d(x, u), d(y, v)}) max{d(x, u), d(y, v)}, (2.1.22)
forall %, y,u, ve X withx >uandy < v, where g € R. If X has the property (P1),
then F has a coupled fixed point in X.

The work in coupled fixed point theory in POMS is developing rapidly and
motivates authors to explore more pivotal concepts that can generalize, extend and

unify the already existing fundamentals in the literature.

2.2. SURVEY IN PARTIAL METRIC SPACES

In 1994, Matthews [1] introduced the concept of partial metric spaces and proved
some results in it. Afterwards, various authors carried their work in these spaces and
made continuous efforts to generalize the results in [1]. Works of Valero [71], Oltra
and Valero [72] and Altun et al. [73] are some generalizations of the results in [1].
Subsequently, many authors studied various fixed point problems under different
contractive conditions in these spaces (see [74], [75], [76]). In particular, authors are
enjoying the conversion of fixed point results from the metric setup to the partial
metric situation. As in the set up of metric spaces, authors are also taking interest in
computing fixed points under weak and generalized contractions in partial metric
spaces (see [77], [78], [79], [80Q]).

As already discussed in section 1.3, a partial metric on a nonempty set X is a
function p: X x X - R™ satisfying axioms p1, p2, p3 and p4 and then, the pair (X, p)
is the partial metric space.

It is worth mentioning that each partial metric b on X generates a T, topology T,
on X for which the family of open p-balls {B,(x, r): % € X, £ > 0}, where B,(x, ) =
{faeX:p(x, a) < p(n, %) +r}forall w € X and r > 0, is a base.

A sequence {x,} in (X, b) converges to a point x € X w.r.t. 7, if limp(x, %) =

p(x, »). Symbolically, it is denoted by %, - »xasn — oo or limx, = x.
If p is a partial metric on X, then the function p°: X x X — R* defined by
b* (¢, y) = 2b(x, y) - b(¢, %) - b(y, V), (2.2.1)

is a metric on X. Furthermore, limp® (x,, ») = 0 iff
n—oo

b, %) = limbGen, 20 = _lim bt ).
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Interestingly, “a limit of a sequence in a partial metric space need not be unique”.
Defintion 2.2.1 ([1]). Let (X, b) be a partial metric space. Then

Q) a sequence {x, } in (X, p) is called a Cauchy sequence, if lim p(x,,»,)

exists finitely;
(i) the space (X, b) is said to be complete, if every Cauchy sequence {»,} in
X converges w.rt t, to some point »x € X such that p(x, x) =
nlglrgwb(%n,%m).
Lemma 2.2.1 ([1]). Let (X, b) be a partial metric space, then
Q) {»,} is a Cauchy sequence in (X, p) iff it is a Cauchy sequence in the
metric space (X, b°);
(i)  the space (X, p) is complete iff the metric space (X, b°®) is complete.
Let (X, p) be a partial metric, then v: (X x X) X (X x X) - R* defined by
v((t y), (w, 2)) = b, w) + b(y, 2) for (%, y), (W, 2) € X x X,
is a partial metricon X X X.
Definition 2.2.2 ([81]). A mapping F: X X X — X is said to be continuous at

(%, y) € X x X, if for each r > 0, there exists s > 0 such that F(Bb((x, y),s)) c

By (F(x, y), 1).

Lemma 2.2.2 ([82]). Let (X, p) be a partial metric space. Then, the mapping
F: X x X — X is continuous iff given a sequence {(x%,, yn)} nen and (%, y) € X X X
such that

(G0 y), (% y)) = imv(Gey), Gen, yn)),

implies b(FCoy), FCoy)) = lim p(FCe, y), F(tn, yn)).

In the present study, a partially ordered complete partial metric space
(POCPMYS) refers to the complete partial metric space endowed with a partial order.
In particular, (X, <, p) is called a POCPMS, if X is a non-empty set such that:

Q) (X, <) is a poset;
(i) pis a partial metric on X such that (X, p) is a complete partial metric
space.
Recall that, a partially ordered partial metric space (POPMS) refers to the partial

metric space endowed with a partial order.
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Recently, Aydi [83] extended Theorem 2.1.8 in POCPMS as follows:

Theorem 2.2.1 ([83]). Let (X, =<, p) be a POCPMS and h be a non-decreasing self-
mapping on X. Suppose for y < %, we have

b(hx, hy) < b(x, y) - P (b(x, ¥)), (22.2)
where y: Rt —» R is a function satisfying (cf-i), (cf-iii), (cf-iv), (cf-viii) and (cf-x).
Assume either

(a) 1 is continuous, or (b) X assumes Assumption 2.1.2.

If there exists %, € X such that », < hxg, then h has a fixed point v € X. Moreover,
p(u, u) = 0.

Abdeljawad et al. [84] studied generalized weak ¢ - contraction in partial metric
spaces. Subsequently, Abdeljawad [85] and Abbas and Nazir [86] established fixed
point results for generalized weakly contractive mappings in these spaces.

As in metric spaces, the computation of coupled fixed points in the setup of
partial metric spaces has attracted a great attention of researchers. Aydi [87]
formulated the following result in partial metric spaces, which was originally proved
in the setup of cone metric spaces by Sabetghadam et al. [88].

Theorem 2.2.2 ([87]). Let (X, p) be a complete partial metric space and the mapping

F: X x X — X satisfies for all », y, u, v € X, the following contractive condition,
b(F(x, y), F(u, v)) <k b(x, u) + I b(y, v), (2.2.3)

where k, | > 0 constants with k + | < 1. Then, F has a unique coupled fixed point.

Now-a-days, authors are showing keen interest to obtain coupled fixed point
results in partial metric spaces equipped with a partial order. The following coupled
fixed point result has been proved by Alsulami et al. [89], which can be considered as
the partial metric version of Theorem 2.1.19.

Theorem 2.2.3 ([89]). Let (X, <, p) be a POCPMS and F: X x X — X be a mapping
having MMP on X. Suppose there exist ¢ € @,, Y € ¥ such that for all %, y, u, v € X

withx > uand y < v, we have

o (b(FGu ), (U, v))) < 50(bGe w) +b(y, v) — 9 (B222E02) (2.2.4)
Suppose either
(@) F is continuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P1), then F has a coupled fixed point in X.
Generalizing and extending the already existing results is a great priority of

authors. Recently, Shatanawi et al. [81] extended and generalized the results of
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Bhaskar and Lakshmikantham [55] and Harjani et al. [58] to partial metric situation.

The work in partial metric spaces is developing enormously day-by-day.

2.3 SURVEY IN G-METRIC SPACES

Generalizing the structure of metric space has been always an area of great
interest for researchers over the years and subsequently, authors have done much
work to achieve this goal. One such example is the notion of D-metric spaces
formulated by B.C. Dhage [5] in 1984.

In 2003, Mustafa and Sims [6] found that most of the assertions regarding the
elementary topological properties of D-metric spaces were incorrect. This motivated
Mustafa and Sims [7] to look out for some more congruous concept and consequently,
they introduced the notion of G-metric spaces.

As previously discussed in section 1.4, a G-metric on a non-empty set X is a
function G: X x X x X — R* satisfying axioms (G1), (G2), (G3), (G4), (G5) and
then, the pair (X, G) is called a G-metric space. In [7], it was shown that “for any non-
empty set X, it is possible to construct a G-metric from any metric on X”. Further,
corresponding to any metric space (X, d), Mustafa and Sims [7] constructed the
following G-metrics on X:

(E) G Y, 2) =51d0x V) + 4y, 2) + dx, 2],
(Em) G (DY, 2) = max{d(x, ), d(y, 2), d(x, 2)}.

In the same work [7], the authors also answered the converse problem, that for
any G-metric G on X,

(Eg) d,066Y)=G0Y,Y) + Gt y),
defines a metric on X.

Mustafa and Sims [7] also defined the definition of symmetric G-metric spaces as
follows:

Definition 2.3.1 ([7]). A G-metric space (X, G) is said to be symmetric if
(G6) G(n,y,y) =G, x,Y), forall %,y € X.
Below are some important properties of a G-metric:
Proposition 2.3.1 ([7]). Let (X, G) be a G-metric space, then for any x, y, z, @ in X,
the following hold:

1) if G(x,y,2)=0,thenx =y =7z

2 G, Y, z) <G, %, Y) + G(x, », 2);
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(3) G, Y, y) < 2G(y, %, %);

(4) G, Y, z) < G(x, a, z) + G(a, Y, 2);

(5) G(x, Y, 2) < % [G(n, Y, @) + G(x%, @, 2) + G(a, Y, 2)];

(6) G(x,Y,2) <G, a,a)+ Gy, a,a) + G(z, a, a);

() |G, y, 2) — G(x, y, @)| < max{G(a, z, 2), G(z, a, W)};
(@) |GGy, 2) — G, Y, @) < G(x, a, 2);

9) GGy, 2) — Gy, z, 2)| <max{G(x, z,2),G(z, %, n)};
(10) IG(x, Y, y) = Gy, », W] < max{G(y, », ®), G(x, y, ) }.

Definition 2.3.2 ([7]). Let (X, G) be a G-metric space, then for %, € X, ¥ > 0, the ball
with centre % and radius £ is Bg(%g, r) = {y € X: G(»g, Y, y) <t}.
Proposition 2.3.2 ([7]). Let (X, G) be a G-metric space, then for any %, € X and
r >0, we have

(1) if G(xg, »,y) <t thenx, y € Bg(xo, 1),

(2) ify € Bg(ng, 1), then there exists a 6 > 0 such that B;(y, 6) € Bg(%g, ).

Mustafa and Sims [7], also noticed that for the G-metric space (X, G), the
collection B = {Bg (%, r): » € X, ¥ > 0} is the base of the G-metric topology 7(G) on
X.
Definition 2.3.3 ([7]). Let (X, G) be a G-metric space, then the sequence {x,} S X is
G-convergent to x if it converges to » in the G-metric topology, 7(G).
Proposition 2.3.3 ([7]). Let (X, G) be a G-metric space, then for a sequence {»,} S
X and point % € X, the following are equivalent:

(1) {>t,} is G-convergent to x;

(2) d ;(tn, ®) > 0 asn — oo;

(3) G(y, ®,, %) » 0asn — oo;

(4) G(#,, ®, %) = 0asn — oo;

(5) G(#¢py, %y, ®) > 0@SM, N > 00,
“Clearly, if ®, = » in G-metric space (X, G), then for any ¢ > 0, there exists some
N € N such that G(x, %,, ®,) < € forall n, m > N”.

In [7], it was shown that the G-metric induces a Hausdorff topology and the
convergence described in the above definition is relative to this topology. This

topology being Hausdorff, a sequence can converge at most to a point.
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Definition 2.3.4 ([7]). Let (X, G), (X, G) be G -metric spaces, a function h: X - X is
G-continuous at a point %, € X, if h™! (BG-(hxo, r)) € 7(G), forall £ > 0.
Further, the mapping h is G-continuous if it is G-continuous at all the points of X.
Proposition 2.3.4 ([7]). Let (X, G), (X, G) be G-metric spaces, then a function
h: X —» X is G-continuous at a point » € X if and only if the sequence {hx,} is G -
convergent to hx whenever the sequence {», } is G-convergent to x.
Proposition 2.3.5 ([7]). Let (X, G) be a G-metric space, then the function G(», vy, z) is
jointly continuous in all three of its variables.
Definition 2.3.5 ([7]). Let (X, G) be a G-metric space, then a sequence {»,} in X is
said to be G-Cauchy if for every € > 0, there exists N € N such that G(»,,, ®,, #;) <&
forall n,m, | > N, that is, G(x,, %, ®;) = ©asn, m, | — co.
Proposition 2.3.6 ([7]). In a G-metric space (X, G), the following are equivalent:

(1) the sequence {x, } is G-Cauchy;

(2) for every € > 0, there exists N € N such that G(»,,, ®,, ®,) <&, foralln,m >

N;

(3) {n} is a Cauchy sequence in the metric space (X, d )

Further, in [7], it has also been observed that “every G-convergent sequence in a
G-metric space is G-Cauchy” and “if a G-Cauchy sequence in a G-metric space
(X, G) contains a G-convergent subsequence, then the sequence itself is G-
convergent”.

Definition 2.3.6 ([7]). A G-metric space (X, G) is said to be G-complete if every G-
Cauchy sequence in (X, G) is G-convergent in (X, G).

Proposition 2.3.7 ([7]). A G-metric space (X, G) is G-complete if and only if (X, d )
is a complete metric space.

Computation of fixed points in G-metric spaces is an area of great interest for
authors. Below is the first fixed point result in G-metric space, which was given by
Mustafa [90]:

Theorem 2.3.1 ([90]). Let (X, G) be a complete G-metric space. Suppose there is
k € [0, 1) such that the self mapping h on X satisfies

G(hx, hy, hz) <k G(x, Y, 2), (2.3.1)
for all %, y, z in X. Then, h has a unique fixed point (say u) and h is G-continuous at

u.
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Theorem 2.3.1 is, in fact, the G-metric version of BCP and was further
generalized by Shatanawi [91] under the following result:

Theorem 2.3.2 ([91]). Let (X, G) be a complete G-metric space. Suppose that the self
mapping h on X satisfies

G(hx, hy, hz) < ¢(G(»,y, 7)), (2.3.2)
for all %, y, z in X, where the function ¢: Rt —» R satisfies (cf-i) and, it also satisfies
(cf-v). Then 1 has a unique fixed point (say u) and h is G-continuous at .

Latterly, different authors established several fixed point results under various
contractive conditions in the setup of G-metric spaces (see [92], [93], [94], [95] etc.).
Abbas and Rhoades [96] initiated the study of common fixed points in G-metric
spaces. Shatanawi et al. [97] introduced the notions of weakly G-contractive and
weakly G-contractive type mappings in these spaces. Aydi et al. [98] formulated

results for weakly G-contraction mappings in G-metric spaces.

In the present study, a partially ordered complete G-metric space (POCGMS)
refers to the complete G-metric space endowed with a partial order. In particular,
(X, <, G) is called a POCGMS, if X is a non-empty set such that:

Q) (X, <) is a poset;

(i)  GisaG-metric on X such that (X, G) is a complete G-metric space.

Recall that, a partially ordered G-metric space (POGMYS) refers to the G-metric space
endowed with a partial order.

Recently, the popularity of fixed point results in POMS inspired researchers to
carry out their work in POGMS. In particular, weak and generalized contractions have
been enjoyed by a number of authors in the framework of POGMS (e.g., see [99],
[100], [101]). Mustafa et al. [102] proved some coincidence point results for nonlinear
generalized (i, @) - weakly contractive mappings in POGMS.

Motivated by Bhaskar and Lakshmikantham [55], in their nice and elegant work,
Choudhury and Maity [103] initiated the theory of coupled fixed points in the setup of
G-metric spaces. In order to produce their results, Choudhury and Maity [103] gave
the following definition:

Definition 2.3.7 ([103]). Let (X, G) be a G-metric space. A mapping F: X X X = X is

said to be continuous, if for any two G-convergent sequences {x,} and {y,}

33



converging to x and y respectively, the sequence {F(»,,y,)} is G-convergent to
F(x,y).

Following is the main result proved by Choudhury and Maity [103]:
Theorem 2.3.3 ([103]). Let (X, <, G) be a POCGMS and F: X X X — X be a
continuous mapping having MMP on X. Assume there exists k € [0, 1) such that for

%, Y, 7, U, v, win X, the following holds:
G(E(x, ), E(u, v), E(w, 2)) < 5 [G(x, U, w) + G(y, v, 2)], (2.3.3)

forall » > u > wandy < v < z, where either u # w or v # z. If X has property (P1),
then, F has a coupled fixed point.

It was also shown in [103] that Theorem 2.3.3 still holds, if the continuity
hypothesis of F be replaced by Assumption 2.1.7 w.r.t. convergence and ordering in
(X, <, G). Aydi et al. [104] generalized the results of Choudhury and Maity [103] by
using a pair of commutative mappings that satisfies the contraction condition
analogous to the contraction (2.1.16) but in the setup of POGMS. Subsequently, many
coupled common fixed point results were established by different authors in these
spaces. Some of these results are extensions of the already existing results present in
the metrical coupled fixed point theory. Cho et al. [105] established the existence and
uniqueness of coupled common fixed points under contraction condition analogous to
the contraction (2.1.17) but in the setup of G-metric spaces equipped with a partial

order.

2.4. SURVEY IN MENGER PM-SPACES AND PGM-SPACES

Menger [9] pioneered the theory of PM-spaces in 1942 but the theory attracted
the attention of authors after the distinguished work of Schweizer and Sklar [10, 11].
The theory of PM-spaces has been enjoyed in different directions, particularly as
Wald spaces, Menger PM-spaces etc.

In 1966, Sehgal [13] initiated the study of fixed points in the setup of PM-spaces
by proving the contraction mapping theorems therein. Afterwards, this area of
research has further been explored by host of authors which includes Sehgal and
Bharucha-Reid [106], Sherwood [107], Boscan [108], Cain and Kasriel [109],
Istratescu and Roventa [110], Istratescu and Sacuiu [111] and others.

As discussed already in Section 1.5, a Menger PM-space is a triple (X, F, A),

where X being a non-empty set, A a continuous t-norm and F is a mapping from
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X x X into AT (where, AT denotes the set of all Menger distance distribution
functions) such that, if I, , denotes the value of I at the pair (x, y), the conditions
(PM,), (PM,), (PM3;) hold.
Definition 2.4.1 ([11]). Let (X, F, A) be a Menger PM-space.
Q) A sequence {x,} in X is said to be convergent to a point x € X (written
as, ®x, — ), if forany £ > 0 and 0 < € < 1, there exists N € N such that
F,, «(f) > 1 - &, whenever n > N;
(i)  Asequence {x,} in X is said to be a Cauchy sequence, if for any £ > 0 and
0 < & < 1, there exists N € N such that F, , (f) > 1 - &, whenever
n,mz=N;
@iii) (X, F, A) is said to be complete iff every Cauchy sequence in X is
convergent to a point in X.
Theorem 2.4.1 ([11]). If (X, F, A) is a Menger PM-space and {a,}, {b,} are

sequences in X such that a, - a and b, - b, then limF,_, (£) = F,(f) for every
n—oo

continuity point t of F y,.

The following notion of contraction mappings on PM-spaces has been introduced
by Sehgal [13]:
Definition 2.4.2 ([13]). Let (X, F, A) be a Menger PM-space and h: X — X be an
arbitrary mapping on X. Then h is called a contraction (or probabilistic
contraction) if there exists k € (0, 1) such that for %, y in X and £ > 0, we have

Fpy, ny (k) = Fy (D). (2.4.)

Later on, the probabilistic contraction has been extended to the probabilistic ¢ —
contraction as follows:

Fie iy (#(6) = F, (6, (2.4.2)
where ¢: Rt - R is a gauge function satisfying some appropriate conditions, which
were subsequently weakened by different authors. It is worth mentioning here that,
different authors obtained various interesting results for the probabilistic
¢ — contractions, where the gauge function (auxiliary function) ¢ assumes any one of
the following assumptions:

@) “¢(f) =kt forall £>0, where 0 <k <1”; or
(b) “¥r=q p™(f) < o forall £> 07,

In order to weaken the condition (b), Ciri¢ [112] constructed the following condition:
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(©) “¢p(0)=0, ¢p(f) <fand {}Lrg¢(r) <fforall >0

Subsequently, Jachymski [113] presented probabilistic ¢ — contraction, where ¢
satisfies the condition:
(d)“0< ¢(f) <fand lim¢™(f) =0 forall £>0”.

Denote by Q, the set of all functions ¢: R* —» R* satisfying the condition (d).
In order to weaken the condition (d), Fang [114] introduced the following condition:

(e) “for each £ > 0, there exists r > f such that lim ¢ (¥) =0”.
n—>oo

Denote by Q,,, the set of all functions ¢: Rt — R* satisfying the condition (e).

Sometimes, authors also use the symbol ¢ instead of ¢ to denote the elements in Q.

In the present study, a partially ordered complete Menger PM-space
(POCMPMS) refers to the complete Menger PM-space endowed with a partial order.
In particular, (X, <, F, A) is called a POCMPMS if X is a non-empty set such that:

Q) (X, <) is a poset; (i) (X, F, A) is acomplete Menger PM-space.
Recall that, a partially ordered Menger PM-space (POMPMS) refers to the Menger

PM-space endowed with a partial order.

Now-a-days, researchers are paying much attention to study the fixed point
results in Menger PM-spaces endowed with a partial order. Recently, Ciri¢ et al. [115]
extended the results of Ran and Reurings [40] and Nieto and Rodriguez-Lopez [41,
42] to the wider class of contractive mappings from metric to probabilistic metric
setup. In order to establish common fixed points in POCMPMS (X, <, F, A), Ciri¢ et
al. [115] considered the following contractive condition:

F e, ay(KE) = Min{Fp,, 1y (©), Fri, 4 (6), Fry, ay (0}, (2.4.3)
for all %, y € X for which h» < hy and all £ > 0, where h and A are self mappings on
Xand k € (0, 1).

On the other hand, authors are promptly enjoying coupled fixed point problems in
POMPMS. Ciri¢ et al. [116] introduced the notion of mixed monotone generalized
contraction in these spaces and obtained some coupled coincidence point results
therein. Later on, Wang et al. [117] proved the following coupled coincidence point

result for nonlinear contractive mappings in these spaces:
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Theorem 2.4.2 ([117]). Let (X, <, F, A) be a POCMPMS, where A is a t-norm of H-
type. Let p € Q and Q: X X X — X, h: X — X be two mappings such that Q has
MhMP on X and
Fot v, o, v (@ (6) = min{Fy, 4, (6), Fry 1y (0}, (2.4.4)
for all £ >0 and all %, y, u, v € X for which hu < hx and hy < hv. Suppose h is
continuous and commutes with Q and Q(X X X) < h(X). Also, suppose either
(@) Q is continuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P2), then Q and h have a coupled coincidence point in X.
On the other hand, Poric [118] formulated the following definition in Menger
PM-spaces:
Definition 2.4.3 ([118]). Let (X, F, A) be a Menger PM-space. The mappings
Q: X x X = X and g: X — X are said to be compatible if
Illi_{‘?OFgQ(xn.yn), Qlern, yn) (B = 1, Illi_r)?OFgQ(yn,%n), Qayn ) (D =1,
for all £ > 0, whenever {x,} and {y,} are sequences in X such that Illi_rgQ(%“’y“) =
limgt, =%, IimQ(yy, %,) = limgy, =y for some x,y € X.
Here, we say that the pair (Q, g) is compatible. The pair (Q, g) can also be
represented by (Q: X X X = X, g: X = X).
Quite recently, using the gauge function ¢ € Qy, Choudhury et al. [119]

obtained coupled coincidence points in POMPMS (X, =<, F, A) for a pair of
compatible mappings (Q: X x X — X, g: X = X) under the following ¢-contraction:

FQee, v, 0 v (@) = [Fge, gu(®) - Fyy, gv(f)]%, (2.4.5)
forall >0, »,y, u, v € X with gx < guand gy > gv.

Generalizing and extending already existing notions has always been a great
preeminence for researchers. Recently, Zhou et al. [15] formulated the probabilistic
version of G-metric spaces which is famously known as Menger probabilistic G-
metric space (PGM-space). PGM-space is a generalization of Menger PM-space.

As already discussed in Section 1.5, a PGM-space is a triple (X, G, A), where X
IS a non-empty set, A is a continuous t-norm and G isa mapping from X X X X X
into At (G;, y, z denote the value of G at the point (%, y, z)) satisfying the conditions
(PGM-1), (PGM-2), (PGM-3), (PGM-4).

Zhou et al. [15] also investigated some topological properties of PGM-space.

Further, in the same work [15], some fixed point results were also established. These
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results were actually the probabilistic version of the already existing results,
particularly, of BCP. This attracted researchers to work in the PGM-spaces also. In
particular, coupled fixed point results are being enjoyed by researchers in these
spaces.

Recently, Zhu et al. [120] proved their results in PGM-spaces using the following

contractions:

1
() Grteyr 1 n(9©) = [A(Cax ag an(®), Gay g m®)[',  (24.6)
where ¢: Rt —» R being a gauge function such that ¢ =1({0}) = {0} and ¥ _, ™ (£)
<ocoforanyf>0and T: X X X = X and A: X — X be two mappings.

1
2

(ii) G’T"(x, y),T(a, @), T(h ,I)(QD(E)) = [G;m Aa, Ah(f) . Gz‘y, Aqg, Al (f)] ) (2-4-7)
where ¢: Rt - R* being a gauge function such that ¢=1({0}) = {0}, ¢(f) < f and
lim o™ (f) =0 forany £> 0.

The theory of coupled fixed points in Menger PM-spaces and PGM-spaces is a
dynamic study and is expanding day-by-day.

2.5. SURVEY IN FUZZY METRIC SPACES

In 1965, the introduction of fuzzy sets by Zadeh [16] proved a turning point in the
field of mathematical sciences. In 1975, Kramosil and Michalek [20] laid the
foundation of KM-fuzzy metric space (KMFMS). Grabiec [121] presented the fuzzy
version of BCP in these spaces. On the other hand, Fang [122] proved some fixed
point theorems for contractive type mappings in such spaces, wherein he generalized
and improved the works of Edelstein [123], Istratescu [124], Sehgal and Bharucha-
Reid [106]. The result of Grabiec [121] was generalized by Subrahmanyam [125] for
the pair of commuting mappings. In fact, Subrahmanyam [125] presented the fuzzy
analogue of Jungck’s result [49] and therein, proposed the applicability of his result
for compatible mappings. Originally, the notion of compatible mappings was framed
by Jungck [126] in metric spaces which was carried in the setup of fuzzy metric
spaces by Mishra et al. [127]. Vasuki [128] defined the notions of weakly commuting
and R-weakly commuting maps in fuzzy metric spaces to obtain common fixed points
in these spaces. Later on, the variants of compatible and weakly commuting mappings

have been enjoyed by different authors to develop the common fixed point results.
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On the other hand, with an aspect to access Hausdorff topology in the fuzzy
metric spaces, George and Veeramani [21, 22] modified the concept of fuzzy metric
spaces due to Kramosil and Michalek [20]. Afterwards, the theory of fixed points
developed considerably in these spaces. Different authors established various fixed
point results in fuzzy metric spaces in the sense of George and Veeramani
[21, 22] (GVFMS).

Section 1.5 discussed the notion of t-norm while section 1.6 provided an
introduction of KMFMS and GVFMS. A KMFMS is a triple (X, M, ), where X is a
nonempty set,  is a continuous t-norm and M is a fuzzy set on X2 x Rt satisfying the
axioms (KM-1), (KM-2), (KM-3), (KM-4), (KM-5). On the other hand, a GVFMS is
a triple (X, M, *), where X is an arbitrary non-empty set, = is a continuous t-norm and
M is a fuzzy set on X2 x RT\{0} satisfying the axioms (FM-1), (FM-2), (FM-3),
(FM-4), (FM-5).

The concepts of Cauchy sequences and convergent sequences in KMFMS were
defined by Grabiec [121] as follows:

Definition 2.5.1 ([121]). Let (X, M, *) be a fuzzy metric space, then
Q) A sequence {x,} in X is said to be Cauchy if IlliirgoM(uner,xn,f) =1, for

eachf>0and p > 0;

(i) A sequence {x,} in X is convergent to » € X if limM(x,, %) = 1, for
n—oo

each £ > 0. In notations, we write limx, = x.

n—oo

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is

called complete.

Grabiec [121] also suggested that since = is continuous, the limit in the above
definition of convergence is uniquely determined. In the same paper [121], fuzzy
version of BCP was also suggested.

Theorem 2.5.1 ([121]). Let (X, M, ) be a complete fuzzy metric space with (FM-6).
Let 1 be a self map on X satisfying
M(hx, hy, kf) = M(x, y, ), (2.5.1)
forall », yin X,0<k <1andf>0. Then, h has a unique fixed point in X.
Further, in [121], the monotonicity of M(x, y, - ) was also discussed in the form

of following result:
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Lemma 2.5.1 ([121]). Let (X, M, *) be a fuzzy metric space. Then, M(x, y, - ) is non-
decreasing for all %, y € X.

Later on, George and Veeramani [21] defined the topology induced by a fuzzy
metric and redefined the definition of Cauchy sequence.

Definition 2.5.2 ([21]). A sequence {x,} in a fuzzy metric space (X, M, *) is a
Cauchy sequence iff for each € > 0 and £ > 0, there exists ny, € N such that

M(»,, %y, f) > 1 - e forall n, m > n,.
Definition 2.5.3 ([21]). Let (X, M, ) be a fuzzy metric space. An open ball B(x, t, f)
with centre » € X and radius r, 0 <¥ < 1, £ > 0 is defined by

B(®, £, f) ={y e X: M(x»,y, ) >1 -1}

Further, George and Veeramani [21] also defined the topology 7 on fuzzy metric
space (X, M, ) by

t={Ac X:x € Aiffthereexistf>0andr € (0, 1) such that B(x, r, f) € A}.
Theorem 2.5.2 ([21]). Every fuzzy metric space is Hausdorff.

Lopez and Romaguera [129] proved the following lemma for the continuity of
the function M on X2 x R*\{0}.

Lemma 2.5.2 ([129]). Let (X, M, *) be a fuzzy metric space. Then, M is a continuous
function on X? x R*\{0}.

Developing common fixed point results for various mappings including
commuting, weakly commuting, R-weakly commuting, R-weakly commuting of type
(As), (Ag) and (P), compatible, compatible of type (A), (B), (P), (C), (As), (Ay) and
weakly compatible mappings has always been an area of great interest for researchers.
Time-to-time, these notions have been extended from metric to fuzzy metric structure.
Several results have been proved in this direction by various researchers (see, [130],
[131], [132], [133] etc.) in fuzzy metric spaces.

In 2002, Aamri and EIl-Moutawakil [29] designed an important concept of
property (E.A.) for pair of self mappings in metric spaces, which was later carried out
in fuzzy metric spaces by Pant and Pant [134]. The significance of this property is that
it affirms containment of ranges without the need of continuity of mappings and
further, it minimizes the commutative assumption of the mappings to the commutative
condition at their coincidence points. Moreover, it also allows the substitution of the
completeness of the entire space with the closeness of the range subspace. Liu et al.

[135] extended (E.A.) property to common property (E.A.) for a pair of single- and

40



multi- valued maps in metric spaces. Later on, the common property (E.A.) was
studied by Abbas et al. [136] in fuzzy metric spaces for pairs of self mappings.

In order to generalize the notion of property (E.A.), Sintunavarat and Kumam
[30] introduced a new notion of “common limit in the range” property (or (CLR)
property). The (CLR) property ensures that the necessity of the completeness of the
space or range subspace can be relaxed entirely without the requirement of any other
replacement. Chauhan et al. [137] extended the (CLR) property to “joint common
limit in the range” property ((JCLR) property) of mappings and utilized it to
formulate their results in fuzzy metric spaces. On the other hand, Chauhan [138]
extended (CLR) property from single pair of self mappings to two pairs of self
mappings and introduced “common limit in the range of mappings S and T” property
((CLRgy) property) in fuzzy metric spaces. Now-a-days, these notions are utilized
rapidly for establishing fixed point results in the abstract spaces including fuzzy
metric spaces (see [139], [140], [141], [142], [143], etc.).

In present times, fixed point theory is developing enormously in fuzzy metric
spaces. After the innovation of the notion of coupled fixed points by Guo and
Lakshmikantham [54], the problems concerning the computation of coupled fixed
points were also given fuzzy treatment. Sedghi et al. [144] proved a coupled fixed
point result under a contractive condition in fuzzy metric spaces. Later on, Zhu and
Xiao [145] proved that the hypotheses considered by Sedghi et al. [144] to prove their
result were incorrect. On the other hand, Hu [146] developed the fuzzy counterpart of
the notion of compatible mappings for coupled fixed point problems and utilized the
notion to obtain a common fixed point result under a ¢ — contraction in fuzzy metric
spaces. Subsequently, coupled fixed point problems for ¢ — contractions in FM-
spaces were discussed rapidly by various authors (see, [147], [63], etc.).

Now onwards, we use the term FM-space to denote fuzzy metric space.
Definition 2.5.4 ([146]). Let (X, M, *) be a FM-space. The mappings F: X X X - X
and g: X — X are said to be compatible if

lim M(gF(xn, yn), F(gn, 2yn), ©) = 1,

Lim M(gF (yn, %n), F(gYn, 240), ©) = 1,
for all £ > 0, whenever {x,} and {y,} are sequences in X such that rllii?op(%“ Vo) =
rlliigog%“ =x and rllii?op(y“ , %y ) = rlliigogy“ =y forsome %, y € X.
In this case, we say that the pair (F, g) is compatible.
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Definition 2.5.5 ([146]). Denote by @, = {¢: R* — R*}, the class of gauge
functions, where each ¢ satisfies the followings:

(¢-1) ¢ is non-decreasing;

(¢-2) ¢ is upper semi-continuous from the right;

(-3) ¥2_, ¢™ (£) < o for all £> 0, where ¢™+1(£) = p(¢p™ (£)), m € N.
Note that, “if ¢ € @y, then ¢(f) < tfor all £> 0.

Utilizing the gauge function ¢ € @4, Hu [146] established a common fixed point
result in FM-spaces for the pair (F, g) of compatible mappings satisfying the
following ¢ - contractive condition:

M(F(x, y), F(u, v), ¢(6)) = M(gx, gu, f) * M(gy, gv, ), (25.2)
forall %, y, u, vin X and £> 0.

Later on, Hu et al. [147] generalized the result of Hu [146] for a pair weakly
compatible mappings, which was further generalized by Jain et al. [63] for two pairs
EXXX-=>X,S:X—>X)and (B: X X X = X, T: X = X) of weakly compatible
mappings under the following condition:

M(A(, y), B(u, v), $(0) = M(Sx, Tu, ) * M(Sy, Tv, £),  (25.3)
forall %, y, u, vin X and £ > 0, where ¢ € @y.

In the same paper [63], the authors have also introduced the notions of weakly
commuting mappings and their variants including R-weakly commuting mappings,
R-weakly commuting mappings of type (Ag), (Ag), (P) in context of coupled fixed
point theory in FM-spaces. At the same time, Dalal and Masmali [148] studied the
notions of variants of compatible mappings that includes compatible mappings of type
(A), (B), (C), (P), (Ap), (Ag) in the context of coupled fixed point theory in FM-
spaces and obtained some interesting results using these notions. All these notions and
property (E.A.), common property (E.A.), (CLRg) property and (CLRgy) property will
be discussed later in the present work.

In modern times, researchers are continuous exploring new fundamentals in the
theory of coupled fixed points in FM-spaces and the theory is growing rapidly in these

spaces.
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FRAMEWORK OF CHAPTER - Il

In this chapter, we discuss coupled fixed point and coupled common fixed point

results under (¢, ¥) - contractive conditions in POMS. Some coupled fixed point
results in POPMS are also established. An application to the solution of an integral

equation and a result of the integral type is also given.
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CHAPTER - 111
COUPLED FIXED POINTS FOR SYMMETRIC
CONTRACTIVE CONDITIONS

This chapter deals with (¢, ) — contractive conditions in POMS and POPMS.
The contractive conditions under consideration are symmetric in nature and weaken
some of the already existing contractive conditions present in the literature. This
chapter has five sections. Section 3.1 gives a brief introduction to symmetric
contractive conditions. In section 3.2, we establish the existence and uniqueness of
coupled common fixed points for mappings with MgMP satisfying a (¢, ¥) —
contractive condition in POMS. Section 3.3 consists of coupled fixed point results
under a (¢, ¥) — contractive condition in POMS. In section 3.4, we establish coupled
fixed point result under symmetric (¢, ¥) — weakly contractive condition in the setup
of POPMS. In the last section 3.5, an application to the existence and uniqueness of
the solution of an integral equation is discussed. In this section, a result of the integral

type is also given.

Author’s Original Contributions In This Chapter Are:

Theorems: 3.2.1, 3.2.2,3.3.1,3.3.2,3.3.3,3.4.1,34.2,3.4.3,35.1, 35.2.
Lemma: 3.2.1.

Definition: 3.4.1, 3.5.1.

Corollaries: 3.2.1,3.2.2, 3.4.1.

Examples: 3.2.1, 3.2.2, 3.3.1, 3.4.1.

Remarks: 3.2.1, 3.2.2, 3.3.1, 3.4.1.

Assumption: 3.5.1.

3.1 INTRODUCTION
Recently, Berinde [149] obtained coupled fixed point results for the mixed
monotone mapping F: X X X — X subjected to a contractive condition which is
(1 symmetric in nature;
(i)  weaker than the contractive condition (2.1.14) due to Bhaskar and
Lakshmikantham [55].

The main result established by Berinde [149] is as follows:
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Theorem 3.1.1 ([149]). Let (X, <, d) be a POCMS and F: X X X — X be a mixed
monotone mapping and there exists a k € [0, 1) such that for » > u, y < v, we have
d(FGe ), F(U, V) + d(F(y, ) + E(v, ) < k[d(x, ) +d(y, ] (31.1)
Suppose that X has the following property:
(P3) “there exist two elements %, yo € X with either %, < F(%g,y,) and y, >
F(yo, %), 0r %y = F(ag, y0) and yo < F(yo,%0)”,
then, F has a coupled fixed point in X.

In a subsequent paper, Berinde [150] extended the results of Bhaskar and
Lakshmikantham [55] and Luong and Thuan [67], by weakening the involved
contractive conditions.

Berinde [150] considered the following class of functions:

Definition 3.1.1 ([150]). Let @ denote the class of functions ¢: Rt — R* satisfying
(i,) @ iscontinuous and (strictly) increasing;
(ii,) () <tforall £>0;
(iii,) @(f+s) < @(f) + @(s) forall f, s € R*.

If ¢ € @, then (f) =0ifff=0.

Berinde [150] also considered the class ¥ (originally, given by Luong and Thuan
[67]) of functions y: R* —» R* satisfying the following condition:

(iy) glirllr Y(f) >0 forall > 0 and fl_i)ror}rlp(f) =0".

In order to prove his results, Berinde [150] utilized Assumption 2.1.7 which is
again stated below (for convenience):
Assumption 2.1.7 ([55]). X has the property:
Q) “if a non-decreasing sequence {x,},—, € X converges to », then », < %
for all n”;
(i) “if a non-increasing sequence {y,}a—, € X converges to y, theny <y, for
all n”.
Berinde [150] proved the following coupled fixed point result which generalizes
Theorems 2.1.14 and 2.1.19:
Theorem 3.1.2 ([150]). Let (X, <, d) be a POCMS and F: X X X — X be a mixed
monotone mapping for which there exist ¢ € @ and ¢ € ¥ such that for all =, y, u, v
€ X with » > u, y < v, we have

d(FGey), Bu,v)) + dE(y, %), F(v,w)) dGeu) + dy,v) dGew) +dy,v)
(p( 2 )S(p( 2 )—z/)( 2 ) (31.2)
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Suppose either
(a) F is continuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P3), then F has a coupled fixed point.

Berinde [150] also noted that, since the contractive condition (3.1.2) is valid only
for comparable elements in X? (= X x X), thus, in general, Theorem 3.1.2 cannot
guarantee the uniqueness of the coupled fixed point. Therefore, it would be essential
to associate some additional condition(s) to ensure the uniqueness of the coupled
fixed point obtained in Theorem 3.1.2. Such kind of condition was used in [40].
Assumption 3.1.1 ([40]). “For all Y = (%,y), ¥ = (& §) € X?, there exists Z =
(2,:2,) € X? that is comparable to Y and Y”.

Present chapter deals with the extension and generalization of the contractive
conditions (3.1.1) and (3.1.2).We consider the non-empty set X and the partial order
< on X. Also, F: X X X = X, g: X = X be two mappings. Now, let us recall some
notations and definitions already given in the previous chapters that are useful in our
work.

Property (P1): “There exist two elements xg, yo € X with %y < F(%g, yo) and y, >
F(yo,%0)”.
Property (P2): “There exist two elements %y, yo € X such that gxy < F(xg, y,) and
gyo = F(yo, %0)”.
Assumption 2.1.8 ([56]). X has the property:

(i) “if a non-decreasing sequence {x,}r—, € X converges to », then gx, < gx for

all n”’;
(ii) “if a non-increasing sequence {y,}r—o € X converges to y, then gy < gy, for

all n”.

3.2. COUPLED COMMON FIXED POINTS FOR (¢, ¥) - CONTRACTIVE
CONDITION

In this section, we extend the results of Berinde [149, 150] (that is, Theorems
3.1.1 and 3.1.2) using a pair of compatible mappings that satisfies a (¢, ¥) —
contractive condition in POMS. The contractive condition under consideration
weakens the contractive conditions involved in the results of Bhaskar and
Lakshmikantham [55], Luong and Thuan [67] and Alotaibi and Alsulami [68] (that is,
Theorems 2.1.14, 2.1.19 and 2.1.20, respectively).
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We now present our main result as follows:
Theorem 3.2.1. Let (X, <, d) be a POCMS and F: X x X — X, g: X — X be the
mappings with F having the MgMP on X. Suppose there exist ¢ € @ and i) € ¥ such

that for all %, y, u, v € X with gx > gu and gy < gv, we have

d(FEey), E@y)) + dE@»), E(v,u)
o ; )

d(gn, gu) +d(gy, gv) d(gn, gu) +d(gy, gv)
S(p( 2 )_lp( 2 ) (3.2.1)

Suppose that the mapping g is continuous, the pair (F, g) is compatible and F(X X X)
C g(X). Assume either

(a) F is continuous, or  (b) X assumes Assumption 2.1.8.
If X has the property (P2), then F and g have a coupled coincidence point in X.
Proof. Since X has the property (P2), so there exist %y, yo € X such that gxy <
F(xg, yo) and gy, = F(yo, %9). As F(X X X) € g(X), we choose %, y; € X such that
en1 = F(%g, yo), gy1 = E(vo, o). Similarly, we can choose %,, y, € X such that gx, =

F(ey, y1), gy2 = ¥(y1, 1)
Repeating this process, the sequences {gx, } and {gy, } can be obtained in X such that

2041 = F(tn, Yu), gYn+1 = F(Yn, %), foralln = 0. (3.2.2)
Now, for all n > 0, we show that

2ty N 41, (3.2.3)

ZYn 7 Yn+1- (3.2.4)
As gng < F(xo, yo) and gyo = F(yo, o), 241 = F(%o, ¥o), gy1 = F(yo, %), we have
2ro X g%, gYo = Y1, So that (3.2.3) and (3.2.4) hold forn = 0.
Let (3.2.3) and (3.2.4) hold for some n > 0, that is, gx, < g%y41, £Yn & LYn+1- SiNCE
F satisfies the MgMP, by (3.2.2), we can get

241 = F(y, i) S P41, Vo) S F(o 415 Yog1) = a2,

g¥n+1 = F(Yn, %n) Z F(Ynt1, %0) 7 F(Yn41, #nt1) = EYn2;

that is, gxn+1 < 8412 8N gYn41 > EYn+2-
Now, by using mathematical induction, it follows that (3.2.3) and (3.2.4) hold for all

n > 0. If for some n > 0, we have (g%,11, €Vn+1) = (8%, gYn), then E(x,, v,) = g»,
and F(y,, »,) = gy,, consequently, F and g have a coupled coincidence point. So, we
assume (gx%,41, €Yn+1) # (2%, gyn), for all n > 0, that is, we assume either gx, 1 =
F(xn, ¥n) # 2%n OF g¥n41 = E(yn, %a) # Y-

As gn, = gn,_1 and gy, < gy,_ foralln > 1, by (3.2.1) and (3.2.2), we have
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d(gnn 11, 2n) +d(gyn+1,8yn)\ _ . (HFEGtn.yn), Fotn_1,yn-1)) + dF(ynxn), F(yn—1,%0-1))
® 2 - 2

dd( 1 . n— )+(i( n Il—) dj( 1 2, n— )+dJ( . n—)
S(p( 2%n g% 12 2Yn.gy 1)_¢( 2%n g% 12 2Yn, gy 1)_ (3.2.5)

Since the function v is non-negative, by (3.2.5), we obtain that

d(@tn 41, %) +d(gYn+1, 8¥n) d(@xn,gn—1) + d(gyn.gyn-1)
¢ ( 2 ) =9 ( 2 )

Then, using the monotone property of ¢, we can obtain

d(@tn +1, %) +d(gYn+1,8Vn) < d(@tn,gtn—1) +d(gyn,gyn-1)
2 - 2 )

Let R, = Q(g"““'g“");rd’(gy““'gy“), then {R,} is a monotone decreasing sequence of

non-negative real numbers. Hence, there exists some R > 0 such that

llmRn = lim [cl,(gxn+1,gxn) +c1(gYH+1ngIl):| =R. (326)

n—oo n—ow 2

Next, we claim R = 0. On the contrary, let us assume that R > 0. Taking n = o in

(3.2.5) and using the properties of ¢ and y, we obtain
eR)=limpR ) < lim[(Ry-1) ~P(Ry1)]
=pR) - N lim N Y (R,_1) < @(R), a contradiction.
n—-17>

Therefore, R = 0, so that, we have

[d,(gxn+1,gxn) + d.,(gyn+1,gyn)] -0. (3.2.7)

limR,, = lim >

n-—oo n—oo
Now, we prove that {gx,} and {gy, } are Cauchy sequences.
If possible, let at least one of {g»,} and {gy,} is not a Cauchy sequence. So, there

exits some & > 0 for which we can find the sub-sequences {gx, o}, {€%mo} of

{zxn} and {gynao}, {€Vmag} of {gyn} with n(k) > m(k) = k such that

= d(@%n (k) 8%m () ;rd,(gyn(k),gym(k)) > e (3.2.8)

Also, corresponding to m(k), we can choose the smallest n(k) € N with n(k) > m(k) >
k and satisfying (3.2.8). Then, we have

d(@%n (=1 2%m (1) + €Y n (0—1> &Y' (k)
2

Using (3.2.8), (3.2.9) and the triangle inequality, we obtain

<e. (3.2.9)

- d(@tn () Em (10)) + 4@V (k)> 8Ym ()
2

ES‘Fk

< d(2%n 10 2 19—1) + (2 19—1> @m 10) + Y n (> &n a0-1) + 4EYn ()-1- &Y'm ()
- 2

< d(g%n(k)’g%n(k)—ﬂerd(gyn(k)' 2Yn()—1) te
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Taking k — oo and using (3.2.7) in the last inequality, we get

[(i(gxn(k), () + &Y n (k) gym(k))] . (3.2.10)

limry, = lim >

k—o0 k—o0
Again, using the triangle inequality, we have

- d(g%n (10 m (9)) + (€Y n (10)r Ym (k)
2

Fy

{ d(@n () @ (0+1) + A& (91 24m (0 +1) + (%m0 +1> Tm (10)) }
< +d(2yn 0 Vna0+1) + (eVn+1, &¥m a0+1) + A&V m 10+1 8Vm ()
= 2

d(@n (19+1 24m 10 +1) + 4&Yn 10+1> &Ym (9+1)
. .

=Rnag ¥ Rmgoy +

Now, using the monotone property of ¢ and the property (iii, ), we get

d(&%n 10+1) 2m 10+1) + U&Yn (10 +1) &Ym (0+1)
P(rx) < eRug) + PRigo) + @ ( . == - . )

(3.2.11)
Since n(k) > m(k), 24 (k) = £4m (k) and gYn (k) < gYm (k) by (321) and (322), we

have

© (d(g%n 10+1> & (9+1) + (@Y 0+1- gYm(k)+1))
2

-0 <4(F(”n(k)'yﬂ(k))' F(m 10 Y m 00)) + 4(F(n g0 0)s F(Ym(k)'“m(k)))>
2

d(grn (k) £m (1) + HEYn (k) ZYm (1)) d(g%n (19> €%m (19) + 4EYn (1> &Ym (1)
S(p( (k) (k)z (k) (k))_lp( (k) (k)z ®) ())

= @(¥y) — P(Fy)- (3.2.12)
Using (3.2.11) and (3.2.12), we obtain
P(Fr) < PRngy) + @Rma) + @) — Y (Fy).
Taking k — oo in the last inequality, then using (3.2.7), (3.2.10) and the properties of
@ and i, we obtain that
¢(&) = 9(0) + 9(0) + (&) — limih(xy)
=p(e) - ;Eingw(fk) < ¢(¢g), a contradiction.

Hence, both {gx,} and {gy,} are Cauchy sequences in X. Now, by completeness of

X, there exist some x, y € X such that

limE(Qxy, yn) = limgr, = x and imE(y,, %) = limgy, =y. (3.2.13)
Now, since the pair (F, g) is compatible, by (3.2.13), we obtain

lim d(gF (n, yn), F(gn, g91)) =0, (3.2.14)

limd(gF (v, %), F(gyn, g4n)) = 0. (3.2.15)
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Let us assume that assumption (a) holds.
Now, for all n > 0, we have
d(gx, F(gny, gyn)) < d(g, gF(n, yn)) + d(F (%, ¥n), F(gxn, g¥n))-
On taking n — oo in the last inequality, then using (3.2.13) and (3.2.14) and the
continuity of F and g, we can obtain d(gx, F(x, y)) = 0, so that we get g = F(x, ).
Similarly, we can obtain gy = F(y, »). Therefore, (x, y) is a coupled coincidence point
of Fand g.
Next, assume that assumption (b) holds.
Using (3.2.3), (3.2.4) and (3.2.13), we obtain that {gx, } is a non-decreasing sequence
converging to » and {gy,} is a non-increasing sequence converging to y. Then, by
assumption, for all n > 0, we get
ggx, < gx and ggy, > gy. (3.2.16)
Now, since the pair (F, g) is compatible and g is continuous, then using (3.2.13) and
(3.2.15), we obtain
limggxy, = gn = limgk(xy, yn) = limF(gry, gyn), (3.2.17)
limggy, = gy = limgF(yy, %,) = imF(gyy, gxn). (3.2.18)
Now, using the triangle inequality, we have
d(F(%, y), gx) < d(F(%, y), ggtn11) + d(g8%n+1, g%),
or  d(F(x, y), g) < d(F(x, y), gF(x%n, yn)) + d(g2xn+1, g¥).
On taking n — oo in the last inequality and using (3.2.17), we can obtain
d(ECe y), g1) < lim d(E(x, y), gF(n,yn)) + lim d(ggnn 1, 2%)
< lim d(E(x, ), F(grn, gyn))- (3.2.19)
Similarly, we get
d(E(y, %), gy) < lim d(E(y, %), ¥(gyn, g1n)). (3.2.20)
Using (3.2.19), (3.2.20) and the property (i, ), we get

d(FGey), gn) + d(F(y, »), gy) : d(FGoy), F(gun, gyn)) + d(F(y, %), F(gyn, gn))
(p( > ) < hm(p( > ) (3.2.21)

n-—oo

Using (3.2.1) and (3.2.16), we obtain that

(CL(F(%,y). F(gny, gyn)) + d(F(y, %), F(gyn, 2n))
® 2

<o (d(g%, gg%n) ;Ld,(gy. ggyn)) 4 (d,(g% gg%n) ;L dley, ggyn)). (3.2.22)

Using (3.2.22) in (3.2.21), we get
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d(F(y), gn) + d(FE(y, %), gy)
o 2 )

(d,(g%, ggnn) +d(gy, ggyn)) ~ limy (d,(g% ggnn) +d(gy, ggyn)).

< limg > -

n—oo n—oo

Using (3.2.17), (3.2.18), the continuity of ¢ and fh{,r}r‘/’(f) =0, we obtain

dFQey), gn) + d(F(y, %), gy) . d(gx, ggnn) +d(gy, gegyn)\ _ _
(p( > )Sllmgo( > )—‘P(O)—O-

n—o0
Since ¢ is a non-negative function with ¢(0) = 0, so by last inequality we can get
d(F(x, y), gn) = 0 and d(E(y, »), gy) = 0, so that, we have F(x, y) = gx and F(y, %) =
gy. Therefore, (», y) is a coupled coincidence point of F and g.

Remark 3.2.1. Theorem 3.2.1 extends Theorem 3.1.2 (Berinde [150]). Considering g
to be the identity mapping in Theorem 3.2.1, we can obtain Theorem 3.1.2.

The following example furnishes that the contractive condition (3.2.1) of
Theorem 3.2.1 weakens condition (2.1.19) of Theorem 2.1.20, which implies that
Theorem 3.2.1 is more general than Theorem 2.1.20 (Alotaibi and Alsulami [68]).
Example 3.2.1. Let X = R, then, (X, <, d) is a POCMS, with partial ordering < being

the usual ordering < of real numbers and d: X x X — R* defined by 01(% y) =[x —y|
forx, y € X. Let F: X X X - X and g: X — X be defined by F(x, y) = yforx y€E
X and gx = - = for x € X, respectively. Then, F is continuous and has MgMP. Also,

F(X X X) € g(X) and the pair (F, g) is compatible. Further, F and g satisfy the
condition (3.2.1) but does not satisfy (2.1.19). On the contrary, assume that there exist
some ¢ € ¢, and Y € ¥ such that (2.1.19) holds. Then, for %, y, u, v in X with gx >

gu and gy < gv, we have

® (Q(F (%, Y),F(U'V))) < %(P((l(g%, gu) + d(gy, gv)) — ¢ (Q(g"' gw) -Zi-(j,(gy ' gv)),

. ®—5y u-5v 1 ® oo y Vv | ‘__K
thatis, o ([ - *57) =30 (-3 + F-3l) - "’( )
_1 [%—ul+ly—vl le—ul+ly—vl
—w(—z )-v (=)
Takingx =u,y # vand g = =1in the last inequality, we get (o) < - (p(ZQ) —

Y(e), o > 0. Using (¢3), we obtain 5 @ (20) < ¢(p) and hence, for all o > 0, we

deduce that ¥ (¢) < 0, so that we have 1 (e) = 0, a contradiction to (i ). Therefore, F
and g do not satisfy (2.1.19), so that Theorem 2.1.20 does not hold here.

We now show that (3.2.1) holds. For, »x > uandy < v, we have

»—=5y  u-5v
20 20

y5% v—>5u

4 < Ly~ v[+ 2w ul

Ix—ul + = |y v| and
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Adding the last two inequalities, we can exactly obtain (3.2.1) for ¢(f) = % tand ¥ (f)

= % t. Further, »g (= —1), yo (= 1) € X satisfying property (P2). Now, the mappings F,

g, ¢ and Y meet the requirements of Theorem 3.2.1. By applying Theorem 3.2.1, the
mappings F and g have a coupled coincidence point (0, 0) in X. But Theorem 2.1.20
cannot be applied to F and g in this example.
Corollary 3.2.1. Let (X, <, d) be a POCMS and F: X X X - X, g: X — X be the
mappings with F having the MgMP on X. Let there exists some k, 0 < k < 1 such that
for all %, y, u, v in X with g» > gu and gy < gv, we have

d(Fo6y), F(wv)) + d(F(y, %), (v, w)) < k[d(gx, gu) + d(gy, gv)].  (3.2.23)
Assume that g is continuous, the pair (F, g) is compatible and F(X X X) S g(X).
Assume either

(a) F is continuous, or  (b) X assumes Assumption 2.1.8.

If X has the property (P2), then F and g have a coupled coincidence point in X.
Proof. Considering ¢(f) = g and Y(f) = (1 — k) % 0 <k<1in Theorem 3.2.1, we can

obtain the required result.
Remark 3.2.2. (i) Corollary 3.2.1 extends Theorem 3.1.1 (Berinde [149]) for a pair of
compatible mappings.

(i) Example 3.2.1 also supports Corollary 3.2.1 for k = % Consequently,

Corollary 3.2.1 is more general than Theorem 2.1.20 (Alotaibi and Alsulami [68]).
Corollary 3.2.2. Let (X, <, d) be a POCMS and F: X X X — X be a mapping with
MMP on X. Let there exists some k, 0 < k < 1 such that for all %, y, u, v in X with »
>z uandy < v, we have

d(FO6y), Fwy) + d(F @, 0, F(v,w) < k[ w) +d(y, V)] (3.2.24)
Assume either

(@) F is continuous, or  (b) X assumes Assumption 2.1.7.
If X has the property (P1), then F has a coupled fixed point in X.
Proof. Considering g to be the identity mapping on X in Corollary 3.2.1, we can
obtain the required result.

The following example furnishes that the contractive condition (3.2.24) of

Corollary 3.2.2 weakens conditions (2.1.14) of Theorem 2.1.14 and (2.1.18) of
Theorem 2.1.19, so that Corollary 3.2.2 is more general than Theorem 2.1.14
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(Bhaskar and Lakshmikantham [55]) and Theorem 2.1.19 (Luong and Thuan [67]),
respectively.

Example 3.2.2. Let X = R, then, (X, <, d) isa POCMS, with partial ordering < being
the usual ordering < of real numbers and d: X x X - R* defined by d(x, y) =[x — Y|

forx, y € X. Let F: X X X — X be defined by F(x, y) = % for %,y € X. Then, F is
continuous, has MMP and satisfies the condition (3.2.24) but does not satisfy any of
the conditions (2.1.14) and (2.1.18), so that Theorems 2.1.14 and 2.1.19 do not hold
here. Let there exists some k € [0, 1) such that (2.1.14) holds, so that for x > uand y
< v, we shall have

d(F (e, y), E(u, v)) <5 [Cl(% u) +d(y, v)l,

%—3y u-3v 3v

2 < S —ul + ly — i},

that is, |

from which, for % = u, we can obtain [y —v| < k |y — v|, y < v, which for y < v
implies that 1 < k, a contradiction, since k € [0, 1). Therefore, F does not satisfy
(2.1.14).

Also, the condition (2.1.18) is not satisfied. On the contrary, assume that there exist
some @ € @, and Y € ¥ such that (2.1.18) holds. Then, forall x > uandy < v, we

shall have

o (A(FGuy), FY))) <50(deow) + d(yv)) — v (12202,
(2= ) <3 —ul + Iy = vl) = (),

6 6
Takingx=u,y# vandp = b=1in the last inequality, we get

¢(0) < % ¢(20) —Y(0), 0 >0.

Using (¢3), we can obtain % ©(20) < (o). Therefore, for all ¢ > 0, we can deduce

that (o) < 0, so that, we get (o) = 0, a contradiction to (i,). Hence, F does not
satisfy (2.1.18). Next, we shall prove that (3.2.24) holds. For, *x = uandy < v, we

have

®x—3y u—-3v
6 6

y3% v—3u
6

Iy—VI+ % —ul.

|%—u|+ Iy v| and|

Adding the last two inequalities, we can exactly obtain (3.2.24) for k = g-

Further, %y, (= —1), yo (= 1) € X such that the property (P1) holds. By applying
Corollary 3.2.2, we can obtain that F has a coupled fixed point (0, 0) in X. But the
Theorems 2.1.14 and 2.1.19 cannot be applied to F in this example.
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Coupled Common Fixed Points

Next, we shall obtain the existence and uniqueness of the coupled common fixed
point under the hypotheses of Theorem 3.2.1. For, we require the followings:
Assumption 3.2.1 ([59]). “For every (%, Yy), (", y*) € X X X, there exists a
(u, v) € X X X such that (F(u, v), F(v, u)) is comparable to (F(x, y), F(y, x)) and
F@', y7), E(y™, =)™
Lemma 3.2.1. Let F: X X X —» X and g: X — X be the mappings such that the pair
(E, g) is compatible. If there exists some (%, ¥) € X X X such that gx = F(x, y) and gy
= F(y, »), then gF(x, y) = F(gx, gy) and gF(y, ») = F(gy, g»).
Or in simple words, “The pair of compatible mappings F: X X X - X and g: X - X
commutes at their coincidence points”.

Proof. Since the pair (F, g) is compatible, we have

lim d(gF (y, yn), (g, 8¥2)) = 0,

1imd(gF (¥, %), F(gyn, g10)) =0,
whenever {x,} and {y,} are sequences in X such that IllilroloF(xn,yn) = rlll_r)g ®, = a
and rlli_r){)loF(yn,%n) = Illi_r){)logyn = b for some q, b in X.

Considering %, =%, y, =y and using gx = F(x, y), gy = F(y, ), it follows that

d(gF (¢, y), F(gn, gy)) = 0 and d(gF(y, »), F(gy, g»)) = 0.

Therefore, gF(x, y) = F(gn, gy) and gE(y, %) = F(gy, g»).
Theorem 3.2.2. In addition to the hypotheses of Theorem 3.2.1, suppose that the
Assumption 3.2.1 also holds. Then, F and g have unique coupled common fixed point
in X.
Proof. By Theorem 3.2.1, the set of coupled coincidence points is non-empty. Now,
to prove the result, we first show that if (x, y) and (x*, y*) are coupled coincidence
points, then

gn=gx" and gy = gy". (3.2.25)
By Assumption 3.2.1, there exists some (u, v) € X X X such that (F(u, v), E(v, u)) is
comparable with (F(x, y), E(y, »)) and (F(»*, y*), E(y*, »*)). Take uy =u, vy =v and
choose uy, v € X so that gu; = F(ug, vo) and gv; = F(vy, ug).
Now, as in the proof of Theorem 3.2.1, inductively, the sequences {gu,} and {gv,}

can be defined such that gu, .1 = F(u,, v,) and gv,,1 = E(vy, uy).
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Taking %o =%, yo = Y, %y = %", yo = y~, then, on the same way, we can define the
sequences {gx, }, {gy,} and {gx; }, {2y} Now, it can be easily shown that gx, ., =
F(tn, Yn), g¥n+1 = F(yn, %) and gxq 1 = O, yn), g¥n41 = F(yn, xp) foralln = 0.
Also, since (F(u, v), F(v, u)) = (guy, gv1) and (F(x, y), E(y, %)) = (gn1, gy1) = (g%, gy)
are comparable, we have gu; > gx and gv; < gy. Now, it is easy to obtain that
(gu,, gv,) and (gn, gy) are comparable, so that gu, > gx and gv, < gy foralln > 1.

Then, by (3.2.1), we obtain

d(guni1, 20 +dlgvnit, gy)  _ d(F(up,vn), Fy)) + dE(vyun ), F(y, %))
4 ( 2 ) -9 ( 2 )

d(gup, g20) +d(gvy, gy) d(gup, g20) +d(gvy, gy)
<o . ) - : ) (3.2.26)

Now, since ¥ is a non-negative function, we get

d(gup4+1, 20 +d(gvn+1, 2y) d(guy, g0 +d(gvp, gy)
4 ( 2 ) s¢ ( 2 )

Using the monotone property of ¢, we can obtain

d(gun 11, 20) +d(gvni1, gy) < d(guy, gx) +d(gvn, gy) (3.2.27)
2 - 2 ' -

Letd, = d(gun, g0 +d(gvn, gy)

> . Then, {d, } is a monotonically decreasing sequence of

non-negative real numbers. Therefore, there exists some d > 0 such that limd, =d.

n—oo

We claim that d = 0. On the contrary, let us assume that d > 0. Now, on letting
n — oo, in (3.2.26) and using the continuity of ¢, we get

o(d) < o(d) - dlir_r)ldtp(dn) < ¢(d), a contradiction.

Therefore, d = 0, so that limd,, = 0. Consequently, we get gu, — gx, gv, — gy as

n—oo

n — oo. Similarly, we can obtain that gu, — gx*, gv, = gy* as n - oo. Now, by
uniqueness of limit, we can get gx = gx* and gy = gy*. Hence, we have proved
(3.2.25).

Also, since gr = F(x, y), gy = F(y, ») and the pair (F, g) is compatible, then using the

Lemma 3.2.1, we get

ggn = gF(x, y) = F(gn, gy) and ggy = gE(y, %) = F(gy, g»). (3.2.28)
Let us denote by g = 7 and gy = w.. Then, using (3.2.28), we can obtain
g7 = F(z, w) and gw = F(w, 7). (3.2.29)

Therefore, (z, w) is a coupled coincidence point of F and g. Now, using (3.2.25) with
®" =zand y* = w, we can obtain that gz = gx and gw = gy, so that

gz=zand gw=w. (3.2.30)
Using (3.2.29) and (3.2.30), we get 7 = gz = F(z, w) and w = gw = F(w, 7).
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Therefore, (7, w) is the coupled common fixed point of F and g. For uniqueness, let
(e, I) be any coupled common fixed point of F and g. Then, using (3.2.25), we can
obtaine =ge=gz=zand | = gl = gw = w. Then by (3.2.25), we have e = ge = gz =7

and | = gl = gw = w. Hence, the result is proved.

3.3 COUPLED FIXED POINTS FOR (¢, ¥) - CONTRACTIVE CONDITION

In this section, by considering a new (¢, ¥) - contractive condition in POMS, we
generalize the results of Berinde [149, 150] (that is, Theorems 3.1.1 and 3.1.2,
respectively) and weaken the contractive conditions involved in the results of Bhaskar
and Lakshmikantham [55], Luong and Thuan [67] (that is, Theorems 2.1.14 and
2.1.19, respectively).

Before giving our results, we shall consider the following notions:
Let ®; denote the class of all functions ¢: R — RT satisfying the following
conditions:

) @ is lower semi-continuous and (strictly) increasing;

(@) @ (f) <ftforall £>0;

(@) p(f+s)<@(f) + @(s) forall f, s € RY.
Note that “Illiglo(p(f“) =0 ifand only if ii_rgof“ =0 for £, € R™.
Also, for ¢ € @3, let ¥, denote the class of all functions 1: R* — R* satisfying the
following conditions:

W) lim sup i (€,) < o(r) if limt, = > 0;

W) rlli_l‘)glolli(fn) =0 if Illi_r)glofn =0for t, € RT,

Now, we shall prove our results.
Theorem 3.3.1. Let (X, <, d) be a POCMS and F: X X X — X be a mapping with
MMP on X and there exist ¢ € @3 and ¥ € ¥, such that for all %, y, u, v € X with »
zuandy<v(orxuandy > v), we have

d(F(ey), F(u,v)) + d(E(y, »), F(v,u)) d(xu) +d(y,v)
o : ) < g (Ll tdesy (3.3.1)

Suppose either
(@) Fiscontinuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P3), then F has a coupled fixed point in X.
Proof. Since X has the property (P3), W.L.O.G. let there exist %, y, € X such that x,
< E(xg, yo) and y = F(yo, #o). Put %y = E(»g, yo) and y; = E(yq, %¢). Then, we have
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%o < %7 and y, = yy. Similarly, put »#, = F(%q, y;) and y, = F(y;, ;). Since F has
MMP, we get #; < %, and y; > y,. Repeating this process, we can construct two
sequences {x,} and {y,} in X such that »,,; = F(x,, y,) and y,+1 = F(y,, ®,) with

Ry < ®nt1, Yo Z Yna1, foralln > 0. (3.3.2)
If (%n11s Yna1) = (n, ¥a) fOr some n > 0, then we get F(%,,, y,) = », and E(y,, ®,) =
Vn, o that F has a coupled fixed point. So, we assume that (%41, Yn+1) = (0, Yn)
for all n > 0, that is, we assume either %, .1 = F(%,, yn) # %, OF Vuy1 = E(Vn, %,) #

Yn:
Since %, < %41 and y, > y,41 forn =0, on applying (3.3.1), we get

dGtn+1, %0 +2) + d¥n+1, Yn+2) _ Q(F(%nv}’n)’ F(%n+1’yn+1)) + Q(F(Yn’%n ), F(}’n+1v%n+1))
¢ ( 2 ) -9 ( 2 )

< ll} ((L(%n,%n+1) ;Q(Yn’}’n+1))’ (333)

Then, for all n > 0, we get

P(Ry11) S PR,), (3.34)

Where Rn - C]:(%n'%n+1) ‘2|'d;(}’n’}’n+1).

Also R, >0 forall n > 0. By (3.3.4), for any n > 0, we have

PR, 11) YR, <oR,). (3.3.5)
Then, using the monotone property of ¢, from (3.3.5), we can obtain that {R,} is a
decreasing sequence of non-negative real numbers. So, there exists some R > 0, such

that limR, = R. If R> 0, then by the properties of ¢ and 1, we obtain

¢(R) < limsup (R, 1) < limsup (R,) < p(R),

a contradiction. Therefore R = 0 and hence, we get

limR, = lim &) £ d0nnst) g (3.3.6)

n—oo n—oo 2

We now claim that {»,} and {y,} are Cauchy sequences. On the contrary, assume at
least one of {x,}, {y,} is not a Cauchy sequence. So, there exists some € > 0 for
which we can find sub-sequences {3t,a0} {*mao} of {u} and {ynao} {ymao} Of
{yn} with n(k) > m(k) = k such that

F = 40 @ #m w) +d0nag¥mae) o o (3.3.7)
2

Also, corresponding to m(k), we smallest n(k) € N with n(k) > m(k) > k and
satisfying (3.3.7). Then, we have

40t 9-17m09) +4Ona0-1¥m @) _ (3.3.8)
. . 3.
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By (3.3.7), (3.3.8) and the triangle inequality, we get

- 40 () %m (1) + 40 n (10Y m (k)
2

SS‘FK

< 40 () %n (10—1) + 40 19 —1%m (1) + 4 n ) Yn 10-1) + 4¥n 10-1Ym (10)
= 2

< 4 () %n (10-1) ;rﬂl(yn(k).yn(k)—ﬂ +e

On taking k — oo and using (3.3.6) in the last inequality, we get

Emfk — llgm d(n 07 (0)) ‘Zi‘d(yn(k),ym(k))] —c (3.3.9)

Now, using the triangle inequality, we have

- 40t (1 %m (10) + 4 n ()Y m (1)
2

Fi

+ dj(Yn(k)vYn(k,)+1) + C]:(Yn(k)+l'Ym(k,)+1) + d:(Ym(k,)+1'Ym(k,))
- 2

{ 40t (%0 10 +1) + 40t 10 +1%m 10 +1) + 4(m 10 +1%m (1)) }
<

= Rn(k) + Rm(k) + Cir(“n(k)ﬂ,%m (k)+1) :q(yn(k)+1'}"m(k)+1). (3.3.10)

By monotone property of ¢ and the property (¢;;;), we get

(p(Fk) < (p(Rn(k)) + (p(Rm(k)) + o (d(xn(k)ﬂ,%m(k)ﬂ);‘d.y(yn(k)ﬂ,ym(k)ﬂ)). (33.11)

Since n(k) > m(k), we have n (k) z Ym (k) and Ynk) < Ym k)

Then, using (3.3.1), we get

® (‘l(%n(k)ﬂ,%m ao+1) +d(yn (k)+1Jym(k)+l))
2

0 (d-'(F(%n 001 00) F0m 09.Ym 1)) + 4(ETn 102 10 F¥m 02 (‘0))>
2

d(%n 10%m (0) + 3V n ()Y m ()
Szp( ® (k)z ® (k.))

= P(¥y). (3.3.12)
Now, by (3.3.11) and (3.3.12), we get
(R < @ (Rago) + P (Ruao) + ¥(5)-
Since the function ¢ is lower semi-continuous, then letting k — oo in the last
inequality, we obtain that

pe) < Lirn sup ¢(x)

< limg (R, o) + lime(Rygo) + 1im sup (vi) < 0 (e),

k—o0 k—o0
a contradiction. Therefore, {»,} and {y,} are Cauchy sequences in X. Now, by

completeness of X, there exist some %, y € X such that Illl_r}(}omn =x and rl,i_r&y“ =y.
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Let us assume that assumption (a) holds.
Then, %= limay g = imEQe, yo) = F(x, y),
y = limyy, 1y = ImE(yy, %) = E(y, %),
which implies that (x, y) is a coupled fixed point of F.
Next, assume that assumption (b) holds.
As the sequence {x,} is non-decreasing and convergent to %, by assumption, we get
%, =< » for all n. Similarly, we have y, >y for all n.

Then, we have
(1(%, F(%, y)) < dz(%J %n+1) + d.)(%rl+1' F(%, Y))

=d( %n11) + 4F G, yn), F(Y))
and

d.;(yv F(yv %)) < d.;(y' YII+1) + Q(Yn—i-lf F(Y} %))

= d}(YI Yn-l-l) + dJ(F(Ynf%n); F(y' %))
So, we get

d(e, B, ¥)) = 40t % 41) < d(FOtn, ), F(1, )
and d(y, F(y, %)) = (¥, ¥n+1) < d(F @, %), E(y, %),
therefore, = [d(2 FCt y)) — A0t #41) + A, BW, 20) — A, Vo))
< 2 [d(FGt, y2), FO6 Y)) + d(E(yn, 1), B, 20)],
which implies, by using the monotone property of ¢ and (3.3.1), that

® G [d(6 FOuy)) — d( %0 11) + d(y, F(y, %)) — d(y, Yn+1)])
< ¢ (L [A(ECen yo), FG6)) + d(E G ), B3, 0)])

< (d(xn,x) zd(yn,y))_

Now, on taking n — oo in the last inequality and using the lower semi-continuity of ¢,

we obtain
¢ (51dCe Feoy) + (v, By 20)])

< lim sup ¢ (5 [d(6 F@y)) = dGt011) + 4, B, 29) = 4O yni1)])

n—oo 2

Therefore, we get » = F(x, y) and y = F(y, »). Hence, F has a coupled fixed point in X.
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Remark 3.3.1. (i) Substituting ¢(») - Y (x) for (x) in Theorem 3.3.1, we can obtain
Theorem 3.1.2 (Berinde [150]).

(if) Considering (%) = ; and Y(x) = kz—" where 0 < k < 1, in Theorem 3.3.1, we can
obtain an analogue of Theorem 3.1.1 (Berinde [149]).

The following example furnishes that the contractive condition (3.3.1) of
Theorem 3.3.1 weakens conditions (2.1.14) of Theorem 2.1.14 and (2.1.18) of
Theorem 2.1.19, which implies that Theorem 3.3.1 is more general than Theorem
2.1.14 (Bhaskar and Lakshmikantham [55]) and Theorem 2.1.19 (Luong and Thuan
[67]), respectively.

Example 3.3.1. Let X = R, then, (X, <, d) is a POCMS, with partial ordering < being
the usual ordering < of real numbers and d: X x X — R* defined by d(x, y) = |x — Y|
forx,y € X. Let F: X X X = X be defined by F(x, y) = % for x, y € X. Then, F is
continuous, has MMP and satisfies the condition (3.3.1) but does not satisfy any of
the conditions (2.1.14) and (2.1.18), so that Theorems 2.1.14 and 2.1.19 do not hold
here.

Let there exists some k € [0, 1) such that (2.1.14) holds, so that forx > uandy < v,

we shall have

d(F (. y), F(u, v)) < 5 [t U) + d(y. V)],

|%—4y u—4v

that is, - -

< 2be—ul +ly = vil,

from which, for » = u, we can obtain [y—v| <k |ly—v|, y < v, which for y < v
implies that 1 < k , a contradiction, since k € [0, 1). Therefore, F does not satisfy
(2.1.14). Now, as in Example 3.2.2, it is easy to obtain that the condition (2.1.18) is
also not satisfied.

Next, we shall prove that (3.3.1) holds. For, x > uandy < v, we have

x—4y u—4v
8 8

y—4x  v—4u
8 8

1 1 1 1
Sglx—u|+5|y—v|and| Sgly—vi+zlx—ul.
Adding the last two inequalities, we can exactly obtain (3.3.1) with ¢(f) = % f, Y(f) =

15—6 f. Further, %y (= —1), yo (= 1) € X such that the property (P1) holds. Applying

Theorem 3.3.1, we can obtain that F has a coupled fixed point (0, 0) in X. But
Theorems 2.1.14 and 2.1.19 cannot be applied to F in this example.
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Uniqueness Of Coupled Fixed Point
We now prove the uniqueness of the coupled fixed point obtained under the

hypotheses of Theorem 3.3.1, by assuming the following additional hypothesis:
Assumption 3.3.1 ([41, 55]). “For every (%, y), (»*, y*) in X X X, there exists a
(u, v)in X x X that is comparable to (», y) and (x*, y*)”.
Theorem 3.3.2. In addition to the hypotheses of Theorem 3.3.1, assume that the
Assumption 3.3.1 holds. Then, F has a unique coupled fixed point in X.
Proof. By Theorem 3.3.1, the set of coupled fixed points of F is non-empty. Suppose
that (%, y) and (x*, y*) be the coupled fixed points of F.
We show thatx =»*and y = y~.
By Assumption 3.3.1, there exists some (u, v) € X X X which is comparable to (x, y)
and (»*, y*). Let us define the sequences {u, } and {v,} as follows:

Ug=U, vo=V, U4 =Fu,, vy), Voe1 =F(vp, u,), forn=>0.
Since (u, v) is comparable to (%, y), we assume that (%, y) > (u, v) = (ug, vp). Now,
as in the proof of Theorem 3.3.1, inductively, we can obtain that

(®,y) = (u,, vy) forn =0, (3.3.13)
therefore, by (3.3.1), we obtain

dotun+1) +d@var1)\ _  (dFEGLY), Flup,vi)) +d(E(y, %), F(vp,up))
4 ( 2 ) -9 ( 2 )

< (d(x,un) erd(y,vn)) (3.3.14)

= d6eun) #dOn) - Nowy, as in the proof of

that is, ¢(d,4+1) < ¥(d,), where d, -

Theorem 3.3.1, we can obtain that {d,,} converges to some d > 0. If d > 0, then we

have ¢(d) < lim sup ¢(d,41) < lim sup Y (d,) < ¢(d), a contradiction. Therefore d
n—oo n—oo

=0, s0 that lim w

n—oo

= 0 and hence, we get limd(x,u,) = limd(y,v,) = 0.
Similarly, we can obtain that limd(»*, u,) = limd(y*, v,,) = 0. Now, by uniqueness of
limit, we have x = »* andy = y*.

Theorem 3.3.3. In addition to the hypotheses of Theorem 3.3.1 assume that
%, Yo € X are comparable. Then, F has a unique fixed point in X.

Proof. By Theorem 3.3.1, W.L.O.G., suppose that %, < F(xg, yo) and y, = E(yo, #o).
Since %, and y, are comparable, we have either %, < y, or #g = y,. We consider the

second case. Since F has MMP, we get %, = F(xg, yo) = F(yg, ®g) = y1. Now, we can
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obtain inductively that », >y, for n > 0. Also, we have % = limF(x,,y,) and y =
n—oo

limF(y,,»,), then, by the continuity of the metric d, we can obtain
n—oo

A0, y) = A HmFGey, ), HmE(y, %) ) = lim d(FGen, ), Fyn %)

= rlll_l;?o d.;(%n+1) Yn+1)'

Since », >y, forn >0, by (3.3.1), we have

@ (A(FGtn,ya), EGm ) ) < 9(dGtn, y)), for n 2 0.

Now, letting n — oo in the last inequality, we obtain
9(dGxy)) < lim sup @ (d(FGen, ya), F(n %)) < lim sup 1h(dGen, va))-

If % # v, then using (1;), we obtain that ¢(d(x»,y)) < ¢(d(» y)), a contradiction.
Therefore » =y, so that we have x = F(x, %). In a similar way, uniqueness of » can be

achieved.

3.4 COUPLED FIXED POINTS FOR SYMMETRIC (¢, ¥) — WEAKLY
CONTRACTIVE CONDITION IN PARTIAL METRIC SPACES

In this section, we introduce the notion of symmetric (¢, ) - weakly contractive
condition in POPMS and utilize it to extend the result of Berinde [150] (that is,
Theorem 3.1.2) to the partial metric spaces.

We first define the following notion and then, give our result:
Definition 3.4.1. Let (X, <, p) be a POPMS. Then, the mapping F: X x X — X is said
to satisfy symmetric (¢, ) - weakly contractive condition, if there exist ¢ € @
and y € ¥ such that forall #, y,u, ve Xwithx >uandy < v(orx<uandy > v),
we have

b (b(F(%rY), F(u,v)) ;b(F(y, %), F(V,U))) <o (b(K,U)-ZI-b(y,V)) — (b(xlu);b(y.V)). (3.4.1)

Theorem 3.4.1. Let (X, <, p) be a POCPMS and F: X X X — X be a mapping with
MMP on X and there exist ¢ € @ and y € ¥ such that F satisfies symmetric (¢, ) -
weakly contractive condition.
Suppose either

(a) F is continuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P3), then F has a coupled fixed point in X.
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Proof. Since X has property (P3), W.L.O.G., let there exist »g, yo € X with %y <
F(xg, yo) and yo = E(yg, ). Then, as in the proof of Theorem 3.3.1, we can easily
construct sequences {x,} and {y, } in X such that

%o+1 = F(tn, Yn), Yn+1 = F(Yn, %)
and ®y X ®ni1, Yo & Y1, TOralln >0 holds.
Also, suppose either %1 = F(%,, V) # %y OF Yuy1 = F(Vn, ®n) # Yn, otherwise, F
has a coupled fixed point and the result holds trivially.

Since %, < ®,41 and y, = y,41 for n = 0, on applying the inequality (3.4.1), we have

bt +1%n+2) + PGn+1,Yn+2) — b(F(%n’Yn)v F(%n+1vyn+1)) + b(F(an%n)v F(}’n+1’%n+1))
¢( 2 )_¢( 2 )

< ¢ (b(“n:%n+l) ;‘b(YnIYn+1)) _ Ilj (b(xn:%n+1) ‘zl‘b(YrLrYH-i-l)) (342)

< ¢ (b(“n:%n+l) ;‘b(YnIYn+1))1

which implies, on using the condition (i, ) that

bty +1.%n42) + DY +1,Yn+2) < bGtn ¥n 1) +b(yn,yn+1)
2 - 2 !

so that, {p_} is a non-increasing sequence, where p_ = bGotn n +1) ;p(y“’y““) > 0. Thus,

there exists some p > 0 such that

b(tn#n+1) +PYn,yn+1) =p. (343)

limp_ = lim
n—-oo n n-—-oo 2

We claim that p = 0. On the contrary, assume that p > 0. Now, taking n — oo in
(3.4.2), we get

o) =lime(p,,,) < lime(p,) — limy(p,) = p() — plig];+t/)(pn) < p(p),

a contradiction. Therefore, p = 0 and hence, we get

(%0, %0 +1) + bYn,yn+1) =0. (344)

limp_=lim b

n-oow I poow 2

Next, we claim that {x,} and {y, } are Cauchy sequences in (X, pb). For, we first show
that

n,m-—o0 2

Let us assume the contrary. So, there exists some ¢ > 0, for which we can find the
sub-sequences {xm )}, {a} Of (tn} and {ymp} {yn} of {yn} with n(j) being the

smallest index for which

nG) > mG) > j. b(m (i)'“n(j)):b(ym(i)'}’n(j)) > e (3.4.6)

This means
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PCtm (3 2n )-1) P Ym ) ¥n3-1) _
2

(3.4.7)
By (3.4.7), we have

b(%m Gy *n)) + P(Fmiy Yn))
2

1 (b(%mﬁ)»%m(j)ﬂ) + (31, ) — b(%m(j)+1:”m(j)+1))
=2 + (b(Ym(j)’Ym(j)+1) +D(Ym+1:Yn®) — PYm@)+1, Ym(j)+1))

b(tmy *m(y+1) + b(%m(j)+1.%n(j)))

2+ (P(Ym(j):Ym(j)H) + b(Ym(j)+1:Yn(j)))

_1 (bGtmay Hm+1) + DGty 1 4mp) + Dy, 2niy) = bmeiy i)
2|+ (b(Ym(j)» Ym+1) + Pmp+1.Ym®) + PGme)y Yae) = b(ym(i)IYm(i)))

IA
N

(Zb(”m(j)+1:”m(j)) + l’(“m(j)'”n(j)))
+ (Zb(Ym(j)—i—l»Ym(j)) +b(Ym()» Yn(j)))
( <2b(%m(j>+1)%m(j)) + P(tm ), a)-1) + P(ta (-1, %)) | )
b(%n(l) 1 %n(j)- 1) !
|

|+ <2b(3’m(l)+1 Ym(l)) +b(3’m(l) Yn@)— 1) +b(3’n(l) 1 yﬂ(}))
b(Yn(J)—l'yﬂ(J)—l)

J
(2D Cten 1 4mp) + D(m i 2n 1) + D(n-1.%0))
(Zb(ymm+1 Ym() + b(¥m@) Yng)-1) + P(Fng-1, Yn(l))

<5 {p(xm0)+1,um(,-))erb(ym(j)ﬂ.ym(i))} +e +b(“n(j)—l'“n(i));b(yﬂ(i)—l'yﬂ(j))_ (3.4.8)

Letting j — oo in (3.4.8) and then using (3.4.4) and (3.4.6), we get

lim P (”'"““))Zb(ym“)’y““)) = ¢ (3.4.9)
] —00
Also, bt #0) < P(*m iy #)=1) + P(ta)=1 %np)):

by Yn)) < P(Tm@y Yn-1) + P(Tny-1 Ynp)-
Then, we get
P(Rm @y #n()) + PTm@y o) < P(*miy #a-1) + PFmay Yny-1)}
+ {p(*n()-1, %n()) + P(Fny-1,¥n())}- (3.4.10)

Similarly, we have

P(m @y #n()-1) + PTmiy Ya)-1) < (P(tm) %)) + DTy Yu))}
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+{b0tay xny-1) + DYy Yop-1)}- (3:4.11)
Taking j — oo in (3.4.10) and (3.4.11) and using (3.4.4), (3.4.9), we get

lim b(m (%0 (1)—1) (Y m G)Yn ()-1) - ¢ (3.4.12)

j oo 2

Now, since % j) < Un()—1 AN Ym () # Ya()—1, USing (3.4.1), we have

" (b(%n(jwm (j)+1)+b(yﬂ(i)'3’m(i)+1))
2

= ¢ (b(F(%n H=1YnG)-1) FOtm (j)'Ym(j)))+b(F(Yn(j)—l'%n(j)—l)' F(Ym(j)'%m(j)))>
2

<4 (b(%n(j)—p%m(j));rb(yn(j)—l.ym(j))) —y (b(%no)—l.%m(j))JZrb(yn(j)—pym(j)))_

Taking j — oo in the above inequality, then using (3.4.12) and the properties of ¢ and

Y, we obtain

6(e) < B(e) — limy (b(”n(i)—l'”m(i));’b(}’n(j)—l'}’m(j))> <o),

a contradiction. Hence, (3.4.5) holds and we have

lim p(%,,#,) =0 and lim p(y,,y,) =0. (3.4.13)
Now, by (2.2.1), we get
b* Otn, %) < 2p(n, ) @A D° (Yo, Ym) < 2 b(Yn, Yim). (3.4.14)
On taking n, m = oo in (3.4.14) and using (3.4.13), we obtain that
lim p*(%,,%y,) =0 and lim p*(y,,ym) =0. (3.4.15)

Therefore, {x,} and {y,} are Cauchy sequences in the metric space (X, p°). Also,
since the space (X, p) is complete, the space (X, p°) is also complete. Therefore, there
exist some %, y € X such that

rlli_r)?obs(%n, %) =0 and rlli_{?obs (Yo, y) =0. (3.4.16)
Again using (2.2.1), we have p° (%, ®) = 2 p(x,, %) — p(%y, %) — b(%, ).
On taking n — oo in the above equation and using (3.4.16) and (3.4.13), we obtain

limp(st,, %) =3 b, ). (3.4.17)
Also, we have p(%, %) < p(%,%,) for all n € N. Then, on taking n — oo, we have
p(x, ®) < limp(x, %, ). (3.4.18)

Now, using (3.4.17) and (3.4.18), we can obtain limp(x, »,) = p(x%, %) = 0.
Similarly, we can obtain that limp(y,,y) = p(y, ¥) =0.

Therefore, we get
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limp(y, %) =p(%, %) =0 and  limp(yn,y) =b(y, y) =0. (3.4.19)
Also, by p2, we obtain 0 < p(x,, ®,) < p(x,, %) and 0 < b(yn, yn) < b(y,,y) for all
n € N. On taking n — oo and using (3.4.19), we obtain
limp(xn,, ») = limp(x,,%,) = p(»,») =0,
T{%b(yn,y) = j:i_;:r;:b(YH'Yn) = by) =0. (3429
We now show that » = E(x, y) and y = E(y, %).
Let us assume that assumption (a) holds.
We consider the following steps:
Step 1. We show that b(F(%, y), F(x, y)) =0 and b(F(y, %), E(y, %)) =0.
Now, since x < x and y <y, using (3.4.1), we get

b(EGuy), E(xy)) + b(E(y, %), E(y, %)) b0 +byy)\ _ . (PG4 +b(y.y)
* 2 )= o (Fe) -y (P

=¢(0) —9(0) =-y(0) <0,

b(EGLy), E(y)) + b(E(, %), E(y, %)) _
2

which implies that

b(E(y, %), E(y, %)) = 0.

Step 2. We now show the following:
limb(y 41, F(%,y)) = b(F(x, y), F(x, Y))

and limb(yn 1, E(y,2)) = b(E(y, %), E(y, ).

0, so that p(F(»,y), F(»,y)) = 0 and

For, since %41 = F(%,,yn), We obtain b(x,41, F(%y)) = b(F(tn, yu), F(%y)).
Further x, > xandy, - yasn — oo in (X, p) and F is continuous, then by Lemma

2.2.2, we obtain that F(x,,y,) — Fx, y) aa n - oo in (X, p), so that
Limp(F(t,, yn), F(t,y)) = b(FE(x, y), F(», y)) = 0. Similarly, we can obtain

mb(E(yn, %), E(, 2)) = bE(y, ), F(y, %)) =0.
Step 3. Finally, we shall show » = F(x, y) and y = F(y, »).
For, we have
b(x, E(%, ¥)) < b(t, %041) + bOtn11, F(6,¥)) — b(tn11, %0 11)
< bt %0 41) + by 41, FO4Y)).
Taking n = oo in the last inequality, using (3.4.20) and Step 2, we get p(x, F(x, y)) =
0. Therefore, we have x = F(x, y). Similarly, we can obtain y = E(y, »).

Next, assume that assumption (b) holds.
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Since %, < %®,41, Yo Z Yus1 and using (3.4.20), we obtain that {x,} is a non-
decreasing sequence converging to » in (X, p) and {y,} IS a non-increasing sequence
converging to y in (X, p). Therefore, using the assumption (b), for all n > 0, we obtain
that

%, sxandy <y,. (3.4.21)
Then by (3.4.1), we have

bGtn +1, F(%'Y))‘H)(Yn +1, E(y, M)) _ bE(tn,yn), F(”tY))"‘b(F(YH'%n)' F(y, %))
¢ ( 2 ) =9 ( 2 )

<o (b(%nJ%);b(YH'y)) — (b(%n'%);'b(Yruy)).

Taking n — oo in the last inequality, using (3.4.20) and the properties of ¢ and ), we
obtain that

limbCen 11, F(4y)) =0 and  limp(yy 1, E(y, %)) = 0. (3.4.22)
Also, we have

b(t, F(¢, Y)) < b0, % 11) + Do 41, (0 y)) — bOtn11, #n1)
< b0t %n+1) + D(%nt1, F(4,¥).

Taking n — oo in the last inequality, using (3.4.20) and (3.4.22), we get p(», F(», y)) =
0, so that x = F(», y). Similarly, we can get y = F(y, »). Therefore, (», y) is a coupled
fixed point of F.
Example 3.4.1. Let X = R, equipped with the partial metric p given by p(x, y) =
max{x, y} and the natural ordering < of real numbers. Let F: X X X — X be defined
as F(», y) = %81 for , y € X. Then, F has the MMP on X. We next show that F

satisfies the condition (3.4.1). For,

b(F(%7 y)9 F(u, V)) = max{%,%} = % maX{% ~Y, Y% U—V,V— u}
= % max{x, y, u, v} < % max{x, u} + % max{y, v}.
Similarly, we can get p(E(y, %), (v, u)) < % max{x, u} + %max{y, v}.

Adding the last two inequalities, we can obtain

b(ECy), E(wv)) + b(B(y20), B(v, ) < Heibir) o M b,

or

b(FCGe y), B ) + b(E(y20, B(v,u)) < Kb SR br)
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therefore, the condition (3.4.1) holds for ¢(f) = £/2 and ¥ (f) = 3t/8. Further, the
other conditions of Theorem 3.4.1 are also satisfied so that (0, 0) is a coupled fixed
point of F.
Remark 3.4.1. Theorem 3.4.1 extends Theorem 3.1.2 (Berinde [150]) to the partial
metric spaces.
Corollary 3.4.1. Let (X, =<, p) be a POCPMS, F: X X X — X be a mapping with
MMP on X and there exists some k € [0, 1) such that %, y, u, v in X withx > uand y
< v(orxs<uandy > v), we have

b(EGty), E(u, v)) + b(F(, %), E(v,w) <k [b(x,w) + b(yv)].  (3.4.23)
Suppose either

(a) F is continuous, or (b) X assumes Assumption 2.1.7.

If X has the property (P3), then F has a coupled fixed point in X.
Proof. Considering ¢(f) = % and P(f) = (1 - k) ; 0 <k<1inTheorem 3.4.1, we can

obtain the required result.
Uniqueness Of Coupled Fixed Point
Now, we establish the uniqueness of the coupled fixed point obtained under the

hypotheses of Theorem 3.4.1.
Theorem 3.4.2. In addition to the hypotheses of Theorem 3.4.1, assume that
Assumption 3.3.1 also holds. Then, F has a unique coupled fixed point in X.
Proof. By Theorem 3.4.1, the set of coupled fixed points of F is non-empty. To prove
the result, we shall show that if (%, y) and (»*, y*) be the two coupled fixed points of
F, then

b(x,»)=0 and  p(y,y")=0.
By Assumption 3.3.1, there exists some (u, v) € X x X which is comparable to (x, y)
and (»x*, y*). Let us define two sequences {u, } and {v,} as follows:

Ug=U, vo=V, U4 =Fu,, vy), v, =F(v,, u,), forn=>0.
Since (u, v) is comparable to (%, Y), we suppose that (%, y) = (u, v) = (ug, Vo).
Now, as in the proof of Theorem 3.4.1, inductively, we can obtain that

(%, y) = (up, v,) forn > 0. (3.4.24)
Then, by (3.4.1), we get

bGtun+1) + by, vn+1)\ _ . (b(EGey), Fluy,vn)) +b(E(y, %), E(vy,up))
¢ ( 2 ) = ( 2 )

< ¢(p<u.un>;p(y,vn)) _1,,(%) (3.4.25)
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Now, since 1 is a non-negative function, by (3.4.25), we get

) (b(%,unﬂ) ;‘b(YrVn+1)) <o (b(%,un) ;‘b(YrVn))’

bGtuy) +b(y,vn)
2

then, by monotone property of ¢, it follows that {p_} with p_= ,n =0,

is a non-increasing sequence. So, there exists some p = 0 such that limp = p. We
n—oo

claim that p = 0. On the contrary, assume that p > 0. Taking n — oo in (3.4.25), we

obtain
() < ¢ () - limp(p,) = () — lim (p,) < $(P).

bGun) +b(y,vn)
2

a contradiction. Therefore, p = 0, so that lim = 0 and hence, we can

n—w
obtain that Illiigop(x, u,) = Illi_r)ro1ob(y, v,) = 0. Similarly, we have rllig}op(x*,un) =
limp(y*, vy) =0.
By b4, we have b(x, ®*) < b(x, uy) + p(u,, ®7) = b(uy, uy)
< b(%, u,) + b(uy, %),

then, on taking n — oo, we get p(x, »*) = 0. Similarly, we have p(y, y*) = 0.
Therefore, » =x* and y = y*. Thus, the result is proved.
Theorem 3.4.3. In addition to the hypotheses of Theorem 3.4.1, assume that
%o, Yo € X are comparable. Then, F has a unique fixed point in X.
Proof. To prove the result, we show that x =y, if (%, y) is a coupled fixed point of F.
On the contrary, suppose » # y. By Theorem 3.4.1, W.L.O.G., assume that », <
F(xg, yo) and yo = E(yg, %g). Now, since %, y, are comparable, we have %, < y, or
%o = Vo. W.L.O.G., suppose that %, > y,. Also, since F has the MMP, we have »; =
F(%g, vo) = F(yvo, #o) = y1. Now, inductively, we can obtain that %, > y,, for n > 0.
Also, rlll—rgb(%’ %,) =0and Ilj_)rgb(y, yn) = 0.
Now, on repeatedly applying the properties of partial metric, we get
b, y) < b0ty 1) + P(Rn11,Y) — POtns1, %nt1)

< b0t %n+1) + P(Hnt1, )

< bt %n41) +b(tas1, Yur1) + PWns1,¥) — PUns1, Yns1)

< bGt %a11) + b(os1, Yn+1) + P(Yns1,Y)

= (% %n11) + D(FGtn, Y1), F(Wn, %)) + bns1, ¥,

then, using the monotone property of ¢ and the property (iii, ), we have

¢(b(%; Y)) < ¢ (b(%; %n+1) + b(F(%n' Yn)' F(Yn'%n)) + b(Yn+1' Y))
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< (b0t 1)) + ¢ (D(EGta,¥n), Fym, ) ) + B (b(Fns1,3))
< ¢(b(%) Mn+1)) + ¢(b(%n' Yn)) - l/)(b(%n' Yn)) + ¢(b(YH+1J Y))a

then, on taking n — oo and using the properties of ¢ and ¥, we get
¢t y)) < ¢(0) + ¢(0) - Illiggt/)(b(%n.yn)) +¢(0)
== Illl_l;?ol/)(b(%n' Yn))

We now consider the following cases:
Case 1. If limp(x,,y,) > 0, then rlli_rgolp(b(”“’y“)) > 0, so that we have ¢(p(x,y)) <
0, a contradiction.
Case 2. I limp(x,, y,) =0, then I1113)101/;(19(%,yn)) =0, so we have ¢(p(»,y)) < 0.
Subcase (i). If p(p(»,y)) <0, a contradiction.
Subcase (ii). If ¢(p(x,y)) = 0, then we have p(x, y) = 0, so that x =y, a
contradiction, since we have » #y.

Therefore, in each of the above case, we get a contradiction. Hence, the assumption x

# Yy is wrong. Thus, we have »x =y.

3.5. APPLICATIONS

This section consists of the applications of the results proved in sections 3.3 and
3.4.

First, as an application of the results proved in section 3.3, we study the existence

of the unique solution of the following integral equation:

w(®) = [7(K:(5,6) = Kz(5,0) (£, (s%()) + £, (sx()) ) ds + H(E), £ € I (= [c, d]).

(3.5.1)
Denote by ®, the class of functions 6: R* — R* satisfying the following
assumptions:

Q) 6 is non-decreasing; (3.5.2)
(ii)  there exists some i € ¥, such that 6(x) = ¥ G) forallr e R*;  (3.5.3)
(iii) LiiriosuP 0(z,) <ar if rlliigoz’“ =¢ >0 for some a € (0, 1); (3.5.4)
(iv) rlli_r)gloe(zn) =0 if Illiigozn =0 forz, € R™. (3.5.5)
Suppose that Ky, Ky, £, f, fulfil the following assumptions:

Assumption 3.5.1. (i) K; (s, £),K,(s,£) =0 forall f, s € I,
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(ii) there exist L > 0, u > 0 and 8 € O such that for all f € I and %, y € R with x >y,

we have
0<f(6x)—fi(Ey) =AO(x—y) (3.5.6)
and —po0Ge—y) < f,(6x) - f,(Ey) <0; (3.5.7)
(iii) there exists some a € (0, 1) satisfying (3.5.4) such that
af <1, (3.5.8)
where, B =L+ 1) - supe fcd(Kl (5,6 + Ky(s,0) ds. (3.5.9)

Definition 3.5.1. An element (%, 9) € X x X, where X = C(I, R) is called a coupled
lower and upper solution of the integral equation (3.5.1) if for all f € |,
#(f) = 9(0),
2(0) < [7Ki (5,0 (£,(s () + £,(5,9()) ) ds

— [ Ky (5,0 (£,(9)) + £,(s, ﬁ(s))) ds + H(E)

and
9(6) = [ K (5,0 (1,(5.96) + 1,(5 2())) ds

= [0 (£,(5.2(9) + £,(s,9(5)) ) ds + H(6).

Theorem 3.5.1. Consider the integral equation (3.5.1) with K; € C( x I, R),
fi €CAXRR) fori=1,2andh € X (= C(I,R)). Let (%, §) be a coupled lower-
upper solution for (3.5.1) and the Assumption 3.5.1 is satisfied. Then, the integral
equation (3.5.1) has a unique solution in X.
Proof. Consider the following ordering on X:
forx,y € X, x <Yy e x(f) < y(f), forall te I
Also X is a complete metric space w.r.t. the sup metric

d(x, y) = suprer|%(€) — y(O)], forx, y € X.
Further, the condition (b) in Theorem 3.3.1 (that is, Assumption 2.1.7) also holds in
X. Also, X x X is a poset under the order relation given below:

%, y), (W, v) EX XX, (% Y) < (,v) x() <u(f) and y(f) = v(f), forallfel.
For %, y € X, max{x=(f), y(f)} and min{x(f), y(f)} for each f € 1, are in X and are
upper and lower bounds of x, y, respectively. Hence, for every (%, y), (u, v) € X X X,
there exists (max{x, u}, min{y, v}) € X X X which is comparable to (x, y) and (u, v).

Define the mapping F: X X X — X by
Foey)(© = [ K (5,0 (£,(5%()) + £,(5,¥(5)) ) ds
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— 1550 (£,(5¥(9)) + £,(s#()) ) ds + (), forall fe I,
We claim that F has the MMP.
For, let %, %, € X With % < n, (that is, % (f) < »,(f) for all £ € 1).

Then, by Assumption 3.5.1, forany y € X and all f € I, we have
Fler, Y)(6) — Btz Y)(O = [1 K1 (5,0 (£, (5.(8)) = £, (5,%:()) ) ds

— K50 (£,(5a(9) = £,(s,%2()) ) ds <0,
which implies that (x4, ¥) < F(x,, Y).
Similarly, if y;, y, € X and y; < y,, then we have F(x, y;) = F(x, y;) for x € X. Let
a € (0, 1) be as mentioned in Assumption 3.5.1. Then, for , y, u, v € X such that x >

uandy < v, we have

K (s € | | ;
F(x, ¥)() - E(u, v)(f) = { fC 1(s, ) (fl (S %(5)) + f2 (S y(s))) S }

— [7Ky(5,6) (f1 (s,y(s)) + £, (s, %(S))) ds + (6
) { 56,0 (£,(59) + 1, (s7() ) ds }
- fcd K, (s, ) (f1 (sv(s)) + £, (s, u(S))) ds + B(£)
= [ K1 65,0 (£,(5, %)) = £, (5, u)) + £,(5,¥()) = £, (sv(5)) ) ds
+ 1Ko (5,0 (£,(5v©®) = £,(55O) + £,(5,u() — £, (5, %(5)) ) ds
< 7K1 (5,0 M (e(s) — u(s)) + po(v(s) — y(s))]ds

+ [ Ky (5,6 O (v(s) — y(5)) + nO((s) — u(s))]ds. (3.5.10)
Since 6 is a non-decreasing function and » > u and y < v, we have
8(x(s) — u(s)) < B(supeer () — u(®)) = H(d(x,w)),
and  6(v(s) = y(s)) < O(supeer|v(E) — y(O) = 6(d(v, ),
hence, using (3.5.10), we can obtain that

[FCGey) (O — Fu)(®1 < [ K (5, [10(d06 w) + po(d(v,y))]ds

+ [7Ky (5,0 [10(d(v,y)) + n0(d0ew)]ds.  (35.11)

Similarly, we have
IF(y, %)(6) — F(v, ) (O] < [ Ky (5,0 [M(d(v, ) + n6(d(, w))]ds

+ [7Ky (5,0 [10(d0e W) + po(d(v,y))]ds.  (35.12)
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Adding (3.5.11) and (3.5.12), multiplying with @ and dividing by 2, then taking
supremum w.r.t. f and using (3.5.8) and (3.5.9), we have

a d(FGey), F(u,v) + d(F(y0), E(v,u))
2

2] (q(u,u))+c9 (Q(v,y))

d
< a(A+ ) supge; fc (K1(s,©) + Ky(s,0)) ds . :

< 0(d6w)+6(d(v.y))
— 2 :

Now, since 6 is a non-decreasing function, we have
0(dCew) < 6(d(xw) +d(v,y)) and 6(d(v,y)) < 6(d(x w) +d(v,y)),

so that, we can obtain that 6(4(“’11));9@@'”) <0(dGew) +d(v,y)) =9 (—‘1("'“);4(“”),

by using (3.5.3). Therefore, we get

a d(FCey), F(u,v)) -ZI-CKF ), E(v,u)) <1 (d(%,U)-Zl-d,(v,y)),

which is the contractive condition (3.3.1) for ¢(f) = af, where a € (0, 1). Now, let
(%, 9) € X x X be a coupled upper-lower solution of (3.5.1). Then, we have
#(£) < 9(6),
2(f) < F(&, 9)(€) and 9(€) = F(@, 2)(f),
for all £ € I. Now, applying Theorems 3.3.1 and 3.3.2, F has a unique coupled fixed
point. Now, since & < 9, so that the hypotheses of Theorem 3.3.3 are satisfied and
hence, there exists a unique x € X such that x(f) = F(x, %)(f) for all £ € I. Therefore,

the integral equation (3.5.1) has a unique solution.

Next, as an application of the results obtained in section 3.4, we now obtain the
result for mappings with MMP satisfying a contractive condition of the integral type.
Denote by U, the class of functions @: Rt — R* satisfying the following conditions:

(i) @ is a Lebesgue — integrable function on each compact of R*;

(ii) for each & > 0, we have [ w(£)dt > 0.
Theorem 3.5.2. Let (X, <, p) be a POCPMS and F: X x X — X be a mapping with
MMP on X. Suppose that, for all %, y,u, v e Xwithx >uandy<v(orx<uandy

> v), we have

b(FGey), Fu,v))+b(E(y 1), F(v,u)) b(eu)+b(y,v) pCew)+b(y,v)
2 wq(Hdf < fo 2 wq(6)df — fo z w, (£)df,

(3.5.13)

0

where @, @, € U. Suppose either

(@) Fiscontinuous, or (b) X assumes Assumption 2.1.7.
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If X has the property (P3), then F has a coupled fixed point in X.
Proof. The functions s ~ fos @; (E)df (for i = 1, 2) defined on R* are in @ and in ¥.

Now, the result follows immediately by Theorem 3.4.1.
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FRAMEWORK OF CHAPTER - IV

In this chapter, we discuss coupled common fixed point results for some
generalized and weak symmetric contraction conditions in POMS. The contractions
involved in our results are extensions of Meir-Keeler contractions and (a, Y) —
contractions to the mappings having MgMP. Applications to solution of integral

equations are also discussed. Further, a result of integral type is also established.
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CHAPTER - IV
COUPLED FIXED POINTS UNDER SYMMETRIC
CONTRACTIONS

Present chapter deals with some generalized and weak symmetric contractions in
POMS. This chapter consists of five sections. Section 4.1 gives a brief introduction to
some symmetric contractions. In section 4.2, we establish some coupled coincidence
and coupled common fixed point results under the notion of generalized symmetric g-
Meir-Keeler type contractions. Section 4.3 consists of coupled coincidence and
coupled common fixed point results for mixed g-monotone mappings satisfying
(a, ¥) — weak contractions. In section 4.4, as applications of the results proved in
various sections of this chapter, the solutions of integral equations are discussed. In
the last section 4.5, an application to the result of the integral type is also given.
Author’s Original Contributions In This Chapter Are:

Theorems: 4.2.1,4.2.2,4.3.1,4.3.2,4.3.3,4.3.4,4.35,4.36,4.4.1,4.4.2,45.1.
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Assumptions: 4.4.1, 4.4.2.

4.1 INTRODUCTION

Generalizing and extending BCP in different ways has always been an area of
great interest for researchers. In 1969, Meir-Keeler [38] generalized BCP by proving
Theorem 2.1.1. Later on, Harjani et al. [151] proved a result which was a version of
the Theorem 2.1.1 for continuous, non-decreasing self mappings in POMS. Recently,
Samet [152] extended the work of Meir-Keeler [38] for the mappings with the mixed
strict monotone property. In fact, Samet [152] defined the notion of generalized Meir-
Keeler type function and using this notion, proved some coupled fixed point theorems
in the setup of POCMS.
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Recall that “for a partial ordering < on the non-empty set X, the strict order < on
X is defined as » < y means that x < y but x # y for %, y in X”.
Definition 4.1.1 ([152]). Let (X, <) be a poset. The mapping F: X x X — X is said to
have mixed strict monotone property, if F(x, y) is strictly increasing in » and
strictly decreasing in y.
For brevity, we write mixed strict monotone property as MSMP.
Definition 4.1.2 ([152]). Let (X, <, d) be a POMS and E: X X X — X be the given
mapping. Then, F is said to be generalized Meir-Keeler type function, if for all € >

0, there exists 6 (&) > 0 such that for » > u, y < v, we have

e< %[d,(%, u) +d(y, v)] <e+6(e) implies dF(x,y), F(u, v)) <e. (4.1.1)

Subsequently, Gordji et al. [153] gave the notion of mixed strict g-monotone
property and extended the results of Bhaskar and Lakshmikantham [55] and Samet
[152] under generalized g-Meir-Keeler type contractions.
Definition 4.1.3 ([153]). Let (X, <) be aposet and F: X x X = X and g: X — X be
two mappings. Then F is said to have the mixed strict g-monotone property, if
F(x, y) is strictly g-increasing in » and strictly g-decreasing in y.
In short, we call mixed strict g-monotone property as MSgMP.
Definition 4.1.4 ([153]). Let (X, <, d) beaPOMS and F: X X X = X, g: X = X be
two given mappings. Then, F is said to be generalized g-Meir-Keeler type
contraction, if for all € > 0, there exists §(&) > 0 such that for %, y, u, v in X with gx

Zguand gy < gv,

e < [d(gx gu) + d(gy, gv)] < £ + 8(e) implies d(F(e, y), F(u, v)) <e. (412)
On the other hand, Abdeljawad et al. [154] proved some interesting coupled fixed
point results in partially ordered partial metric space (POPMS) and remarked that the
metrical analogue of their work which was obtained by Gordji et al. [153] has gaps. In
fact, in [154] it was remarked that some of the results proved in [153] are not true if
the partial ordering is obtained via non-strongly minihedral cones. By the same time,
Berinde and Pacurar [155] introduced the notion of generalized symmetric Meir-
Keeler contractions and complemented the results of Samet [152] by proving the
following result:
Theorem 4.1.1 ([155]). Let (X, =<, d) be a POCMS and F: X x X = X be a

continuous mapping with MMP and is also a generalized symmetric Meir-Keeler
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mapping, that is, for given € > 0, there exists §(&) > 0 such that for %, y, u, v in X

withx zuandy <,

e <2 [dGow) +d(y, )] < + 8(e)

N | =

implies [dFGLY), F(u, v) + dE(y, »), F(v,u))] <e. (4.1.3)
If X has the property (P3) which states: “there exist two elements %, y, € X with
either %y < F(xg, yo) and yo = F(yo, %), OF %9 = F(%g,v0) and y, < F(yg,®o)”, then
F has a coupled fixed point in X.

It was also illustrated in [155] that the contractive condition (4.1.3) is weaker
than (4.1.2).

In 2012, in order to generalize BCP, Samet et al. [156] introduced the notions of
a- p-contractive and a-admissible mappings and used these notions to establish the
existence of fixed points in complete metric spaces.
Definition 4.1.5 ([156]). Let (X, d) be a metric space and T: X — X be a given
mapping. Then, T is said to be an a- y-contractive mapping, if there exist functions
a: X x X - R* and ¢ € CCF-¥ such that

a(%, y)d(Tx,Ty) < 11;((1(%, y)), forall », y € X. (4.1.4)
Definition 4.1.6 ([156]). Let T: X - X and a: X x X - R*. The mapping T is called
a-admissible if
any) =1 = a(TxTy) =1, forn,y € X. (4.1.5)

Successively, Mursaleen et al. [157] defined (a, ) - contractive mappings and
extended the notion of a - admissible mappings to establish some coupled fixed point
results in POMS.
Definition 4.1.7 ([157]). Let F: X x X - X and a: X% x X% - R* be two mappings.

Then F is said to be (a) - admissible if for all %, y, u, v € X, we have

a((6y), (W) =1 = « ((F(%,y), F(y, %)), (F(uv), F(v, u))) >1. (4.1.6)
Definition 4.1.8 ([157]). Let (X, <, d) be a POMS and F: X x X — X be a given
mapping. Then, F is said to be (a, ) - contractive mapping if there exist functions
a: X? x X% - R* and 1 € CCF-¥ such that forall %, y, u, v € X with x > uand y <
v,

a((%, y), (u,v)) CL(F(%, y), F(u, v)) <y (w) (4.1.7)
Theorem 4.1.2 ([157]). Let (X, =<, d) be a POCMS and F: X X X = X be a

continuous mapping with MMP on X. Suppose there exist two functions
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a: X? x X? > R* and ¢ € CCF-¥ such that F is (@, 3)-contractive mapping (that is,
(4.1.7) holds). Also, suppose that F is (a) — admissible and X has the following
property:
(P4) “there exist %, yo in X such that a((x,yo), F(x%0,¥0), F(y0,%0))) = 1 and
(Yo, %0), F (o, %0), F(%0,¥0))) = 17
If X has the property:
(P1) “there exist two elements %q, yo € X With %y < F(xg, yo) and yo = F(yg,%0)”,
then F has a coupled fixed point in X.

Karapinar and Agarwal [158] considered a more general contractive condition
and weakened the contraction (4.1.7). The main result in [158] is as follows:
Theorem 4.1.3 ([158]). Let (X, <, d) be a POCMS and F: X x X — X be a mapping
with MMP on X. Suppose there exist ¢ € CCF-¥ and a: X? x X* - R™* such that

forall x, y,u,veXwithx >uandy < v,

(l((%, ), (u,v)) (Q(F(%,Y), F(u,v)) -zl'd,(F(y,x),F(v,u))) <y (W) (4.1.8)

Also, suppose that F is (a) — admissible and continuous and X has the property (P4).
If X has the property (P1), then F has a coupled fixed point in X.

It has also been shown respectively in [157] and [158], that one can still obtain
the coupled fixed point for the mapping F, if the continuity hypothesis of the mapping
F in Theorems 4.1.2 and 4.1.3 can be replaced by the following condition:
Assumption 4.1.1 ([157, 158]). X has the property:

“If {»,} and {y,} are sequences in X such that a((xn,yn), (%n+1,yn+1)) > 1 and

a((Yn %), g1, #ng1)) = 1 for all n, and limx, = » and limy, =y, then
n—oo

n —> oo

a((%n,yn), (=, y)) > 1 and a((yn,%n), (y, %)) > 1 for all n”.

42 COUPLED COMMON FIXED POINTS FOR GENERALIZED
SYMMETRIC CONTRACTION

In this section, we introduce the notion of generalized symmetric g-Meir-Keeler
type contraction and utilize it to establish some results for mappings with MSgMP in
POMS. Our notion extends the notion of generalized symmetric Meir-Keeler

contraction due to Berinde and Pacurar [155].

79



We now introduce our notion as follows:
Definition 4.2.1. Let (X, <, d) beaPOMS and F: X x X — X, g: X = X be the two
given mappings. We say that F is a generalized symmetric g-Meir-Keeler type
contraction if, for any € > 0, there exists a (&) > 0 such that, for all %, y, u, v € X

with gx < gu and gy > gv (or g» > gu and gy < gv),
1
€ < 7 [d(gx, gu) + d(gy, gv)] <& +5(e),

implies ~[dEGoy), B, v) + d(E(, ), F(v,w)] <. (4.2.1)
Definition 4.2.1 extends the notion of generalized symmetric Meir-Keeler type

contraction (4.1.3) for a pair of mappings.
Proposition 4.2.1. Let (X, <, d) be a POMS and F: X x X — X be a given mapping.
Assume that there exists some k, 0 < k < 1 such that for all %, y, u, v in X with » 3> u,
y < v, we have

d(FGey), F(u, v)) + d(F(y, %), E(v,w)) < k[d(%,w) + d(y,v)], (4.2.2)
then, F is a generalized symmetric Meir-Keeler type contraction.
Proof. Suppose that (4.2.2) holds for some k, 0 < k < 1. Then, for all £ > 0, it is easy
to check that (4.1.3) is satisfied with 8(&) = ((1/k) — 1)e.
Lemma 4.2.1. Let (X, <, d) be a POMS and F: X X X — X, g: X = X be the two
given mappings. If F is a generalized symmetric g-Meir-Keeler type contraction, then,
forall %, y, u, v in X with g» < gu, gy > gv (or gx < gu, gy > gv) we have

d(FGoy), F(u, v)) + d(F(y, %), F(v,u)) < d(gx, gu) + d(gy, gv). (4.2.3)
Proof. W.L.O.G., suppose that gx < gu, gy > gv for %, y, u, v € X, then we have
d(gx, gu) + d(gy, gv) > 0. Since F is generalized symmetric g-Meir-Keeler type
contraction, for € = (1/2)[d(gn, gu) + d(gy, gv)], there exists a 8(¢) > 0 such that,

for all %, yo, ug, vo € X with g»g < gu, and gy, > gvo,
1
€ < Z[d(gxo, guo) + d(gyo, gvol] <& + 8(e),

implies %[Q(F(%o»}’o); F(ug, vo)) + d(F(yo, %0), F(vo, up))] < &.
Then, the result follows by considering » = »y, Y =y, U=1ug, v = vg.
We now establish our results as follows:
Theorem 4.2.1. Let (X, <, d) be a POMS with the following properties:
Q) if {#,} >»€Xandx,.; >x, forallneN,thenx, <xforalln€eN,;

@iy if{y,}-»yeXandy,,1 <y, forallneN,theny, >yforallneN,
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Let F: X X X = X and g: X = X be two mappings such that g(X) is a complete
subspace of X and F(X X X) € g(X). Also, suppose that
(@) F has the MSgMP;
(b) F is a generalized symmetric g-Meir-Keeler type contraction;
(c) X has anyone of the following property:
(P5) “there exist g, Vo in X such that g»g < F(%g, yo) and gy, > F(yo, ®o) (or, gty <
F(xo, yo) and gyo > F(yo, %0))”;
or
(P6) “there exist g, ¥o In X such that gy > F(xq, yo) and gy, < F(yo, o) (or, g% >
F(»o, yo) and gyy < F(yo, %0))”-
Then, F and g have a coupled coincidence point in X.
Proof. W.L.O.G., suppose that there exist %, yo in X such that grxg < F(xq, y,) and
gvo = F(yg, %g). Since F( X X X) € g(X), choose », y; in X such that gx; =
F(%o, ¥o), 2v1 = E(yo, %o)- Again, we can choose »,, y, in X such that gx, = F(%4, y4),
gy2 = F(y1, %1).
Continuing this process, the sequences {gx, } and {gy,} can be constructed in X such
that

gn+1= F(ns Yn), 8n+1 = E(Yn, %), foralln = 0. (4.2.4)

Using the conditions (a), (c) and mathematical induction, for all n > 0, we can obtain
grn < Sy 41 (4.2.5)

and gYn+1 < gYn- (4.2.6)
Denote o, = d(g%n, 2%n+1) + d(gYn, gYn+1)- (4.2.7)

Now, using (4.2.4), Lemma 4.2.1 and condition (b), we have
n = d(g%n, 2n41) + d(Yn, gYn+1)
= Q(F(%n—ll YH—l)J F(%nf YH)) + CL(F(YH—lf%n—l)' F(Yn’%n)

<d(gnn-1, g%n) + d(Yn-1,8¥n) = Cn-1. (4.2.8)
Therefore, {o,} is a decreasing sequence, so there exists some ¢* = 0 such that

limg, = ¢*. We claim that o* = 0. On the contrary, assume that ¢* # 0. Then there

exists some m € N such that, for any n = m, we have

€<Qn/2= % [d(gxn, g%n11) + d(gYn, 8Yn+1)] < € + 8(e), (4.2.9)
where € = 0*/2 and 6(¢) is chosen by condition (b). In particular, for n = m, we have
£ < (0m/2) =5 [d(@m, Ptms1) + A, Yme)] <E+8(e).  (4210)
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Then, using condition (b), it follows that

=~ [A(F G, Vi), FOtms1, Y1) + A(F G 2in ), F it #n 1)) < &, (4.2.12)
and hence, using (4.2.4), we get
= [A(@Hm 41, Gm+2) + A(@Yms1, BYme2)] <&, (4.2.12)
a contradiction to (4.2.9) for n = m + 1. Therefore, we have ¢* =0, so that
lime, = lim [d(gxn, g#n+1) + d(gVn, gYn+1)] = 0. (4.2.13)
We now claim that {gx,} and {gy,} are Cauchy sequences. Let € > 0 be arbitrary.
Then, by (4.2.13), there exists some k € N such that

Ao gtie1) + d(gyio gyien)] < (8. (4.2.14)

W.L.O.G., suppose k be chosen so large that 6(¢) < ¢ and consider the set

po { (2 2y): (1Y) € X7, d(g%, 2ni) + d(gy, gyi) < 2(e + 5(8)),}_ (4.2.15)
and gx > g, gy < gy
We show that
(g%, gy) € P implies that (F(x, y), E(y, %)) € P, where %, y € X. (4.2.16)

Let (g», gy) € P. Then, by triangle inequality and (4.2.14), we get

: [cl (g%k, F(x, y)) +d (gyk. E(y, %))]
= % [cl(g%k» 1) +d (g%k+1' F(x, y))] + % [cl(gyk, i) +d (ng+1r E(y, %))]
= [d(ee gor1) + Alavie 8vice)] + 3[4 (701, FGo y) ) + d (g1, B (va0) |

[ d(FCoy), B )

<dé(e) + > : (4.2.17)
+d(F(y, %), F(yi, %))
We consider the following two cases:
Case 1. (1/2)[d(g» gni) + d(gy, gyi)] < e Then, using Lemma 4.2.1 and the

Definition of ‘P, the inequality (4.2.17) becomes

d (F(%, y), F (o, .Vk))

1 1
2[4 (g0 ECo) + d (avie P ) <36) +5 + d(F(y, ), F(yi, )

<8(2) + 5 [d(@0 @) + d(gy, gyi)] < 8(e) + 2. (4.2.18)
Case 2. €< (1/2)[(1(g%, g1 ) + d(gy, gyk)] <d(e) + e
In this case, we have

e < (1/2)[d(gx gn) + d(gy, gyi)] < 8(e) + &. (4.2.19)

Then, since gx > gxy and gy < gyy, using the condition (b), we obtain
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>[4 (BGu ), BGao 1)) + (B (20, By 0) | <& (4.2.20)
Using (4.2.20) in (4.2.17), we obtain

%[d, (g%k, F(», y)) + (L(gyk, E(y, K))] <d(e) + &. (4.2.21)
Since F satisfies the MSgMP and (gx, gy) € P, it follows that

F(%, y) > g and E(y, %) < gyx. (4.2.22)
Also, since F(X x X) € g(X) we have (F(x, y), E(y, »)) € P, that is (4.2.16) holds.
Using (4.2.14), we get (241, gYk+1) € P. Then, using (4.2.16), we obtain

(g%k+1, 8Yks1) € P
= (F(%k+1jyk+1); F(yk+1»%k+1)) = (@2, 2Yxr2) € P

= (F(%k+2'yk+z)' F(Yk+2:%k+2)) = (g#x+3) 8Yir3) € P
= = (gn,, gy,) EP = . (4.2.23)
Then, for all n > k, we have (gx,, gy,) € P. This implies, for all n, m > k, that
d(gxn, gtm) + d(gyn, 2ym)
< d(@tn, gtx) + d(@ti 2t ) + d(gVn, 2vi) + AV Ym)
= [d(grn, g0) + d(gyn, gyi)] + [d(grs 2m) + (v 2Ym )]
<4(e+3(e)) < 8e.
Hence, {gx,} and {gy,} are Cauchy sequences, then, by completeness of g(X) there
exist %, y € X such that
limd(gny, 20 =0 and  limd(gyy, gy) = 0. (4.2.24)
Since {gx,} and {gy,} are monotone increasing and decreasing sequences,

respectively, then by conditions (i) and (ii), we get

o, < g and gy, > gy, (4.2.25)
for each n > 0. Then, on using (4.2.25) and Lemma 4.2.1, along with the condition (b),
we get
d(grns1, FC6Y)) + d(gyns1, F(, %)
= d(FGt, yn), FO4Y)) + d(F(yn, %0), E(y, %))
< d(gnn, gn) + d(gyn, gy)- (4.2.26)
Taking n = oo in (4.2.26) and using (4.2.24), we get
d(gn Foy) + d(gy, F) < lim[d(gan, @0 + d(eyn, gy)],  (4.2.27)

which gives us F(x, y) = gx, F(y, %) = gy. Hence, we have proved our result.
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Corollary 4.2.1. Let (X, <, d) be a POCMS with properties (i) and (ii) of
Theorem 4.2.1. Let F: X X X — X be a mapping. Also, suppose that
(d) F has the MSMP;
(e) F is generalized symmetric Meir-Keeler type contraction;
(f) X has the following property:
(P7) “there exist ®g, yo in X such that »xy < F(xg, yo) and yo = E(yg, ®o) (or, %y <
F(xo, yo) and yo > E(yo, %0))”;
or
(P8) “there exist %g, yo € X such that »y > F(xg, yo) and y, < F(yg, %g) (Or % =
F(xo, yo) and yo < E(yo, %#0))”-
Then, F has a coupled fixed point in X.
Proof. Taking g to be the identity mapping on X in Theorem 4.2.1, the result follows
immediately.
Remark 4.2.1. Corollary 4.2.1 improves Theorem 4.1.1 (Berinde and Pacurar [155]).
Coupled Common Fixed Points
Now, we establish the existence and uniqueness of the coupled common fixed
point under the hypotheses of Theorem 4.2.1 and an additional hypothesis. But first,
we need to consider the following notion:
For a poset (X, <), endow X x X with the following order <,:
“(u, v) <g (1, y) iff gu < gxand gy < gv forall (%, y), (U, v) € X X X”.  (4.2.28)
Here, we say that (u, v) and (x, y) are g-comparable if either
(U, v) g (0, y) or (xY) <, (U, v).
If g is identity on X, then we say that (u, v) and (x, y) are comparable and denote this
fact by: (u, v) < (%, y).
Theorem 4.2.2. In addition to the hypotheses of Theorem 4.2.1 suppose that “for all
non g-comparable points (%, y), (x*, y*) € X X X, there exists a point (a, b) € X X X
such that (F(a, b), F(b, a)) is comparable to both (gx, gy) and (g»*, gy*)”. Further, let
the pair (F, g) be compatible. Then, F and g have a unique coupled common fixed
point in X.
Proof. By Theorem 4.2.1 the set of coupled coincidence points of F and g is
non-empty. We first prove that, if (%, y) and (x*, y*) are coupled coincidence points
of F and g, then
an=gn’ and gy=gy". (4.2.29)
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We distinguish the following cases:

Case 1. (%, y) is g-comparable to (x*, y*) w.r.t. the ordering in X X X, where

Flt,y) =gn, E(y, 0) = gy, F(x", y*) = gn’, F(y", «*) = gy™". (4.2.30)
W.L.O.G., suppose that
g =F(n, y) <F(", y" ) =gu’, gy =F(y, %) = F(y", »") = gy". (4.2.31)

Using Lemma 4.2.1, we get
0 <d(gx, gn’) + d(gy”, gy)
= dFEC y), E(x7 y7)) + dE(Y, %), E(y7, %))
< d(gx, gn’) + d(gy”, gy), a contradiction.
Hence, we have (gx, gy) = (g»*, gy*). Therefore, (4.2.29) holds.
Case 2. (», y) is not g-comparable to (»x*, y*).
By assumption, there exists some (a, b) € X x X such that (F(a, b), F(b, a)) is
comparable to both (gx, gy) and (gx*, gy*). Then, we have
en=F(x, y) < F(a, b), F(»x*, y*) = gx* < F(a, b), (4.2.32)
and gy=F(y, %) = E(b, a), F(y", #") =gy* = E(b, a). (4.2.33)
Setting » = %, Y = y¥o, @ = ag, b = by and »* = g, y* = yp as in the proof of
Theorem 4.2.1, for n > 0, we can obtain
gtn+1 = FOtYn),  gYn+1 = F(¥n, o),
gan 41 = F(ay, by), gb, 1 =F(by, ay),
o1 T FCm,yn), g1 = F(ym, o).
(4.2.34)
Since (F(x, y), E(y, %)) = (g, gy) = (271, gy1) IS comparable with (F(a, b), F(b, a)) =
(g4, ghy), we get g < ga; and gy > gh;. Using the fact that F has the MSgMP, we
have gx < ga,, and gb,, < gy for all n > 2. Then, using Lemma 4.2.1, we get
0 <d(gx, gan+1) + d(gy, ghn+1)
= d(F(,y), F(an, b)) + d(E(y, ), F(by, ap))
<d(gn ga,) + d(gy, gby). (4.2.35)
Denote d, = d(gx, ga,) + d(gy, gb,), then, using (4.2.35), it follows that {d,} is a
decreasing sequence and hence, converges to some d > 0. We claim that d = 0. On
the contrary, assume that d > 0. Then, there exists some p € N such that for n > p, we
have

e <2 =2 [d(gx ga,) +d(gy, gby)] < & +3(2), (4.2.36)

N =

85



where, € = % and 8(¢) is chosen by condition (b) of Theorem 4.2.1.

In particular, for n = p, we have

€< %p = % [d(gn ga,) + d(gy, gb,)] < & + 3(e). (4.2.37)
Then, using the condition (b) of Theorem 4.2.1, we get

%[q (F(%, y), F(ap, bp)) +d (F(y, ®n), F(bp, ap))] <eg, (4.2.38)
that is, %[d,(g%, gap+1) + d,(gy, gbp+1)] <g, (4.2.39)
which contradicts (4.2.36) for n = p + 1. Therefore d = 0, and hence

limd,, = lim[d(gx, ga,) + d(gy, gby)] = 0. (4.2.40)
Similarly, we can obtain

lim [d(gn", gay) +d(gy", ghn)] = 0. (4.2.41)

Now, using the triangle inequality, we get
d(g», gn") + d(gy, gy*)

< d(g» ga,) + d(gay, gx*) + d(gy, gby) + d(gbn, gy*)

= [d(gx, ga,) + d(gy, gby)] + [d(gx’, gay) + d(gy™, gby)] > 0asn - co.

(4.2.42)

Therefore, we can get d(gx, gv*) = 0 and d(gy, gy*) = 0. Thus, (4.2.29) holds in both
the cases. Now, since gx = F(x, y), gy = F(y, %) and (F, g) is a compatible pair of
mappings, then using Lemma 3.2.1, which states, “The pair of compatible mappings

F: X x X = X and g: X = X commutes at their coincidence points”, we obtain that

ggn = gF(x, y) = F(gn, gy) and ggy = gE(y, %) = F(gy, gx). (4.2.43)
Denote gx = 7, gy = w. Then, using (4.2.43), we get
g7 = F(z, w) and gw = F(w, 7). (4.2.44)

Thus, (z, w) is a coupled coincidence point.
Then, using (4.2.29) with »* = z and y* = w, it follows that gz = gx and gw = gy, that
is,

g =7, EW = W. (4.2.45)
Now, using (4.2.44) and (4.2.45), we have 7 = gz = F(z, w) and w = gw = F(w, 7).
Thus, (z, w) 1s a coupled common fixed point of F and g. To show the uniqueness,
suppose (s, 1) be any coupled common fixed point of F and g. Then using (4.2.29), we

can obtain s = gs = gz =7 and | = gl = gw = w. This completes the proof.
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4.3 COUPLED COMMON FIXED POINTS FOR (a, ¥) - WEAK
CONTRACTIONS

In this section, we define the notions of (a, ¥) — weak contractions in POMS for
coupled fixed point problems. We utilize these notions to improve the recent results of
Mursaleen et al. [157] and Karapinar and Agarwal [158] (that is, Theorems 4.1.2 and
4.1.3, respectively) and generalize the works of Bhaskar and Lakshmikantham [55],
Berinde [149] and Jain et al. [159] (that is, Theorems 2.1.14, 3.1.1 and Corollary
3.2.1, respectively).

We first define the following notions:
Definition 4.3.1. Let (X, <, d) be a POMS. The mapping F: X X X — X is said to be
(a, ) — weak contraction if there exist functions a: X* x X* - R* and ¢ € CCF-¥

such that

a((,y), (W) (@(F(u.y). F(u,v) JZrCL(F(yM).F(v,u))) < (w) (4.3.1)

forall»,y,u,ve Xwithx>uandy<v(orex<uandy > v).
Definition 4.3.2. Let (X, <, d) be aPOMS and F: X x X - X, g: X —» X be two
mappings. Then, F is said to be (e, ¥) - weak contraction w.r.t. g, if there exist two

functions a: X% x X*> - R* and ¢ € CCF-¥ such that

F(xy), F(u,v)) + d(F(y,x), E(v,u) : )
a((gn gy), (gu, gv)) (d”( = )2 A(FG20 Ko )) <y (C]’(g% gu)ZQ(gy gv)), (4.3.2)

forall %, y, u, v € X with gx > gu and gy < gv (or g» < gu and gy > gv).
Definition 4.3.3. Let F: X X X - X, g: X = X and a: X? x X> - R* be mappings.
The mapping F is said to be (a) - admissible w.r.t. g if

a((g%, ay), (gu, gv)) >l=a ((F(%, y), E(y, x)), (F(u, v), F(v, u))) >1, (4.3.3)

forall %, y,u, v € X.

On taking g to be the identity mapping in Definition 4.3.3, we get the definition
of (a) - admissible mappings.

Now, we establish our results as follows:
Theorem 4.3.1. Let (X, <, d) bea POCMS and F: X X X — X, g: X — X be two
mappings such that F has the MgMP on X and g is continuous. Assume that there
exist functions a: X? x X> - R* and i € CCF-¥ such that F is (a, 1) - weak
contraction w.r.t. g. Also, suppose that

Q) Fis (a) - admissible w.r.t. g;

(i) there exist g, yo € X such that
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a((gxo, 2¥0), (F(xo,¥0), F(Yo, %0))) = 1;

(i) F(X xX) < g(X);

(iv)  (F, g) is compatible;

(v)  Fiscontinuous.
If in the hypothesis (ii), the elements %4, yo € X be chosen so that g»y < F(xg, ¥o)
and gy, = F(yo, %), then, F and g have a coupled coincidence point in X.
Proof: By hypothesis, there exist %, yo in X be such that

a((gxo, 2Y0), (F(%0,¥0).F(Y0,%0))) = 1, g% < F(xg, yo) and gy, > F(yo, %o).
Since F(X x X) < g(X) and F has MgMP in X, then as in the proof of Theorem 3.2.1,
sequences {gx, } and {gy,} can be constructed in X such that

gn41 = FOtn, Yn), g¥n+1 = F(Yn, #n), foralln = 0, (4.3.4)

and My < Znt1, EYn N &Yn41, foralln > 0. (4.3.5)
We suppose either gn, 1 = F(%,, Vo) # %, or 2¥n+1 = F(Vn, ®n) # gYn, Otherwise
the result is trivial.

Since F is (a) - admissible w.r.t. g, we have
a((gro, gy0), (gn1, gy1)) = a((gro, 2y0), (F(%0,¥0), F(¥0,%0))) = 1

= a((F(x0,¥0), F(yo, %0)), F(%1,y1), F(y1,%1))) = a((z1, gy1), (gx2, gy2)) = 1.
Then, inductively, for all n € N, we obtain

a((gn, gYn), (€4nt1, 8Ynt1)) = 1. (4.3.6)
Since F is (a, Y) — weak contraction w.r.t. g, using (4.3.6), we get

d(gxn, g¥n+1) + d(gyn, g¥n+1)
2

— dFn-1,Yyn-1), FOtn,yn)) + dE(yn—1.%n-1), Fy¥n*n))
2

(F n—1i.n— lF 1’1'1’1)+ (F n—1"n— JF nrn)
< a((g%n—lngn—l)t(g%nthn)) (dy (tn—1,¥n-1), F(tnyn) Zd: (Yn—1%n-1), F(y %))

< l,b (d;(g“n—lrg“n) ;’d(gYn—lrgYn)). (437)

Repeating the above process, we obtain

d(@tn, g4n+1) +d(gyn, E¥n+1) <" (d.,(gxol 2n1) +€1(g}’0'g3’1)) forallneN
2 - 2 ! !

For & > 0, there exists n(e) € N such that ¥, s (o) Y™ (Q(g"o’gxl) Jz“*(gyo'gy”) <e/2.

Let n, m € N be such that m > n > n(e). Then, using the triangle inequality, we have

d(gn, @tm) +d(gyn, &¥m) - ym-1 d(g, 2ut1) + d(gyi gyie1)
2 < Xk=n 2

< Z?:_nl l,[)k (Q(guo,g@q) ertl(gyo,gh)) < ann(s)lpn (d(g%o. g11) :d(gyo.gyl)) <e/2,
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which implies that d(gx,,, g#¢) + d(gy,, gym) < &. Thus, it follows that {g(x,)} and
{g(y,)} are Cauchy sequences in X. Then, by the completeness of X, there exist
%, Y € X such that

limE(Qy, yn) = limgsy g =, ImF(yy, %) = limgy, g = . (4.3.8)

Since the pair (F, g) is compatible, we have
limd(g(F(n, yn)), F(gnn, g¥n)) = 0,
limd(g(F(yn, %)), F(g¥n, g4n)) = 0.

Finally, we show that gx = F(x, y) and gy = E(y, %).

(4.3.9)

Using the triangle inequality, for all n > 0, we have
d(gn F(gnn, gyn)) < d(g, gF (%, ¥n))) + d(2E (tn, ¥0)), F (@, 2¥n)).
(4.3.10)
Letting n — oo in (4.3.10), then using the continuities of F, g and using (4.3.8), (4.3.9),
we can obtain d(gx, F(x, y)) = 0 and hence, gx = F(x, y). Similarly, gy = E(y, »).
Therefore, F and g have a coupled coincidence point in X.
Next, we give an example in support of Theorem 4.3.1.

Example 4.3.1. Consider the POCMS (X, <, d) with X = R, the natural ordering <
of the real numbers as the partial ordering < and d(x, y) = |[x —y| for all x, y € X.
Define the mapping a: X? x X? - R* by

a(Goy), (u)) =

1, ifx>u y<v,orx<u y=v,
0, otherwise.

Let : Rt > R* be defined by y(f) :gf, for f € R+,

Define F: X X X — X by F(x, y):m;—;yforx,yEXandg:Xﬁbegngfor
% € X. Then, F has the MgMP on X and the pair (F, g) is compatible. Clearly, F is
(a) — admissible w.r.t. to g. Now, we show that F is (a, 1) — weak contraction w.r.t.
g. Now, if a((%, y), (u,v)) = 0, then the result holds trivially. Suppose that

a((¢y), (u,v)) = 1. WL.O.G., assume that gx > gu and gy < gv sothatx > uandy

< v, then, we have

a((%, y), (u,V)) (@(F(x.y). F(u,v)) ;— d(E(y ), F(v,u)))

F( ), )lF( ) ) + F( ) )IF( ) ) 1 1
:(1( ny uv)z‘i( y® VU):EB(%—H)—(Y—VN+5|2(y—v)—(%—u)|

<3 ( 73l %_%|> =1 (d(g%,gu) +da(gy,gV)).
5 2 2
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Further, choosing »y = —1 and y, = 1 in X we have gxo < F(xq, yo) and gy, >
F(yo, o). Hence, all the conditions of Theorem 4.3.1 are satisfied and the point (0, 0)
is a coupled coincidence point of F and g.

Now, in order to relax the compatible hypothesis of the pair (F, g) and to replace
the continuity assumption of F and g, we require the following notion:
Definition 4.3.4. Let (X, <, d) be a POMS. Consider the function a: X* x X? —» R*.
We say that (X, <, d) is a-regular, if

(1) for each convergent sequences {x,} and {y,} in X with

a(Gtn, yn), Gtut1,Ynr1)) = 1, foralln € Nand limx, =» € X and limy, =
n—-oo n—»>oo

y € X, we have a((x,,y,), (x,y)) = 1;

(2) the pairs (%,, y,) and (», y) are comparable w.r.t. partial ordering in X X X.
Theorem 4.3.2. Let (X, <, d) be aPOMS and F: X X X = X, g: X — X be two
mappings such that F has the MgMP on X. Suppose there exist functions a: X? x X?
— R* and y € CCF-V¥ such that F is (a, ¥) — weak contraction w.r.t. g. Suppose that

(vi)  hypotheses (i), (ii), (iii) of Theorem 4.3.1 hold and the range space

(g(X), d) is complete;

(vil) (X, =,d)is a-regular.

If in the hypothesis (ii), the elements »,, yo € X be such that gxy < F(xg, yo) and gy,
= F(yo, ®9). Then, F and g have a coupled coincidence point in X.
Proof. Following the proof of Theorem 4.3.1, we can obtain that {gx, } and {gy,} are
Cauchy sequences in complete metric space (g(X), d), so there exist », y in X such
that

limd(gr, g0 =0 and  limd(eyy, gy) = 0. (4.3.12)
Also, using (4.3.6) and the hypothesis (vii), for all n € N, we get

a((gnn, gyn), (g gy)) = 1, (4.3.12)
and the pairs (gx,, gx) and (gy,, gy) are comparable. We suppose (gx,, gy,) # (gx,
gy) for all n, otherwise, the result holds trivially. Now, using the triangle inequality
and (4.3.12), we can obtain

d(F(ny), gn) + d(F(y, %), gy)
2

< dJ(F(ny)l F(Ml’l lYl’l )) + d.r(F(y: %), F(Yn :xn)) + d.;(F(%n :Yn): g%) + d.;(F(Yn r%n)r gY)

2 2
_ d(FGey), FOtn,yn)) + d(E(, %), Fn #n)) n d(gnn+1, 20 + d(gyn+1, gY)
2 2
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FOty), E(¢n yn)) + d(E(y, %), E¥n %n)
Sa((g%n,gyn)' (gx, gy)) (Cl( %y), Fotm,y )201( v, %), F(yn ))

d(grn 41, 20) +d(gyn+1,2y)

+ 2

< (d(g%n,g%) ;@(gyn,gy)) n d(@xn 11, 2%) erci(gynﬂ,gy)

< d(grn, g») ZQ(gyn,gy) + d(grn +1, g%) ;rd,(gynn,gy), (since ¥ (f) < £ for £ > 0)

then, on letting n — oo, we can obtain d(F(x, y), gx) = 0 = d(F(y, »), gy).
Hence, F(», y) = gx and F(y, ») = gy. This completes our proof.
Now, we give an example in support of Theorem 4.3.2 as follows:
Example 4.3.2. Let us consider the POCMS (X, =, d) with X = [0, 1], the natural
ordering < of the real numbers as the partial ordering < and d(x, y) = |x —y| for all
%, Y € X. Define the functions F: X X X = X and g: X = X by
xz—yz

F(x,y)={T’.'f% =Y
0, if w<y

and gx=x?, forall », y in X, respectively.

Then, F has the MgMP, (g(X), d) is complete and F(X x X) < g(X).
Let the function a: X? x X? - R* be defined by
«(Goy), ) ={;

ifx>u, y<v,orxw<u y=v,
0, otherwise.

Then, (X, <, d) is a-regular space. Let : Rt —» R* be defined by y(f) = g for
f € R*. Further, choosing %, = 0 and y, = ¢ (> 0) in X, we have gry, =0 =F(0, c) =
F(x0, o) and gyo = c2 = & = F(c, 0) = F(yy, %,). Clearly, F is (a) - admissible w.r.t.
g. Next, we show that F is (a, i) — weak contraction w.r.t. g. If a((%, y), (u,v)) =0,
the result holds trivially.

Suppose a((»,y), (u,v)) = 1. We take , y, U, v € X, such that gx > gu and gy < gv,

that is, ®? > u? and y? < v2. We consider the following cases:

Casel: x>y, u=v.

Then, a((t y), (w,v)) (d(F(x,y), F(u,v)) -Zhi(F(y,x), F(v,u)))

_ d(FCey), Fu,v) + d(E(y%), F(v,w) _ d(FGey), F(w, v)) +4d(0,0) _ 1 q(%z —y? uz—vz)
- 2 - 2 T2 4 7 4
2_y2 uZ_VZ

4 4

—uz) + (v —
4

L) ()

1
T2 4 2

2

< % {(%2 —uz);r(vz—yz)} _ % {4(g% gu) +d(gv, gy)} (d,(g% gu) +d(ev, gY))

Case2: x>y, u<v.
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Then, a((ty), (w,v)) (cl,(E(x,y), F(u,v)) erq(E(y,x), F(v,u))) _ d(FGey), Fu,v) er d(F(y%0), E(v,0)

=3Ha(=m0) +alo o)) = H{(50) + (59)) =5{(59) + (50))

< % {(xz—uz) ;r (vz—yz)} _ % {d,(g%, gu) ;—d(gv, gy)} =y (d,(g%, gu) ;—d(gv, gy))_

Case3:x<y,u=v.

Then, a((%y), (u,v)) (4(5 (y), F(u,v)) ;ci(F(y.u), F(v.U)))

_ d(FGey), F(u, v)) -;(;(F(y, %, E(vu) %{da (O, u2;v2) +d (yzrﬂ ’ O)}

(5 ¢ () ) e

4 2 4 2

< % {(%2 —u?) + (v —yz)} _ % {d(g%, gu) -ZF d(ev, gy)} —y (d.,(gx, gu) 42-d.,(gv. gy))_

Cased:n<y,u<v.

Then, a((ty), (w,v)) (CKF(W)' Fuv) ZQ(F(Y’%)' F(v’u)))

— d(FGey), F(u, v)) + d(E(y, ), E(v,u)) _ d(0,0) + d(F(y, %), E(v,w)) _ 1 (1 (yZ_KZ v2—u2)
2 2 2 4 7 4

y2 _%2 VZ _u2

4 4

_1 |—(%2—u2)—(vz—y2)
T2

_ l{l(XZ_UZ)_l_(VZ_yZ)l} _ l {(%2—u2)+(v2—y2)}
4

1
2 2 4 2 4

< % {(%2 —uz);l-(v2 —yz)} _ % {d.,(gx, gu) -erd(gv, gy)} -y (d,(g%, gu) : d(gv, gy))_

Thus, F is (a, ) — weak contraction w.r.t. g. Therefore, all the conditions of Theorem
4.3.2 are satisfied and (0, 0) is a coupled coincidence point of F and g.

In Theorems 4.3.1 and 4.3.2, considering g to be the identity mapping on X, we
have the following result:
Theorem 4.3.3. Let (X, <, d) be a POCMS and F: X X X — X be a mapping having
MMP on X. Assume that there exist functions a: X* x X?> - R* and ¢ € CCF-¥
such that F is (a, 1) — weak contraction. Also assume that

(viii) Fis (a) —admissible;

(ix)  there exist g, yo € X such that

a((%0,y0), F(o,¥0), E(yo, %0))) = 1;

x) F is continuous, or (X, <,d) is a - regular.
If in the hypothesis (ix), the elements %, yo € X be such that %y < F(xg, yo) and yo =
F(yo, %), then F has a coupled fixed point in X.
Remark 4.3.1. In Theorem 4.3.1 (and in Theorem 4.3.2, respectively), the hypothesis
(ii) can be replaced by the following hypothesis:
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(xi)  there exist %o, yo € X such that a((gyo, 2%0), F(Yo, %0)F(%0,¥0))) = 1
with gy > F(xo, yo) and gyo < F(yo, %o).
Similarly, in Theorem 4.3.3, the hypothesis (ix) can be replaced by the following
hypothesis:
(xii)  there exist %, yo € X such that a((yo,wo), (F(yO,MO),F(xo,yo))) > 1 with
%o 7 F(xo, yo) and yo < F(yo, %o).
Remark 4.3.2. Theorem 4.3.3 along with the Remark 4.3.1 improves Theorem 4.1.3
(Karapinar and Agarwal [158]). Interestingly, Theorem 4.3.3 requires only one of the
following conditions:

@) a((%0,y0), (F(%0,¥0), F(y0,%0))) = 1, or

(b) a((yo,%0), (F(y0,%0), F(%0,¥0))) = 1,
to produce the coupled fixed point of the mapping F rather than considering both the
conditions (a) and (b), both of these conditions are considered in Theorems 4.1.2 and
4.1.3.

Next, we give an example to show that Theorem 4.3.3 is more general than
Theorem 2.1.14 (Bhaskar and Lakshmikantham [55]) and Theorem 4.1.2 (Mursaleen
et al. [157]).

Example 4.3.3. Let us consider the POCMS (X, =<, d) with X = R, the natural
ordering < of the real numbers as the partial ordering < and d(x, y) = |x —y]| for all

%, y € X. Consider the mapping a: X? x X? - R defined as

«(Goy), (wv) =

Let y: Rt - R* be defined by y(f) = % f, for € R*. Also, define F: X x X - X by

1, ifx>u, y<v,orxw<u y=v,
0, otherwise.

F(x,y) = &I—;y for », y € X. Then, F is continuous, (a) — admissible and has the MMP.

We now show that F is (a, ) — weak contraction but does not satisfy any of the
conditions (2.1.14) of Theorem 2.1.14 and (4.1.7) of Theorem 4.1.2, so that,
Theorems 2.1.14 and 4.1.2 do not hold here.

Let, there exists some k € [0, 1) such that the condition (2.1.14) holds. Then, we have

d(F(x, y), F(u, v)) < 2 [dGe u) + d(y, V)],

6bx—y  6u—v

that is, m m

S%{Ix—u|+|y—v|},x2uandy$v,
from which, for y = v, we obtain

3 k

= — < = — >

5|% u|_2|% ul, ® =>u,
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which for » > u implies that k > 1, a contradiction, since k € [0, 1). Therefore, F does
not satisfy (2.1.14).

Also, the condition (4.1.7) is not satisfied. On the contrary, suppose there exists some
1 € CCF-Y such that condition (4.1.7) holds. Then, we have

a((6y), Wv)) d(FGey), Fwv)) < 9 (W)

holds for all * > uand y < v. Taking » # u, y = v and £ = |[x —u| > 0 in the last

inequality, we get %f = 3'” U<y ('M “') P G) then since y(f) < f for £ > 0, we

have %f <y G) < g, a contradiction. Therefore, F does not satisfy (4.1.7).

Next, we show that F is (@, 1) — weak contraction. If a((»,y), (u,v)) = 0, then the
result holds trivially. Suppose that a((»,y), (u,v)) = 1. W.L.O.G., assume that » > u
and y < v. Then, we get

a( (%), (u, v)) (d(F(%,y), F(u,v)) -zlr d(F(y), F (v,u))) _ d(FGey) Fu,v)) 42- d(F(y,»), F(v,u))

|6(%—U)—(y V)|+ 516(y = v) = (e —u)]

SE(W)W(M)-

Further, choosing #g = —1 and y, = 1 in X such that %, < F(xg, yo) and y, >
F(yo, %o). By Theorem 4.3.3 we obtain that F has a coupled fixed point (0, 0) but
Theorems 2.1.14 and 4.1.2 cannot be applied to F in this example.

Theorem 4.3.4. Let (X, <, d) be a POCMS and F: X X X = X, g: X = X be two
mappings such that F has MgMP on X. Assume that there exist some ¢ € CCF-¥
such that

d(FGoy), F(u,v)) + d(E(y %), E(v,u)) < (d,(g%. gu) + d(gy, gV)) (4.3.13)
2 - 2 ! o

for all %, y, u, v € X with gx > gu and gy < gv (or g < gu and gy > gv). Also,
assume the following conditions:

(xiii) (E, g) is compatible;

(xiv) Fand g both are continuous;

(xv)  FX xX) < gX);

(xvi) there exist %y, yo € X such that gxy < F(%g, yo) and gy, = F(yo, %o)-
Then, F and g have a coupled coincidence point in X.

Proof. Consider the mapping a: X2 x X? —» R* defined by
a(Goy), ) ={;

ifx>u y<v,orx<suy y>=

0, otherwise. (4.3.14)

94



then, using assumption (xvi), we get a((gxo,gy0), F(%0, yo), F(¥o,%0))) = 1.

Now, for all (%, y), (u, v) € X X X,

a((gn gy), (gugv)) =1 = gu>guand gy < gv  or gx < guand gy > gv.
Then, since F has MgMP, we obtain

F(x,y) = F(u, v) and F(y, v) < F(v,u) or EF(y, %) = F(v, u) and F(x, y) < E(u, v)

which implies a ((E(x,y), E(y)), (E(uv), E(v,w) ) 2 1.
Hence, F is (a) — admissible w.r.t. g. Further, by (4.3.13) and (4.3.14), F is (a, ¥) —
weak contraction w.r.t. g. Then, by Theorem 4.3.1 we can obtain the existence of
coupled coincidence point of F and g.
Remark 4.3.3. Result similar to Theorem 4.3.4 can be deduced from Theorem 4.3.2
for a - regular spaces.
Remark 4.3.4. (i) On taking y(f) = kf, with k € [0, 1) in Theorem 4.3.4, we can
obtain contraction (3.2.23) of Corollary 3.2.1. Hence, Theorem 4.3.4 along with
Remark 4.3.3 provides a generalization of Corollary 3.2.1 (Jain et al. [159]).
(if) On taking Y (f) = kf, where k € [0, 1) and g to be the identity mapping on X in
Theorem 4.3.4, the contraction (4.3.13) becomes (3.1.1). Hence, Theorem 4.3.4 along
with Remark 4.3.3 provides a generalization of Theorem 3.1.1 (Berinde [149]).
Coupled Common Fixed Points

Now, we establish the existence and uniqueness of the coupled common fixed
point under the hypotheses of Theorem 4.3.1 with some additional assumption.
Theorem 4.3.5. In addition to the hypotheses of Theorem 4.3.1, suppose that for
every (»,Y), (x, y*) € X x X, there exists some (u, v) € X X X such that

a((gx gy), (gu, gv)) = 1 and a((gx, gy*), (gu, gv)) = 1.
Also, assume that (gu, gv) is comparable to (g, gy) and (gx", gy*). Then, F and g
have a unique coupled common fixed point in X.
Proof. By Theorem 4.3.1, the set of coupled coincidences is non-empty. In order to
prove the result, we first show that if (x, y) and (x*, y*) are coupled coincidence
points, then
gx=gx* and gy =gy . (4.3.15)

Now, by assumption, there exists some (u, v) € X x X such that

a((gn gy), (gu,gv)) =1,  a((gx’, gy, (gu, gv)) =1, (4.3.16)
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and (gu, gv) is comparable to (gx, gy) and (g»*, gy*). Take uy, = u, vy = v and choose
Uy, v1 € X so that gu; = F(ug, vo), gvq = F(vg, Up).
Then, as in the proof of Theorem 4.3.1, using induction, we can define the sequences
{gu, } and {gv,} with gu, 1 = F(up, vi) and gvi 4 = F(vy, up).
Take %9 = %, yo =Y, g = ®", yo = y* and on the same way define the sequences
{gn,}, {gyn} and {gx;}, {gys}. Then, we can obtain that

gn+1 = F(%n, Yn), 8Yn+1 = F(Vn, %)
and g¥n+1 = F(%n, Yn), &¥n+1 = F(yn, #y) foralln = 0.
Since (gu, gv) is comparable with (gx, gy), we assume that (g, gy) > (gu, gv) =
(gug, gvp). By proof of Theorem 4.3.1, we can inductively obtain that (gx, gy) >

(gu,, gv,) forall n > 0. Since F is (a) - admissible w.r.t. g, so that using (4.3.16), we

have a((g%, ay), (gu, gv)) >l=a ((F(%, y), F(y,x)), (F(u,v), F(v, u))) > 1.

Since U =ug and v = v, we get
a((@0 gy), (gu gv) = 1= a((FG y), F(y0), (F(ug, vo), F(vo, up)) ) = 1.

Therefore, a((gx, gy), (gu, gv)) = 1 = a((gx gy), (guy, gv1)) = 1.
Then, by mathematical induction, we get

a((gn gy), (gun, gva)) = 1, (4.3.17)
for all n € N. From (4.3.16) and (4.3.17), we get

d(gxi guﬂ+1) + Q(g}’v gvn +1) - Q(F(%v}’); F(un Vn )) + C];(F(Y'%)' F(Vn !un))
2 2

) dz(F(%rY): F(uy,vn )) + Q(F(y,%), F(vp,up ))
2

< a((g%; gY): (gun: gvn)

d(gx, guy) +d(gy, gvn)
S G |

Therefore,

d(gx, gun+1) +d(gy, gvn+1) n (d(gx, gug) +d(gy, gvo)
- <y ( - ). (4.3.18)

for each n > 1. Taking n = oo in (4.3.18), we obtain

lim [d(gx, gun11) + d(gy, gva+1)] =0.
which implies

limd(gx, gun+1) = limd(gy, gvn41) = 0. (4.3.19)
Similarly, we get

limd(gx", guny1) = limd(gy”, gva+1) =0 (4.3.20)
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Using (4.3.19) and (4.3.20), we can obtain gx = gx* and gy = gy*. Hence, we have
proved (4.3.15). Now, since gn = F(x, y), gy = F(y, %) and the pair (F, g) is
compatible, then by Lemma 3.2.1, it follows that

gen = gF(x, y) = F(gx, gy) and ggy = gF(y, %) = F(gy, gx). (4.3.21)
Denote gn = 7, gy = w. Then using (4.3.21), we get
gz = F(z, w) and gw = F(w;, 7). (4.3.22)

Thus (7, w) is a coupled coincidence point.
Then by (4.3.15) with x*=z and y* = w, it follows that gz = gx and gw = gy, so that

g7=7,EW =W. (4.3.23)
Now, using (4.3.22) and (4.3.23), we obtain that

7=g7=F(z, w) and w = gw = F(w, 7).
Therefore, (7, w) is a coupled common fixed point of F and g.
For uniqueness, let (s, I) be any coupled common fixed point of F and g, then, using
(4.3.15), we have s=gs =gz =zand | = gl = gw =w.
Thus, F and g have a unique coupled common fixed point.
Theorem 4.3.6. In addition to the hypotheses of Theorem 4.3.3, assume that for every
(%, y), (2", y") € X X X there exists some (u, v) € X X X comparable to (», y) and
(»*, y*) such that

a((y), (wv)) =1 and a((,y), (uv)) = 1.

Then, F has a unique coupled fixed point in X.
Proof. The proof follows easily by taking g to be the identity mapping on X in
Theorem 4.3.5.

4.4 APPLICATION TO INTEGRAL EQUATIONS
In this section, as application of the results proved in the earlier sections of this

chapter, we give the solution of the integral equations.

Firstly, as application of the results proved in section 4.2, we discuss the

existence of solutions for the following system of integral equations:
#(6) = [1(Ki(£:5) + K2 (€9)) (£(52()) + g(5,¥(5)) ) ds + B(®),
y(© = [ (Ki(£5) + Ko (69) (F(57(9)) + g(s%(5)) ) ds + h(),
fel=1[c d].

Let ®, denote the class of functions ¢: Rt —» R* satisfying the following conditions:

(4.4.1)

Q) @ Is increasing;

97



(i) for each » = 0, there exists some k € (0, 1) such that ¢(») < (k /2)».
We consider the following assumptions:

Assumption 4.4.1. (i) K{(f, s) = 0 and K,(f, s) < O forall f, s € I,

(ii) there exist A, p > 0 and ¢ € O, such that for all %,y € R, x >y,

0<f(f,») — f(f,y) < Aop(x — ), (4.4.2)
and — po(x —y) < g(f, %) — g, y) <O0; (4.4.3)
(ii)) A + W) . super [ (K1 (65) — Ky (£5)) ds < 1. (4.4.4)

Definition 4.4.1. An element (%, §) € X x X with X = C(l, R) is called a coupled

lower and upper solution of the integral equation (4.4.1) if for all t € I, we have
2(0) < [ Ky (65) (£(52(5) + g(s,9(5)) ) ds
+ [1K(69) (1(5,99)) + g(s,R(5)) ) ds + b(D
and 90 = [ K (65 (£(5,9()) + g(5.2(5)) ) ds

+ 1K, 69) ((5,2(5)) + ¢(5,9()) ) ds + b(D).

Theorem 4.4.1. Consider the integral equation (4.4.1) with K, K, € C(I x I, R),
f, g€ C(l x R, R) and ) € C(l, R). Let the Assumption 4.4.1 is satisfied and (%, §) be
the coupled lower and upper solution of (4.4.1). Then, the integral equation (4.4.1)
has a solution.
Proof. Consider the following order relation on X = C(l, R):
forn,y € X, w=<y Iff »(f) <y(), fortel
Also, X is a complete metric space w.r.t. sup metric:

d(, y) = supee[%(6) — y(OI, =,y € C(l, R).
Further, the conditions (i) and (ii) in Corollary 4.2.1 hold.
Also, X x X = C(l, R) x C(l, R) is a poset under the following order relation:

(%, ¥), (U, v) EX X X, (%,¥) < (u, v) iff x(f) < u(f) and y(f) = v(f), for f € I.
Define the mapping F: X X X — X by

Fou )0 = [ K (€5) (£(52(9)) + g(s,y(s)) ) ds

d
+ fc K, (£ s) (f(s, y(s)) + g(s,x(s))) ds + (f), forfel
Now, we shall show that F has the MSMP.

For, ®; < %y, that is, if %4 (f) < »,(f) for £ € I, we have

F(r, Y)(O - Bz, Y)O = J Ko (65) (f(5,20(5)) + g(5,(s)) ) ds
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+ [K(69) (F(5¥(9) + g(s,3(5) ) ds + b(D
— [ (65) (F(572(5)) + g(5.¥(5)) ) ds
— J1 K€ 9) ((5,9(9)) + (s, %2(s)) ) ds — b0
= ['K (6 5) ( f(s,11(5)) — (s, % (s))) ds
+ [TKy () (g(s, #1(8)) — g(s, % (S))) ds <0,
by Assumption 4.4.1.
Therefore, F(%q, Y)(f) < F(x,, y)(f), for all f € I, so that F(x¢, y) < F(x,, y).
Similarly, if y; > y,, we can obtain that F(x, y;) < F(x, y,). Therefore, F has MSMP.

Next, we show that F satisfies (4.2.2).
For, » = u, y < v (that is, %(f) = u(f), y(f) < v(f) for all f € I), then, we have

B, y)() — B, v)(D
= [ K1 €9) (f(5%()) + g(5,9()) ) ds
+ [1K(€9) (£(5,7(9) + 25, %)) ) ds = [ K1 (€9) (f(s,u(®) + g(s, v(9)) ) ds
~ [ (€9 (J(5v() + g5 u(s) ) ds.
= [[Ki(€9) (f(5. () = £(s,u(®) + g(s,¥()) — g(sv(s)) ) ds
+ [1K,(69) (f(5,99)) = £(5¥()) + (5, %(5)) — g5, u(s)) ) ds
= 1K€ 9) [(/(5 %) = (5,u)) = (e(sv() — g(s,y())) ds
— [ 569 |(F(5v(9) = £(5,5())) = (2(s, %(5)) — g(s,u(s)) )| ds
< [ K1 (€9) Dape(s) — u(s)) + 1p(v(s) — y(5))]ds

— [T Ky (6:9) [Ap(v(5) — y(5)) + no(x(s) — u(s))]ds. (4.4.5)

Since o is an increasing function and % > u, y < v, we get
o(x(s) — u(s)) < o(supee[x(€) — u(®)) = p(d(%,u))

and  o(v(s) — y(s)) < p(supge Iv(®) = y(O) = o(d(v,y)).
Then, using (4.4.5) and the fact that K, (f, s) < 0, we can obtain

IFG4 ) (© — F)©] < [1K; (65) [rp(de W) + po(d(v, y)]ds

— fcd K, (£ s) [ho(d(v,y)) + no(d(x,u))]ds.  (4.4.6)
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Since all the quantities on the right hand side of (4.4.5) are non-negative, so (4.4.6) is

satisfied. Similarly, we can get
IE(y, 0 (6) —F(v,w)(®)] < [ K, (£5) [ho(d(v, ) + po(d(e w))]ds

_ fcd Ky (€ s) [Ao(dGe ) + po(d(v,y))|ds.  (4.4.7)
Adding (4.4.6) and (4.4.7), dividing by 2 and taking supremum w.r.t. f, then using
(4.4.4) we can obtain

d_,(F(x,y)+F(u,v)) + d_,(F(y,x) +F(v,u))
2

< (A + ) supee; fcd (K1 (6s) — Kp(€s))ds - odvy) ;‘p(d"(“‘u))

< A +oldoe)) < (4, u) + d(v,3)) < (k /2[A0xw) +d(v, )],
by using the definition of ¢. Therefore, we can get

d(ECy), F(uv)) + d(F(y%), E(v, w) < K[d(%, w) +d(v,y)],
which is the contractive condition (4.2.2). Then, by Proposition 4.2.1, F is a
generalized symmetric Meir-Keeler type contraction. Finally, suppose (%, 9) be a
coupled lower and upper solution of the integral equation (4.4.1), then we can obtain
» < F(x, 9) and 9 > F(9, #). Then applying Corollary 4.2.1, we get that F has a
coupled fixed point (», y) and therefore, the system (4.4.1) of integral equations has a

solution.

Next, as an application of the results proved in section 4.3, we discuss the

existence of solutions for the following system of integral equations:
2(®) = [[ (K1 (65) + K>(69) (1(s, () +g(s,¥()) ) ds + b(D),
y(© = [ (K (€9) + K>(69) (£(5,y(5)) + g5, %(5)) ) ds + B(®),
fel=[c,d].

Let ®, denote the class of functions ¢: Rt —» R* satisfying the following conditions:

(4.4.8)

0] @ IS increasing;
(i) for each » = 0, there exists some ¥ € CCF-Y¥ such that ¢(x) < ¥ (%/2).
We consider the following assumptions:
Assumption 4.4.2. (i) K{(f, s) = 0 and K,(, s) <O forall f, s € I,
(ii) there exist A, p>0and ¢ € ®, such that forx, y E R, v >y,
0 < f(t %) = f(f y) < hop(x =), (4.4.9)
and —uo(x —y) < g(t, ») — g, y) <0; (4.4.10)
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(i) O+ W) . supe f1(Ky (65) — Ky (65)) ds < 1. (4.4.11)
Definition 4.4.2. An element (%, §) € X x X with X = C(l, R) is called a coupled
lower and upper solution of the integral equation (4.4.8), if for all £ € I, we have
2(0 < [ K1 (69) (F(5.2(5) + ¢(5,9(s)) ) ds
+ [T K, (65) (£(5.9()) + g(s,R(5)) ) ds + (0,
and 90 = [1 K, €9 (f(5,9) + (s 7(s) ) ds

+ [K(69) (F(5,2(9) + g(5,9()) ) ds + (D).
Theorem 4.4.2. Consider the integral equation (4.4.8) with K, K, € C(I x I, R),
f, g€ C(l x R, R) and ;) € C(l, R). Let the Assumption 4.4.2 is satisfied and (%, §) be
the coupled lower and upper solution of (4.4.8). Then, the integral equation (4.4.8)
has a solution.
Proof. Consider the following order relation on X = C(I, R):
Forx,y € X, xw=<y iff %) <y(f), fortel.
Also, X is a complete metric space w.r.t. sup metric:

d(x, y) = suprer|%(€) — y(O)|, for =, y € C(l, R).
Also, X x X = C(I, R) x C(I, R) is a poset under the following order relation:

(%, ¥), (U, v) EX X X, (%, Y) < (u, v) iff x(f) < u(f) and y(f) = v(f), for f € I.
Define F: X X X — X by

FGe, V) = [ K (€5) (f(s,2(5) + g(5,¥()) ) ds

+ fcd K, (£ s) (f(s,y(s)) +g(s, x(s))) ds + B(f), forall f € I.
Now, we show that F has MMP.

For, »; <y, that is, »; (£) < x,(f) for all £ € I, we have
F(r, Y)(O - Gz, Y)O = J Ko (65) (f(5,20(8)) + g(5,y(5)) ) ds
+ [ (69) (F(5¥(9) + g(s,7(5)) ) ds + b(D
~ [UK169) (F(572() + g(5¥(5)) ) ds
— [ (65) (F(5,9(9)) + g(s,%2(s)) ) ds — ()
= [1K169) (F(55(9) = f(5,%2(5)) ) ds
+ 1169 (2(57.(9)) — g(s22(9) ) ds <0,
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by Assumption 4.4.2.

Therefore, F(x; ¥)(f) < E(x,, y)(f) for £ € |, so that F(x, Y) < F(x;, Y).

Similarly, for y; > y,, we can obtain that F(x, y;) < F(x, y;). Therefore, F satisfies
MMP.

Next, we show that F is (, 1) — weak contraction for some a: X% x X - R*.

For, » > u, y < v (that is, %(f) = u(f), y(6) < v(f) for all f € 1), then, we have
F(x, Y)(© — F(u, v)O = [ Ky (65) (£(5, %)) + g(5,9(5)) ) ds
+ 1K, (6 5) (F(5¥(9)) + g(s, %(5)) ) ds
— [ K1 (€9) (f(5,u) + g(sv(s))) ds
= [15,€9) (f(5v(9) + g(s,u())) ds.
= [ K (€5) (f(5, () = £(5,u(s) + (5, y(5)) — g(sv(5)) ) ds
+ [1K, (6 5) (f (5,y(s)) = f(s,v(s)) + g(s, %(s)) — g(s, u(S))) ds
= [7K, (£ 5) [(f(s, %(s)) — f(s, u(S))) — (g(s,V(S)) —g(s, y(S)))] ds
— [7K, (£ 9) [(f (sv(s)) = £(s, y(S))) — (g(s, w(s)) — g(s, u(S)))] ds
< [1K1(65) Pip(x(s) — u(s)) + po(v(s) — y(s))]ds

— [T Ky (6:5) [Rp(v(5) = y(5)) + no(u(s) —u(s)]ds.  (4.4.12)
Since, ¢ is an increasing function and » > uand y < v, we get
e(%(s) = u(s)) < e(supge [%(0) — u(®) = (d(x, ),
and  @(v(s) = y(s)) < o(supee Iv(® — y(O) = o(d(v, ).
Then, using (4.4.12) and the fact that K, (£, s) < 0, we can obtain
FC6y) (0 — Fu)®1 < [ K (65) [Mo(d0ow) + no(d(v,y)]ds

d
- J. Ka(€s) [Mo(d(v,y)) + no(dGew))]ds. (4.4.13)
Since all the quantities on the right hand side of (4.4.12) are non-negative, hence

(4.4.13) holds. Similarly, we can obtain
IE(y, ) () = F(v, w)(©)] < [ K4 (£5) [ho(d(v, ) + no(d(e w))]ds

— fcd K, (£ s) [hp(d(» ) + po(d(v,y))]|ds.  (4.4.14)
Adding (4.4.13) and (4.4.14), dividing by 2, and taking the supremum w.r.t. f, then
using (4.4.11), we obtain that
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d(FCey), Fu,v) +d(E(y0), F(v,w)
2

< (A + ) supge; fab (K1 (Es) —Ka(Es))ds - (p(d”(v’y»;(p(d’(”‘u))

< 24y +o(deuw)
< - :

Since o is an increasing function, we have

p(deew) < 0(dGew) +d(v,y)),  o(d(v,y)) < o(d(¢w) + d(v,y))

and hence, using the definition of ¢, we get

(P((i(\’,}’))‘zl‘(l)((l(%.u)) S(p( G ) + da(v,y)) < w(d(nu);—d(v,y)).

Therefore, we can obtain

d(F(ey), E(u,v)) + d(F(y ), E(v,u)) dxw) +d(v,y)
. < qp (L de), (4.4.15)

Define the mapping a: X* x X - R* by a((%,y), (u,v)) = 1, if the pairs (x, y) and
(u, v) are comparable w.r.t. the ordering in X x X and a((x,y), (u,v)) = 0, otherwise.

Now, using the definition of a and the MMP of F, we can get

a ((F(%, ), Fiy»), (F(wv), F(v, u))) >1.

Therefore, F is (a) — admissible. Further, using the definition of a and (4.4.15), F is
(a, Y) — weak contraction.
Also, suppose that {u,} and {v,} be the two convergent sequences in X converging to
u and v, respectively. Let u, < u,,q and v, > v, forall n>0.
Then, by the definition of &, we get a((uy,, vi), (Uy11, Var1)) = 1, forall n > 0. Now,
{u,} is an increasing sequence in X converging to u, so we have u, < u for all n.
Also, {v,} is a decreasing sequence in X converging to v, so we have v < v, for all
n. Again, using the definition of a, we get a((u,, v,,), (w,v)) = 1 for all n. Therefore,
the space (X, <, d) is a - regular.
Also, for any %, y € X and each £ € I, the max{x(f), y(f)} and min{»(f), y(f)} are in X
and are the upper and lower bounds of » and y, respectively. Therefore, for every
(%, y), (U, v) € X x X, there exists a (max{x, u}, min{y, v}) € X x X which is
comparable to (%, y) and (u, v). Then, by definition of a, we obtain

a((#y), (max{x, u}, min{y, v)})) = 1 and a((u,v), (max{x, u}, min{y,v)})) > 1.
Finally, let (%, §) be a coupled lower and upper solution of the integral equation
(4.4.8), then, we can obtain that & < F(%, §) and 9 > F(9, %). Then, using the definition
of a, we have a((% %), F®,9),F(9,%))) = 1. Now, by Theorems 4.3.3 and 4.3.6 we
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can obtain that F has a unique coupled fixed point (%, y) and therefore, the system

(4.4.8) of integral equations has a unique solution.

4.5 APPLICATION TO RESULTS OF INTEGRAL TYPE

In this section, we discuss an application of the results proved in section 4.2 in
terms of the integrals.
Theorem 4.5.1. Let (X, <, d) beaPOMS and F: X X X = X, g: X = X be the two
given mappings. Suppose there exists a function 0: Rt — R* satisfying the following
conditions:
()] 0(0) = 0 and 0(f) > 0 for any £ > 0;
(1) 8 isright continuous and increasing;
(1)~ for any € > 0, there exists 6(g) > 0 such that for all %, y, u, v € X with g» < gu

and gy > gv,

e <0 (5[d(ex, gu) + d(ey, gv)]) < + 8(e),

. . 1

implies 0 (5 [d(FGy), E(u, v)) + d(E(, %), (v, w)] ) <. (4.5.1)
Then, F is a generalized symmetric g-Meir-Keeler type contraction.

Proof. For any € > 0, it follows from (I) that 6(¢) > 0. So there exists some a > 0 such

that for all u, v, u*, v* € X with gu < gu* and gv > gv”,
0(e) < 0 (5 [d(gu, gu) + d(gv, gv)]) <6() +
implies that 6 (% [da(F(u, v), F(u*, v*)) + cL(F(v, u), F(v7, u*))]) < 0(e). (4.5.2)

By right continuity of 0, there exists some & > 0 such that 6(e + 9) < 0(¢) + a.
For any %, y, u, v € X such that g» < gu, gy > gv and

e < [d(gn gu) +d(gy, )] <& +3. (45.3)
Now, since 0 is an increasing function, we can obtain
0(c) < 0 (5 [d(gx, gu) + d(gy, gv)]) < 0(e +8) < 0(e) + a. (45.4)

Then, by (4.5.2), we get OG [d(FGt ), E(u, v)) + d(F(y, %), E(v, u))]) < 0(¢) and
hence, %[Q(F(x, ), F(u, v)) + d(F(y, »), F(v,u))] < . Therefore, it follows that F is

a generalized symmetric g-Meir-Keeler type contraction. This completes our proof.

The following result is an immediate consequence of Theorems 4.2.1 and 4.5.1:
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Corollary 45.1. Let (X, <, d) be a POMS and F: X X X = X, g: X = X be two
mappings such that F(X x X) < g(X), (g(X), d) is a complete subspace of (X, d) and
the following hypotheses hold:
(IV)  F has MSgMP;
(V)  forevery e >0, there exists d(¢) > 0 such that

e < fo(l/Z)[d,(g%,gu)+<i(gy,gV)] o(f) df < & + 5(¢),

implies fo(l/Z)[d(F(x,y),F(u,V))+¢(F(y, ®), F(v,u))] o(f) dE < e, (4.55)

for all %, y, u, v in X with gx < gu and gy > gv, where ¢: R* - R* is a locally
integrable function satisfying fos o(f) dt > 0 for all s > 0;

(VI) X has either property (P5) or (P6).

Also, suppose that hypotheses (i) and (ii) of Theorem 4.2.1 hold. Then, F and g have a
coupled coincidence point.

Remark 4.5.1. For each ¢ > 0, taking 6(¢) = (1/k — 1)&, 0 <k < 1in Corollary 4.5.1,
we can obtain the coupled coincidence points for F and g under the following
contraction (retaining all the other conditions of Corollary 4.5.1):

fo(l/Z)[d.,(g%, gu) +d(gy, gv)] o(f) df < k fo(l/Z)[d(F(%,Y),F(u, V) +d(E@y, %), F(v,w)] o(f) df,

(4.5.6)
for », y, u, v in X with gx < gu and gy > gv, where k € (0, 1) and ¢ is a locally

integrable function from R* into itself satisfying fOS o(f) dt > 0 for all s > 0.
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FRAMEWORK OF CHAPTER -V

In this chapter, we give some coupled coincidence and coupled common fixed
point results in the setup of G-metric spaces with a partial order. Various contractions
present in the literature are generalized. Application to the solution of integral

equations is also given.
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(1) Journal of Inequalities and Applications 2013, 2013:372.
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(1) One paper presented in the International Conference ICSCMM-17 held during
Dec 22-23, 2017 at KIET Group of Institutions, Ghaziabad (U.P.) and published
in the conference proceedings:

Malaya Journal of Matematik, S(1) (2018), pp. 5-13.
(Some part of this paper is utilized in this chapter and the remaining part is used
in Chapter — VI).
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CHAPTER -V
COUPLED FIXED POINTS IN G-METRIC SPACES

In this chapter, we study some coupled coincidence and coupled common fixed
point results in POGMS. This chapter consists of four sections. Section 5.1 gives a
brief introduction to coupled fixed point results in G-metric spaces. In section 5.2, we
establish some coupled coincidence and coupled common fixed point theorems for
mixed g-monotone mappings satisfying (¢, ) — contractive conditions. Section 5.3
consists of some coupled coincidence and coupled common fixed point results for
mappings having MgMP and satisfying new generalized nonlinear contractions. At
last, in section 5.4, as application of the obtained results, we discuss the solution of
integral equations.

Author’s Original Contributions In This Chapter Are:
Theorems: 5.2.1,5.2.2,5.2.3,5.2.4,5.3.1,5.3.2,5.4.1.
Corollaries: 5.2.1,5.2.2,5.2.3,5.2.4,5.2.5, 5.3.1.
Examples: 5.2.1,5.3.1, 5.3.2.

Remarks: 5.2.1, 5.3.1.

5.1 INTRODUCTION

Now-a-days, authors are taking much interest in formulating coupled fixed point
results in POGMS. The first coupled fixed point result in POGMS was formulated by
Choudhury and Maity [103]. Subsequently, many interesting coupled fixed point
results have been developed in G-metric spaces. Below are some definitions and
contractions that have been used by different authors to establish their work:
Definition 5.1.1 ([160]). Let Z denote the class of functions g: Rt x Rt - R*
satisfying ( lim  p(t,€,) >0forall (¥;, ¥,) € RT x RT with¥; + ¥, >0.

£1,62)—>(F1,2)
As in the Definition 2.1.13, denote by @,, the class of all functions ¢: R —» R* with
the properties:

(¢1) @ is continuous and non-decreasing;

(92) 9O =0iff £=0;

(p3) p(f+535) < @(f) + p(s), forall f, s € R*.
As in the Definition 2.1.14, denote by ¥, the class of all functions ¥: R* - R* with

the property: (iy) “lim Y€ >0forall ¥>0 and Jim Y(€) =0,
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Let (X, G) be a G-metric space and < be a partial order on X. Let
F: X x X - X and g: X = X be two mappings. For the mapping F with MMP,
Choudhury and Maity [103] gave the following coupled fixed point result:
Theorem 5.1.1 ([103]). Let (X, =<, G) be a POCGMS and F: X X X — X be a
continuous mapping having MMP on X. Assume that there exists a k € [0, 1) such
that

G(E(e, ¥), B(U, v), E(w, 2) < 3 [0t u, w) + Gy, v, 2], (5.1.1)
forall x > u > w and y < v < 7 where either u # w or v # z. If X has property
(P1) which states: “there exist two elements %y, yo € X With »y < F(x%g, yo) and y, >
F(yo,%0)”, then F has a coupled fixed point.

It was also shown in [103] that Theorem 5.1.1 still holds, if the continuity
hypothesis of F be replaced by Assumption 2.1.7 w.r.t. convergence and ordering in
(X, <, G), which is again given below (for convenience):

Assumption 2.1.7 ([55]). X has the property:
Q) “if a non-decreasing sequence {x,},—, € X converges to », then », < %
for all n”;
(i) “if a non-increasing sequence {y,}s—, € X converges to y, theny <y, for
all n”.

Nashine [161] obtained coupled coincidence points for a pair of commuting
mappings under the following condition:

G(F(x, y), F(u, v), F(w, 7)) < k [G(gx, gu, gw) + G(gy, gv, g2)], (5.1.2)
for %, y, u, v, w, 7 € X with gx > gu > gw and gy < gv < gz where either gu # gw
orgv # gzandk € [0, %)

On the other hand, Karapinar et. al. [162] generalized the contraction (5.1.1)
under the following condition:

G(E(x, y), E(u, v), E(w, 7)) + G(F(y, %), E(v, u), F(z, w))

<k [G(gn, gu, gw) + G(gy, gv, g9)],  (5.1.3)
forx,y, u, v, w, 7 € X with g» > gu > gw and gy < gv < gz where k € [0, 1).
Mohiuddine and Alotaibi [163], extended contraction (5.1.1) as follows:
H(GEQ, ), E(u, v), E(w, 2)))
< 26(G, u, W) + Gy, v, 7)) — p (Lt (5.1.4)
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forx,y,u, v,w,z€ Xwithx >u>wandy =< v < zwhere eitheru #worv # 7
andp e P, Y eV.

Jain and Tas [164] extended the contraction (1.3) in another way by considering
the following contraction:

(]') (G(F(%, y), E(u, v), F(w, z)) + G(F(y, %), F(v, u), F(z, W)))
2

< (G(g%, au, gw)2+ Glgy, gv, gz)) — (G(g“v gu, gw)2+ Glgy. gv, gZ)), (5.1.5)

forall %, y, 7z, u, v, w € X with gx > gu > gw and gy < gv < gz, where y € ¥ and
¢: R - R* be a continuous and non-decreasing function such that ¢(f) < f for £ > 0
and ¢(t+s) < ¢(f) + ¢p(s) for §, s € RT.

5.2 COUPLED COMMON FIXED POINTS FOR (¢, ) — CONTRACTIVE
CONDITIONS

In this section, we extend the work of Choudhury and Maity [103] (that is,
Theorem 5.1.1) for a pair of commuting mappings in POGMS.

Now, we give our results as follows:
Theorem 5.2.1. Let (X, <, G) beaPOCGMS and F: X X X = X, g: X = X be two
mappings. Suppose there exist ¢ € @; and ¢ € ¥ such that for all %, y, z, u, v, w € X

with gw < gu < grand gy < gv < gz, we have
¢ (G(FGx, ), F(u, v), F(w, ) ) < 7 (Glew, gu, gw) + Gley, gv, g0)

Glg~, gu, gw) + G(gy, gv, g0
—1/)( gx, gu ng gygvgz)_ (5.2.1)

Suppose that both F, g are continuous and commutes, F has the MgMP and F(X X X)
C g(X). Assume X has the property (P2) which states: “there exist two elements %,
yo € X such that g»g < F(x%g, yo) and gyg = F(yo, %¢)”. Then, F and g has a coupled
coincidence point in X.
Proof. By (P2), there exist xg, y, in X such that g»y < F(%g, yo) and gy = F(yo, %)
As F(X x X) € g(X) and F has MgMP, then as in proof of Theorem 3.2.1, the
sequences {gx,} and {gy,} can be constructed in X such that

g(%n+1) = F(%n, yn), €¥n+1) = F(Yn, #q), forn =0, (5.2.2)
and 2y < U1, EYn F LYn+1, fOrn = 0. (5.2.3)
Suppose either gx, 1 = F(%, yn) # 2%, or gyni1 = F(Yn, ®n) # Ya, Otherwise, the
result follows trivially.

As gx, = gn,_q and gy, < gy,_1, using (5.2.1) and (5.2.2), we obtain
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¢(G(g%n+1l 2A4n 41 g%n)) = d) (G(F(%n) Yn): F(%n' Yn): F(Mn—ll YIl—l)))

1
< E ¢(G(g%n' 4y, g%n—l) + G(ngl' €Yn, ngl—l))

G(gxn, 2%n, %0 —1)+G(gYn,2Yn,g¥n—1)
— ( = ! ) (5.2.4)

Similarly,

1
¢(G(gYn+1' gYn+1, gYn)) < E ¢(G(gYH' gYn, gYn—l) + G(g%n' 4y, g%n—l))

G(gyn,2Vn,g¥n—-1) + Glgxrn, gxn, gxn 1)
—9( ot L), (5.2.5)

Adding (5.2.4) and (5.2.5), we get
¢(G(g%n+1' g4 +1, g%n)) + ¢(G(gYH+1' gYn+1, gYn))

< d)(G(g%n' Ay, g%n—l) + G(gYn' 2¥n» gYn—l))

_ 2 lp (G(g%nvg%nvg%n—l);' G(g}’n'g}’n'g}’n—l)). (5.2.6)

Using (¢3), we get
¢(Glgrn11, Ens1r 2%n) + G(EYn11) En+1, EVn))
< ¢(G(grtn+1, @nr1, 240)) + H(C(eVnt1, i1, 8Y0)).  (5.2.7)
By (5.2.6) and (5.2.7), we obtain
¢(G(g%n+1' ZAn11, ) + G(ng1+1'ng1+1'gYn))

< d)(G(g%n' Ay, g%n—l) + G(gYn' 2¥n, ngl—l))

_ oy (G(g%n, 2, gxn_1)2+ G(g}’n:g}’n:g}’n—l)) (5.2.8)

< ¢(G (g, tn, 2tn—1) + G(&Yn, &Y, EYn-1)). (5.2.9)
Since ¢ is non-decreasing, using (5.2.9), we have
G(gnn+1, 8%tn+1, 8%n) + G(8Yn+1, 8Yn+1,8Yn)
< G(gnn, @, gtn—1) + G(gYn, &Yn, gYn-1)-

Denote {n = G(gx'n+11 241, gxn) + G(gYn+1' ZYn+1, gYH)a so that {(n} is a
decreasing sequence. Then, there exists a ¢ = 0 such that

rlll_r)?o{n = Am[G(g%n+11 2 +1, gxn) + G(gYn+1' gYn+1, gYH)] = ( (5210)
We claim that ¢ = 0. Suppose, on the contrary that ¢ > 0. Letting n - o in (5.2.8) and
using the properties of ¢ and 1y, we get
$(9) = limp(G,) < lim [¢(6,-) — 29 (22|

=@ -2 lim () <4,

n-1—-¢

a contradiction. Therefore ¢ =0, so that
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lim¢, = im [G(gn 41, gtn11, 840) + G(&Yn11,8Ynt1,8Y)] =0 (5.2.11)
We now show {gx,, } and {gy, } are Cauchy sequences.
If possible, let at least one of {gx,} and {gy,} is not a Cauchy sequence. Then there

exists some & > 0 for which we can find sub-sequences {gx, o}, {g#mao} of {g#n}

and {gynao}, {2vymao} of {gy.} with n(k) > m(k) > k such that

£ = G2 0 2% (10/%m (19) + G(&Yn (10 2Yn (0 &Ym(0) = €. (5.2.12)
Also, for m(k), choose n(k) in such a way that it is the smallest integer with n(k) >
m(k) > k and satisfies (5.2.12). Then, we have

G (g% k)—1 2 (19-1,8%m (10) + G(EYn10-1:8Yn (01,8 m k) < €. (5.2.13)
Using (5.2.12), (5.2.13) and (G5), we have
& < ¥y = G(grtn g Pnky PAm(9) + G(€Yn(0/8Yn(0,2Ym (k)
- {G(g%n(k)' 2t Sn(-1) T G(2a09-1, -1, g%m(k))}
~ (+6(2Yn00:2n 10 8Yn00-1) + G(&Yn10-1.8nm-1, LYm)
< G(2%n(0» 2n(0r E4n(9—1) + G(EYn(0Yn(k)QYnao—-1) + €. (5.2.14)
Taking k - oo in (5.2.14) and using (5.2.11), we get
lim = lim [G(grn(0,8%n10:8%mi0) + G(&Yn(0,&Yn008Yma)] =& (5:2.15)
Now, using (G5) and the inequality G(x, v, y) < 2 G(Y, », %), we get
G(gn 10 2%n(1r E%m (10) = G0 220 (1) S4n i +1)
+ G(2%n19+1) %n(10+17 Lm (k)
< 2 G(2%n(19+1) 24 19+1 Pn () T G(2%n 10+1, E4n(10+1) Em (k) +1)
+ G(2%m (109 +1, %m0 +1> LAm(K))- (5.2.16)
Similarly,
G(2Yn 10,8V (,8Ym ()
< 2 G(8Yn (1) +1,8Yn(0+1,8Yn00) + G(8Yn(0+1,8Yn 10 +1:&Ym (k) +1)
+ G(&Ym (10 +1,8Ym (0 +1,8Ym (0)- (5.2.17)
Adding (5.2.16) and (5.2.17), we get
Fi = G(8%n (0 24 (9 8 (19) + G(8Yn(10,8Yn (98 m ()
< 20000 + dmao + G(2%n 041, S0 +1, Pm(0+1)
+ G(gYn (0 +1-&Yn () +1,:&Ym ()+1)-

Since ¢ is non-decreasing and by (¢3), we get

(7)) < D(20na0 + Imao + G(€4na0+1, S0 +1, 4m(0+1)
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+ G(gYn10+1,8Yn00+1/8Ym (0 +1))
< 2¢(Sno) + #(Cma) + ¢ (G(g%n(k)ﬂ' g%n(k)+1rg”m(k)+1))

+ ¢ (G(gYn(k)+1r gYH(k)+1'gYm(k)+1))- (5.2.18)

Also, since n(k) > m(k), gxng) # Stmao and gYna < LY¥m@), then by (5.2.1) and
(5.2.2), we get

¢ (G(g%n(k.)+lr E%n ()+1 g%m(k)+1))
=9 (G (EGtn0r Ync0): EGnior yno): F(%maorymao)))

=< % ¢ (G(g%n(k): 2 E4m) + G(&Ynar &Ynos gYm(k)))

— (G(g%n(k)'g%n(k)'g%m(k))-l'o(gYn(k,)vgYn(k)’gYm(k)))
2

=2 o(n) — v (%), (5.2.19)

Similarly,

¢ (G(¥n00+1> &Yno+1, &mao+1)) <3 b (r) — ¥ (2). (5.2.20)
Using (5.2.18) — (5.2.20), we get

$(ri) < 20(%go) + #(Gmao) + B () — 200 (%),
Taking k — oo in last inequality and using (5.2.11), (5.2.15) and properties of ¢ and
Y, we get

$(e) < 26(0) + $(0) + $(e) - 2im ¥ (3) = p(e) - 2 limy (3) < p(e),

a contradiction.
Hence, both {gx,} and {gy,} are Cauchy sequences in X. Now, by completeness of

(X, G), there exist %, y in X such that {g»,} and {gy,} are G-convergent to x and vy,
respectively. Then, using Proposition 2.3.3, we get

rlli_r)lgoG(g%n,g%n,%) = rlli_r)roloG(g%n,%,%) =0, (5.2.21)

limG(gyn, gyn,y) = limG(gyn,y,y) =0. (5.2.22)
By G-continuity of g and Propositions 2.3.3 and 2.3.4, we have

1im G(ggrn,ggnn 1) = lim G(ggx, g1,gn) = 0, (5.2.23)

lim G(ggyn, 2gyn,gy) = limG(ggyn,gy,gy) = 0. (5.2.24)

Since gx, 11 = F(x,,y,) and gy, 41 = F(y,, X,), then by commutativity of F and g, we
get
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g8y 11 = gF 0y, yn) = F(@tn, gyn), (5.2.25)
g8¥n+1 = 9F(yn, Xn) = F(gyn,gt). (5.2.26)
Since, {gx,} is G-convergent to %, {gy, } is G-convergent to y and F is G-continuous,
then using Definition 2.3.7, the sequence {F(gx,, gv,)} is G-convergent to F(x, ).
Now, by uniqueness of limit and using (5.2.23), (5.2.25), we obtain that F(x, y) = gx.
Similarly, we can get F(y, ) = gy. Hence, the result is proved.
Considering g to be the identity mapping in Theorem 5.2.1, we get the following
result:
Corollary 5.2.1. Let (X, <, G) be a POCGMS and F: X X X — X be a mapping.
Suppose there exist ¢ € @, and Y € ¥ such that for all %, y, z, u, v, w € X with w <

usxandy < v =<z wehave
¢ (G(FGx, ), F(u, v), F(w, ) ) <5 (GGuw) + G(y,v.2))

G(,uw) +G(y,v,2)
— gp (SRS (5.2.27)

Suppose F has MMP and is continuous. If X has property (P1), then F has a coupled
fixed point in X.

Considering ¢ and g to be the identity mappings in Theorem 5.2.1, we get the
following result:
Corollary 5.2.2. Let (X, <, G) be a POCGMS and F: X X X — X be a mapping.
Suppose there exists ¥ € ¥ such that for all », y, z, u, v, w € X with w < u < x and

y < v <z, we have

Geuuw) +Glyvg) - (Gleuw) +Gyv.2)

G(ECx, ), F(U, v), F(w, D)) < - y (SISO (5.2.08)
Suppose F has MMP and is continuous. If X has property (P1), then F has a coupled

fixed point in X.

Considering ¢(f) = £/2 and (f) = (1 —k)t/2, 0 < k < 1 in Theorem 5.2.1, we
get the following result:
Corollary 5.2.3. Let (X, <, G) be aPOCGMS and F: X X X — X, g: X = X be two
mappings. Suppose there exists some k € [0, 1) such that for all %, y, 7z, u, v, w € X
with gw < gu < gr and gy < gv < gz, we have

G(FGx ), F(U, v), B, 2)) <5 [G(gn, gu, gw) + Gy, gv, g0l (5.229)

Suppose F has MgMP, F(X x X) < g(X) and both F, g are continuous and commutes.
If X has property (P2), then F and g have a coupled coincidence point in X.

113



Remark 5.2.1. Corollary 5.2.3 extends Theorem 5.1.1 (Choudhury and Maity [103])
for a pair of commuting mappings. Taking g to be the identity mapping in Corollary
5.2.3, we obtain Theorem 5.1.1.
Next, we replace the continuity assumption of F by considering Assumption 2.1.7

w.r.t. convergence and ordering in POGMS (X, <, G).
Theorem 5.2.2. Let (X, <, G) be aPOGMS and F: X X X — X, g: X = X be two
mappings. Suppose there exist ¢ € @; and Y € ¥ such that (5.2.1) holds for all », vy,
7 U, v, w € X with gw < gu < gr and gy < gv < gz. Let X assumes Assumption
2.1.7 w.r.t. convergence and ordering in (X, <, G). Also, let F has MgMP, F(X X X)
C g(X) and g(X) be G-complete. If X has property (P2), then F and g have a coupled
coincidence point in X.
Proof. As in proof of Theorem 5.2.1, we can form the G-Cauchy sequences {g», } and
{gy,} in the G-complete G-metric space g(X), so there exist some %, y € X such that
en, — grand gy, — gy as n — oo, that is

limG(gry, gn, gn) = lim G(gxy, g, g2) = 0, (5.2.30)

limG(gyn, gy, gy) = limG(gyn, gyn, gy) = 0. (5.2.31)
As {gx,} is a non-decreasing sequence and {gy,} iS a non-increasing sequence, by

Assumption 2.1.7 we get gx, < gx and gy < gy, for all n > 0. Using (5.2.1), we

obtain
$(GFCLY), tns1, @011)) = b (G(FGLY), B, 1), O, ¥)))

1
< > $(Glgn, gtn, 2) + G(gY, gYn, gYn))

G( 4 n’ n)+G( ’ n» n)
_lp( g%, gHn, gX - gy, 8Yn, &Y ) (5.2.32)

Taking n = oo in (5.2.32) and using (5.2.30), (5.2.31) and the properties of ¢ and v,

we get

. 1 .
¢ (nhgan(F (4 y), grnt1, g%m)) <3¢ (i‘i?o [G (g%, 2, 20) + G(gy, 2, 8¥a)])

— limy (G(gx, gxn,gxn);G(gy. gyn,gyn)) =0,

n-—oo

which implies

rlli_r)?oG(F(% ), €4n+1) St r1) = 0. (5.2.33)
Also, using (G5), we get

G(E(%y), gx, gn) < GE(Y), g%nt1, @nt1) + G(@xn 41, 8%, g1).

114



Taking n — oo in last inequality and using (5.2.30) and (5.2.33), we get
G(F(», y), gn, gn) =0, so that F(x, y) = g».

Similarly, we have F(y, ») = gy. This completes the proof.

Considering ¢ and g to be the identity mappings in Theorem 5.2.2, we get the
following result:
Corollary 5.2.4. Let (X, <, G) be a POCGMS and F: X x X — X be a mapping
having MMP. Suppose there exists ¥ € ¥ such that (5.2.28) holds for all %, y, z, u, v,
wE X withwsusx»xandy < v < z Let X assumes Assumption 2.1.7 w.r.t.
convergence and ordering in (X, <, G). If X has property (P1), then F has a coupled
fixed point in X.

Considering ¢(f) = £/2 and (f) = (1 —k)t/2, 0 < k < 1 in Theorem 5.2.2, we
get the following result:
Corollary 5.2.5. Let (X, <, G) be a POGMS, F: X X X = X, g: X = X be two
mappings and and there exists some k € [0, 1) such that (5.2.29) holds for all %, y, z,
u, v, w € X with gw < gu < gx and gy < gv < gz. Let X assumes Assumption 2.1.7
w.r.t. convergence and ordering in (X, <, G). Further, let F has MgMP, F(X X X) <
2(X) and g(X) be G-complete. If X has property (P2), then F and g have a coupled
coincidence point in X.

We now give an example in support of Theorem 5.2.2 as follows:
Example 5.2.1. Consider the POGMS (X, <, G), where X = [0, 1], the natural
ordering < of the real numbers as the partial ordering < and G: X x X x X —» R* be
defined by G(», y, 2) = [»—y| + |y —z| + |z —=«| for all », y, z € X. Clearly, X
assumes Assumption 2.1.7.

Define the mappings F: X X X — X and g: X — X respectively by

x—y

E%, = 7'
Ge) {0 , if x<y,

f = ) n
trey and gx=5forallx,ye)§.

Then, F has MgMP, g(X) is G-complete and F(X X X) € g(X).

Also, define ¢, Y: R —» R* respectively by ¢(f) = 2 Y(f) = 2 for f € RY.

Further, %y =0 and y, = ¢ (> 0) are two points in X such that gy = 0 = F(x,, y,) and
2o =5 # 5, = F(vo, %0)-

Now, we verify inequality (5.2.1) for Theorem 5.2.2.

For, taking », y, 7, u, v, w € X such that gx > gu > gw and gy < gv < gz, so that

®=>U=>wandy < v <z we discuss the following cases:
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Casel:x=>y,u=v,w=7

Then ¢ (G(F(%, y), E(u, v), F(w, Z))) =¢ (G (%2_4y ’ uz;v'wz; Z))

_1fle-y)—@- , [@-v)-w-9| , [w-2) - (x—y)l
_2{ 24 + 24 + 24 }
1

=l —w)-F-v+[u-w) - (-9l +|w=-2) - -1}

S0+ =P+ @-W) + =)+ = W) + =)

_L ®—Uu Uu—w  ®—w v -y 77—V Z_Y)}
_24{(2+ 2 T 2)+(2+2+2

1 1
=5, 1G(en gu, gw) + G(gy, gv, g0} < S {G(egx, gu, gw) + G(gy, gv, g0}
1 G(gn, gu, G(gy, gv,
=2 ¢(G(gx, gu, gw) + Glgy, gv, go)) — p(CEnEns e o e,
Case2:x>y,u=>v,w<z.
Then  (G(FGe ), F(u, V), E(w, 9)) = 6 (6 (52,5, 0))

_1(le=y)—@-=-w)| , [w=v)| | [(x—y)l
_2{ 24 T 24 T 24 }

= {x-w - G-I+ 1=+ &=l
Sé{(%—U)+(v—y)+(u—v)+(x—y)}

=L (=) + (V=) + @ W W — V) (— W+ w — )

= (G- W+ (=) + W= w) + (W= V) + (= W) + (W)}
Sﬁ{(%—uﬂ(v—y)+(u—w)+(z_v)+(%_w)+(z_y)}

_1 {(x—u+u—w+%—w)+(V—Y+Z—V+Z_Y)}

1 1
! G(gx, gu, gw) + G(gy, gv, g7)
=3 #(G(gn, gu, gw) + G(gy, gv, 22)) — Y (== gwe - 2.8V, 80y

Case3:x >y, u<v,w<gz.

Then ¢ (G(F(x,y), F(u, v), E(w, 2))) = ¢ (G (2.0, 0))

_ 1=yl | 1=y
_2{ 24 + 24 }

=)

=£{(x—u+u—y)+(%—w+w—y)}

= {Gt—w + (u—y) + Ge—w) + (W= y)}
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< -WHE—P+E-W + (W —utu-y)

= {— W+ (v —y) + = w) + (w—w) + (u—y))
=W+ VY + W)+ (W) + W-z+7-y)}
< {Gt-W+ V- +E-wW+@-w) + -2+ -y}

1 ®—u Uu—w , ®*—WwW v—-y —V Z_Y)}
< —
_24{( 2 T 2 T 2 )+( 2 T 2 T 2

1 1
=5, 1G(en gu, gw) + G(gy, gv, g0} < S {G(en, gu, gw) + G(gy, gv, g0}

1 +G(gy, gv, gz))

G(gx, gu, gw)
=3 ?(G(gn, gu, gw) + G(gy, gv, 27)) — P (e :

Cased:x<y,u<v,w<gz.
Then, ¢ (G(F(x,y),F(u, v), F(w, z))) = ¢(0) = 0 so that the inequality (5.2.1) is

obvious for Theorem 5.2.2.
Similarly, the cases like x <y, u>v,w >z, % <Yy, u<v, w = 7 and others follow
immediately. Therefore, all the conditions of Theorem 5.2.2 hold and hence, (0, 0) is
the coupled coincidence point of F and g.
Coupled Common Fixed Points

We now establish the existence and uniqueness of common coupled fixed points.
For, we require Assumption 3.2.1, again given below (for convenience):
Assumption 3.2.1 ([59]). “For every (%, y), (", y*) € X X X, there exists a
(u, v) € X X X such that (F(u, v), F(v, u)) is comparable to (F(», y), F(y, x)) and
F, y), E(y™, =)™
Theorem 5.2.3. In addition to the hypotheses of Theorem 5.2.1, if Assumption 3.2.1
holds, then, F and g have a unique coupled common fixed point in X.
Proof. By Theorem 5.2.1, the set of coupled coincidences is non-empty. To prove the
result, we first show that if (%, y) and (»*, y*) are coupled coincidence points of F and
g, then

gn=gx" and gy = gy”*. (5.2.34)

By Assumption 3.2.1, there is some (u, v) € X X X such that (F(u, v), E(v, u)) is
comparable to (F(x, y), E(y, »)) and (E(x", y*), F(y", »*)). Takingug =u and vy = v
and choosing uy, v € X so that gu; = F(ug, vy), gvq = F(vy, up). Now, as in proof of
Theorem 5.2.1, we inductively define the sequences {gu, } and {gv, } such that gu, 4
= F(u,, vp) and gv, 1 = F(v,, u,). Further, taking %o =%, yg =Y, ®o = %", yo = V"
and on the same way, we define the sequences {gx,}, {gy.}, {gxn} and {gy,}. Then,
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it is easy to obtain that gx, 1 = (%, Yn), gVn+1 = F(Vn, ) and gny 41 = Faq, yn),
gYn+1 = F(yn, #y) for all n = 0. Since (F(x, y), F(y, %)) = (gn1, gy1) = (g%, gy) and
(E(u, v), E(v, u)) = (guy, gv1) are comparable, then gr < gu; and gy > gv;. It is easy
to obtain that (g, gy) and (gu,, gv,) are comparable, that is gx < gu, and gy > gv,
forall n > 1. Then by (5.2.1), we get

$(G(guns1, 8Un 41, 20) = ¢ (G(F(Un, V), (U, vi), E,3)) )
< %d)(G(gun.gun, 29 + Glgvn, gV, &)

G( no. n» )+G( Vn; Vn; )
_d,( e ge n) - Oy gy) (5.2.35)

1
and  ¢(G(gvai1, gVnt1, 8Y)) <5 0(G(eva, gva, g9) + Glguy, guy, 21))

G( Vn, n» )+G( n n» )
—1/}( 8Vn, 8Vn, &Y . 8Un,gUn, g ) (5.2.36)

Adding (5.2.35) and (5.2.36), we have
¢(G(gun+1' gun+1, g%)) + ¢(G(gvn+1r gVn+1) gY))

G( n» n» )+G( n» n» )
< ¢(G(guy, guy, gn) + G(gvy, gvi, gY)) — 2¢( B, B, £) + 08, £ &Y )

(5.2.37)
Also, by (¢3) we have
¢(Glgunt1, gUnt1, 20) + G(gVn11, Vi1, 8Y))
< ¢(G(gUn+1, 8Un41, 20)) + O(G(EVis1, 8Vni1, 8Y)). (5.2.38)
By (5.2.37) and (5.2.38), we get
¢(Glgunt1, gUnt1, 2%) + G(gVn41, Vi1, 8Y))

G n- n, G nr n»
< ¢(G(gun, gy, 20) + Glgv, gvn g9)) — 23 ( (et 800 ) O, 2 gy))
(5.2.39)
< ¢(G(gun, gun, g0) + Glgvy, gvi, gy)). (5.2.40)

As ¢ is non-decreasing function, by (5.2.40), we have

G(gUn+1, gUn+1, 8%) + G(gVn11, Vi1, Y) < G(guy, guy, g1) + G(gvn, gVi, 8Y)-
Denote 6, = G(gu,,gu,,g») + G(gv,.gv,.gy), then {6,,} is a non-increasing sequence,

so there exists some 6 > 0 such that lim6,, = 6. We claim 6 = 0. On the contrary, let
6 > 0. Now, taking n — oo in (5.2.39) and using the continuity of ¢ and the
property (i, ), we get ¢(6) < ¢(6) — 2 lim 1) (67“) < ¢(6), a contradiction. Thus, 6

=0,sothat lim6, = lim[G(gu,, gu,, g») + G(gv,, gv,, gy)] =0.
n—-oo n—oo
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Therefore, we get gu, — gx, gv,, — gy. Similarly, we can obtain that gu, — gx*,
gv, — gy*. Now, by uniqueness of limit, we get gx = gx* and gy = gy”*. Therefore,
we have proved (5.2.34). Since gn = F(», y), gy = F(y, ») and the pair (F, g) is

commuting, we have

ggn = gF(x, y) = F(gx, gy) and ggy = gF(y, %) = F(gy, gx). (5.2.41)
Denote gn = 7, gy = w. Then by (5.2.41), we get
gz = ¥(z, w) and gw = F(w;, 2). (5.2.42)

Therefore, (z, w) is a coupled coincidence point of F and g. Now, using (5.2.34) for
®" =zand y* =w, we have gz = gx and gw = gy, that is

g7 =7, W =W. (5.2.43)
Now, using (5.2.42) and (5.2.43), we have 7 = gz = F(z, w) and w = gw = F(w, 7), SO
that (z, w) is a coupled common fixed point of F and g. Now, for uniqueness, suppose
(s, r) be a coupled common fixed point of F and g. Then by (5.2.34), we get s = gs =
gz=zandr=gr=gw=w.
Theorem 5.2.4. In addition to the hypotheses of Theorem 5.2.2 suppose
Assumption 3.2.1 also holds. If F and g commutes, then they have a unique coupled
common fixed point in X.

Proof. Following the steps of Theorem 5.2.3, the proof follows immediately.

5.3 COUPLED COMMON FIXED POINTS UNDER NEW NONLINEAR
CONTRACTION

In this section, we generalize the contractions involved in the works of Karapinar
et al. [162], Jain and Tas [164] (that is, contractions (5.1.3) and (5.1.5), respectively)
and weaken the contractions involved in results of Choudhury and Maity [103],
Nashine [161] and Mohiuddine and Alotaibi [163] (that is, contractions (5.1.1),
(5.1.2) and (5.1.4), respectively).
Theorem 5.3.1. Let (X, <, G) be a POCGMS and F: X x X — X, g: X = X be the
mappings. Suppose there exist some g € = and an ADF r such that for all I, m, n, u,

v, w € X with gw < gu < gl and gm < gv < gn, we have

- (G(F(l,m), F(u,v), F(w,n)) + G(F(m,D), F(v,u), F(n, w)))
2

< (G(gl,gu, aw) -|2—G(gm,gv, gn)) _ go(G(gl, gu, gW‘), G(gm’ gv, gn)) (531)

Assume F(X X X) < g(X), F has MgMP and F, g are both continuous and commutes.
If X has the property (P2), then, F and g have a coupled coincidence point in X.
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Proof. By (P2), there exist %g, yo € X with gxg < F(xg, yo) and gyy = F(yq, ®g). AS
F(X x X) € g(X) and F has MgMP, then as in proof of Theorem 3.2.1, we construct
sequences {gx, } and {gy,} in X such that

en, = F(%,_1, Y1) and gy, = F(y,_1, ®,—1), forall n > 0, (5.3.2)
and gy S Zry4p and gy, Z gYna- (5.3.3)
We suppose that (gx,41, 2Vn+1) # (2%, gyn) for all n € N, otherwise, we obtain the
result directly.
As gn, = gx,_1 and gy, < gy,_1, then using (5.3.1) and (5.3.2), we get

- (G(g%nﬂ,g%nﬂ.gxn) +G(gyn+1, gyn+1,gyn))
2

=1 (G(F(%n ) En,yn), F(”n—l:Yn—l)) + G(F(YHJ%n ), E(yn 1n), F(Yn—lr%n—l)))
2

< (G(g%n,gxn,g%n—ﬂ -ZF G(gyn,gyn,gyn—ﬂ)

- @(G(g%ni g4y, g%n—l)i G(gYn' ZYn, gYn—l))' (534)
Since p(t;, £,) =0, for all (£, £,) € (RM)?, we have

- (G(g%nﬂ,g%nﬂ.g%n) +G(gyn+1, gyn+1,gyn)) < (G(g%n,gxn,g%n—ﬂ + G(gyn,gyn,gyn—ﬂ)
2 - 2 !

(5.3.5)
which implies on using the monotone property of m that {,} is a non-increasing
sequence, where ¢, = G(gxn 11, 24n+1, 8tn) + G(gYn+1, EYn+1,€Yn) and hence, there

exists some ¢ = 0 such that
lim¢, = lim[G(gun 41, @41, @) + G(Yn 41, Vv Y0l = (5.3.6)
We claim that ¢ = 0. On the contrary, suppose that ¢ > 0.

USing (536)’ the sequences {G(g%n—i-l'g%n—i-l:g%n)} and {G(gyn+1ngH+1’gYH)}
have convergent sub-sequences that we also denote by {G(gx,+1, 2¢n+1, 2¢,)} and

{G(gYH+1J gYn+1 gYH)}’ respECtiVEIy' Let rlli_l;?oG(g%n—kl' g1n+1) g%n) = (1 and
rlli_r)?oG(gYH+1l gYn+1 gYH) = {2! then {1 + {2 = { > 0.

On letting n — oo in (5.2.4), then using (5.3.6), the continuity of  and the property of

£, we get
n (%) sm (%) — lim (G (gy, g4, gn-1), G(gYn, &Y, 8Yn-1)) <0 (g)
a contradiction. Therefore ¢ =0, so that
rlli_r)?oG(g%nH; 2tnt1, E1n) =0, (5.3.7)

and rlli_r)lgoG(gYH+1'gYH+1rgYn) =0. (538)
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We now show that {gx,} and {gy,} are Cauchy sequences. On the contrary, let at
least one of {gx,} and {gy,} is not a Cauchy sequence. So, there exists an € > 0 and
sequences {m(j)} and {k(j)} of natural numbers such that for all natural numbers j,
k(j) > m(j) > j, we have

q; = Gy, 2y Etm@)) + G(&YkG)r &) &Ym()) = € (5.3.9)
and

G(grti)-1, -1, Ptm) + G(&Vi-1, &k ()-1, Ym()) < &- (5.3.10)

Using (G5), we get
GGy, £7G) E4m ()

< 6@ty gy 2x()-1) + G(2%()-1, Sk()-1) P () (5.3.11)
and
G(gyxg) 2YiGy &m)

< G(gykg) 2YxG) &Vki-1) + G(&Vk(-1, Yk()-1, EYm())- (5.3.12)
Using (5.3.9) — (5.3.12), we get

& < q = G(g, i) 8m@)) + G(EYk) 8Yk()» EYm))
< G(2n() 2y 8(y-1) + G(gc)-1, Sc)-1) Sim ()
+ G(gy() 2YiG) 8k()-1) + G(&Yk()-1, EYi)-1, 8Ym()-
< 6@y, 2 2 ()-1) + G(EYk()r 8 8Yk()-1) * &
Taking j — oo in the last inequality and using (5.3.7) and (5.3.8), we have
jllTO[G(g%koy 2%y 24 @) + G(&YG) &Yy &Ymi))] = lim a; = & (5.3.13)
Since G(q, a, b) < 2 G(a, b, b) for any a, b € X, using properties (G2) — (G4), we
obtain that
(g, g7iG) St ()
< G(gtg), g 2u(y+1) + G(@()+1, S+, P ()
< 2 G(grtiy+1, @u(y+1 2) + G(@ty+1, Gc+1, Etmy+1)
+ G(g%m(]-)+1, :m ()+1, gxm(]-)). (5.3.14)
Similarly,
G(gyxg) 2YiG)y m)
< 2 G(gyx()+1, 8Yk()+1 EYk())

+ G(ng(j)+1'ng(j)+1'gYm(j)+1) + G(gYm(j)+1'gYm(j)+1,gYm(j))- (5.3.15)
Using (5.3.14) and (5.3.15), we get
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q; = G(gr), 24G) m@)) + G(Yi() &Yy EYm())
< ch(j) + Cm(j) + G(g%k(j)ﬂ» Ak (H+1 g%m(j)+1) + G(ng(j)—H'ng(j)+1rgYm(j)+1)-

(5.3.16)
By the properties of mr, we get

qj §m(j) G(g%k(j)+1rg%k(j)+1rg%m(j)+1)+G(ng(j)+1’ng(j)+1'gYm(j)+1)
T[(;)ST[(C}((J-)-I- > + > .

(5.3.17)
Taking j —» oo in (5.3.17) and using (5.3.7), (5.3.8), (5.3.13) and the continuity of
we get

- G) < lim 7 (G(g”k(j)+1rg”k(j)+1fg“m (j)+1)2+ Gy K ()+1-8Yk () +1,8Ym (j)+1)>. (5.3.18)
Since k(j) > m(j), 2tk # 22m@) and gykg) < gYm(), bY (5.3.1), we have

T (G(g“k(j)+1' g%k (j)+1, %m (j)+l) + G(ng(j)+ngYk(j)+l:gYm (j)+1)>
2

_ <G(F(%k(j)»Yk(j))J Fa )y ) FOtm (Y m ) + S(FGy i) @2 () Fm )2m (i))))
2

< <G(g%k(j)' 21K () Sm (j)) + G(ng(i)'ng(i)'gYm(i))>
- 2

- (G(g%k(j): 2% Em))» G(&Yx()r EYKG), gym(j)))

=7(2) - 9 (6(2uq D4i) Sma), O(&Vk6) iy mp)) (5.3.19)
Using (5.3.18) and (5.3.19), we get
( ) < lim [ﬂ ( ) - 80(G(g%k(j)'g%k(j)'g%mﬁ))' G(ng(i)'ng(i)'gYm(i)))]'

(5.3.20)
By (5.3.13), the sequences {G(gxiq), 24 2%mi)) ) 1G(2Ykq) 2YkG) 2Ym(y)} have
sub-sequences converging to say, &; and &, respectively and &; + &, = € > 0. Now,

passing to the sub-sequences, we suppose that
}Ln; G(gnk()» &Gy $tm () = £1 and }Lfg G (&G k() &Ym() = &2-
Using (5.3.13) and the properties of ,  in (5.3.20), we get
& & .
m (g) = (5) — limgp (G(g%ko)» () S (), G(ng(j)'ng(j)'gym(j)))

<t ( ) a contradiction.
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Hence, {gx,} and {gy,} are Cauchy sequences in the complete G-metric space
(X, G), so there exist some %, y € X for which {gx,} is G-convergent to » and {gy, }

is G-convergent to y, then by Proposition 2.3.3, we obtain

limG(gx,, gx,, ») = limG(gx,, #, %) =0 (5.3.21)
n—-oo n—o0
and limG(gyn, gyn, y) = limG(gyn,y,y) = 0. (5.3.22)
By continuity of g and Proposition 2.3.4, we have
lim G(ggn,,ggn,, gn) = limG(ggx,, gx, gx) =0, (5.3.23)
n-—o n—o0
lim G(ggyn,ggyn, gy) = limG(ggyn, gy, gy) =0. (5.3.24)
As gx, 11 = F(t, V), gVn+1 = E(yn, %) and mappings F and g commutes, we get
22 +1 = gF(%ni Yn) = F(g%n' gYn)’ (5325)
8e¥n+1 = gF(Yn, %) = F(gyn, gtn). (5.3.26)

We next claim that F(x, y) = gx and E(y, ») = gy.
As F is continuous and {gx,}, {gy.} are G-convergent to %, y respectively, then,
using Definition 2.3.7, we get that {F(g»,, gy,)} is G-convergent to F(x, y). Hence,
using (5.3.25), {ggn,+1} is G-convergent to F(x, y). Now, using (5.2.23) and the
uniqueness of limit, we get F(x, y) = gx. Similarly, F(y, ») = gy. Therefore, F and g
have a coupled coincidence point in X.

The following example illustrates that contraction (5.3.1) is more general than
contraction (5.1.2) (due to Nashine [161]).
Example 5.3.1. Consider the POCGMS (X, <, G) where X = R, the natural ordering
< of the real numbers as the partial ordering < and G: X x X x X - R* be defined
by G(I, m,n)=[l—m|+ |m—n| + |n—1| forall I, m, n € X. Define the mappings F:
X x X - X and g: X — X respectively by F(x, y) = % and gx = g for x, y € X.
Clearly, F and g both are continuous and commutes, F has MgMP and F(X x X) <
2(X). Further, we claim that (5.3.1) holds but (5.1.2) does not hold.

Suppose that there exists some k € [0, %) such that (5.1.2) holds. Then, we shall have

u—2v w—2n

12 12

12 12

(|l—2m u—2v
12 12

+

w—2n [—2m )

N N NN
zg[(ll—u|+|u—w|+|W—l|)+(|m—V|+|V—n|+|n_m|)]
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foralll>u>wandm<v<nTakel=u=w,v#nm=v, m=nin last
inequality and p = |n — v| + |n — m|, we get % < kp, p >0, which implies % <k a
contradiction since k € [0, %). Therefore, (5.1.2) does not hold.

Now, we show that (5.3.1) holds.

Forl >u>=wandm< v <n, we have

[-2m u—2v

u—2v w—2n

1 1
_—Iu—W|+—|v—n|,

1 1
< — |l — - —
<5 |l —ul +6|m v,

12 12 12 12
-2 -2 1 1 =21 -2

= b I e L e R P T
12 12 12 6 12 12

v—2u n— 2w|
12 -1

n—Zw m— Zl|
-1

1
Livonl+tlu-wl, [

2|n—m|+ |W—l|.

Adding these six inequalities, we obtain (5.3.1) for n(f) = —, P, t) = (fl—J;fZ)

Further, take »y = — 2, yo, = 2 are the elements of X so that gxg < F(xg, Vo), 20 >
F(yo, #o). Now, all the conditions of Theorem 5.3.1 holds. By Theorem 5.3.1, F and g
have a coupled coincidence point (0, 0) in X.

Considering g to be the identity mapping in Theorem 5.3.1, we get the following
result:
Corollary 5.3.1. Let (X, <, G) be a POCGMS and F: X x X — X be a continuous
mapping with MMP. Suppose there exist some g € = and an ADF r such that for all

I,m,n,u, v, w € X with gw < gu < gl and gm < gv < gn, we have

- (G(F(l,m), F(u,v), F(w,n)) + G(F(m,l), F(v,u), F(n,w)))
2

< (G(l,u,w) -IZ-G(m,V,n)) — (Gl u,w),G(m, v,n)). (5.3.27)

If X has the property (P1), then, F has a coupled fixed point in X.
Remark 5.3.1. (i) In Theorem 5.3.1, taking g (;,£,) = ¢ (f1+f2) for £, £, € Rt with

Y: RT > RT staisfying “gim Y(€) > 0 for each £ > 0, the contraction (5.3.1) becomes
—>F

- (G(F(l,m), F(u,v), F(W,n)) + G(F(m,l), F(v,u), F(n,w)))
2

< (G(gl,gu. gw) ; Glgm, gv, gn)) — (G@, gu, gw) +2 Clgm, gv, g“)), (5.3.28)

which is analogous to contraction (5.1.5) (due to Jain and Tas [164]).

(i) In Theorem 5.3.1, taking m to be the identity mapping and g(£;,t,)
= %‘ (€, + €,) forall £, €, € Rt with k € [0, 1), the contraction (5.3.1) becomes

G(F(l, m), F(u, v), F(w, n)) + G(F(m, D), E(v,u), F(n, w))
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< Kk[G(gl, gu, gw) + G(gm, gv, gn)], (5.3.29)
which is contraction (5.1.3) (due to Karapinar et al. [162]).

The next example furnishes the fact that contraction (5.3.27) is more general than
the contractions (5.1.1) (due to Choudhury and Maity [103]) and (5.1.4) (due to
Mohiuddine and Alotaibi [163]).

Example 5.3.2. Consider the POCGMS (X, =, G) with X = R, the natural ordering <
of the real numbers as the partial ordering < and G: X x X x X — R™ be defined by
G(l,mn)=|l—-m|+|m—-n|+|n—1I|foralll,m,n€X.

Define the mapping F: X X X = X by F(», y) = % forx,y € X.

Then, F is continuous and has MMP. We claim that here (5.3.27) holds but (5.1.1) and
(5.1.4) do not hold.

Let there exists some k € [0, 1) such that (5.1.1) holds, then, we have

[—4m u—4v

8 8

w—4n l1—4m
8

u—4v w—4n

8 8

l5‘{(|l—ul tlu—wl+|w—I)+(m-v|+|v—-n[+|n—-m]}
forl>u>wandm < v <n.Takel=u=w, v #n,m=v, m=nin last inequality
and p = In—v| + [In—m|, we get p < kp, p > 0, which implies 1 < k, a
contradiction, since k € [0, 1). Therefore, (5.1.1) does not hold.
Now, if (5.1.4) holds for some ¢ and y, then, for | > u > wand m < v < n, we shall
have
o (|55

1
<-¢(l-ul+lu—w|+|w—-Ill+m—-v|+]|v—n|+|n—m])

u—4v w—4n

8 8

w—4n [—4m | )
8

[\S]

1,[) (ll—u|+|u—w|+|w—l|+|m—v|+|v—n|+|n—m|)
2 i)

by which for | =u =w, v #n, m=v, m # n, we have
®(30n=vI+In—mD)<2pUn=vl+In=m)—p(3dn-vl+n-mD)
then, for p = %(ln — v| + |In — m]), using the last inequality we get
¢(p) <35 6(2p) — Y(p) < $(p) — Y(p) (by property of ¢)

< ¢(p), a contradiction.

We finally show that (5.3.27) holds. For | > u > wand m < v < n, we have

[—4m u—4v
8 8

u—4v  w—4n
8 8

1
<Ili-ul+ilm-vl, Hu—wl+1lv—nl,
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w—4n l4m m—41 v—4u 1 1

_— <- — + - — —_— < - — + -l —

| | l] |n m|, |8 - _8|m v| 2Il ul,
—4 —4 —4 -4l _1 1

T _n W|_ [v—nl+ju—w], =T < m—yl 2w -]
8 8 8 8 2

Adding these six inequalities, we get (5.3.27) for =(f) = f, (€, 6) = f—G(E”fZ).

Further, xy = — 1, yo = 1 are in X such that %y < F(x, yo) and y, = F(yo, #g). Now,
by Corollary 5.3.1, F has a coupled fixed point (0, 0) in X.
Coupled Common Fixed Points
Now, we establish the existence and uniqueness of coupled common fixed point

under the hypotheses of hypotheses of Theorem 5.3.1.
Theorem 5.3.2. In addition to the hypotheses of Theorem 5.3.1, if Assumption 3.2.1
also holds, then, F and g have a unique common coupled fixed point in X.
Proof. By Theorem 5.3.1, the set of coupled coincidence points of F and g in non-
empty. To obtain the result, we first show that if (%, y), (x*, y*) are coupled
coincidence points, then

en =gx" and gy = gy”*. (5.3.30)
By Assumption 3.2.1, there exists some (a, b) € X X X, so that (F(a, b), F(b, a)) is
comparable to (F(x, y), E(y, »)) and (E(x*, y*), E(y", »*)). Taking ay = a, by =b and
choosing a;, b; € X so that ga; = F(ag, by), gby = F(by, ag). As in Theorem 5.3.1, we
can inductively define the sequences {ga,} and {gb,} so that ga,,; = F(a,,b,),
gboiq1 = F(by,q,). Take %9 =%, yo =V, g = %, Yo = Yy and on the same way, define
sequences {gn, }, {gy,.}, {g», } and {gy;}. Then, we can easily obtain that

g1 = F(n, ¥n), 8Vn+1 = F(yn, 2tn),
and

2tn11 = FGe, yn), gVnt1 = F(yn, %y) foralln = 0.
Since (F(«,y), E(y,)) = (g1, gy1) = (gn, gy) and (F(a,b), F(b, @) = (gas, gby)
are comparable, then gx < ga; and gy > gb;. It is easy to see (g», gy) and (ga,, gb,)

are comparable, so that gx < ga, and gy > gb, forall n > 1. Using (5.3.1), we have

- (G(gan+1. g%, gn) + G(gbn+1, gy, gy))
2

= T[ (G(F(‘ln rbn)r F(ny)J F(%:Y)) + G(F(bn :an)r F(YM): F(YM)))
2

IA

(G(gqn,g%, o) -ZI-G(gbn,gY'gY)) _ p(G(gan, ax, gr),G(gb,,, gy, gy)) (5.3.31)

- (G(gan. %, gn) ;r G(gbn, gy, gy))_ (5.3.32)

T

IA
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Then, using the monotone property of mr, we get

G(gan+1, g% gn) + G(gba11, gy, gy) < G(gan, gx, gn) + G(gby, gy, gy).
Let 7, = G(gay, gn, g») + G(gb,, gy, gy), then {r,} is a monotonic decreasing
sequence, thus, there exists some t > 0, such that

limz, = lim[G(gay, gx, gx) + G(gby, gy, gy)] = 7.

We claim that T = 0. On the contrary, suppose that ¢ > 0. Then, {G(ga,, gx, gn)},
{G(gb,, gy, gy)} have convergent sub-sequences converging to t;, T, (say)
respectively.
Considering limit up to sub-sequences as n — oo in (5.3.31) and by continuity of =,

we get

n(3) <7 (3) - limg(Glean, 4 29, Glebn, gy, 2y)) <7 (5),
a contradiction. Therefore, 7 = 0, so that

lim [G(gay, gx, gx) + G(gby, gy, gy)] = 0.
Hence, we get ga, — g» and gb, — gy as n — oo. Similarly, we can get ga, — gx*
and gb, — gy* as n — co. Now, by uniqueness of limit, we have g»x = gx* and gy =
gy”*. Therefore, we proved (5.3.30).
Since gx = F(x, y), gy = F(y, ») and F, g commutes, we obtain

ggn = gF(%, y) = F(gn, gy) and ggy = gF(y, ) = F(gy, g»). (5.3.33)
Denote gx = c and gy = d, so by (5.3.33), we get
gc =F(c, d) and gd = F(d, ¢). (5.3.34)

Therefore, (c, d) is a coupled coincidence point of F and g.
By (5.3.30) with r* = cand y* = d, it follows that gc = gr and gd = gy, so that

gc=c¢, gd =d. (5.3.35)
Now, from (5.3.34) and (5.3.35), we have

c=gc=F(c,d)and d = gd = E(d, ).
Therefore, (c, d) is a coupled common fixed point of F and g.
For uniqueness, let (e, ) be any coupled common fixed point of F and g. Then, by
(5.3.30), we get e = ge = gc = c and f = gf = gd = d. This completes the proof of our

result.

5.4 APPLICATION TO INTEGRAL EQUATIONS
As application of the results produced in section 5.2, we now discuss the

existence of solutions of the following system of integral equations:
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() = p(f) + fOT L(E ) [f(s%(s)) + k(s y(s))] ds,
y(© = p(© + [, LES)[f(5,7(5)) + K(s%())] ds.
Let ®, be the class of functions 0: R — R* satisfying the following conditions of

Luong and Thuan [67]:

(5.4.1)

M 0 is increasing;
(1) there exists i € ¥ such that 0(x) = % - G) for all r € RY.
We analyze the system (5.4.1) under the following assumptions:
Q) f,k: [0, T] X R — R are continuous;
@i)  p: [0, T] = R s continuous;
(iii)  L:[0, T] x R —» R* is continuous;
(iv)  thereexistA>0and 0 € ®, such that forall x,y € R,y > «,
0<f(s,y) - f(s,%) SAO(Y-%), 0=<K(s,»n) -K(s,y) <ALO(Y-n);
(v)  suppose that 3 supgeo,1] fOT L(£ s)ds < %;

(vi)  there exist continuous functions a, S: [0, T] = R such that
a(®) < p() + f, L(ES) (£(s 2()) +K(s, B(5)) ) ds,

BO = p(® + [, LES) (£(s B(5)) + (s, a(s)) ) ds.

Let X = C([0, T], R) be the set of all continuous functions defined on [0, T] endowed
with the following G-metric (which in fact, is G-complete):

G(u, v, w) = supge (o, |u(®) — v(O)| + supge o, v(E) — w(D)]

+ supge o, IW(E) —u(®)| forallu, v, w € X.

Endow the set X with the partial order < defined by:

x®, Y EX, vy e x(f) <y() forall £ € [0, T].
Then, X assumes Assumption 2.1.7 w.r.t. convergence and ordering in (X, G, <).
Theorem 5.4.1. Under assumptions (i) — (vi), the system (5.4.1) has a solution in X?
= (c([0, T], R))".
Proof. Define F: X X X — X by

F(x, y)(f) = p(f) + fOT L(Es)[f(sx(s)) + k(s,y(s))]ds, for £ € [0, T] and for all

®, Y €E X.
We first show that F has MMP.

In fact, for »; < %, and t € [0, T], we have
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Bz, Y)(O - B, YO = f LED[F(5,%2(9)) = 1(5,%1())]ds.
Now, for »,(f) < %,(f) for all £ € [0, T], then by assumption (iv), f(s, %x,(s)) >
f(s, %1(s)). Then, E(x,, y)(f) = F(x, y)(f) for all £ € [0, T], so that F(»4, ¥) < E(xy, Y).
Similarly, fory; <y, and f € [0, T], we obtain

FG, y1)(0 - F66 y2)(0 = Jy LES)[R(5,y1()) — K(5,y2(5))]ds.
Having y1(6) < y,(f), s0 by (iv), k(s,y1(9)) > K(s,y2(s)).
Then F(x, y1)(f) = E(x, y,)(f) for all £ € [0, T], so that F(x, y;) > F(x, y,). Hence, F
has MMP.
Now, for %, y, z, u, v, w € X with » > u > w, y < v < z, we estimate the quantity
G(E(», y), E(u, v), F(w, 2)). (Note that, here %, y, z, u, v, w € X are functions of
fe [0, T]).
By MMP of F, we get F(w, z) < F(u, v) < E(», y), then, we obtain that
G(F(x y), ¥(u, v), E(w, 2))

= supee (0,1 FC6 ) (6 — F(u,v) (O] + supte o, [F(u,v) (£) — F(w, 2) (O]

+ supee o1y [F(w, 2) (©) — F(, y) (O
= supee 0,17 (FG6 y) (O) — F(wv)(©) + supee jory (F(uv)(6) — E(w, 2)(6)
+ supe o1 (FG6, y) (6) — F(w, 2)(0)).
Also, for all £ € [0, T], by assumption (iv), we get
F(%, ) — E(U, v) = [, L(ES)[f(s, () — /(5. u(s))]ds
+ [ L& ) [R(5,¥()) — k(5,v(5))]ds

<A J, L(Es) [e ((s) - u(®)) + 0(v(s) - y(s))]ds. (5.4.2)
As 6 is an increasing function and » > u > w, y < v < z, we have

00¢(s) — u(s)) < 0(supgex(€) —u(®l), 0(v(s) —y(s)) < O(super|v(D —y(OD,
so that, using (5.4.2), we get

[FCey) - E(uv)|
<A Jy L(E$)[B(supge [%(E) — u(®)) + 6(supge;[v(E) —y(ODIds.  (5.4.3)
Similarly,
[F(x,y) - F(w, 2)|
< UJ L(E s)[0(supge [(6) = w(O)]) + 6(supge(lz(6) —y(O)DIds,  (5.4.4)

|F(W, z) - F(u, v)|
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S UOT L(E s)[0(supge|u(® — w(B]) + 0(supge]z(®) — v(©)D]ds.  (5.4.5)
Adding (5.4.3), (5.4.4) and (5.4.5) and taking supremum w.r.t. f, we get
G(E(x, y), E(u, v), E(w, 2))

O(supge|%(f) —u(®)]) + 6(supee;»(E) — w(O)])
+0(supeeru(®) —w(®)D)
O(supeer|v(®) —y(©D + 6(supee;|z(€) —y(©)D
+0(supee|z(6) — v(O)) '

T
< A Supge [o,1] fo L(£, s)ds - [

T
+ A supee oy J, L(Es)ds - [

(5.4.6)

Also, since 6 is increasing, we have

B(sup¢e;|x(€) —u®)]) < 0(G(%, u,w)), 0(supee|n(f) — w(E)]) < 0(G(%,u,w)),

O(supge lu(t) —w(®)]) < 6(GG¢, u, w)).
Similarly,
O(supge1v(®) —y(OD < 6(G(y,v,2)), 0(supce;lz(®) —y(O < 0(G(y,v,2)),
O(supge1|z(0) — v(O) < 6(G(y,v,2)).

Then, by (5.4.6) and using assumption (v), we get
G(E(%, y), F(u, v), E(w, 2))

T T
< A Supge [o1] fo L(f,s)ds . 306(G(%,u,w)) + A sup¢e o1y fo L(f,s)ds . 3 0(G(y,v,z))

= 3\ supee [o,1] fOT L(£,s)ds . (0(G(¢,u,w)) + 0(G(y,v,2)))

< 0(G (x,u,w));- 0(G (Y.V.Z)). (547)

As 0 is increasing, we have

0(G(%,u,w)) < 0(G(%,u,w) + G(y,v,2)), 0(G(y,v,z)) < 0(G(%,u,w) + G(y,v,2))

0(G(,u,w))+06(G(y,v,2))
2

and so

< 0(G(%,u,w) + G(y,v,z))

_ G(tuw)+G(y,v,z) G(t,u,w)+G(y,v,z)
= SOy, (f) (5.4.8)

by definition of 6. Now, using (5.4.7) and (5.4.8), we get

G(,u,w)+G(y,v,z) . G(,u,w)+G(y,v,z)
G(E(t, y), F(u, v), F(w, 2)) < ) p (Smmtes),

which is the actually the condition (5.2.28) of Corollary 5.2.4.

Let a, B be the functions in assumption (vi), therefore, we obtain that a < F(a, ) and
B = F(B, a). Now, by Corollary 5.2.4, there exist »#, y € X such that » = F(», y),
y = F(y, %), so that (», y) is a solution of the system (5.4.1).
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CHAPTER - VI
A NEW TECHNIQUE AND ERRORS IN SOME RECENT
PAPERS

In this chapter, we study a new technique to compute coupled coincidence points
in various spaces. Also, we rectify some errors present in the recent papers on coupled
coincidence and coupled common fixed points in some spaces. This chapter consists
of eight sections. Section 6.1 gives a brief introduction to some previous results. In
section 6.2, we discuss a new technique to compute coupled coincidence points. In
section 6.3, using the technigque given in section 6.2 we improve some recent coupled
coincidence point results in POMS. Section 6.4 consists of the generalization of a
recent coupled coincidence point result in POMPMS by using the technique given in
section 6.2. In section 6.5, using the technique given in section 6.2, we generalize
Theorem 5.3.1. Section 6.6 consists of some remarks on some recent papers
concerning coupled coincidence points. In section 6.7, we point out and rectify an
error in a recent paper on probabilistic ¢ — contraction in PGM-spaces. In section 6.8,
we point out and rectify some errors in a recent paper on weakly related mappings in
POMS.

Author’s Original Contributions In This Chapter Are:

Theorems: 6.2.1, 6.2.2,6.3.3,6.4.2,6.5.1,6.6.2, 6.6.4, 6.6.6, 6.6.8.

Examples: 6.2.1, 6.7.2, 6.7.3, 6.8.2, 6.8.4.

Remarks: 6.2.1, 6.3.1, 6.4.1, 6.5.1, 6.6.1, 6.6.2, 6.6.3, 6.6.4, 6.6.5, 6.7.1, 6.8.1, 6.8.2,
6.8.3.

6.1 INTRODUCTION

Recently, Haghi et al. [165] showed that certain common fixed point results are
not true generalizations of the fixed point results. For proving this, Haghi et al. [165]
proved and utilized the following lemma:
Lemma 6.1.1. ([165]). Let X be a non-empty set and g: X — X be a mapping, then
there exists a subset A of X such that g(A) = g(X) and the mapping g: A — X is one-
to-one.

The technique used by Haghi et al. [165] was extended by Sintunavarat et al.
[166] to obtain coupled coincidence points in intuitionistic fuzzy normed spaces.

132



Hussain et al. [167] used the technique of Sintunavarat et al. [166] to generalize
results due to Lakshmikantham and Ciri¢ [59], Choudhury and Kundu [60] and
Alotaibi and Alsulami [68]. As a matter of fact, Hussain et al. [167] in their results
assumed the completeness of the range subspace of the involved self mapping and
relaxed the assumptions of compatibility (and, hence of commutativity) and the
completeness of the space X.

For the sake of convenience, we recall some notions stated already in the
previous chapters.

Assumption 2.1.7 ([55]). X has the property:
Q) “if a non-decreasing sequence {x,},—, € X converges to », then », < %
for all n”;
(i)  “if a non-increasing sequence {y,}s—, € X converges to y, theny <y, for
all n”.
Assumption 2.1.8 ([56]). X has the property:
Q) “if a non-decreasing sequence {x, };—o € X converges to x, then gx, < gx
for all n”;
(i)  “if a non-increasing sequence {y, }o—o € X converges to y, then gy < gy,
for all n”.
Property (P2): “There exist two elements x,, yo € X such that gx, < F(xg, yo) and
gyo = F(yo, %0)”.

The following result of Hussain et al. [167] generalize Theorems 2.1.16 and
2.1.17:

Theorem 6.1.1 ([167]). Let (X, <, d) be a POMS. Assume there is a function
¢: Rt - R* such that ¢(f) < f for all £> 0 and Flir?ﬁ"(r) < f for each £ > 0. Also,

suppose that F: X x X — X and g: X — X be two mappings such that F has MgMP on
X, g(X) is complete and F, g satisfies (2.1.16), that is

d(FGey), F(u,v)) < g (Leeptd@en) 6.1.1)

2

for all %, y, u, v € X for which gx < gu and gy > gv. Further suppose that F(X x X)
C g(X), g is continuous and either

(a) F is continuous,  or (b) X assumes Assumption 2.1.7.
If X has the property (P2), then F and g have a coupled coincidence point in X.
As in Definition 2.1.13, denote by @, the class of functions ¢: Rt —» R* which
satisfy:
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(1) @ is continuous and non-decreasing;

(p2) e)=0ifand only if £=0;

(p3) P(t+3s) < p(f) + @(s), forall {, s € RY.
Again as in Definition 2.1.14, let ¥ denote the class of functions y: R —» R* which
satisfy: (iy) %1_{2 Y({)>0forall+>0 and fl—i>r()r}|-l/)(t) =0”.

Hussain et al. [167] also generalized Theorem 2.1.20 under the following result:
Theorem 6.1.2 ([167]). Let (X, <, d) beaPOMS and F: X X X — X, g: X — X be
two mapping such that F has MgMP on X. Suppose there exist ¢ € &, ¥ € ¥ such
that for all %, y, u, v € X with gx > gu and gy < gv, the mappings F, g satisfies
(2.1.19), that is

PAFC ), F(U, V) < 5 0(dlen, gu) + d(gy, gv)) — p (LT ERE), (6.1.2)

Assume that F(X x X) € g(X), g is continuous and g(X) is complete. Also, suppose

either
(a) F is continuous, or (b) X assumes Assumption 2.1.7.

If X has the property (P2), then F and g have a coupled coincidence point in X.

6.2 A NEW TECHNIQUE TO COMPUTE COUPLED COINCIDENCE
POINTS

In this section, we develop a technique that generalizes and improves the
technique introduced by Sintunavarat et al. [166] which was used by Hussain et al
[167].

Now, we give our first main result as follows:
Theorem 6.2.1. Let (X, <, d) be aPOMS and F: X X X = X, g2 X = X be two
mappings. Suppose there exists a function ¢: RT — R* such that ¢(f) < f forall >0
and flir?ﬂ(f) < f for each f > 0. Also, assume that F(X X X) € g(X), g(X) is

complete, F has MgMP on X and F, g satisfy (6.1.1), that is

d(F(x, y), F(u, v)) < o (2dered) (6.2.1)

forall %, y, u, v € X for which g» < gu and gy > gv. Also, suppose either
(@) F and g both are continuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P2), then F and g have a coupled coincidence point in X.
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Proof. As X has the property (P2), there exist %y, yo in X such that gx, < F(x%, yo)
and gy, = F(yg, %9). As F(X X X) € g(X) and F has MgMP in X, then as in the proof
of Theorem 3.2.1, the sequences {gx, } and {gy,} can be constructed in X with

21411 = FOty, Yu), gYns1 = F(yn, %) foralln =0, (6.2.2)
and X, X i1, Y0 F LYn4q foralln > 0. (6.2.3)
Suppose either gx, 1 = F(%,, ¥n) # g%, o gVni1 = F(Vn, #n) # gyn, Otherwise we
obtain directly the coupled coincidence point of F and g.
Let R, = d(gxn, 8tn+1) + d(&Yn> gYn+1). We now show that

Rp—1
R, <2¢ (%), (6.2.4)
As gn, < gnn4q and gy, = gyn4q foralln> 1, by (6.2.1) and (6.2.2), we get
d.;(g%nv g%n+1) = du(F(%n—l’ Yn—l)’ F(an Yn))

<o (d,(gxn—l,g%n)-lzr d(gyn—1,gyn)) = (%) (6.2.5)

Similarly, for all n > 1, we obtain that

d(@Hn Pns1) < @ (252). (6.2.6)
Combining (6.2.5) and (6.2.6), we get (6.2.4). Also, as ¢(f) < f for £ >0, by (6.2.4), it

follows that {R,, } is a monotone decreasing sequence of non-negative terms. So, there

exists some R > 0, such that limR, = R. We claim R = 0. Suppose, on the contrary

n—oo

that R > 0. Letting n — oo in (6.2.4) and using lir?+¢(r) < fforall £> 0, we can get
F—

R =limR, <2 limg (R“Z—‘l) <2 % = R, a contradiction. Therefore, R = 0, so that we
n—oo n—-oo

have

lim [d(grtn, gxn+1) + d(gyn, gyn+1)] = limR,, = 0. (6.2.7)
Next, we prove that {gx, } and {gy, } are Cauchy sequences. Let at least one of {gx,}
and {gy,} is not a Cauchy sequence. So, there exists € > 0 and sequences of natural
numbers {m(k)} and {l(k)} such that for every k € N,

m(k) > I(k) > k

and dy = d(2411), 2tm 1) T (Y1), Vm () = & (6.2.8)
Now corresponding to I(k) there exists a smallest m(k) € N for which (6.2.8) holds.
Then, d(gx09, Stmao-1) T H&Y1a9, Ymaog-1) < & (6.2.9)
Also, using (6.2.8), (6.2.9) and the triangle inequality, for all k > 0, we have

& < dy < d(2ni), 24ma9-1) T A% m -1+ EAm ()

+ d(@109 8Ym-1) + d(€Vmw-1, &Yma))
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= d(20y Z4mo-1) + (Y100, 8Ym@o-1) + Rmao-1
<&+ Ry -1
Letting k — oo in the above inequality and using (6.2.7), we have
limdy = &. (6.2.10)
Again by triangle inequality, for all k > 0, we have
di = d(@x09, 24m) + d(&Y100, Ymw)
< d(2tw), 2a0+1) T H@109+1, Smao+1) T HEm 0 +1, 4m o)
+ d(gnig), gY100+1) T d(@V100+1 Ym0 +1) T d(€Ym0+1, 8Ym )
= d(gna9, 2u@+1) + @10, iao+1) T d@u@o+1) Smao+1)
+ d(€Y100+1 8Ym@+1) + H&mo+1: E4mo) + (Ym0 +1, EYmag)-
Hence, for all k > 0, we have
di < Rjgo + Rimgo + d@09+1, Stmao+1) + d(V100+1, 8Ymao+1)- (6.2.11)
Using (6.2.1), (6.2.2), (6.2.3) and (6.2.8), for all k > 0, we have
d(gn109+1, Stmao+1) = dE (a9, via0)» FGtmr Ymao))
<o (d,(g%l(k), 2m () +d.,(gY1(k),gym(k))) =0 (%) (6.2.12)

- 2
Similarly,

d(eyi00+1, 8Yma+1) = dF(Vig0, %100 FOm9» #m(19))
d( , 2%m (k) + d( 8Ym (k) d
< (P( 24 (k) E%m (K) EY1(k)-8Ym (k) ) =@ (—k) (6.2.13)

< > >)-
Putting (6.2.12) and (6.2.13) in (6.2.11), for all k > 0, we obtain that
dy < Rjgy + Rpo + 29 (%) (6.2.14)
Letting k = oo in (6.2.14) and using (6.2.7), (6.2.8) and (6.2.10), we obtain that
: dk £ _
e<2 lim g (7) <2t=¢ (6.2.15)
a contradiction. Therefore, {g», } and {gy, } are Cauchy sequences.
By the completeness of g(X), there exist %, y in X such that
lim F(x,,y,) = lim gx, =gx, lim F(y,,»,) = lim gy, = g(y). (6.2.16)
We finally show that gx = F(x, y) and gy = E(y, »).
Suppose that assumption (a) holds.
By Lemma 6.1.1, there exists some A € X such that g(A) = g(X) and the mapping
g: A = X is one-to-one. Define a mapping 'H: g(A) X g(A) = X by
'H(ga, gb) = F(a, b) for ga, gb € g(A). (6.2.17)
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Since g is one-to-one on A, so 'H is well defined.
Using (6.2.16) and (6.2.17), we get
limH(gxn, gyn) = ImEQe,, yn) = lim g, = g, (6.2.18)

and  lim'H(gyn, gnn) = imF(yy, %) = lim gy, = gy. (6.2.19)
As F and g are continuous, 'H is also continuous. Then, by (6.2.18) and (6.2.19), we
get

'H(gx, gy) = g» and 'H(gy, gx) = gy. (6.2.20)
Using (6.2.17) and (6.2.20), we get F(x, y) = gx and E(y, %) = gy.
Now, suppose that assumption (b) holds. By (6.2.3) and (6.2.16), we have {gx,} is a
non-decreasing sequence converging to gx and {gy,} is a non-increasing sequence
converging to gy. Hence, by assumption, for all n > 0, we have

en, < geand gy < gy,. (6.2.21)
We suppose that (gx,, gy,) # (gx, gy) for all n > 0, otherwise, we can directly obtain
a coupled coincidence point of F and g.
Now, using (6.2.1) for (6.2.21), we get

d;(F(%nJYn)' F(’)‘C, y)) < (d,,(g%n.g%) ‘;‘Q(gYn’ gY)). (6222)
By triangle inequality, we have
d(gn Fony)) < d(gn FGtn, yn)) + dFGtn, ya), FO6 1)) (6.2.23)

Inserting (6.2.22) in (6.2.23) and letting n — oo, we get

d(gn FOoy)) < Jim {d(gx, F(%y, V) + @ (d-y(g“n'g%) erd(gyn, gy))}.

Using (6.2.16) and the property of ¢, we obtain that d(gx, F(x, y)) < 0, so that gx =

F(x, y). Similarly, we can get gy = F(y, »). Hence, in both the cases F and g have a
coupled coincidence point in X.

Now, we improve Theorem 6.1.2 as follows:
Theorem 6.2.2. Let (X, <, d) be aPOMS and F: X X X - X, g. X = X be two
mappings such that F has MgMP on X. Also, assume there exist ¢ € @, and Y € ¥
such that (6.1.2) holds, that is

¢ (@(F(%: y), E(u, V))) < %Qb((l(g%, gu) +d(gy, gv)) — ¢ (q’(g%’ L ;—d,(gy,gv)),
(6.2.24)

forall %, y, u, v € X for which gx < gu and gy > gv. Also, suppose g(X) is complete

in X, F(X x X) € g(X) and either
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(@) F and g both are continuous  or  (b) X assumes Assumption 2.1.7.

If X has property (P2), then, F and g have a coupled coincidence point in X.
Proof. As X has the property (P2), there exist %y, y, in X such that gx, < F(%, yo)
and gy, = F(yo, %g). Also, as F(X x X) < g(X) and F has MgMP on X, then as in the
proof of Theorem 3.2.1, the sequences {gx,} and {gy,} can be constructed in X such
that

o +1 = F(n, o), 8Yn+1 = F(yn, %) foralln =0 (6.2.25)
and 2, N o1, SYn F SYn4 foralln > 0. (6.2.26)
We suppose either gx, 1 = F(%,, Vo) # 2%, or g¥n4+1 = E(Vn, ®n) # Y, Otherwise
the result holds trivially.
Let Ry = d(g¥n, 24a+1) + d(€Yn. 2¥n+1)- We now show that

PR, < $R, 1) — 29 (22). (6.2.27)
Since gn, < gx,41 and gy, = gyn4q1 forall n > 1, by (6.2.24) and (6.2.25), we have
¢(dz(g%n! g%n+1)) = ¢(d,(F(%n_1, Yn—l)' l:(%n' YII)))

1 ( n—1, n)+ n—1» n
<2 P (d(@tn—1, @) + d(gyn_1,gyy)) — 9 (L2 LB n-1B0))

=2 0®R-) — (*5). (6.2.28)
Similarly, forn > 1, we get
$(d(2y, 2Y,40)) <30 Rar) — 9 (22). (6.2.29)

Combining (6.2.28), (6.2.29) and using (¢3), we obtain (6.2.27), that is,

Rpy—1

PR, < PR, 1) — 29 (22

then, since ¢ is non-decreasing, we obtain that R, < R,_;, so that {R,} is a

) <¢pR,_1) foralln>1,

monotone decreasing sequence of non-negative numbers. So, there exists some R > 0,
such that limR, = R. We claim that R = 0. Suppose on the contrary that R > 0.
n—oo
Letting n - oo in (6.2.27) and using %imz/)(f) > 0 for all £ > 0 with the continuity of ¢,
we obtain that
. . Rp—
$(R) = limp(R,) < lim [$(R,-1) — 29 (*57)]

= i Ro1

=p®) -2 lim () <PR),
a contradiction. Thus, R =0, so that

limR,, = lim [d(gxn, g%n+1) + d(gYn, gYn+1)] = 0. (6.2.30)
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Next, we claim that {gx,} and {gy,} are Cauchy sequences. Let at least one of
sequences {gx,} and {gy,} is not a Cauchy sequence. So, there exists £ > 0 and
sequences of natural numbers {m(k)} and {l(k)} such that for every k € N,

m(k) > I(k) > k
and

dy = d(210), Stmao) T A1) Ymag) = € (6.2.31)
Now, corresponding to I(k) there exists a smallest m(k) € N for which (6.2.31) holds.
Then,

d(@n0), 22mao-1) T ALY EYmao-1) < €. (6.2.32)
Also, using (6.2.31), (6.2.32) and triangle inequality, for all k > 0, we have

e < dy < d(gag, 2tmo-1) + d(@%mo-1, 8m o)
+ d(2V1x) 8Ymao-1) + d(&Ym -1, 8Ymx)

= d(22110)) 2tm0-1) T A&k) 8Ymao-1) T Rmao-1

<&+ Rpyp-1
on letting k — oo and using (6.2.30), we obtain

limdy = e. (6.2.33)

k—o0

Again using triangle inequality, for all k > 0, we get
dy = d(2x11), 2tm k) T H&Yi k) Ym (k)
< d(@w) 2ua0+1) + A0 +1, PAmao+1) T A(€%m a9+1, E4m10)
+ d(gyig0, g100+1) + A@Y100+1, 8Ymo+1) + A(&Ymw+1, 8Ym o)
= d(gra0, 2ua0+1) + A&, Liao+1)
+ d(@a09+1, Stma+1) + A(&Y109+1 8Ymao+1)
+ d(8%ma9+1, Em ) T 4(Ym+1, 8Ym )
=Rjgg + Rmag + d@ag0+1 Smao+1) + d(@V100+1 8Ymo+1)-
Now, using the properties of ¢, for all k > 0, we have
¢(di) < P(Rigy +Rmao + d(@09+1, Smag+1) + d(&Y109+1, Ymag+1))

< p(Rigo + Rimag) + P(d(@4109+1, Z4mao+1)) + P(A(@Vig+1, Ymk+1))-
(6.2.34)
Using (6.2.24), (6.2.25), (6.2.26) and (6.2.31), for all k > 0, we have

P(d(@uay+1, tma+1)) = ¢ (Cl (F(MI(IQ:YI(IO): F(%m(k)'Ym(k,))))

<2 ¢ (d(er109 Ptmao) + A(2Yi00r &Ymao)) — ¥ (Q(g”'(“’g%m )t Q(gym‘)'gy“’“‘)))
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1

=1 (di) — ¥ (%) (6.2.35)

Similarly,

P(d(gY109+1 Ym@+1)) S % o(dy) — 9 (%) (6.2.36)
Inserting (6.2.35) and (6.2.36) in (6.2.34), for all k > 0, we obtain that
¢(di) < d(Rigo + Rmao) + ¢(di) -2 (%) (6.2.37)

Letting k — oo in (6.2.37) and using (6.2.30), (6.2.31) and (6.2.33), we obtain that
$(e) < $(0) + () — 2 limp () < $(e),

a contradiction. Hence, {gx,} and {gy,} are Cauchy sequences. As g(X) is complete,
there exist %, y € X such that
LimE (e, yn) = limgr, = gx, ImE(y,, %) = limey, = gy. (6.2.38)
Finally, we show that gx = F(x, y) and gy = E(y, »).
Suppose that assumption (a) holds.
By Lemma 6.1.1, there exists some A € X such that g(A) = g(X) and the mapping
g: A - X is one-to-one. Define a mapping 'H: g(A) X g(A) = X by
"H(ga, gb) = F(a, b) for all ga, gb € g(A). (6.2.39)
As g is one-to-one on A, so 'H is well defined.
By (6.2.38) and (6.2.39), we get
lim "H(gxnn, gyn) = lim F(xn,yn) = lim g, = g, (6.2.40)
lim "H(gyn, g%n) = lim F(yn,%,) = lim gy, = gy. (6.2.41)
Now, the continuity of F and g implies the continuity of 'H. Then, by (6.2.40) and
(6.2.41), we obtain that
'H(gx, gy) = g» and 'H(gy, g») = gy. (6.2.42)
Using (6.2.39) and (6.2.42), we get F(x, y) = gx and E(y, %) = gy.
Now, suppose that assumption (b) holds. Then using (6.2.26) and (6.2.38), for all
n >0, we have
n, < grand gy < gy,. (6.2.43)
We suppose that (gx,, gy,) # (gx, gy) for all n > 0, otherwise, the result follows
trivially. Now, using (6.2.24) for (6.2.43), we get

¢ (d(FCtn y0), F0Y)))

< 7 6(d(gnn, 20 + d(ayn, gy)) — p (LEETLED) - (6242

140



By triangle inequality, we have

d(gn FCoy)) < d(gx, F(tn, yn)) + d(F(tn, y), F(1, ).
Using the properties of ¢, we get

¢ (d(en Fooy)) < ¢ (d(gn FOu, i) + d(FGt, ), FGo 1))
< ¢ (d(e7 Ot yn)) ) + & (d(FGn, ), FG0 YY) (6.2.45)
Inserting (6.2.44) in (6.2.45), we get

¢ (d(ex Feuy))) < & (@0 FG,ya)) ) + 5 B(d(gnn, 220 + d(gyn, )

— (d(g%n, g%);rd(gyn, gy)) ,

on letting n — oo, we get
¢ (2 FGoy))) < lim (d(gx, B, ya))) + 3 lim(d(en, 220 + d(eyn, 1))

—limy (d.,(gxn, g0)+d(gyn, gy))_ (6.2.46)

n—ow 2

Using (6.2.38) and properties of ¢ and 1, it follows that ¢ (d,(g%, F(x, y))) =0, so

that d(g», F(»,y)) = 0. Thus, gx = F(x, y). Similarly, we can obtain gy = F(y, »).
Hence, F and g have coupled coincidence point in X.
Comparison Of Our Technique With The Already Existing Technique

In their work, Sintunavarat et al. [166] and Hussain et al. [167] requires to prove
the results for a single mapping and then extends the obtained results for a pair of
mappings to establish the existence of coupled coincidence points. But in our results,
we do not require to prove any results for a single mapping followed by extending it
to a pair of mappings, rather, we have given a direct proof to obtain the coupled
coincidence point results. In order to produce and compare our technique with the
technique used by Hussain et al. [167], we have used the same contractive conditions
used by Hussain et al. [167].

Case (b) of the Theorems 6.2.1 and 6.2.2 not only relaxes the continuity
hypothesis of the mapping F but also relaxes the continuity assumption of the
mapping g. But case (b) of Theorems 6.1.1 and 6.1.2 (proved by Hussain et al. [167]),
relaxes only the continuity assumption of the mapping ¥ and not of the mapping g.

In view of this discussion, we can conclude that the technique used by us

improves the technique of Sintunavarat et al. [166] used by Hussain et al. [167].
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Next, we present an example in support of our results:
Example 6.2.1. Consider the POMS (X, =<, d) where X = (0, 1], the natural ordering
< of real numbers as the partial ordering and d(x, y) = |» —y| for all x, y in X. Then,
X satisfies Assumption 2.1.7.
Define the mappings F: X X X - X, g: X —» X by

0.4 if 0 <% <0.6,
®x—03if 0.6 < <1,

Since gF(x, y) = g(0.5) = 0.4 # 0.5 = F(gn, gy) for all %, y in X, the mappings F, g are

F(x,y)=05 and gx= { for », yin X.

not commutative. Also, the pair (F, g) is not compatible. For, consider the sequences
{3 ={0.8 + 2} and {y,} = {0.8 — -} forall n > 5, then

limF(e, yn) =05 = limgwy,,  limE(y,,%,) = 0.5 = limgy,.
Then, it follows that

limd(gF (n, yn), F(gna, €¥n)) = 0.1 %0,

limd(gF(yn, %), F(gyn, g#n)) = 0.1 # 0.

Therefore, the pair (F, g) is not compatible. Clearly, F(X x X) = {0.5} € [0.3,0.7] =
2(X), g is not continuous, g(X) is complete and F has MgMP.

Also, there exist %y = 0.2 and y, = 0.9 such that g», = g(0.2) = 0.4 < 0.5=F(0.2, 0.9)
=F(xg,yo) and gy, =g(0.9) =0.6 > 0.5 =F(0.9, 0.2) = F(yq, ®0)-

Further, the contractive conditions involved in Theorems 6.2.1 and 6.2.2 also hold due
to the choice of F and g. Hence, all the conditions of Theorem 6.2.1 and 6.2.2 are
satisfied. Therefore, F and g have a coupled coincidence point in X, which indeed is
(0.8, 0.8).

Remark 6.2.1. Theorems 6.1.1 and 6.1.2 cannot be applied to Example 6.2.1 since in
Example 6.2.1, g is not continuous but using Theorems 6.2.1 and 6.2.2 we obtained
coupled coincidence points under the same contractive conditions as used in
Theorems 6.1.1 and 6.1.2, respectively. This shows that Theorems 6.2.1 and 6.2.2 are

true generalizations of Theorems 6.1.1 and 6.1.2, respectively.

6.3 IMPROVEMENT OF SOME COUPLED COINCIDENCE POINT
RESULTS

In this section, using the technique discussed in Section 6.2, we improve the
recent results of Choudhury et al. [56] and Alsulami [168].
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Choudhury et al. [56] established the existence of coupled coincidence points
under Theorem 2.1.18, which is again stated below (for the sake of convenience):
Theorem 6.3.1 ([56]). Let (X, <, d) be a POCMS. Let ¢p: R — R™ be a continuous
function such that ¢(f) = 0 iff £ = 0 and ¥ be an ADF. Let F: X X X — X and
g: X — X be two mappings such that F has MgMP on X and

¥ (d(FGoy), E(u, v))) < w(max{d(gn, gu), d(gy, gv)})
— p(max{d(gn gu), d(gy, gV}, (6.3.)

for all %, y, u, v € X for which gx > gu, gy < gv. Suppose that g be continuous,
F(X x X) € g(X) and the pair (F, g) be compatible. Also, suppose that
(a) F is continuous, or  (b) X assumes Assumption 2.1.8.

If X has the property (P2), then F and g have a coupled coincidence point in X.

Alsulami [168] obtained coupled coincidence points under contractive condition
(6.3.1) by considering ¢ and ¥ both to be ADF and replacing the Assumption 2.1.8
by Assumption 2.1.7.
Theorem 6.3.2 ([168]). Let (X, <, d) be a POCMS. Let ¢ and ¥ be two ADF and
F: X XX - X, g X — X be two mappings such that F has MgMP on X and satisfy
(6.3.1) for all %, y, u, v € X for which gx > gu, gy < gv. Suppose that F(X X X) €
2(X), g be continuous and monotone increasing and the pair (F, g) is compatible.
Suppose either

(@) Fiscontinuous, or (b) X assumes Assumption 2.1.7.

If X has the property (P2), then F and g have a coupled coincidence point in X.

Now, using the technique discussed in section 6.2, we improve Theorems 6.3.1
and 6.3.2 as follows:
Theorem 6.3.3. Let (X, <, d) be a POMS and ¢: RT — R* be a continuous function
such that ¢(f) =0 iff f =0 and y be an ADF. Let F: X X X — X and g: X — X be two
mappings such that F has MgMP on X and satisfy (6.3.1) for all %, y, u, v in X for
which gx > gu, gy < gv. Assume that F(X X X) € g(X), g(X) is a complete subspace
of X. Also, assume either

(@) F and g both are continuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P2), then F and g have a coupled coincidence point in X.
Proof. As X has property (P2), there exist %q, yo in X such that gz, < F(x, y,) and
2vo = F(yo, %p). Also, as F(X x X) < g(X) and F has MgMP on X, then as in the
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proof of Theorem 3.2.1, the sequences {gx,} and {gy,} can be constructed in X such
that

ZAhn4+1 = F(Mn’ Yn)a gY¥n+1 = F(an %n) foralln =0 (632)
and 1y X 2441, Y0 = 2Yn4q foralln > 0. (6.3.3)

We suppose that either gx, 1 = F(%,, Vo) # 2%, or g¥n+1 = F(Va, ®n) # gy, for all
n > 0, otherwise, the result follows trivially.
Let R = max{d(gxn, g%n+1), A(&Yn, EYn+1)}. We shall show that
Y(R,) <¥(R,,) — d(R,_). (6.3.4)
Since gx, < g%y41, &Y = &Yn+1 foralln > 1, by (6.3.1) and (6.3.2), we get
P(d(gnn, gtn+1)) = PAEC-1, Yn-1), FGtn, yn)))
< P (max{d(gxn-1, g%n), d(8Yn-1,8Yn)})

- d)(max{d(g%n—l' g%n)' d)(ngl—l' gYn)}) (635)
Similarly, for all n > 1, we get

P(d(gYn, gYn+1)) < Y(max{d(gnn-1, gn), d(&Yn-1,8Yn)})
- d)(max{d(g%n—l' g%n)' d)(ngl—l' gYn)}) (636)
By (6.3.5) and (6.3.6) and using monotone property of ¥, we get

lp(max{d,(g%n, g%n+1)' d‘n(gYn' gYn+1)})
= max{1)(d(gxn, 2n+1)), W(d(EYn, 2Yn+1))}
< Y(max{d(gny—1, 2tn), d(g¥n-1,Yn)})

- ¢>(maX{(1,(g%n_1, g%n)' dz(gYH—l' gYn)})x
so that, (6.3.4) holds. Now, since ¢(f) > 0 for £ > 0, by (6.3.4), for all n > 0, we have

Y(R,) <¥(R,_,), which implies on using monotone property of 1, that R < R__,.
Thus, {R } is a monotone decreasing sequence of non-negative real numbers, so,

there exists some R = 0 such that limR_ = R. Now, letting n — o in (6.3.4), we get
n—oo

Y(R) < YP(R) - ¢(R), a contradiction unless R = 0. Hence,
immaX{Q(g%n: g%n+1): dj(gYn' gYIl-l-l)} = rl1i—r>?oRn = 01 (637)

so that limd(gx,, g#n41) = limd(gyn, gyn+1) = 0.
We claim that both {gx,} and {gy, } are Cauchy sequences. If possible let at least one
of the sequences {gn,} and {gy,} is not a Cauchy sequence. So, there exists € > 0
and sequences of natural numbers {m(k)} and {n(k)} such that for every k € N,

n(k) > m(k) = k
and di = max{d(gxm @), Sn) HYma) Ynag)t =& (6.3.8)
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Now corresponding to m(k) there exists a smallest n(k) € N for which (6.3.8) holds.
Then,

max{d(2%m (ky» £%n10)-1)» HEYm (k)» Vn0-1)} < €. (6.3.9)
Now, & < di = max{d(gxm x)» L%n ) ALY mk)» E¥n(10)}
< max{d(gxm k) 4n0-1)» UEYm () EYno-1)3
+ max{d(gxn -1, 8%n ) 4CYna0-1, 8Yn ()}

that is, e<di<e+R g9 1
which implies on letting k — oo and using (6.3.7), that
ll(imdk =53 (6.3.10)

Further, it also follows easily that
limdi = . (6:3.11)
Since n(k) > m(k), ¢, 1) Z 2tm ) and gyna) = g¥mag- 1hen, by (6.3.1) and (6.3.2),
we get
W(d(grn0+1 Pmao+1)) = P(AEFCtn 0, Yna0)» Fmag» Ym o))
< y(max{d(g%n k), 2%mx)» H&Yn0» mao)})
— ¢(max{d(g%n k) 24mm) HLYn» mao)}):

so that,

(A0 +1 Pma+1)) < W(d) — o(di). (6.3.12)
Similarly,

PY(d(Yna0+1, Ymao+1)) < W(di) — (). (6.3.13)

By (6.3.12) and (6.3.13) and using the monotone property of ¢, we get
¥(dip1) = Y (max{d(gxnm+1 24mao+1) 4(€Yn00+1 Emao+1)3)
= max{y(d(gxno+1, Stm @ +1)), Y(A(&Yna0+1 8Ymao+1))}
<Y(dy) — (). (6.3.14)
Letting k = o in (6.3.14), using (6.3.10), (6.3.11) and the continuity of i and ¢, we
obtain that ¥(e) < y(e) — ¢(e), a contradiction. Hence, {gx,} and {gy,} are
Cauchy sequences in X and hence in g(X). As g(X) is complete, there exist some %, y
in X such that

lim F(x,,y,) = lim g, = g», lim F(y,,%,) = limgy, = gy. (6.3.15)

We finally show that gx = F(x, y) and gy = F(y, x).
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Now, by Lemma 6.1.1, there exists some A € X such that g(A) = g(X) and the
mapping g: A = X is one-to-one. Define a mapping 'H: g(A) x g(A) = X by

'H(ga, gb) = F(a, b) for ga, gb € g(A). (6.3.16)
Since g is one-to-one on A, so 'H is well defined.
By (6.3.15) and (6.3.16), we have

lim H(gx,, gy,) = limF(x,,y,) = limgx, = gx, (6.3.17)
and  lim'H(gy,, gx,) = limF(y,,%,) = limgy, = gy. (6.3.18)
Let the assumption (a) holds. As F and g both are continuous, 'H is also continuous.
Then, by (6.3.17) and (6.3.18), we get
'H(g~, gy) = g and 'H(gy, g») = gy. (6.3.19)
By (6.3.16) and (6.3.19), we get F(x, y) = gx and E(y, %) = gy.
Now, let the assumption (b) holds. By (6.3.3), (6.3.17) and (6.3.18), we get that {gx, }
iS a non-decreasing sequence converging to gx and {gy,} iS a non-increasing
sequence converging to gy. Therefore, by assumption, for all n > 0, we have
on, < gxand gy < gy,. (6.3.20)
We suppose that (gx,, gy,) # (gx, gy) for all n > 0, otherwise, the result follows
trivially. Now, using (6.3.1) for (6.3.20), we get
Z (d(F(%, y), F (%n,yn))) < (max{d(gx, g«.), d(gy, gyn)})
— ¢p(max{d(gx, gx,), d(gy, gyn)}D). (6.3.21)
By triangle inequality and monotone property of iy, we get
¥ (d(g FGu y))) < (@ @tns1) + d(@tn 1, FOLY)))
= (d(gx, grn+1) + dF G, yn), F(0,y))). (6.3.22)
Letting n — oo in (6.3.22), we have
¥ (d(g%, F(x, y))) < lim i (d(gn, gn41) + d(FOtn, yn), F(6 ¥))).
Now, by continuity of i and (6.3.15), we get
¥ (d(ge B ) ) < M (dEGe, va), FG6Y))). (6.3.23)
Inserting (6.3.21) in (6.3.23), we get
¥ (d(gn, Fee, 1)) < lim [(max{d(gx, g,), d(ey, gyn)})

— ¢ (max{d(gx, g1,), d(gy, gyn)})].
Using (6.3.15) and the properties of ¥, ¢, we get d(gx, F(», y)) = 0, so that
ax = F(x, y). Similarly, we can get gy = E(y, x).
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Hence, in both the cases, F and g have a coupled coincidence point.

Remark 6.3.1. (i) Though, the contraction condition used in Theorems 6.3.3 and
6.3.1 are same but in Theorem 6.3.3, we do not require the pair of compatible
mappings and also, the completeness of the space X has been relaxed by assuming the
completeness of the range space of the mapping g. Further, Case (b) of Theorem 6.3.3
not only relaxes the continuity assumption of the mapping F but also relaxes the
continuity hypothesis of the mapping g which has not been relaxed in Case (b) of
Theorem 6.3.1.

(if) The above comparison between Theorems 6.3.3 and 6.3.1 is also valid between
Theorems 6.3.3 and 6.3.2, respectively. Further, the mapping ¢ is an ADF in
Theorem 6.3.2 but in Theorem 6.3.3 the monotone increasing assumption of ¢ has
also been relaxed. Finally, Theorem 6.3.3 does not require the monotone increasing
assumption of the mapping g which has been considered in Theorem 6.3.2.

Hence, we can conclude that Theorem 6.3.3 improves Theorems 6.3.1 and 6.3.2.

6.4 GENERALIZATION OF A COUPLED COINCIDENCE POINT RESULT
IN MENGER PM-SPACES

In this section, using the technique discussed in section 6.2, we improve the
recent result of Choudhury et al. [119] in POCMPMS.

Recently, Fang [114] introduced the following class of gauge function and
utilized it to obtain some results in PM-spaces:
Definition 6.4.1 ([114]). Let Qy, denote the class of all functions ¢: R - R*

satisfying the condition: “for each £ > 0, there exists ¥ > f such that lim¢™ (¥) = 0”.
n—oo

Lemma 6.4.1 ([114]). “Let ¢ € Qy, then, for each £ > 0, there exists ¥ > f such that
p@) <t

Using the gauge function ¢, Choudhury et al. [119] proved the following result:
Theorem 6.4.1 ([119]). Let (X, <, F, A) be a POCMPMS, where A is a continuous
Hadzi¢ type t-norm. Let g: X — X and Q: X X X — X be two mappings such that Q
has MgMP. Let there exists ¢ € Qy such that

1
FQ(%'Y)'Q(U,V) ((p (f)) = [Fgu,gu (f) ng,gv (f)]z’ (641)
for all £ >0 and %, y, u, v in X with gx < gu and gy > gv. Let g be monotone
increasing and continuous, Q(X X X) < g(X) and the pair (g, Q) is compatible. Also,

suppose either
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(a) Q is continuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P2) w.r.t. g and Q, that is, “there exist %, y, € X such that gx,
< Q(xo, yo) and gy, = Q(yo, #g)”- Then, Q and g have a coupled coincidence point in
X.

We now generalize Theorem 6.4.1 as follows:
Theorem 6.4.2. Let (X, <, F, A) be a POMPMS, where A is a continuous HadZi¢ type
t-norm. Let g: X - X and Q: X X X — X be two mappings such that Q has MgMP.
Let there exists ¢ € Qyy such that (6.4.1) holds for all £> 0 and », y, u, v in X with gx
< guand gy > gv. Let Q(X x X) € g(X) and one of Q(X x X) or g(X) is a complete
subspace of X. Also, assume either

(@) gand Q both are continuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P2) w.r.t. g and Q, then Q and g have a coupled coincidence
point in X.
Proof. As X has property (P2) w.r.t. g and Q, there exist %, y, in X such that g», <
Q(%o, ¥o) and gyo = Q(yo, %o)- Also, as Q(X x X) < g(X) and Q has MgMP on X,
then, as in proof of Theorem 3.2.1, the sequences {gx, } and {gy, } can be constructed
in X such that

gn+1 = Q(%n, Yn), g¥n+1 = Q(Vn, %) foralln >0, (6.4.2)

and 1y X 41, Y0 = LYn4q foralln = 0. (6.4.3)
We suppose that either gxny1 = Q(%q, Yn) # g%y OF gYnt1 = QVn, *n) # &Y,
otherwise, the result follows trivially.
Now, for >0, and n > 1, by (6.4.1) — (6.4.3), we get

Faen, o041 (P(0) = FQien_1 yn-1.06eym) (9 (D)

1
= [ngn—l'gxn (f) FgYn—lrgYn (f)]z (644)
Similarly, for £ > 0, we get
1
Fg}’n'ng1+l (q)(f)) 2 [Fg%n—lﬂg”n (f) ng“—l:gYn (f)]z (645)
1
Let A0 = [Fge,_ g (©-Fay, _ ey, O] (6.4.6)

Then, by (6.4.4) and (6.4.5), we get

Fg%nrg%n+1 ((p(f)) ' ngn,gyn+1 ((p(f)) = An(f)An(f)v
which implies that

(A1 (0®)] = [A, (D2,
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so that [Ant1(0(®)] = [AL (D] (6.4.7)
On repeatedly applying (6.4.7), using (6.4.4) and (6.4.5), respectively, for all £ > 0,

n>1, we get

Fatn, grnsa (97 (0) 2 An (0771 (0) = .. = A(O) = [Fy, gy (- Feyg gy, O],

and Fg.angYn+1 ((pn (f)) = An ((pn_l(f)) =...2 Al(f) = [Fg%o. ¢ (f)'FgYO’gh (f)]i'
Now, for £ > 0, we shall show
liml?g%n,g%n+1 =1 and rllil?ongn'gynH(f) =1 (6.4.8)

Since Fgy) o, () = () » 1as t— oo, for € € (0, 1] there exists f; > 0 such

’ gYO gy1

that F (1) >1-eand Fyy oy, (£) > 1 - €. Also, ¢ € Qy, so there exist £, > £;

g1, 811

such that lim¢™ (f;) = 0. Therefore, to each £ > 0, there exists ny = 1 such that ¢ (f;)
n—oo

<fforall n > ng. Then, for all n > n,, we have

Fg%n' Z4n+1 (f) = Fg%nv Z4n+1 ((pn (fo))
1
2 [Fg%Ov fug] (E) FgYOv 2y1 (E)]z

S[(1-8).(1- &)= (1- ).

Hence, for £ > 0, rlli_r)xgoFg%n_%H(f) = 1. Similarly, we can get rlliirolong“_gy“+1 ®=1

Therefore, (6.4.8) holds. Now, by (6.4.6), we have
A,(f)—>1lasn— oo. (6.4.9)
Since ¢ € Qy, by Lemma 6.4.1, for £ > 0, there exists r > £ such that ¢(r) < f. Let
n > 1 be given. Now, by induction, for k > 1, we shall show
Fary, oo (6 = A1 (A, (€ — @()) and Fyy o (6) = ANTH(A, (€ — 9(x)).
(6.4.10)
Since A°(f) = £, therefore, (6.4.10) is true for k = 1. Let (6.4.10) is true for some k.
Then,

F o, o111 6= F o, ot 111 (f —o@) + (p(r))

= A (ngnrgxn+1 (f - (p(f)), Fg%n+1,g%n+k+1 (¢(f)))

IV

Fan, pn 11 (E= 0 @), [ngn'g"‘nH((r)'Fg}’n'g}’n+k(r)]5> (by (6.4.1) and (6.4.3))

v
>

a(
(Fg%n g (£ 0), [Fg%n.g%n+k (0. Fay,., oy, (f)]%) (since ¥ = )
(

> 8 (4, (6~ 9()), [ (A0 E — 9(). 8 (AL €~ @]
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> A(Ay (€~ @), A (An (€ — @) = AAL (€ — 9 (1)).

Similarly, we have Fgy oy .. (0 = AX(A, (fE — @(¥))). Therefore, by induction,

(6.4.10) holds for all k > 1 and £ > 0. Now, we prove that {gx,} and {gy,} are
Cauchy sequences. Since, A is a HadZi¢ type t-norm, the family of iterates {AP} is
equi-continuous at the point s = 1, that is, there exists § € (0, 1) such that

AP(s)>1— &, (6.4.11)
whenever 1 > s>1 — ¢ and p > 1. By (6.4.9), there exists some n, € N, such that
for all n > ng, we have

A(E—p®)>1-¢ (6.4.12)

Then, for all n = ng, k = 1, it follows from (6.4.10), (6.4.11) and (6.4.12) that

Foen, a0 = A (A (€ — () >1-¢ and F )>1-¢e (6.4.13)

ZYn, 8Yn+k
Now, (6.4.13) implies that {g», } and {gy, } are Cauchy sequences.
W.L.O.G., assume that g(X) is complete, so there exist », y in X such that
lim Q(y, yn) = lim g, =g, lim Q(yn, %) = lim gy, = gy. (6.4.14)

We now show that gx = Q(x, y) and gy = Q(y, %).
Now, by Lemma 6.1.1, there exists a subset A € X such that g(A) = g(X) and the
mapping g is one-to-one on A. Let us define a mapping 'H: g(A) x g(A) = X by

H(ga, gb) = Q(a, b) (6.4.15)
for all ga, gb € g(A). As g is one-to-one on A, so 'H is well-defined. By (6.4.14) and
(6.4.15), we get

limH(gxn, gyn) = ImQ(xn, yy) = limgx, = gx, (6.4.16)

lim'H(gyn, gxn) = limQ(yn, %) = limgy, = gy. (6.4.17)
Let the assumption (a) holds.
As both Q and g are continuous, so 'H is also continuous. Then, by (6.4.16) and
(6.4.17), we get

'H(gx, gy) = g» and 'H(gy, g») = gy. (6.4.18)
By (6.4.15) and (6.4.18), we get Q(x, y) = gx and Q(y, %) = gy.
Now, suppose assumption (b) holds.
By (6.4.3) and (6.4.14), {gx,} is a non-decreasing sequence converging to gx and
{2y, } is a non-increasing sequence converging to gy. Hence, by assumption, for all
n >0, we get

gx, < grand gy < gy, foralln>0. (6.4.19)
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We suppose either gx, 1 = Q(%y, Yn) # g%y OF gVns1 = Q(Vn, ®n) # Yy, Otherwise
we obtain directly the coupled coincidence point of Q and g.

By Lemma 6.4.1, for £ > 0, there exists r > f such that ¢ (¥) <{.

Now, using (6.4.1) and (6.4.19), we get

Fg%n +11Q(M'y) (f) 2 ngl’l +1 ;Q(%,Y) (d) (r)) = FQ(%H Yn )'Q(%Y) (d) (f))

= [ngn,g%(f)'ngn,gy(f)]%' (6.4.20)

Letting n —» oo in (6.4.20) and using (6.4.16) and (6.4.17), we get Fy,, og)(6) = 1,
hence, we get Fy,, qpy) (D) = 1 forall £> 0, so that g = Q(x, y). Similarly, we can get
gy = Q(y, %)
Therefore, in both the cases g and Q have a coupled coincidence point in X.
Remark 6.4.1. Though, the contraction used in Theorems 6.4.1 and 6.4.2 are same
but in Theorem 6.4.2, we do not require the pair of compatible mappings and also, the
completeness of the space X has been replaced by the completeness of g(X). Also, in
Theorem 6.4.2, the mapping g is not monotone increasing. Further, Case (b) of
Theorem 6.4.2 not only relaxes the continuity assumption of the mapping Q but also
relaxes the continuity hypothesis of the mapping g which has not been relaxed in Case
(b) of Theorem 6.4.1.

In view of Remark 6.4.1, we can conclude that Theorem 6.4.2 improves
Theorem 6.4.1.

6.5 IMPROVEMENT OF A COUPLED COINCIDENCE POINT RESULT IN
G-METRIC SPACES

In this section, using the technique discussed in section 6.2, we generalize
Theorem 5.3.1.

Recall that, as in Definition 5.1.1, let = denote the class of functions go: R* x R*

— R* satisfying: ©  lim (£, €,) >0 forall (¥, ¥,) € (R*)? with ¥; + ¥, >0,
(£1,€2)>(r,72)

Theorem 6.5.1. Let (X, <, G) beaPOGMS and F: X X X — X, g: X — X be the
mappings. Suppose there exist some g € = and an ADF r such that for all I, m, n, u,

v, w € X with gw < gu < gl and gm < gv < gn, we have

- (G(F(l,m), F(u,v), F(w,n)) + G(F(m,D), F(v,u), F(n,w)))
2

<m (G(gl,gu, aw) J;G(gm,gv, gn)) _ SO(G(gl, gu, gw), G(gm, gv, gn)). (6.5.1)
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Assume F(X X X) € g(X), F has MgMP and (g(X), G) or (F(X x X), G) is complete.
Suppose either
(@) F and g both are continuous, or (b) X assumes Assumption 2.1.7.

If X has the property (P2), then, F and g have a coupled coincidence point in X.
Proof: As in the proof of Theorem 5.3.1, the sequences {gx,} and {gy,} defined as
under are Cauchy sequences:

en, = F(%,_1, yn—1) and gy, = F(y,_1, ®,—1), forall n > 0, (6.5.2)
and gny < grgqq and gy, Z gYnqa (6.5.3)
W.L.O.G,, let (g(X), G) be complete, then, there exist », y in X such that {gx,}
converges to gx and {gy, } converges to gy. Then, by Proposition 2.3.3, we get

lim G(gx,, gx,, ®) = limlimG(gx,, ®, %) =0, (6.5.4)
n—o N —oon —00

and limG(gyn, gyn, y) = imG(gyn, y,y) = 0. (6.5.5)
Let assumption (a) holds.
Now, using Lemma 6.1.1, there exists A € X such that g(A) = g(X)and g: A - X is
one-to-one function. Define the mapping H: g(A) X g(A) = X by
"H(ga, gb) = F(a, b) (6.5.6)

for all ga, gb in g(A). As g is one-to-one on A, so 'H is well-defined. Now, by (6.5.4),
(6.5.5) and (6.5.6), we get

limH(gxn, gyn) = ImEQe,, yn) = limga, = g, (6.5.7)

lim'H(gyn, gxn) = limE(yy, %,) = limgy, = gy. (6.5.8)
As F and g are continuous, so 'H is also continuous. Now, using (6.5.7), (6.5.8) and
the continuity of 'H, we get

‘H(gx, gy) = g and H(gy, g») = gy. (6.5.9)
Using (6.5.6) and (6.5.9), we get

F(x,y) = geand E(y, %) = gy.
Now, let assumption (b) holds.
Since the non-decreasing sequence {gx,} converges to gx and the non-increasing
sequence {gy, } converges to gy, by assumption, we get

gx, < grand gy < gy, forn > 0.
Then, by (6.5.1), we get

- (G(F(%.y). Dn+1, 2 +1) + GEY ), gyn+1, gyn+1))
2

=1 (G(F(%.}’). F(xn,yn), FOtn,yn )) + G(F(y: %), E(yn %n), E(yn Mn)))
2
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< (G(gx, 2, S ) ;‘G(ng gangYn)) _ ‘@(G(gx' o, g%n)' G(gy; gy, gyn))

(G(g%. otn, g4n) +G(gy, gyn, gyn))
> .

<7

Now, using the properties of 7z, we obtain that

GEY), gt +1, 2%n+1) + GE(YM), g¥n+1, 8¥n+1) < Glgn, gnn, gn) + G(gy, gyn, gyn) (6.5.10)
> < > . 5.

Letting n —» o (6.5.10), we get G(F(%,y), g, gn) < 0 and G(¥(y, %), gy, gy) < 0,
which implies G(F(x,y), g», gv) = 0 and G(¥(y, »), gy, gy) = 0, so that F(x, y) = g»
and E(y, %) = gy.

Remark 6.5.1. Though, the contraction used in Theorems 5.3.1 and 6.5.1 is same but
in Theorem 6.5.1, we do not require the pair of commuting mappings and also, the
completeness of the space X has been replaced by assuming the completeness of the
range space of any one of the mapping g or E. Also, case (b) of Theorem 6.5.1 relaxes
the continuity hypothesis of both the mappings F and g.

Hence, Theorem 6.5.1 generalizes Theorem 5.3.1.

6.6 REMARKS ON SOME RECENT PAPERS CONCERNING COUPLED
COINCIDENCE POINTS

In this section, we rectify some gaps and omissions in the works of Alotaibi and
Alsulami [68], Turkoglu and Sangurlu [169].

Alotaibi and Alsulami [68] established the existence of coupled coincidence
points under Theorem 2.1.20, which is again stated below (for the sake of
convenience):

Theorem 6.6.1 ([68]). “Let (X, <) be a partially ordered set and suppose there is a
metric d on X such that (X, d) is a complete metric space. Let F: X X X — X be a
mapping having the mixed g-monotone property on X such that there exist two
elements %, yo € X with gng < F(xg, yo) and gy, = F(yg, %¢). Suppose there exist

@ € ®@; and Y € ¥ such that

@ (@(F (%), F (u,v))) < %go(da(gx, gu) +d(gy, gv)) — ¥ (d(g%, gu);d.,(gy, gv))’
(6.6.1)
for all %, y, u, v € X with gx > gu and gy < gv. Suppose F(X x X) € g(X), g is

continuous and compatible with F and also suppose either
(@) F is continuous, or (b) X has the following property:

(i) if a non-decreasing sequence {x,} = x, then »,, < x, for all n;
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(i) if a non-increasing sequence {y _} —y, then y <y, forall n.

Then, there exist %, y € X such that F(», y) = gx and F(y, ») = gy”.

Remark 6.6.1. The proof of Theorem 6.6.1 (for proof see [68], Theorem 3.1, page 7,
line 12) uses the fact that g is monotone increasing. The hypotheses of this theorem
must also include this fact. Also, the statement of Theorem 6.6.1 must include the
mapping ‘g’ which is missing. The correct statement of Theorem 6.6.1 should now
read as follows:

Theorem 6.6.2. Let (X, <) be a partially ordered set and suppose there is a metric d
on X such that (X, d) is a complete metric space. Let F: X X X - X and g: X = X be
two mappings such that F has the mixed g-monotone property on X and there exist
two elements »g, yo € X with gxg < F(xq, yo) and gy, = F(yo, #o). Suppose there

exist ¢ € @; and Y € ¥ such that

@ (4(F(% y), F (u,v))) < %ga(da(gx, gu) + d(gy, gv)) — (d(g%, gu);rd.,(gy. gV))’

for all %, y, u, v € X with gx > gu and gy < gv. Suppose F(X X X) € g(X), g is

continuous, monotone increasing and compatible with F and also suppose either
(@) F is continuous, or (b) X has the following property:

(1) if a non-decreasing sequence {x,} = x, then »,, < x, for all n;

(i) if a non-increasing sequence {y_} -y, then y <y, forall n.

Then, there exist %, y € X such that F(x, y) = gx and E(y, %) = gy.

Afterwards, Turkoglu and Sangurlu [169] using the approach of Hussain et al.
[167] established the existence of coupled coincidence points using contraction (6.3.1)
under the following result:

Theorem 6.6.3 ([169]). “Let (X, <) be a partially ordered set and suppose there exists
a metric d on X such that (X, d) is complete metric space. Let (X, <) be a partially
ordered set and suppose there exists a metric d on X such that (X, d) is complete
metric space. Let F: X X X — X be a mapping having the mixed monotone property
on X and there exists two elements »,, yo in X such that %, < F(%g, yo) and y, >

F(%g, yo). Suppose that F, g satisfy

® (@(F(%, y), F (u,v))) < %(p(dj(g%, gu) +d(gy, gv) — ¥ (d(gx, gu);rQ(gy.gv)),

forall », y, u, v € X with gn < gu and gy > gv, F(X X X) € g(X), g(X) is complete

and g is continuous.

Suppose that either
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(@) Fiscontinuous, or (b) X has the following property:
(i) if a non-decreasing sequence {x,} = x, then »,, < x, for all n;
(i) if a non-increasing sequence {y _} —y, then y <y, forall n.
Then, there exist %, y € X such that gx = F(x, y) and gy = F(y, %)”.
Remark 6.6.2. (i) It is a well known fact that the coupled coincidence point results for
the mappings F: X X X — X and g: X — X uses the hypotheses that gx, < F(x%g, yo),
gvo = F(yo, %) and F must have mixed g-monotone property. However, the statement
of Theorem 6.6.3 includes the incorrect hypotheses that “xg < F(%g, Vo), Vo =
F(yo, ®0)” and “the mapping F has the mixed monotone property”. The hypotheses of
this result must include the correct facts.
(i) Further, the statement of Theorem 6.6.3 includes the completeness of the space X
as well as the completeness of the range subspace g(X). However, the approach used
in [169] for proving Theorem 6.6.3 only requires the completeness of the range
subspace g(X) and not the completeness of the space (X, d).
(iii) Finally, the statement of Theorem 6.6.3 has repeatedly used the hypothesis: “Let
(X, <) be a partially ordered set and suppose there exists a metric d on X such that
(X, d) is complete metric space”. This must be corrected. The statement of Theorem
6.6.3 should be corrected and read as follows:
Theorem 6.6.4. Let (X, <) be a partially ordered set and suppose there exists a metric
d on X such that (X, d) is a metric space. Let F: X x X = X and g: X — X be two
mappings such that F has the mixed g-monotone property on X and there exists two
elements »g, yo in X such that gxy < F(xg, yo) and gy, = F(xq, yo). Suppose there

exist ¢ € @4, Y € ¥ such that

¢ (@(F(%, y), F (u,v))) < %(p(dj(g%, gu) + d(gy, gv)) — ¥ (d(gx, gu);rQ(gy, gv)),

for all %, y, u, v € X with gx < gu and gy > gv, F(X X X) S g(X), g(X) is complete
and g is continuous. Suppose that either

(a) Fiscontinuous, or (b) X has the following property:
(1) if a non-decreasing sequence {x,} = x, then x,, < x, for all n;
(ii) if a non-increasing sequence {y_} -y, then y <y, forall n.
Then, there exist %, y € X such that g = F(x, y) and gy = F(y, %).
Remark 6.6.3. We note that Theorem 6.6.4 is actually Theorem 6.1.2.
In their work, Alotaibi and Alsulami [68] also claimed to establish the uniqueness

of coupled coincidence points obtained under the hypotheses of Theorem 6.6.1 by
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adding the additional assumption, Assumption 3.3.1, which is again given below (for
convenience):
Assumption 3.3.1 ([41, 55]). “For every (%, y), (z, t) in X X X, there exists a (u, v) in
X X X that is comparable to (x, y) and (z, t)”.

To obtain the uniqueness of coupled coincidence points, Alotaibi and Alsulami
[68] proved the following result:
Theorem 6.6.5 ([68]). In addition to the hypotheses of Theorem 6.6.1, suppose that
Assumption 3.3.1 holds. Then, F has unique coupled coincidence point.
Proof. By Theorem 6.6.1, there exists coupled coincidence points of F and g. Suppose
that (%, y) and (z, t) are coupled coincidence points F and g, that is, gx = F(x, y), gy =
F(y, ») and gz = F(z, 1), gt = E(t, 7). To show that

gn = gzand gy = gt. (6.6.2)

By assumption, there exists (u, v) in X x X that is comparable to (x, y) and (z, t).
Define the sequences {gu,} and {gv,} as uy = u, vo = v and gu,,1 = F(u,, v,),

evn4+1 = E(vy, uy) for all n. Since (u, v) is comparable with (x, y), we assume that

(¢, y) = (U, v) = (uo, vo). (6.6.3)
By mathematical induction, it is easy to obtain
(%, y) = (u,, v,) forall n. (6.6.4)

By (6.6.1) and (6.6.4), we have
P(d(gx, gunt1)) = @(d(FE(, y), F(uy, vi)))

1 (g, gun) »8Vn
<5 0(dlgx gup) + d(gy. gv,)) — o (FEERTEEED) - (6.65)

Similarly,
@(d(gy, gvn+1)) = @(dFE(Y, %), E(vn, uy)))

1 (gy, gvn) +d(gn gun)
<> p(d(ey. gvi) + d(gn, guy)) — p (L TLEEL)) - (6.6.6)

By (6.6.5), (6.6.6) and the property (¢3) of ¢, we get

@(d(gn, guni1) + d(gy, gvini1))
< @(d(gn, gun41)) + (d(gy, gvn+1))

(gx, gun) , 8V
< p(d(gx. guy) + d(gy, gv,)) — 2y (L AEEW) - (66.7)

Using the property of v, inequality (6.6.7) implies that

@(d(gx, gun+1) + d(gy, gvn+1)) < @(d(gx, gu,) + d(gy, gva)),
which implies on using the monotone property of ¢, that

d(gn, gup41) + d(gy, g2vn41) < d(gn, gu,) + d(gy, gvn),
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so that {d(gx, gu,) + d(gy, gv,)} is a decreasing sequence. Hence, there exists some

a > 0 such that lim [d(gx, gu,) + d(gy, gv,)] = a. We claim that a = 0. Suppose, on

the contrary that a > 0. Letting n — oo in (6.6.7) and using the property of i, we get

0() < ¢(a) - 2 limy (‘Kg”' gn) ;”Kgy' gv“)) < ¢(a), a contradiction.
n—oo

Therefore, a =0, so that lim [d(gx, gu,) + d(gy, gv,)] = 0, which implies that

limd(gx, gu) =0 = limd(gy, gva). (6.6.8)
Similarly, we can get

limd(gz, gun) = 0= limd(gt, gvi,). (66.9)
By (6.6.8) and (6.6.9), we obtain that g» = gz and gy = gt, that is, we proved (6.6.2).
Remark 6.6.4. (i) Note that the inequalities (6.6.5) and (6.6.6) do not follow by using
(6.6.4) in (6.6.1), since (6.6.4) asserts that (%, y) > (u,, v,) for all n. But for (6.6.5) to
hold, we require that (gx, gy) > (gu,, gv,).- Similar is the case for the inequality
(6.6.6).
(if) The conclusion of Theorem 6.6.5 is that, F and g have a unique coupled
coincidence point. However, the proof only shows that gx = gz and gy = gt, where
(%, y) and (z, t) are assumed to be coupled coincidence points of F and g. In order to
reach the conclusion, it is necessary to show that x =z and y =t.

In view of Remark 6.6.4, we need to rectify Theorem 6.6.5. For this, we require
the following results, stated again (for convenience):
Lemma 3.2.1. “The pair of compatible mappings F: X X X - X and g2 X - X
commutes at their coincidence points”.
Assumption 3.2.1 ([59]). “For every (%, y), (z, t) € X X X, there exists a
(u, v) € X x X such that (F(u, v), E(v, u)) is comparable to (E(x, y), E(y, »)) and (E(z,
B, ¥(t, 2))”.
We now rectify Theorem 6.6.5 as follows:

Theorem 6.6.6. In addition to the hypotheses of Theorem 6.6.1, suppose that
Assumption 3.2.1 holds. Then, F and g have a unique coupled coincidence point.
Moreover, the mappings F and g have a unique coupled fixed point.
Proof. By Theorem 6.6.1, there exist coupled coincidence points of F and g. Let (x, y)
and (z, t) be coupled coincidence points of F and g, so that gx = F(x, y), gy = E(y, %)
and gz = F(z, 1), gt = E(t, 7). We show that

gn = gzand gy = gt. (6.6.10)
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By Assumption 3.2.1, there exists a (u, v) € X x X such that (F(u, v), E(v, u)) is
comparable with (F(x, y), E(y, %)) and (F(z, t), E(t, 7)). Take uy = u, vy = v and
choose uy, vq € X so that gu; = F(ug, vg), gvq = F(vy, ug). Then, inductively we can
define sequences {gu,} and {gv,} such that gu,,; = F(u,, v,) and gv,41 = F(v,,

u,) for all n. Further, set %y =%, yo =V, 7, = 2, top = tand on the same way, define the
sequences {gxy }, {gyn} and {gz, }, {gt,} such that gx,q1 = F(%n, yn), g¥n+1 = F(Vn,
%y)and gz, =F(z,, ty), gtny1 = F(t,, z,) foralln = 0.

Since (F(u, v), F(v, w)) = (guy, gv1) and (F(x, y), E(y, %)) = (gn1, gy1) = (gx, gy) are

comparable, then gu; > gx and gv; < gy. Now, it is easy to obtain that (gu,, gv,)

and (gx, gy) are comparable, so that gu,, > gx and gv, < gy for alln > 1. By (6.6.1),
@(d(gn, gun 1)) = @(dFE(, Y), E(un, vi)))
1 (g« gun) + d(gy, gvn)
< p(d(gx. gu,) + d(gy, gvy)) — p (LA - (66.11)

which is inequality (6.6.5).

Similarly, we can obtain
P(d(gy, gvn+1)) = @(d(E(Y, %), F(vy, up)))
<5 0(d(ey, gv) + dlge, guy) -y (REETERE), - (6612)

which is inequality (6.6.6).

Now, following the proof of Theorem 6.6.5, we can obtain that (6.6.10) holds.
Since (x, y) is a coupled coincidence point of the pair (F, g) of compatible mappings,

by Lemma 3.2.1, it follows that

ggn = gF(%, y) = F(gn, gy) and ggy = gF(y, ») = F(gy, g»). (6.6.13)
Denote gx =, gy = s, then, by (6.6.13), we get
gr = F(¢, s) and gs = E(s, r). (6.6.14)

Thus, (x, s) is a coupled coincidence point of F and g. Then, by (6.6.10) with z = and
t =s, it follows that

gr =1, gS=Ss. (6.6.15)
By (6.6.14) and (6.6.15), r = gr = F(t, s) and s = gs = F(s, r). Therefore, (r, s) is the
coupled common fixed point of F and g. Hence, we obtained a coupled common fixed
point of F and g. Also, if (e, f) is any coupled common fixed point of F and g, then, by
(6.6.10), we have e = ge = gr = r and f = gf = gs = s. This proves the uniqueness of

coupled common fixed point of F and g.
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Remark 6.6.5. Theorem 6.6.6 not only proves the uniqueness of coupled coincidence
point of F and g but also ensures the existence and uniqueness of coupled common
fixed point of F and g.

Similarly, on adding the Assumption 3.3.1 to the hypotheses of Theorem 6.6.3,
Turkoglu and Sangurlu [169] asserts the existence and uniqueness of coupled fixed
point for F and g under the following result:

Theorem 6.6.7 ([169]). In addition to the hypotheses of Theorem 6.6.3, suppose that
Assumption 3.3.1 holds, then, F and g have a unique coupled fixed point.

Turkoglu and Sangurlu [169] had done the same mistakes in the formulation of
Theorem 6.6.7 as done by Alotaibi and Alsulami [68] in Theorem 6.6.5. We note that
these mistakes and errors can be rectified by redefining Theorem 6.6.7 as follows:
Theorem 6.6.8. In addition to the hypotheses of Theorem 6.6.4, suppose that
Assumption 3.2.1 also holds. If the pair (F, g) is compatible, then, F and g have a
unique coupled common fixed point.

Proof. Following the proof of Theorem 6.6.6, the result holds immediately.

6.7 AN ERROR IN A RECENT PAPER IN PGM-SPACES

In this section, we point out and rectify an error in a recent paper of Zhu et al.
[120] in PGM-spaces.

Zhu et al. [120] called PGM-space as Menger PGM-space. The main result given
by Zhu et al. [120] is as follows:
Theorem 6.7.1 (Zhu et al. [120]). “Let (X, G*, A) be a complete Menger PGM-space
such that A is a t-norm of H-type and A > A,,, where A, being the product norm. Let
@: R™ > R* be a gauge function such that ¢ ~1({0}) = {0} and X_; " (f) < o for
any £>0. Let F: X X X = X and g: X — X be two mappings such that

1
G;(%.y), E(p,q), F(hD) (‘P(f)) = [A(G;%, gp, gh (f)'G;y, gq, gl (f))F (6.7.1)
for all %, y, p, g, h, I in X, where F(X X X) € g(X), g is continuous and commutes
with F. Then, there exists a unique u in X such that u = gu = F(u, u)”.
Zhu et al. [120] gave the following example in support of Theorem 6.7.1:
Example 6.7.1 (Zhu et al. [120]). Suppose that A = A,. Then A, is a t-norm of H-

_ G(ny,2)

type. Define a function G*: X X X x X » R* by G, ,(f) = {i t fc_ = 8 for all
) S )

%, Y, zinX, where G(x, Y, z) =[x —y| + |y — z| + |z — .
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Define the function ¢: R* — R* by ¢(f) = 2 for £ € R™ and the mappings
F:X XX —>Xandg: X = X by
F(x,y)=n+y and gx=4xforx,yinX.

Remark 6.7.1. Zhu et al. [120] claimed that Example 6.7.1 supports Theorem 6.7.1.
In Theorem 6.7.1, the t-norm A is a t-norm of H-type with A = A, but in
Example 6.7.1, the t-norm is A,, which, in fact, is not a t-norm of H-type. Hence,
Example 6.7.1 is incorrect.

We now construct an Example in support of Theorem 6.7.1 as follows:
Example 6.7.2. Let X = R™ and A = A, where A, is the minimum t-norm which is a
H-type t-norm with A > A,,. Define G™: X x X x X = A* by

. (s t<0,
Crey.2(8) = {e—max{I%—yl.ly—zl,lz—%l}/f’ £>0,

forall %, y, zin X. Then, (X, G*, A,,) is a complete Menger PGM-space.

Define F: X x X = X and g: X — X by F(x, y):1andgx:23ﬂforall %,y in X.
Clearly, g is continuous and F(X x X) < g(X). Also, the pair (F, g) is commutative,
since for %, y in X, we have gF(x, y) = 1 = F(gx, gy) and gF(y, ») =1 = F(gy, g»). Let
@: Rt > R* be any gauge function with ¢ =1 ({0}) = {0} and Y*_; ¢"(f) < o for any
t>0.

Now, for %, y, z, p, g, | in X and £ > 0, we verify that (6.7.1) holds, that is

1

G;(x.y), E(p,q), F(hD) (‘P (f)) = [A (G;(_ ep.eh (), G;y. gq, ¢l (f))]i'

For each x, y, z, p, g, | in X and £ > 0, we have Gggey) r(p.q), ke (@(0) =
G’{,Ll((p(f)) = 1, so that inequality (6.7.1) holds. Hence, all the conditions of
Theorem 6.7.1 are satisfied. Now, by Theorem 6.7.1, g and F have a uniqgue common
fixed point in X, which is 1 in the present illustration.
Next, we give one more example in support of Theorem 6.7.1.

Example 6.7.3. Let X = R™ and A = A, where A,, is the minimum t-norm which is a
H-type t-norm with A > A,. Define H: R* - R* and G": X x X x X - A*
respectively by

HO={) 120 ad  Gi.(0= EAN

af+|u—y|+ly —z|+[z—«|

, otherwise,
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for all %, y, z in X with @ > 0. Then, (X, G, A,,) is a complete Menger PGM-space.

3B2+Bx
20 +2x%

Define the mappings F: X X X - X and g: X = X by F(x, y) = and g» = for

%,y in X and g is in R is fixed. Also, the pair (F, g) is commutative, g is continuous
and F(X x X) € g(X). Let ¢: R™ - R™ be any gauge function with ¢~1({0}) = {0}
and Y74 @"(f) < oo forany £ > 0.

Now, for», Yy, z, p, g, | in X and £ > 0, we verify that the inequality (6.7.1) holds.

For each %, y, z, p, g, | in X and £ > 0, we have Gig.y) r(p.q), rnn (@) =
Gp 5 (@(0) = 1, so that the inequality (6.7.1) holds. Therefore, all the conditions of
Theorem 6.7.1 are satisfied. Then, on applying Theorem 6.7.1, B is the unique

common fixed point of F and g.

6.8 SOME ERRORS IN A RECENT PAPER ON WEAKLY RELATED
MAPPINGS

Recently, Singh and Jain [170] obtained coupled fixed points for non-decreasing
mappings in POCMS using a partial order induced by some appropriate function ¢. In
this section, we point out and rectify some errors in [170].

Singh and Jain [170] gave the following notions:
Definition 6.8.1 ([170]). Let (X, <) be a poset and F: X x X — X, g: X = X be two
mappings. Then,

Q) F is called non-decreasing, if
“for (1, y1), (2, ¥2) € X X X and »; < %z, y1 <y, implies F(xy, y1) < F(¢z, y2)7

(i) the pair (E, g) called weakly related, if
“F(x, y) < gF(x, y) and gn < F(gx, gy), also E(y, %) < gF(y, ») and gy < ¥(gy, g»)
forall (%, y) € X x X
Lemma 6.8.1 ([170]). Let (X, d) be a metric space and ¢: X — R a map. Define the
relation “<” on X as follows:

“u=y iff dey) < o) — ¢()”.

Then “<” is a partial order on X, called the partial order induced by ¢.
Theorem 6.8.1 ([170]). “Let (X, d) be a complete metric space, ¢: X — R be a
bounded from above function and “<” be the partial order induced by ¢. Let
F: X x X — X be a non-decreasing continuous mapping on X such that there exist two
elements %, yo in X with %y < F(%, yo) and yy < F(yy, %¢). Then, F has a coupled

fixed point in X
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Theorem 6.8.2 ([170]). “Let (X, d) be a complete metric space, ¢: X — R be a
bounded from above function and “<” be the partial order induced by ¢. Let
F: X X X = X and g: X = X be two continuous mappings such that the pair (F, g) is
weakly related on X. If there exist two elements %, y, in X with %y < F(x, y,) and
Vo < F(yg, %), then F and g have a common coupled fixed point in X"

Singh and Jain [170] gave the following example in support of Theorem 6.8.1:

Example 6.8.1 ([170]). Let X = R* and d(x, y) = [» — y|, then (X, d) is a complete
metric space and “<” is the usual ordering. Define ¢p: X — R as ¢(x) = 2x and
F:XXX->XasF(y)=x(1l+y) Take xy =1andy, =0.
Remark 6.8.1. Singh and Jain [170] claimed that Example 6.8.1 supports
Theorem 6.8.1. In Theorem 6.8.1, the function ¢ is assumed as bounded from above.
But in Example 6.8.1, the function ¢: X (= R*) - R defined by ¢(x) = 2x for » in X,
is not bounded from above. Also, the order relation “<” must be induced by ¢. But in
Example 6.8.1, it is considered to be the usual ordering.

Now, we rectify Example 6.8.1 as follows:

Example 6.8.2. Let X = [0, 1] and d(x, y¥) = |»x —y|, then (X, d) is a complete metric
space. Define ¢: X — R by ¢(x) = —2x for » in X. Let the relation “<” on X be
defined as follows:

vy iff dGey) S @(y) - d(0)”
Then, “<” is a partial order induced by ¢. Clearly, ¢ is bounded from above on X.

Define F: X X X = X by F(x», y) = @ for all %, y in X. Then, F is non-decreasing

on X. Consider %y = 0 and y, = 1, then F(xq, yo) = @ = 0 and E(yg, %g) =

@ =1 Finally, we claim that %, < F(x, yo) and yy < F(yo, %g)-

2
Now, %o < (%o, yo) iff d(xo, F(0, ¥0)) < ¢(F(x0, ¥0)) — p(%0)
iff  d(0,0)=0 < ¢(0) — b(0) = 0, which is true.
Also, yo < E(yo, %) iff d(yo, F(y0, %0)) < ¢(F(y0. %0)) — ¢ (¥o)
o d1=e) e
iff 2 <(-2)(5) - (~2)(2) = 1, which is again true.
Therefore, all the conditions of Theorem 6.8.1 are satisfied. Now, by Theorem 6.8.1,

(0, 0) is a coupled fixed point of E.
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N | =

Remark 6.8.2. In Example 6.8.2, since 1 < - but 1 £ % so the partial order “<”

induced by ¢ is not the usual ordering “<”.

Singh and Jain [170] supported Theorem 6.8.2 by using the following example:

Example 6.8.3 ([170]). Let X = R* and d(x, y) = |[»x —y|, then (X, d) is a complete
metric space and “<” is the usual ordering. Define ¢p: X — R as ¢(») = 2» and
F:X XX - Xandg: X = X asF(x, y) ==+ [sin(»y)| and g = 5x. Take %5 =1 and
yo = 0, then F(xy, yo) = 1 and E(yy, %) = 0, so that %y < F(xg, yo) and y, <
F(yo, %o)- Also, the pair (F, g) is weakly related.
Remark 6.8.3. Singh and Jain [170] claimed that Example 6.8.3 supports
Theorem 6.8.2. In Theorem 6.8.2, the function ¢ is assumed as bounded from above.
But in Example 6.8.3, the function ¢: X (= R*) — R defined by ¢(x) = 2x for » in X,
is not bounded from above. Also, the order relation “<” must be induced by ¢. But in
Example 6.8.3, it is considered to be the usual ordering.

Now, we rectify Example 6.8.3 as follows:

Example 6.8.4. Let X = [0, 1] and d(x, y) = |»x —y]|, then (X, d) is a complete metric
space. Let ¢: X — R be the mapping defined by ¢(x) = —2x» for » in X. Let the
relation “<” on X be defined as follows:

vy iff dGey) S @ly) — P00
Then, “<” is a partial order induced by ¢. Clearly, ¢ is bounded from above on X.

1 3 2 2
Also, here 1 < 2> SO ‘<” is not the usual order “<”.

Define F: X x X - X and g: X — X by F(x, y):@and g%zgfor%,yin X. Now,

= 204y - _ x(2+4y) _y(1+%) ~ _
gl y) = %’ Flgn gy) = FG%) - M(16y  gE(y, %) =2 8 =, F(gy, gx) = 5(32_”5‘) B

%fom,yinx.

We now show that the pair (F, g) is weakly related.
For, we consider the following:
i) F(x, y) < gF(x, y) iff d(F(x, y), gF(%, ¥)) < @(2F(%, y)) — d(F(x, )

- < (42) - o5

iff ®(1+y) <— ®(1+y) + ®(1+y)
8 4 2
iff ®(1+y) < %(1+y)’
8 4

which is true for », y in X.
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i) g <F(gw, gy) iff d(gx, F(gx, gy)) < ¢(F(gn, gy)) — ¢(gn)

. L ®(2+y) ®(2+y) _ %
Iff 2 16 S d) ( 16 ) d) (2)
iff |6x—xy < - ®(2+y) +X
16 8
iff |6“1_6“y < 6”;”, which is true for x, y in X.

Similarly, we can get E(y, %) < gF(y, ») and gy < F(gy, g») forall », y in X.
Therefore, the pair (F, g) is weakly related.
Let Ao = O, Yo = 1, then F('KO, yO) =0 and F(yO, 'K,O) = i

Finally, we verify that %y < F(xg, yo) and yo < F(yo, %9)-

For, %o < F(xo, yo) 1ff d(x0, F(xo, y0)) < p(F (%0, ¥o)) — d (%)

iff d(0, 0) < ¢(0) — ¢(0), which is true.
Also Yo < F(yo, %0) iff d(yo, F(yo, %0)) < ¢(F(yo, %0)) — b(¥o)

a1 <o) -ow

iff 2<(-2(3) - (2@

iff =< —2+2=2 which s true.

Therefore, all the conditions of Theorem 6.8.2 are satisfied. By Theorem 6.8.2, (0, 0)
is the common coupled fixed point of the pair (F, g).
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In this chapter, we prove some fixed point results and obtain some corresponding
coupled fixed point results in POMS. Further, some results for mappings lacking
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CHAPTER - VII
FIXED POINT AND COUPLED FIXED POINT RESULTS

In this chapter, we prove some fixed point and coupled fixed point results in
POMS. The results obtained are generalizations of a number of existing works. This
chapter consists of four sections. Section 7.1 presents some already existing
contractions in POMS. In section 7.2, we prove some fixed point results for
generalized weak (¥ > ¢) — contraction mappings. Section 7.3 consists of the
application of the results established in section 7.2 to coupled fixed point results. In
section 7.4, we establish some coupled coincidence point and coupled common fixed
point results for the pair of mappings lacking MgMP.

Author’s Original Contributions In This Chapter Are:
Theorems: 7.2.1,7.2.2,7.2.3,7.2.4,7.25,7.3.1,7.3.2,7.4.1,7.4.3.
Definitions: 7.2.1, 7.2.2.

Corollaries: 7.2.1,7.2.3,7.4.1.

Examples: 7.2.1,7.2.2,7.4.1,7.4.2.

Remarks: 7.2.1,7.2.2,7.3.1,7.3.2,74.1,7.4.2,74.3,7.4.4,7.4.5.

7.1. SOME RECENT CONTRACTIONS

In this section, we mention some important contractions that have been used by
different authors to obtain results in fixed point theory and coupled fixed point theory.

For the sake of convenience, we also cite the serials of theorems and the relevant
contractions used in the previous chapters of the present work.

Let (X, <, d) beaPOMS and «, y, u, v € X. Let h, g be the self mappings on X.
(1) Ran and Reurings [40] (Theorem 2.1.3, contraction (2.1.3));

Nieto and Lopez [41] (Theorem 2.1.4, contraction (2.1.6)):

d(hx, hy) < kd(x, y), for » >y, where 0 <k < 1; (7.1.2)
(i1) Harjani and Sadarangani [47] (Theorem 2.1.8, contraction (2.1.9)):
d(hx, hy) < d(x, y) - P(d(x, y)), (7.1.2)

for » =y, where y: R* —» R* is continuous and non-decreasing function such that ¢
is positive in R*\{0}, ¥(0) =0 and %imlp(f) = o0;

(i) Harjani and Sadarangani [48] (Theorem 2.1.9, contraction (2.1.10)):
P(d(hx, hy)) < P(d(x ) - d(d(x, Y)), (7.1.3)
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for x =y, where ), ¢: Rt - R* are ADF;
(iv) Amini-Harandi and Emami [53] (Theorem 2.1.13, contraction (2.1.2)):
d(hx, hy) < B(d(=, y)) d(x. y), (7.1.4)
for» =y, where g € R ={B| B: R* - [0, 1), B(£,) = 1 implies £, - 0};
(v) Ciri¢ et al. [52] (Theorem 2.1.12, contraction (2.1.13)):

o(d(gn gy)), p(d(gx, 1)), ¢(d(gy,hy))
d;(h%, hy) < max © (d,(gx, ay)+d(gy, hu)) ) (715)
2

for g» = gy,where ¢: Rt - R is a continuous function with ¢(f) < f for each £ > 0.
In the context of coupled fixed point theory, for the mappings F: X X X - X

and g: X — X, the following contractions have been enjoyed by various authors:

(vi) Bhaskar and Lakshmikantham [55] (Theorem 2.1.14, contraction (2.1.14)):

d(ECe, y), E(u, v)) < E [d(x, u) +d(y, v)], where k € [0, 1); (7.1.6)
forallx >uandy < v.
(vii) Harjani et al. [58] (Theorem 2.1.15, contraction (2.1.15)):
P(d(EC, ), F(u, v))) < p(max{d(x,u), d(y, v)})
— ¢(max{d(x»,u), d(y, v)}), (7.1.7)
forall x > uand y < v, where ¢, ¢: Rt - R* are ADF;
(viii) Berinde [149] (Theorem 3.1.1, contraction (3.1.1)):
d(ECe, ), E(u, v)) + d(E(y, %), F(v, ) < Kk [d(x, u) + d(y, V)], (7.1.8)
forallx >uandy < v, wherek € [0, 1),
(ix) Rasouli and Bahrampour [70] (Theorem 2.1.23, contraction (2.1.22)):
d(F(e, y), F(u, v)) < B(max{d(», u), d(y, v)}) max{d(», w), d(y, v)},  (7.1.9)
forallx > uandy < v, where § € R;
(x) Choudhury et al. [56] (Theorem 2.1.18, contraction (2.1.17)):
Y(AFE y), E(u, v))) < (max{d(gx, gu), d(gy, gv)})

— ¢(max{d(gx, gu), d(gy, gv)}), (7.1.10)
for gx > gu, gy < gv, where i, ¢: R* —» R* be such that y is an ADF and ¢ is
continuous and ¢(f) = 0 iff £ = 0;

(xi) Jain et al. [159] (Corollary 3.2.1, contraction (3.2.23)):

d(F(x, y), E(u, v)) + d(F(y, %), F(v, u)) < k [d(gx, gu) +d(gy, gv)].  (7.1.11)
for g > gu, gy < gv, where k € [0, 1);
(xii) Luong and Thuan [69] (Theorem 2.1.21, contraction (2.1.20)):
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dECe, ), E(U, v)) < a d(x, u) + B d(y, v)

dFGoy), w), d(E(y, v), %),}
dF (o y), %), dE(u, v), W)’

forrnzuandy < v,wherea, B, L =2 0witha +f <1,
(xiii) Karapinar et al. [57] (Theorem 2.1.22, contraction (2.1.21)):
d(F(x, y), E(u, v)) < ¢p(max{d(gx, gu), d(gy, gv)})

dF®,y), gu), dE(, v), g%).}
dFy), g2, dE(u, v), gu) )’

for g» = gu, gy < gv, where . > 0 and ¢: RT - R* is a continuous function with the
condition that ¢(f) < f for all £> 0.

YL min{ (7.1.12)

.3 min{ (7.1.13)

Recently, Haghi et al. [165] proved a lemma given below, which is useful for us
in developing our results:
Lemma 7.1.1 ([165]). Let X be a nonempty set and h: X — X a function. Then there
exists a subset A € X such that h(A) = i(X) and h: A — X is one-to-one.

7.2. GENERALIZED WEAK (3 > ¢) — CONTRACTIONS

In this section, we prove fixed point results for generalized weak (Y > ¢) —
contraction mappings in the setup of POMS. The results obtained are the
generalizations of the works of Ran and Reurings [40], Nieto and Lopez [41], Harjani
and Sadarangani [47], Harjani and Sadarangani [48], Amini-Harandi and Emami [53]
and Ciri¢ et al. [52].

We first introduce the notion of generalized weak (i > ¢) — contraction as
follows:
Definition 7.2.1. Let (X, d) be a metric space. A self mapping h on X is called a
generalized weak (¥ > ¢) — contraction if it satisfies the following condition:

(d(hx, hy)) < M%), (7.2.1)

for %, y € X, where

MG, y) = max{p(dGe ), ¢ (dGe hx)), (d(y, hy)), ¢ (L222EDL - (7.22)
with 1 being an ADF and ¢: R* —» R* a continuous function such that y(f) > ¢(f) for
all £>0.

Lemma 7.2.1. ([171]). If ¥ is an ADF and ¢: RT — R* is a continuous function with
the condition ¥ (f) > ¢(f) for all £ > 0, then ¢(0) = 0.
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We now give our results as follows:
Theorem 7.2.1. Let (X, <, d) be a POCMS. Let h be a non-decreasing and continuous
self mapping on X such that h is a generalized weak (i) > ¢) — contraction mapping
for all %, y € X with x > y. If there exists »xy € X such that %, < hx, then h has a
fixed point.
Proof. Since h is non-decreasing, by induction, for n > 0, we get
h"%y < h"Txg.
Set %, 11 = hx, = h"x,, so that we have
Ko < g1 (7.2.3)
W.L.O.G., assume », # hx, for all n € N, otherwise %, is a fixed point of the
mapping h for some n € N. We will first show that
d(tna1,%n) < d(®y_1, %), foralln e N. (7.2.4)

For n € N, since %, and %, ., are comparable, by given hypothesis, we get
lp(d)(%n+lr %n)) = w(d)(h%ni h%n—l))
¢(dz(%n: %n—l)): d)(dz(%n' h%n)): ¢(dz(%n—1' h%n—l)):

< max d0tn, Ty —1)+d(en —1, iey)
?( )

M, (7.2.5)

2
where M, = max{e (G, %0-1)), B (d0tn, 1041)), ¢ (L2t} (7.2.6)
Case 1. If M_ = ¢(d(otn, #n-1)),
then Y(d(tns1, %)) < (d(tn,%n-1)) < Y(d(Gtn,%n_1)). Using the monotone
property of ¥, we have d(»,,1,%,) < d(®,, ®,_1)-
Case 2. If M_ = ¢(d(otn, %n41)),
then Y (dGtnr1,%n)) < P(d0tn, %n11)) < Y(dGtn, %a41) ), @ contradiction.

Case3.1fM_=¢ (M)

then Y(dGtyr1,%,)) < @ (W) <y (M) Now, using the monotone

property of 1, it follows that

A0t 1,%) < L0 < 2 (40t 1, 50,) + At Hag1)),
which implies d(%,41,%,) < d(%,-1,%,). Hence, (7.2.4) holds, so that {R,} is a
decreasing sequence, where R, = d(x,,%,+1). Consequently, there exists some R > 0
such that

limR, = R. (7.2.7)

n—oo
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We claim that R = 0.
Using triangle inequality, we have
2 A0t %ar1) < 5 (AGta—1, %) + A0ty H41)).
Hence, by (7.2.4), we obtain that
2 d0ta_1,%011) < 4G, %), (728)

Letting the upper limit as n — oo, we obtain

. 1 .
rlll_IBOSllp Ed}(%n—lf Mn-l-l) = rlll_r)?OdJ(%n—l' %n)- (729)
On setting
limsup > d(sy—1,%n41) = b, (7.2.10)
n—-oo

we can obtain that 0 < b < R. Now, taking the upper limit in (7.2.5) and using
continuity of y and ¢, we get
¢(I!li_r)£10dz(%ni %n—l)): ¢(Illl_r)£10d)(%n' %n+1)):

. ! (7.2.11)
¢(rlll_r)?osup 2 d)(%n—l' Mn-i-l))

w(imq(%n+l' %n)) < max

Now, using (7.2.7) and (7.2.10) in (7.2.11), we get

PR < max{p(R), p(R), ¢(b)} = m (say). (7.2.12)
If m = ¢(b), then Y(R) < ¢(b). If b =0, we have Y(R) < ¢(0) implying that (R) =
0 and hence R = 0, otherwise for b > 0, we have Y(R) < ¢(b) < Y (b) implying that R
< b, a contradiction. If we suppose that R > 0, then we have Y (R) < ¢(R) < ¥(R), a
contradiction. Therefore, R = 0, so that

imd(3,, #y1) = imR, = 0. (7.2.13)
Next, we claim that {», } is a Cauchy sequence. On the contrary, suppose {x,} is not a
Cauchy sequence. Then, there exists an € > 0 and sequences of integers {l(k)},
{m(k)}, such that

m(k) > I(k) > k

with Fi = A0, *m@p) = € fork € N. (7.2.14)
We may further assume that

d(100, #mag-1) < & (7.2.15)
by choosing m(k) to be the smallest number exceeding I(k) for which (7.2.14) holds.
By (7.2.14), (7.2.15) and using triangle inequality, we have
E<F < C!,(%l(lo,%m(k)_l) + d)(%m(k)—b%m(k)) <&+ Cl(Mm(k)—p%m(k,))- (7.2.16)
Taking k — oo in (7.2.16) and using (7.2.13), we have
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lliimfk =& (7.2.17)
Since
£i. = (409, tmao) < d(ago, 200+1) T dGaa+1, %m9+1) + dtmag+1, %mao)
=Rigy + Riao + d(t0o+1,4mao+1),
then, by the monotone property of ¥, we obtain
Y(n) <y (Rl(k) + Ry + d(h%mo»h%mao))’
on letting k — oo and using the continuity of ¥, (7.2.13) and (7.2.17), we have

P(e) <P <11§13010c1(hx1(k), h%m(k))> = limy (d(m109, Mtmao))- (7.2.18)
Also, it can be easily obtained that
Em d(%1 0 m (1<)+1)‘2"61(%m QM09 +1) - (7.2.19)

Since m(k) > I(k), s0 () and » ¢ are comparable, then by given hypothesis, we

can get
Y (d)(%l(k)ﬂ’%m(k)ﬂ))
= (Ao Mamco))
{‘P (dCagor #me0)) ¢ (dCaao. h%l(k))) ¢ (dz(%m(k)' Wt o) ) }

441 iy 1 (1)) +dCm (1)» 1211
o ( : )

< max

(7.2.20)

B ¢ (d-:(”l(k)'”m(k))) ¢ (do(”l(k)'“l(k)ﬂ))'
= max (4.0 %m 19 +1) +d(tm 10 %1 10 +1)
¢ (d;(%m(k)'%m(k)+1)) ¢ ( > )

- max{qb(rk), ¢(Rl(k))' ¢(Rm(k))' (d.,(%l(k)"‘m(k)+1)‘2*‘@(“m(k)'“l(k)+1))}_ (7.2.21)
Taking k = oo in (7.2.21) and using (7.2.18), we get
¥(e) < Jimy (dhigo hmao))

< Jim max (1), ¢ (R, (R ), (122mt022) Lm0 )) |

then, using the continuity of ¢ and (7.2.13), (7.2.17), (7.2.19), we get

P(e) < max{g(e), $(0),9(0), p(e)} = p(e) <P(e),

a contradiction. Therefore, {%,} is a Cauchy sequence. By the completeness of X,

there exists some u € X such that
limx, =u. (7.2.22)

n—oo
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Finally, we show that u is a fixed point of h.
By continuity of h, we have

u= rllif)?o%n+1 = Illi_r)rolol‘mn = hu.
This completes the proof of our result.

Now, by assuming the Assumption 2.1.2 in X, we shall now prove that
Theorem 7.2.1 still holds for a non-continuous function h. For the sake of
convenience, we again give Assumption 2.1.2 as follows:

Assumption 2.1.2 ([41]). X has the property that: “if a non-decreasing sequence {», }
C X converges to », then »x,, < » for all n”.

Now, we give our result:

Theorem 7.2.2. Let (X, <, d) be a POCMS. Assume that the Assumption 2.1.2 holds
in X. Let h be a non-decreasing self mapping on X such that h is a generalized weak
(¥ > ¢) — contraction mapping for all »x, y € X with » > y. If there exists some
%o € X such that », < hx,, then h has a fixed point in X.

Proof. Following the proof of Theorem 7.2.1, we have to only verify that hu = u. On
the contrary, suppose that v # hu. Since », < »,41 for all n € N and %, — u as
n — oo, S0 by given hypotheses »x,, < u for all n € N.

Now, by hypothesis, we have
l/)((l(hu, %n-l-l))
= 1(d(hu, hoe,))

< max{ (A, %)), Bl 1)), (Ao, o)), p (L2210 )

= max{ (A, %)), B (A, ), B (AGta, 2041)), (L2t (7.2 23)
then, letting n — oo in (7.2.23) and using the continuity of ¥, ¢ we obtain

P(d(hu, w) < max{¢(0), (d(u, hw), $(0), ¢ (5=2)}
= max{p(d(u, hu)), ¢ (Heho ). (7.2.24)
Case 1. If max{¢p(d(u, hu)), ¢ (‘*(“'zh“))} = ¢(d(u, hr)), then by (7.2.24), we have
Y(d(hu, v)) < ¢(d(u, hu)) < Y(d(hu, v)), a contradiction.
Case 2. If max{q,’)(q(u hw)), ¢ (d‘(“ h“))} = ¢ (d’(u hu)) then by (7.2.24), we have

bla ) = (452) <y (422,

then, by monotone property of 1, we have d(hu, u) < «

hu)

, a contradiction.
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Hence, v = hu.

We now give an example in support of Theorem 7.2.2 as follows:
Example 7.2.1 Let X = R* be endowed with the Euclidean metric d (say) and the
partial order < be givenby: Sy x=y)or (xy=>1,x<y).

®/2,if0<n<1
0, ife=1 -

Let ¢, ¥: RY —» R* be defined by ¢ (£) = 3t and y(£) = 4f, respectively.

Let h: X — X be defined by hx = {

Take » < y and » # v, so that we have 1 < » <'y. Hence, we have d(hx, hy) = 0, so
that 1 (d(hx, hy)) = 0 and M(x, y) = 3y. This implies that (7.2.1) holds for %, y € X
with » < y. Further, the Assumption 2.1.2 also holds in X. Also, the other conditions
of Theorem 7.2.2 are satisfied and v = 0 is a fixed point of h.
Uniqueness Of Fixed Points
Next, we discuss a sufficient condition to obtain the uniqueness of the fixed point
for the above proved results. For, we use the concept of diameter of a subset A of a
metric space (X, d) which is defined by
diam (A) = sup{d(x, y): %, y € A}.
Now, we give our result as follows:
Theorem 7.2.3. Adding to the hypotheses of Theorem 7.2.1 (and Theorem 7.2.2) the
following condition:
lim diam (1"X) =0, (7.2.25)

we obtain the uniqueness of the fixed point of h.
Proof. Let v and v be two fixed points of h, then u = hu and v = hv.
It is easy to obtain for all n € N, that h"» = %, for x € {u, v}. Then, we have d(u, v) =
d(h"u, h"v) < diam (8"X) — 0 as n — oo.Therefore, u = v, which is to be proved.

In order to obtain the uniqueness of the fixed points of the self mappings, various
authors (see, [40], [41], [53]) assumed the following assumption on X:
Assumption 7.2.1 ([40, 41]). “For all (%, y) € X X X, there exists a 7z € X such that »
<zandy<7z7”.

Interestingly, Assumption 7.2.1 is not always applicable. We next formulate an
example to obtain the uniqueness of the fixed points under condition (7.2.25) such

that Assumption 7.2.1 does not hold.
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Example 7.2.2. Let X = {3, 4, 5} be endowed with the usual metric d(x, y) = |[» —y]|
for all », y € X and the partial order be given by < := {(3, 3), (4, 4), (5, 5), (5, 3)}.

55 3)

Let ¢, ¥: Rt —» R* be defined by ¢(f) = % and y(f) = 2f, respectively.

Consider h = (

Now, we show that all the hypotheses of Theorem 7.2.2 are satisfied.
First, we show that X satisfies Assumption 2.1.2. For, let {z,} be a non-decreasing
sequence in X w.r.t. < such that z, — z (€ X) as h - co. Now,

Q) if z, = 3, then z, = 3 < z;. Using the definition of <, we get z; = 3.
Applying induction, we get z, =3 foralln € Nand z =3. Then, z, < z
foralln € N;

(i)  if zp = 4, then 2z, = 4 < z;. Using the definition of <, we get z; = 4.
Applying induction, we get z, =4 foralln € Nand z =4. Then, z, < z
foralln € N;

(iii)  if z, = 5, then z, = 5 < z,. Using the definition of <, we get z; =5 or 3.
Applying induction, we get z, =5 or 3 for all n € N. Let there exists p > 1
such that z,, = 3. Now, using the definition of <, we get z,, =z, = 3 for all
n > p. Therefore, we have z = 3and z, < zforalln € N.

Further, the condition (7.2.1) also holds.

For, let %, y € X such that x < y and » # vy, then, we have x = 5 and y = 3. In
particular d(h5, h3) = 0, so that y¥(d(x, ¥)) = 0 and M(», y) = 1. Thus, (7.2.1) holds
easily. Also, 1 is non-decreasing mapping w.r.t. < and there exists », = 5 such that »,
< hxgy. Therefore, all the hypotheses of Theorem 7.2.2 are satisfied. Also,

lim diam(h"X) = 0. Clearly, u = 3 is the unique fixed point of the mapping h. Further,
n—oo

we notice that for (3, 4) € X x X, there exists no z € X for which Assumption 7.2.1
holds.

The following results are the immediate consequences of Theorems 7.2.1 and
7.2.2.
Corollary 7.2.1. Let (X, <, d) be a POCMS and h be a non-decreasing self-mapping
on X such that for all %, y € X with x >y, we have

(d(he, hy)) < max{$(d(x y)), $(d(x 100)), p(d(y, hy))}, (7.2.26)

where 1 is an ADF and ¢: Rt - R* is a continuous function such that ¥ (f) > ¢(f)
for all £> 0. Suppose either
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(@) his continuous, or  (b) Assumption 2.1.2 holds in X.
If there exists %, € X such that », < hx,, then h has a fixed point. Also, if X satisfies
condition (7.2.25), we obtain the uniqueness of the fixed point.
Corollary 7.2.2 ([171]). Let (X, =<, d) be a POCMS and h be a non-decreasing self-
mapping on X such that for all %, y € X with » >y, we have
¥(d(hx, hy)) < ¢(d(ey)), (7.2.27)
where ¥ is an ADF and ¢: R™ —» R* is a continuous function such that ¥ (£) > ¢ ()
for all £ > 0. Suppose either
(@) his continuous, or  (b) Assumption 2.1.2 holds in X.
If there exists % € X such that g < hxg, then h has a fixed point in X.
On adding the condition (7.2.25) in Corollary 7.2.2, we obtain the uniqueness of
the obtained fixed point in Corollary 7.2.2.
Remark 7.2.1. (i) Considering i to be the identity function and ¢(x) = » — Y (x) in
Corollary 7.2.2, the condition (7.2.27) becomes (7.1.2) (which is due to Harjani and
Sadarangani [47]).
(if) On taking ¢(») to be Y(») — ¢,1(») in Corollary 7.2.2, the condition (7.2.27)
becomes (7.1.3) (which is due to Harjani and Sadarangani [48]), where ¢, is an ADF.
(iii) By defining 1 to be the identity function and ¢ (») = (%) in Corollary 7.2.2, the
condition (7.2.27) transforms into (7.1.4) (which is due to Amini-Harandi and Emami
[53]), where B € R.
(iv) On taking ¥ to be the identity function and ¢(») = kx (where k € (0, 1)) in
Corollary 7.2.2, the condition (7.2.27) becomes (7.1.1) (which is due to Ran and
Reurings [40], Nieto and Lépez [41]).
Coincidence And Common Fixed Points
Now, we generalize the notion of generalized weak (i > ¢) — contraction for the
pair of self mappings as follows:
Definition 7.2.2. Let (X, d) be a metric space and h, g be two self mappings on X.
The mapping h is called a generalized weak (3 > ¢) — contraction w.r.t. g if it

satisfies the following condition:

p(d(hn, hy)) < M, 0, y), (7.2.28)
for all %, y € X, where i is an ADF and ¢: Rt - R* is a continuous function such
that ¥ (f) > ¢(f) for all £ > 0 and
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M, (0, y) = max{¢p(d(ex 2y)), $(d(gx, 1)), p(d(gy, hy) ), ¢ (LEertderba)}
(7.2.29)
Theorem 7.2.4. Let (X, <, d) be a POMS and h, g be the two self-mappings on X,
where h is a g-non-decreasing mapping such that h is a generalized weak (¥ > ¢) —
contraction mapping w.r.t. g for all %, y € X with gx > gy. Also, suppose that g(X) is
a complete subspace of X and h(X) < g(X). Suppose either
(a) h and g are both continuous, or  (b) Assumption 2.1.2 holds in X.
If there exists %y € X such that gxg < hixg, then i and g have a coincidence point in
X.
Proof. By Lemma 7.1.1, there exists A € X such that g(A) = g(X) and g: A - X is
one-to-one. Define a mapping f: g(A) — g(A) by
fex = hx, for gn € g(A) (7.2.30)

Since g is one-to-one on A, so fis well-defined. Also, we have
(d(hx, hy))

< max{ (aCex ), 9 (A 1), 6 (A(ay, b)), ¢ (L))
for all gx, gy € g(A) with gx > gy. Since h is a g-non-decreasing mapping, for all

ony, gx € g(A), gng < gn, implies hix; < hxy, so that we have fgx; < fgx, which
implies that f is a non-decreasing mapping. Also there exists %, € X such that gxy <
hx, which implies the existence of gx, € g(X) such that gx, < fgx,.

Assume that assumption (a) holds. Since both h and g are continuous, so f is also
continuous. On applying Theorem 7.2.1 to the mapping f, we can obtain that f has a
fixed point u (say) in g(X).

Assume that assumption (b) holds. Then as above, on applying Theorem 7.2.2, we
can conclude that f has a fixed point u (say) in g(X).

Finally, we show that h and g have a coincidence point. Since u is a fixed point of f,

we have

u = fu. (7.2.31)
Also, since u € g(X), there exists a point uy € X such that

u = guyp. (7.2.32)
Now, using (7.2.31) and (7.2.32), we have

gup = fguo. (7.2.33)

By (7.2.30) and (7.2.33), we can obtain that guy = huy.
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Therefore, uy is a coincidence point of h and g.

The following result is an immediate consequence of Theorem 7.2.4:
Corollary 7.2.3. Let (X, <, d) be a POMS and 1, g be the two self-mappings on X,
where h is a g-non-decreasing mapping such that

¥(d(hee, hy)) < P(d(ex, gy)). (7.2.34)
for all » 3=y, where i is an ADF and ¢: Rt - R™ is a continuous function such that
Y() > ¢(f) forall £>0.

Assume that g(X) is a complete subspace of X and h(X) < g(X). Suppose either

(@) h and g are both continuous, or  (b) Assumption 2.1.2 holds in X.
If there exists %y € X such that gx, < hixg, then i and g have a coincidence point in
X.
Remark 7.2.2. In Theorem 7.2.4 (and Corollary 7.2.3) if the mappings h and g are
weakly compatible, then they have a common fixed point in X. Then, the result
obtained from Theorem 7.2.4 generalizes the corresponding result of Ciri¢ et al. [52],
that is Theorem 2.1.12, since the contraction (7.2.28) generalizes the contraction
(7.1.5).
Theorem 7.2.5. Adding to the hypotheses of Theorem 7.2.4 (and Corollary 7.2.3) the
following conditions:

(i) the pair of mappings (h, g) is weakly compatible;

(i) limdiam((heg)"X) = 0,
(where o denotes the composition of mappings), we obtain the uniqueness of the fixed
point of i and g.
Proof. Let v and v be two common fixed points of h and g, that is,

u=hu=guand v =hv =gv.
It is immediate to show that for all n € N, we have:
(hog)" % = x, for all x € {u, v}.
Then, we have
d(u, v) = d((hog)"u, (hog)"v) <diam((heg)"X) —» 0asn — co.

Therefore u = v.
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7.3. APPLICATION OF GENERALIZED WEAK (3 > ¢p) — CONTRACTIONS
TO COUPLED FIXED POINT PROBLEMS

Using the approach of Samet et al. [172], as an application of the results obtained
in section 7.2, we establish some coupled fixed point theorems that also generalize
many coupled fixed point results present in the literature. For this, we need to
consider the following:
Let (X, <, d) be a POMS and F: X x X — X be a given mapping. Endow the set Y =
X X X with the partial order = given as:

% Y)EU,v)exnsuyzEv, for(xy), U v)EY.

Further, the mappings n, 6: Y —» R* defined respectively by

n(( y), (U, v)) = d(x, u) + d(y, v) and §((%, y), (u, v)) = max{d(x, u), d(y, v)}
for (%, y), (u, v) € Y, are metricson Y.
Also, define a mapping 7: Y — Y by

(%, y) = (F(», y), E(y, »)) forall (%, y) € Y.

Lemma 7.3.1 ([172]). The following properties hold:
(@) (X, d) is complete iff (Y', n) and (Y, §) are complete;
(b) F has MMP iff T is monotone non-decreasing w.r.t. C;
(c) (%, y) € Yis a coupled fixed point of F iff (%, y) is a fixed point of t.

Before we proceed, let us recall some notions useful in our results.
Assumption 2.1.7 ([55]). X has the property:

Q) “if a non-decreasing sequence {x,}r—, € X converges to x, then », < %
for all n”;

(i)  “if a non-increasing sequence {y,}s—, € X converges to y, theny <y, for
all n”.

Property (P1): “There exist »g, yo € X such that xy < F(xg,yo) and yo = F(yq, %)
Property (P2): “There exist gy, yo € X such that gx, < F(xg,yo) and gy, >
F(yo,%0)”.

Now, we formulate our results:
Theorem 7.3.1. Let (X, =<, d) be a POCMS and F: X X X — X be the mapping with
MMP on X. Assume that the following condition holds for all (%, y), (u, v) € X X X

withx zuandy <,

¥ (4(FGoy), Fu, ) < p(max{dGe w), d,v)}), (7.3.1)
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where 1 is an ADF and ¢: Rt —» R™ is a continuous function such that y(f) > ¢ ()
for all £> 0. Suppose either
(@) Fiscontinuous, or (b) X assumes Assumption 2.1.7.
If X has the property (P1), then F has a coupled fixed point in X.
Proof. By (7.3.1), for all (»,y), (u, v) € X X X with» > uand y < v, we have

¥ (d(FGoy), B(w, v))) < p(max{dCe w), d(y. 1)) (7.32)
and 1 (d(E(v, 0, By, %)) ) < p(max{dCe w), 4y ). (7.3.3)

As the function y is non-decreasing, then, for all (%, y), (u, v) € X X X with x > u
and y < v, we have

W(max{d(F(xy), F(u, v)), d(F(v,w), F(y, x))}) < ¢p(max{d(x,u), d(y,v)}),
that is, ¥ (6(1(%, y),r(u,v))) <¢ (6((%, y), (u,v))), for all (%, y), (u, v) € Y with
(¢ y) 2 (U, v).
Then using Lemma 7.3.1, we note the followings:

(1) “completeness of (X, d) implies the completeness of (Y, §)”;

(it) “MMP of mapping F in X implies that mapping t is non-decreasing w.r.t. ©”.
By (P1), “there exist g, yo € X such that %y < F(xg,y,) and yo = F(yg,%0)”, 0 that
we have (%, Vo) E T(%g,¥0)-

Assume that assumption (a) holds, so that F is continuous, and hence, the 7 is also
continuous. Now, applying Theorem 7.2.1 we can obtain that 7 has a fixed point,
which in turn, on using Lemma 7.3.1, implies that F has a coupled fixed point.
Assume that assumption (b) holds, so that X assumes Assumption 2.1.7, then we can
easily obtain that: “if a non-decreasing (w.r.t. =) sequence {u,} in Y converges to
some point u € Y, then u, E u for all n”.

Now, in both the cases, on applying Corollary 7.2.2, we can get that = has a fixed
point, which in turn implies that F has a coupled fixed point.

Remark 7.3.1. (i) For ¢(») = Y(») — ¢1(x), contraction (7.3.1) becomes (7.1.7)
(where ¢, is ADF taken by Harjani et al. [58]). Therefore, result of Harjani et al. [58]

(Theorem 2.1.15) is a particular case of Theorem 7.3.1.
(i) The inequality d(F(xy), F(u, v)) < %[q,(x, u) +d(y,v)] (that is, condition

(7.1.6)) is contained in cL(F(%, y), F(u, v)) < kmax{d(»,u), d(y,v)}, where 0 < k <
1, which is actually the condition (7.3.1) with y being the identity function and ¢ ()
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= k%, k € [0,1). Therefore, the results of Bhaskar and Lakshmikantham [55]
(Theorem 2.1.14 along with the Assumption 2.1.7) is a special case of Theorem 7.3.1.
(iii) Result of Berinde [149], that is Theorem 3.1.1, is a particular case of Corollary

7.2.2 for y(») = ’2—‘ and ¢p(») = % k € [0, 1) since we know that for all %, y, u, v € X,

the following Berinde’s contractive condition (that is, the condition (7.1.8)):
d(FOt y), F(u, v)) + d(F(y, %), F(v, 0)) < k[d(%,w) + d(y,v)]
can be expressed as  (z(6y), T(w,v)) <k n(Goy), (Wv))

or Y (n(r(%, y),r(u,v))) <o (n((x, y), (u,v))), for(»,y), (U, v) EX X X =Y.
(iv) For i to be the identity function and ¢(») = (%) », where € R, contraction
(7.3.1) becomes (7.1.9). Therefore, result of Rasouli and Bahrampour [70]
(Theorem 2.1.23) is a special case of Theorem 7.3.1.

Theorem 7.3.2. Let (X, <, d) be a POMS and F: X X X = X, g: X = X be the
mappings such that F has MgMP on X. Assume that g(X) is a complete subspace of X

and F( X x X) < g(X). Suppose that

¥ (d(FGy), E(u, v))) < ¢(max{d(gx, gu), d(ey, gv)), (7.3.4)
for all (%, y), (u, v) € X x X with gx > gu and gy < gv, where ¥ is an ADF and
¢: Rt - R* is a continuous function such that 1 (€) > ¢(€) for all £ > 0.

Suppose either

(@) F and g both are continuous, or  (b) X assumes Assumption 2.1.7.
If X has the property (P2), then F and g have a coupled coincidence point in X.
Proof. By Lemma 7.1.1, there exists a subset A € X such that g(A) = g(X) and the
mapping g: A = X is one-to-one. Define a mapping 'H: g(A) x g(A) — X by

'H(ga, gb) = F(a, b) (7.3.5)

for all ga, gb € g(A) = g(X).
Since g is one-to-one on A, so 'H is well-defined. By (7.3.4) and (7.3.5), it follows
that

¥ (d(H(gn g), Higu, gv))) = ¥ (d(EGey), B(u, v)))
< ¢(max{d(gx, gu), d(gy.gv)})
for all gx, gy, gu, gv € g(X) with g» > gu and gy < gv. As F has the MgMP, for all
x, gy € g(X), we have
g, g1 € g(X), gy < gnp implies 'H(gxy, gy) < H(gwy, gy), (7.3.6)
gy1, gy2 € g(X), gy1 < gyz implies 'H(gx, gy1) > H(gx, gy,), (7.3.7)
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which implies that 'H has MMP. Also, there exist »y, yo € X such that gx, <
F(»g,y0) and gy, = F(yo, ®9), Which implies the existence of gx,, gy, € X such that
gro < 'H(gxo, gyo) and gyo > 'H(gyo, gxo).
Suppose that assumption (a) holds, that is, both F and g are continuous. Then, the
continuity of F and g implies the continuity of "H. Applying Theorem 7.3.1 for the
mapping 'H, we can obtain that "H has a coupled fixed point in g(X) x g(X), say (u,
V).
Suppose that the assumption (b) holds. Then, by Theorem 7.3.1, similarly we can
conclude that "H has a coupled fixed point in g(X) x g(X), say (u, v).
Now, finally, in both the cases, we show that F and g have a coupled coincidence
point. If (u, v) is a coupled fixed point of 'H, we have

u ='H(u, v) and v = 'H(v, u). (7.3.8)
As (u, v) € g(X) x g(X), there exists some (ug, vg) € X X X such that

u = gug and v = gvy,. (7.3.9)
Then, using (7.3.8) and (7.3.9) we get

guo = H(guo, gvo) and gvo = H(gvo, gu). (7.3.10)
Now, using (7.3.5) and (7.3.10) we can obtain that

gug = F(ug, vp) and gvg = F(vy, up). (7.3.11)
Therefore, (ug, vg) is a required coupled coincidence point of F and g.
Remark 7.3.2. (i) For ¢(x) = ¥ (x) — ¢ (%) the contraction (7.3.4) becomes (7.1.10)
(where ¢ is an ADF taken by Choudhury et al. [56]). Therefore, Theorem 7.3.2
generalizes the recent result of Choudhury et al. [56] (Theorem 2.1.18).
(ii) Result of Jain et al. [159], that is Corollary 3.2.1, is a particular case of

Corollary 7.2.3 for y(») = g and ¢(x) = % k € [0, 1), since we know that for all », y,

u, v € X, the following contractive condition (which is the contractive condition
(7.1.12)):

d(FOt y), F(u, v)) + d(F(y, %), F(v, u)) < k [d(gx, gu) + d(gy, gv)]
can be expressed as

n(t(oy), T(wv)) < kn((gn gy), (gu, gv))
or P (n(tey) ) < ¢ (n((ex ). (gu gv))),
for (x,y), (U, v) EX X X =Y.
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7.4. NEW GENERALIZED NONLINEAR CONTRACTIVE CONDITION IN
COUPLED FIXED POINT THEORY
Recently, Poric et al. [173] replaced MMP by another property which is satisfied
automatically in totally ordered spaces. In this section, using this property, we
establish some results under new generalized nonlinear contractive conditions in
coupled fixed point theory. The work presented in this section generalize the results of
Bhaskar and Lakshmikantham [55], Harjani et al. [58], Rasouli and Bahrampour [70],
Choudhury et al. [56], Luong and Thuan [69], Karapinar et al. [57] and Chandok and
Tas [174].
We consider the following notations some of which are due to Poric et al. [173]:
“If elements x, y of a poset (X, <) are comparable (that is, x < y or y < » holds), we
shall write » =< y”.
Let F: X X X — X and g: X — X be two mappings. We shall consider the following
condition:
“if %, y, u € X are such that gx = F(x, y) = gu, then E(», y) =< F(u, v) for v € X.
(7.4.1)
In particular, for g being the identity mapping on X, (7.4.1) reduces to
“for all x, y € X, if & =< F(», y), then E(x, y) = F(F(», y), v) forv € X”. (7.4.2)
In our results, we also use the following assumption:
Assumption 7.4.1 ([173]). X has the property: “x,, — %, when n = oo in X, then %, =
» for sufficiently large n”.
Now, we give our results as follows:
Theorem 7.4.1. Let (X, <, d) be aPOMS and F: X X X = X, g: X = X be two
mappings. Assume that g(X) is complete, F(X X X) € g(X), g and F satisfy the

condition (7.4.1) and there exists some 1. > 0 such that

¥ (d(FGoy), Eu, v))) < p(max{d(gx gu), d(gy, g)])

d(F(%,y), gu), d(F(u, v), gn),
dF(Gey), 20, dF(y, v), gu) } (7.4.3)

for all %, y, u, v € X with gx = gu and gy = gv, where i is an ADF and ¢: Rt - R*

+ £ min{

is a continuous function such that y(f) > ¢(f) for all £> 0. Also, suppose either
(@) Fand g both are continuous, or (b) X assumes Assumption 7.4.1.

Suppose X has the following property:

(P9) “there exist %y, Yo € X such that gxy = F(x%g, yo) and gy = F(yo, ®)”
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Then, F and g have a coupled coincidence point in X.

Proof. Since X has the property (P9), there exist »,, yo € X such that gx, = F(x%g, yo)
and gy, = F(yq,%g). Now, since F(X X X) < g(X), sequences {x,} and {y,} can be
constructed in X such that g», 1 = F(%,,y,) and gy,4+1 = F(y,, %,), forn € N.

Again using (P9), gxo = F(%g,yo) = gn; and gy, = F(yg, ®o) = gy1, then since g and
F satisfies (7.4.1), we obtain gx; = F(xg,yo) = F(x%q,y1) = gn, and gy; = F(yg, #g) =
F(yq,71) = gy,. Then, inductively, we can obtain that g»,_; = gx, and gy,_; = gy,
forall n € N.

Now using (7.4.3), we have
P(d(@n 1, 20)) = ¥ (d(E Gt Yn), FOta—1, ¥a1)) )
=< <;b(max{(1(g%n, g%n—l)fd‘J(gan gYn—l)})

AL HE AR o et v M
which implies that
W(d(grn+1, 2#n)) < p(max{d(gry, gn—1), d(2Yn, gYn-1)})- (7.4.5)
Similarly, we can get
P(d(gyn+1, g¥n)) < P(max{d(gyn, gyn—1), d(gxn, 2ra—1)}). (7.4.6)

Since max{d(g#n+1, 8n), d(&Yn+1,2Yn)} is either d(gxn11, 2,) OF d(gYn+1, &Yn),
in both the cases, by (7.4.5) and (7.4.6) we can get

Y (max{d(gxn+1, 8%n), d(€Yn+1, 8Yn)})
< ¢p(max{d(gxn, gta-1), d(&Yn, gYn-1)})- (7.4.7)
Now, since ¥ (f) > ¢ () for all £ > 0, we obtain that

max{d(gxn+1, 8n), d(gYn+1, gYn)} < max{d(gxn, gxn—1), d(g¥n, g¥n-1)}
Denote R = max{d(guy+1, 24n), d(g¥n+1, g¥n)}. then {R } is a non-increasing

sequence of positive real numbers. So, there exists some R = 0 such that limR_=R.
n-—oo

We claim that R = 0.
On the contrary, assume that R > 0. Now, taking n — oo in (7.4.7) and using the

properties of Y and ¢, we have
lp(R) = rlli_r)l;lolp(max{dj(g%n-kll gxn)» d)(gYH-f-l' gYn)})

< lim ¢ (max{d(grn, 2n-1), d(gyn, gyn-1)}) = dR) <P(R),  (74.8)

a contradiction. Therefore, R = 0 and hence

limR, = limmax{d(gtn+1, g%n), d(gVn+1, 2¥n)} =0. (7.4.9)
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Next, we claim that {g»,} and {gy,} are Cauchy sequences. On the contrary, let at
least one of {gx,} or {gy,} is not a Cauchy sequence. Then, there exists an € > 0 and
sequences of positive integers {m(k)} and {n(k)} such that for all positive integers k,
n(k) > m(k) >k,

di; = max{d(gxngo, 84ma0)> d(8Yn00» 8Ymai0)} = & (7.4.10)
Also, corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) > m(k) > k and satisfying (7.4.10). Then, we have

max{d(g%n 191, 8%m(w)» A(&Yna0-1, 8¥mao)} < & (7.4.11)
Also, using the triangle inequality and (7.4.11), we have
(200, 2m09) < d(grna0r #n09-1) + d(Hn9-1, E1tma))
< Q(g%n(k), g%n(k)_l) + &, (7.4.12)
and
d(2¥na0 2¥m) < d(gYna0r &nao-1) + d(&Vn00-1 &¥mao)
< dz(gYn(k), gYn(k,)—l) + & (7413)
By (7.4.10), (7.4.12) and (7.4.13), we have
e < di = max{d(gun (9, Etm ) A(&Yn09r &Ymao)}
< max{d(grn gy, #n-1), H&Yna0r &nay-1)} + & (7.4.14)
Taking k = oo in (7.4.14) and using (7.4.9), we have
limdi; = Jimmax{d(g%n 9, ma0), d(&Vna0 8Ymao)} = & (7.4.15)
Now, using the triangle inequality, we have

d(2%na0, 24mao) < (2% 0y Stno-1) + A(SHnao-1, S4mag-1)

+ d,(g%m(k)—p g%m(k)), (7.4.16)
and  d(gynaor &Yma) < d(8Yna0r Enao-1) + A&Ynao-1, 8Ymo-1)
+ d(g¥mao-1, 8Ym@0)- (7.4.17)

By (7.4.16) and (7.4.17), we have
£ < di; = max{d(gtn a9, 24m(9)> A&¥naor 8Ymao)}
< max{d(grnao, 24n19-1), d(&¥na0» Yn09-1)}
+ max{d(gxm -1, Em(9)> A&Yma9-1, &¥m (o)}
+ max{d(gxa9-1, Etmaio-1), A(€Yn09-1- &Yma-1)}
=Rogo—1 T Rinag—1 + max{d(grnag-1, 2ma-1) d(&Vn00-1, &mao-1)}
(7.4.18)
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Again, using triangle inequality and (7.4.11), we obtain that
d(@%n -1, Pmao-1) < d(2%n0-1> Cm @) + A(2¥m 0> Em-1)

< d(@tma mag-1) + &,
and

d(gynao-1, ¥mao-1) < AYn-1 E¥m@w) + H&Yme, LYma-1)

< d(gVm@ YWmao-1) + &
Therefore,

max{d(gn10-1, Z4ma0-1)> H&Yn0-1, Lmag-1)}

< max{d( %m0 2mm-1)> A&Ymao» Ymw-1)} + €. (7.4.19)
Now, on using (7.4.19) in (7.4.18), then taking the limit as k — oo and using (7.4.9)

and (7.4.15), we can obtain
lim max{d(gxn -1 &mm-1)> A(&Yna-1, LYm@a-1)} = & (7.4.20)

Since gx,0-1 = ma-1 aNd gyno-1 = Ym@-1, then by (7.4.3), we obtain that

¥ (d:(g%n(k)' ),
=Y <<1 (F(tag0-1:Yn00-1): F(mco-1. Ym(k)—l)))

< ¢(max{d(g#na9-1, 84mag-1)> H&Yna-1, LYmao-1)})

dz(F(%n(k)—l'Yn(k)—l)' g%m(k)—l)' da(F(%m(k)—l' Ym(k)—l)' g“n(k)—l)'}
d(F(*n00-1 Yn0-1)> 24n-1)» SF(%m0-1 Ym1-1)> E4ma0-1)

< ¢(max{d(grngo-1, Zma-1)> A&Ynw-1, maw-1)})
+ £ min{d(gxn 0, 2%n(0-1)> H(&%mk» SAma0-1) }- (7.4.21)

Similarly, we can obtain

1 (d(gyn(k): gYm(k)))
< ¢(max{d(gun 191, 8m19-1), d(8Yn0-1 &mai0-1)})
+ £ min{d(gynao, 8n9-1) &Vmao &Ymao-1)}  (7:4.22)
Since max{d( 210, 24mao ) 3(&Vnaoy EYmao)} IS  either  d(gxngy, gtmag) OF
d(2¥na0r EYmao)» USiNg (7.4.21) and (7.4.22), we get
y(max{d(gtn a9, 2ma9). 4(€Yn09 &¥ma9)})

+ £ min{

< ¢(max{d(g%n -1, 2%mao-1) A€na-1 mao-1)})
+ £ min{d(2%nm 2% 0-1) 4(&%m 0> ma0-1)}
+ £ min{d(gyn o, 2¥nao-1) A&Ymaor mao-1)}- (7.4.23)
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Taking k = oo in (7.4.23) and using (7.4.9), (7.4.15), (7.4.20) and the properties of ¥
and ¢, we have
Y(e) < ¢p(e) + 2L min{0,0} < P (e),
a contradiction. Therefore, {gx,} and {gy,} are Cauchy sequences and hence, by
completeness of g(X), there exist some x, y € X such that
limgx, = lmEQe,yn) = gx,

Iiijrggyn = limE(y,, ) = gy, (1429
Suppose that condition (a) holds.
Now, using Lemma 7.1.1, there exists a subset A © X such that g(A) = g(X) and the
mapping g: A = X is one-to-one. Define a mapping 'H: g(A) X g(A) = X by

'H(ga, gb) = F(a, b) for all ga, gb € g(A). (7.4.25)
Since g is one-one, so 'H is well-defined. By (7.4.24) and (7.4.25), we have

lim "H(gx,, gyn) = limF(x,,y,) = limgx, = gx,

E no no (7.4.26)
lim "H(gyn, g#n) = Im¥(yn,%,) = limgy, = gy.

Also, since F and g are continuous, so 'H is also continuous, then by (7.4.26) we get
'H(gx, gy) = g» and 'H(gy, gx) = gy. (7.4.27)
Now, using (7.4.27) and the definition of 'H, we can obtain that F(x, y) = gx and
F(y, %) = gy.
Suppose that condition (b) holds.
Then using (7.4.24), we have gx, = gx and gy, = gy for sufficiently large n.
For such large n, using the triangle inequality and the monotone property of ¥, we
have
P(AEGLY), 29) < Y(dFGY), FOt, ) + dECtn, ), 29)).
Then, on taking n — oo, using the continuity of ¥ and (7.4.24), we get

P(dFEGY), g0) <9 (nlignw(cl(F 6, y), FGta, 1)) + dEGta, yn), g%)))

= Jim (dCFCoy), Fom,y))) )

= lim Y(d(FCo y), FCtn, va))). (7.4.28)
Also, by (7.4.3), we have

Y(AFGLY), FOtn, ¥0))) < p(max{d(gx, 2t,), d(gy, gyn)})

dF04y), 24n), dF (4, ¥n), g0),
dF04y), gn), dFCtn, yn), 24n)

Using (7.4.28), (7.4.29), the properties of ¢p and Lemma 7.2.1, we can obtain

+E min{ } (7.4.29)
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P(AEGy), 29) < ¢ ( lim max{d(gn, ), d(gy, gvn)})

{Q(F (1, y), g1tn), d(F(tn, yn), gn),}

FILE GG y), 10, At ), g)

n - oo
= ¢p(max{0,0}) + 0=0.

Hence, we obtain d(F(x, y), gx) < 0, which implies that F(x, y) = g». Similarly, we

can obtain that F(y, ») = gy. Therefore, F and g have a coupled coincidence point.

Remark 7.4.1. Condition (7.4.1) provides a replacement for the MMP which has been

enjoyed by various authors in their coupled fixed point results. The condition (7.4.1)

is trivially satisfied if the order < on X is total. Also, the mappings F and g in

Theorem 7.4.1 are neither commuting nor compatible and the completeness of g(X)

replaces the completeness of the space X.

Next, we give an example in support of Theorem 7.4.1 as follows:
Example 7.4.1. Consider the POMS (X, =, d) where X = (-1, 1], the natural ordering

< of the real numbers as the partial ordering < and d(x, y) = |x —y| for all x, y € X.

Let g: X = X and F: X X X — X be defined respectively by gx = "ZZ—H and F(x, y) =

»2 +y2+4

. Clearly, F and g are not compatible. For y; = _—i and y, = _—; we have gy; =

g(_—:) = ;—Z < g = g(_—;) = gy, but for » = 0, we have F(x, y;) = F(of_i) = % < ;_Z -

F(O, _—;) = F(», y3), so that F does not satisfy the MgMP. Clearly, g(X) = E 1] is
complete and F(X x X) € g(X). Let the mappings ¥, ¢: Rt - R* be defined
respectively by ¥(f) = ; and ¢(f) = 2 for f € R*. Then, ¥ is an ADF and ¢ is

continuous such that ¥ (f) > ¢(f) for all £ > 0. Next, we verify the inequality (7.4.3).
Lett > 0.

For x, y, u, v € X satisfying gx = gu and gy = gv, we have
¥ (A(FGuy), B ) =1 (
<s([= )=1(
- é(d’(g%’ gu), d(gy, gv)) < i (max{d(gx, gu), d(gy, gv)})

2
dF0y), gu), dF(u, v), g%).}
dF06y), g0), dF(u, v), gu) )’

Further, the other conditions of Theorem 7.4.1 are also satisfied. Now, on applying

2 2

®x24y244 u2+v2+4|) _1 (|x2+y2 u?4v2

8 8 8

)

y2_\/.2

w2+1 u2+1|
2

y2+1 v2+1|)
2 2

2 2

+

< ¢(max{d(gx, gu), d(gy, gv)}) + L min{

Theorem 7.4.1, we can obtain (0, 0) as the coupled coincidence point of F and g.
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Corollary 7.4.1. Let (X, <, d) be a POCMS and F: X X X — X be the mapping
satisfying (7.4.2). Suppose there exists some £ > 0 such that

¥ (d(EGy), Eu, v))) < p(max{dCe w), d(y, v)D)

dFGoy), w), d(F(y, v), %),}
dEF(,y), %), d(E(u, v),u) )’

forall %, y, u, v € X withx = uandy =< v, where i isan ADF and ¢ : R* - R isa

+ i min{ (7.4.30)

continuous function such that (f) > ¢(f) for all £ > 0. Also, suppose either

(@) Fiscontinuous, or (b) X assumes Assumption 7.4.1.
Suppose that X has the property:
(P10) “there exist g, Yo € X such that »y = F(xg,y,) and yo = F(yg, ®0)”.
Then, F has a coupled fixed point in X.
Proof. In Theorem 7.4.1 taking g to be the identity mapping on X, the result follows
immediately.
Remark 7.4.2. Corollary 7.4.1 improves the results due to Harjani et al. [58], that is
Theorem 2.1.15. Setting £ = 0 and substituting (%) — ¢(x) for ¢(») in
Corollary 7.4.1, the condition (7.4.30) becomes

¥ (d(FGoy), E(u, 1))
< Y(max{d(x, u), d(y, v)}) — ¢(max{d(x, w), d(y, v)}), (7.4.31)
which is the same condition as considered by Harjani et al. [58] (condition (7.1.7)).
But then, the result obtained from Corollary 7.4.1 will be more general than the work
of Harjani et al. [58] (Theorem 2.1.15) since in our results, we do not require the
mapping F to satisfy the MMP. The following example illustrates this fact:
Example 7.4.2. Let us consider the POCMS (X, =<, d) with X = [-1, 1], the natural

ordering < of the real numbers as the partial ordering < and d(x, y) = |x —y]| for all

®2+

y? .
5 Consider y; =

%, Y € X. Let the mapping F: X x X — X be defined by F(x, y) =

1
> —=
32

@[+

landy, = % then we have y; >y, but for » = 0, we have F(x, y;) = F(0, 1) =
F(O, %) = F(x, y,). Clearly, F does not satisfy the MMP. Therefore, Theorem 2.1.15 is

not applicable here. Define the mappings ¥, ¢: Rt - R* by y(f) = g and ¢(f) = 2 for
f € R*. We now verify the inequality (7.4.31). For », y, u, v € X satisfying » = u
and y = v, we have

¥ (d(FGy), Fu, v))) =5 (

®2 +y2 u4v2
8 8

) =306 —u?) = (2 = vA)])

188



1 1
<— (b —u?+1y? = viD =—(x—ullx+ul + |y —vlly +vD

16
1

<
16

(le = ul (el + [ul) + ly = vI(lyl + VD)

<—(-ul@+ D) +ly-vIA+1) (sincex,y,u veX)

(x—ul+ly—vI)

=2(dGew) +d(y, v))

< 7 (max{dGx,w), d(y, V)})

= p(max{d(» u), d(y, v)}) — ¢p(max{d(», u), d(y, v)}).
Hence, the inequality (7.4.31) holds. Since, the inequality (7.4.31) is contained in the
inequality (7.4.30), on applying Corollary 7.4.1 with Remark 7.4.2, we can obtain
(0, 0) as the coupled fixed point of E.
Remark 7.4.3. (i) For a, f = 0 with « + 8 <1, we have

ad(x,u) + B d(y, v) < (a+ B) max{d(x, u), d(y, v)},

so that the condition (7.1.12) (which is actually due to Luong and Thuan [69]):

dEFGey), ), d(F(u, v), %),}

d(FGe, ), F(U, V) < @ d6e, ) + B d(y, v) + £ min o A )

is contained in the condition

d(F(x, y), (U, v)) < (a + B) max{d(x, u), d(y. v)}

+ £ m|n{dJ(F(%’ Y)’ U), dz(F(u' V), %);},

dF(y), %), d(F(u, v),u)
which is the condition (7.4.30) for y(f) = tand ¢(f) = (a + B) £, for £ = 0.

Therefore, Corollary 7.4.1 is more general than the result of Luong and Thuan [69]
(that is, Theorem 2.1.21). It is interesting to note that in Corollary 7.4.1 we do not
require the mapping F to satisfy MMP, whereas Theorem 2.1.21 requires this
condition.

(if) On taking ¥ (f) = t for all £ > 0 in Theorem 7.4.1, the condition (7.4.3) becomes
(7.1.13) which is due to Karapinar et al. [57]. Now, in view of Remark 7.4.1, the
Theorem 7.4.1 is more general than the results of Karapinar et al. [57] (that is,
Theorem 2.1.22 with the Assumption 2.1.7).

(iii) Since w < max{d(», u), d(y, v)}, so that the condition (7.1.6) (due to
Bhaskar and Lakshmikantham [55]):
d(F (e, y), F(u, v)) <3 [dGe ) +d(y, V)],
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is contained in the condition
d(E(x, y), (U, v)) < k max{d(x, u), d(y, v)},
which is actually the condition (7.4.30)
PAER, ), E(u, v))) < p(max{d(x, u), d(y, v)})

dECey),w), d(F(u, v), %),}
d(F(xy), %), d(E(w, v),w)

for Y(f) = £, ¢p(f) =kt wherek € (0, 1) forf =0and £ = 0.
Therefore, Corollary 7.4.1 is more general than the result of Bhaskar and
Lakshmikantham [55] (Theorem 2.1.14). Also, in Corollary 7.4.1, the mapping F does

+ £ min{

not satisfy the MMP which is required in Theorem 2.1.14.
(iv) Theorem 7.4.1 improves the result of Choudhury et al. [56] (that is, Theorem
2.1.18). Considering y(f) — ¢(f) for ¢(f) and £ = 0 in Theorem 7.4.1, the condition
(7.4.3) becomes

PAER, ), F(u, v))) < p(max{d(gx, gu), d(gy, gv)})

— ¢p(max{d(gx, gu), d(gy. gv)}),

which is actually the condition due to Choudhury et al. [56] (condition (7.1.10)). But
in view of the Remark 7.4.1, our result is more general than the result of Choudhury
et al. [56].
(v) Corollary 7.4.1 improves the result of Rasouli and Bahrampour [70] (Theorem
2.1.23). Taking £ = 0, Y(f) = f and ¢(f) = B(f) £, for £ = 0 where g € R in Corollary
7.4.1, the condition (7.4.30) becomes

d(ECe, y), E(u, v)) < B(max{d(x, u), d(y, v)}) max{d(x, u), d(y, v)},
which is the condition due to Rasouli and Bahrampour [70] (that is, the condition
(7.1.9)). Again, in Corollary 7.4.1, the mapping F does not satisfy the MMP, whereas
Theorem 2.1.23 requires this property.

Recently, Chandok and Tas [174] established the following important result:
Theorem 7.4.2 ([174]). Let (X, <, d) be a POCMS. Suppose that F: X x X — X and
g: X — X be mappings such that g is continuous, g(X) is closed, F(X X X) € g(X), the
pair (F, g) is compatible, g and F satisfy the condition (7.4.1) and £ > 0 such that

d(ECe, y), E(u, v)) < ¢p(max{d(gx, gu), d(gy, gv)})

dF04y), gu), dFE(u, v), g%),}

(R prht v e

(7.4.32)
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for all %, y, u, v € X with gx = gu and gy = gv, where ¢ : R - R* is a continuous
function with the condition that ¢ (f) < f for all £ >0 and ¢(f) = 0 iff f = 0 . Also,
suppose either

(@) Fiscontinuous, or (b) X assumes Assumption 7.4.1.
Suppose that X has the property (P9). Then, F and g have a coupled coincidence point
in X.
Remark 7.4.4. Clearly, Theorem 7.4.1 generalizes Theorem 7.4.2.

Common Coupled Fixed Points

Now, we show the existence and uniqueness of coupled fixed points. Before we
proceed, we need to consider the following:

We say that (u, v) and (», y) are comparable if either

U v)<@(y or (%Y <(U,v) (7.4.33)
and now, we will also denote this fact by (u, v) = (x, y).
Theorem 7.4.3. In addition to the hypotheses of Theorem 7.4.1, suppose for every
(%, y), (2", y") € X x X there exists some (u, v) € X X X such that (F(u, v), E(v, u))
= (F(», y), E(y, »)) and (E(u, v), E(v, u)) = (F(»*,y"), F(y*,»")). If the pair of the
mappings (F, g) isw" - compatible, then F and g have a unique common fixed point.
Proof. By Theorem 7.4.1, the set of coupled coincidences of F and g is non-empty. In
order to prove the result, we first show that if (x, y) and (x*, y*) are coupled
coincidence points, then
gn =gx" and gy = gy”. (7.4.34)
By assumption, there exists some (u, v) € X X X such that (F(u, v), E(v, u)) =
(F(%, y), E(y, »)) and (E(u, v), F(v, u)) = (F(x",y"), F(y*,»")). Take ug = u, vg = v
and choose uy, vq € X so that gu; = F(ug, vo), gv1 = F(vg, Up).
Then, as in the proof of Theorem 7.4.1, we can inductively define sequences {gu,}
and {gv,} such that gu,,;=F(u,, v,) and gvn+1 = F(vy,, Up).
Further, set g = %, yo =V, %y = ®*, yo = y* and on the same way define the
sequences {g», }, {gv. } and {gx; }, {gyn}. Then, it is easy to obtain that
gnt1 = F(%n, Yn), @Yn+1 = F(Yn, %n)
and
g1~ O, yn), 8¥n+1 = F(yn, %) foralln > 0.

Since (F(u, v), E(v, u)) = (guq, gv1) = (g, gy) = (F(x, y), F(y, »)) = (gx1, gy1) are
comparable, then gu; = gx and gv; = gy. Then, it is easy to obtain that (gu,, gv,)
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and (g», gy) are comparable, so that gu, = gx and gv, = gy for n € N. Now, by
(7.4.3), we have

P(dguns1, 20) = ¥ (d(FCun, va), FG0 ) )
< ¢ (max{d(guy, g»), d(gvn, gy)})

R
which implies

¥(d(guns1, 20) < p(max{d(gu,, g2), d(gvn, g9 (7.4.35)
Similarly, we have

P(d(gvarr, gY)) < p(max{d(gvn, gy), d(gun, 203). (7.4.36)

Now, max{d(gu,+1, g%), d(gva+1, gy)} is either d(gu, 41, g%) or d(gva+1, gy), then
in both the cases, using (7.4.35) and (7.4.36), we have

P (max{d(gun+1, g4, d(gvn+1, ¥} < p(max{d(gu,, g»), d(gvn, gy)D. (7.4.37)
Denote o, = max{d(gu,,1, g»¢), d(gv,+1, gy)}, then by (7.4.37) we have Y(o,) <
¢(0,—-1). Using the conditions on ¥ and ¢, we obtain that

Y(ow) < p(0n-1) <P(0p-1).
Since v is a non-decreasing function, it follows that {o,} is a decreasing sequence of

non-negative terms, so, there exists some ¢ > 0 such that limo, = o.

n—oo

We assert that ¢ = 0. Suppose ¢ > 0. Taking the limit as n — oo in (7.4.37) and using
the properties of ¥ and ¢, we can obtain Y (o) < ¢(o) < Y(o), a contradiction.
Therefore, o = 0, so that

lim max{d(guy +1, ), d(gvn+1, 2y} =0,
hence,

limd(gun 1, g) =0 = limd(gvn 1, gy). (7.4.38)
Similarly, we have

limd(gun 11, g") =0 = limd(gvn 11, gy°)- (7.4.39)
By the uniqueness of limit, we can obtain gx = gx* and gy = gy*. Therefore, (7.4.34)
is proved. Hence, (gx, gy) is the unique point of coupled coincidence of F and g.
Also, if (g», gy) is a point of coupled coincidence of F and g, then so is (gy, gx).
Then, gx = gy and therefore, (gx, gx) is the unique point of coupled coincidence of F

and g.
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Next, we show that F and g have a coupled common fixed point. Denote % = gx.
Then, we have % = gx = F(x, ). Since F and g are w"- compatible, we have

gt = ggn = gF(x, %) = F(gx, gx) = F(%, R).
Therefore, (g, gi) is a point of coupled coincidence of F and g. By uniqueness of
point of coupled coincidence of F and g, we can obtain that g = gx.
Therefore, # = gt = F(%, %), so that & € X is a common fixed point of F and g.
Finally, we show the uniqueness of the common fixed point of F and g.
Let § € X be any common fixed point of F and g, so that we have

§=g9=E@9.9).

Then (gx, gi) and (g9, g9) are two points of coupled coincidence of F and g. Now, as
obtained previously, we can get gz = g9 and so % = gt = g9 = 9. Hence, we have
obtained the required result.
Remark 7.4.5. In addition to the hypotheses of Corollary 7.4.1, suppose for every
(%, y), (x", y") € X x X there exists some (u, v) € X x X such that (F(u, v), (v, u))
= (F(», y), E(y, »)) and (F(u, v), F(v, u)) = (F(»",y"), E(y*,»")), then F has a unique

fixed point.
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FRAMEWORK OF CHAPTER - VIlII

In this chapter, we discuss some results for w-compatible (weakly compatible)
mappings, variants of weakly commuting and compatible mappings in the context of
coupled fixed point theory. This chapter deals with results in FM-spaces with some
corresponding results in metric spaces. Further, the notions of property (E.A.),
(CLRg) property, common property (E.A.) and (CLRgy) property are also extended

for coupled fixed point problems in metric and FM-spaces.
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CHAPTER - VIlII
COUPLED FIXED POINTS IN FM-SPACES

In this chapter, we discuss some results for w-compatible (weakly compatible)
mappings, variants of weakly commuting and compatible mappings, mappings with
property (E.A.), (CLRg) property, common property (E.A.) and (CLRgy) property in
coupled fixed point theory. This chapter consists of five sections. Section 8.1 gives a
brief introduction of coupled fixed point theory in FM-spaces. In section 8.2, we
discuss variants of weakly commuting and compatible mappings in coupled fixed
point theory. Section 8.3 consists of coupled fixed point results for weakly compatible
mappings, variants of weakly commuting and compatible mappings in FM-spaces. In
section 8.4, we study the notions of property (E.A.), (CLRg) property, common
property (E.A.) and (CLRgy) property and utilize these notions to generalize some
existing results in context of coupled fixed point theory in FM-spaces. Section 8.5 is
the application part which consists of the metrical version of some of the results
proved in FM-spaces in the earlier sections of this chapter.

Present chapter deals with the results in GVFMS and we use the term FM-space
to represent a GVFMS.

Author’s Original Contributions In This Chapter Are:

Theorems: 8.3.1, 8.3.2,8.3.3,8.4.1,8.4.2,84.3,84.4,85.1,85.2,85.3.

Lemma: 8.2.1,8.2.2,8.2.3,8.2.4,8.2.5,8.2.6,8.2.7,8.2.8, 8.3.1. 8.3.2.

Definitions: 8.2.3,8.2.4,8.4.1,8.4.2,8.4.3, 8.4.4.

Corollaries: 8.4.1.

Examples: 8.2.1, 8.2.2,8.2.3,8.2.4, 8.2.5, 8.2.6, 8.2.7, 8.2.8.

Remarks: 8.2.1, 8.2.2,8.2.3,8.2.4,8.2.5,8.2.6,8.2.7,8.4.1,8.4.2,8.4.3,8.4.4, 8.4.5,
8.4.6.

8.1. INTRODUCTION
Recently, Choudhury and Kundu [60] extended the notion of compatible
mappings (see, Definition 2.1.10) in coupled fixed point theory. The fuzzy
counterpart of this notion was given by Hu [146] as follows:
Definition 8.1.1 ([146]). Let (X, M, *) be a FM-space and F: X X X =» X, g: X = X
be two mappings. Then, the pair (F, g) of mappings is said to be compatible if
lim M(gF (n, yn), F(gn, gyn), ) = 1
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and LimM(gE (yn, %0 ), E(gYn, 240), 6) = 1,
for all £ > 0, whenever {x,} and {y,} are sequences in X such that limF(x,,y,)
n—oo

= limgx, =x, limF(y,,»,) = limgy, =y for some », y € X.
n—-oo n—-oo n—oo

Utilizing the notion of compatible mappings, Hu [146] proved a common fixed

point result for a ¢ - contraction in FM-spaces, where ¢ € @ (see, Definition 2.5.5).
Note that if ¢ € @y, then ¢ satisfies (¢-1), (¢-2)and (¢-3) (see, Definition 2.5.5).
It was asserted in [146] that, “if ¢ € @y, then ¢(f) < £ for all £> 0.

Theorem 8.1.1 ([146]). Let (X, M, =) be a complete FM-space with (FM-6), * being a
continuous t-norm of H-type. Let F: X X X — X, g: X — X be two mappings and
there exists ¢ € @, such that for all %, y, u, v in X and £ > 0,

M(EQ, y), F(u, v), ¢(6)) = M(gx, gu, f) * M(gy, gv, ). (8.1.1)
Also, suppose that F(X X X) € g(X), g is continuous and (F, g) is a pair of compatible
mappings. Then, there exists a unique point u in X such that F(u, u) = u = gu.

On the other hand, Jain et al. [63] introduced the notion of weakly commuting
mappings and their variants in coupled fixed point theory of FM-spaces. Dalal and
Masmali [148] studied the notion of variants of compatible mappings in coupled fixed
point theory of FM-spaces. Abbas et al. [61] defined the notion of w-compatible
mappings. Later on, an equivalent notion of weakly compatible mappings came into
existence.

Definition 8.1.2. The mappings F: X X X — X and g: X — X are said to be

(i) ([61]). w-compatible,

“if gF(%, y) = F(g», gy), whenever gx = F(x, y) and gy = F(y, »)”.

In this case, we say that the pair (F, g) is w-compatible.

(i) ([63]). weakly compatible,

“if gF(», y) = F(g», gy) and gF(y, %) = F(gy, gn), whenever gx = F(x, y) and
gy = F(y, »)”.

In this case, we say that the pair (F, g) is weakly compatible.

Both the notions of w-compatible and weakly compatible mappings are
equivalent and we consider them as same.

Using weakly compatible mappings, Hu et al. [147] generalized Theorem 8.1.1

by proving the following result:
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Theorem 8.1.2 ([147]). Let (X, M, %) be a FM-space with (FM-6), * being a
continuous t-norm of H-type. Let F: X X X — X and g: X — X be two weakly
compatible mappings and there exists ¢ € @, satisfying (8.1.1). Suppose that
F(X x X) < g(X) and one of the spaces F(X X X) or g(X) is complete. Then, there
exists a unique point u in X such that F(u, u) = u = gu.

Jain et al. [63] generalized Theorem 8.1.1 for two pairs of weakly compatible
mappings under the following result:
Theorem 8.1.3 ([63]). Let (X, M, *) be a FM-space with (FM-6), * being a
continuous t-norm of H-type. Let 4, B: X X X = X and S, T: X — X be four
mappings and there exists ¢ € @, such that for all %, y, u, v in X and £ >0,

M(#(%, y), B(u, v), ¢(f)) = M(Sx, Tu, f) * M(Sy, Tv, ). (8.1.2)
Also, suppose that A(X x X) € T(X), B(X X X) € S(X), the pairs (%, S) and (B, T)
are weakly compatible, one of the subspaces A(X X X) or T(X) and one of B(X X X)
or S(X) are complete. Then, there exists a unique point a in X such that A(a, a) = Sa
=a=Ta=B(a, a).

For convenience, in our results, we denote
~ MOy, ) * My, €) * ...+ M(%,y, )

i

,foralli eN.

MGy, O]

8.2 VARIANTS OF WEAKLY COMMUTING AND COMPATIBLE
MAPPINGS

This section deals with the variants of weakly commuting and compatible
mappings in coupled fixed point theory.

Recently, Jain et al. [63] extended the variants of weakly commuting mappings
from ordinary fixed point theory to coupled fixed point theory in FM-spaces as
follows:

Definition 8.2.1 ([63]). Let (X, M, *) be a FM-space and F: X X X — X, g: X = X be
two mappings. Then, the pair (F, g) of mappings is said to be

0] Weakly commuting (we write, WC), if

M(F(gx, gy), gF(x, y), f) = MF(x, y), gx, 1),
M(F(gy, gn), gE(y, %), f) = M(F(y, »), gy, f) forall %, y in X and £ > 0.

(i) R-weakly commuting (we write, R-WC), if there exists some R > 0 such

that
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M(F(gx, gy), gF(%, y), ) = M(F(x, y), g», t/R),
M(E(gy, gn), gE(y, %), f) = M(F(y, »), gy, £/R) forall », y in X and £ > 0.
(i)  R-weakly commuting of type (Ag) (we write, R-WC(Ay)), if there exists
some R > 0 such that
M(F(gx, gy), ggn, f) = M(F(x, y), g, t/R),
M(E(gy, gn), ggy, f) = M(E(y, %), gy, t/R) forall %, y in X and £ > 0.
(iv)  R-weakly commuting of type (A,) (we write, R-WC(Ay)), if there exists
some R > 0 such that
M(gF(x, y), F(E(x, y), F(y, %)), ) = M(F(x, y), gx, t/R),
M(gE(y, %), F(E(y, %), E(x, ¥)), ) = M(E(y, %), gy, t/R)
forall %, y in X and £ > 0.
(v) R-weakly commuting of type (P) (we write, R-WC(P)), if there exists
some R > 0 such that
M(F(F(x, y), £(y, %)), ggn, §) = M(F(x, y), g«, t/R),
M(EE(Y, %), (¢, y)), ggy, §) = M(E(y, »), gy, t/R)
for all %, y in X and £ > 0.
Now, we discuss some illustrations for these mappings as follows:

Example 8.2.1. Let X = R*\{0}. Define a * b=ab for a, b € [0, 1] and M(, y, ) =

£
t+ -yl

for all », y in X and £ > 0. Then, (X, M, *) is a FM-space. Also, define

F: X x X - X and g: X — X respectively by F(x, y) = "zﬂ and gx = g for %, y in X.
Now, for all %, y in X and £ > 0, we have

M(E(ex, gy), gF(x, ), 0 = 1> 52== M(FGx, y), @4, 0

2t
and  M(F(gy, gv), gE(Y, %), ) = 1> ——=M(¥(y, »), gy, ),
so that the pair (F, g) is WC.

Moreover, for all %, y in X and £ > 0, we have

M(E(gx, gy), gF(x, Y), D = 1> 5= M(F(x, y), g%, ¢/R)

_ 2
and  M(F(gy, g»), gE(Y, %), ) = 1> —

which implies that the pair (F, g) is R-WC for each R > 0.

=M(E(y, »), gy, £/R), foreach R > 0,

Also, forR > % the pair (F, g) is R-WC(Ag), since for all %, y in X and £ > 0, we have

4 2t
M(E(g, gy), ggn, ) = = 2 5 = MER, v), g1, t/R)
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= M(¥(y, %), gy, t/R).

Now, the pair (F, g) is R-WC for R > 0 but R-WC(A;) forR > %

4 2t
and  M(F(gy, g»), ggy, f) = ;= —

Remark 8.2.1. Example 8.2.1 shows that the pair of R-WC mappings need not be
R-WC(Ag) for the same value of R.

Example 8.2.2. Let X = [1, ). Define a * b = ab for a, b € [0, 1] and M(», v, f) =

£
t+n—yl

F: X x X - X and g: X — X be defined by F(%, y) =2(»x +y) + 1 and g = 2» + 2 for

for all %, y in X and £ > 0. Then (X, M, =) is a FM-space. Also, let

%, y in X. Now, the pair (F, g) is not commuting, since F(gx, gy) = [4(x +y) + 9] #

[4(x+y)+4]=gE(x,Yy) forx, yin X.
Also, for %, y in X and £ > 0, we have

f fa—
| 2 f+R|2y—1| - M(F(’X’a y)a g%, E/R),

M(E(g, gy), ggn. ) = 03

£ £
M(E(gy, 2 22Y, 0 = i 2 armey — TLEY, %), gy, E/R) forR > 7,

which shows that the pair (F, g) is R-WC(Ag) for R > 7.

Further, it is easy to see that the pair (F, g) is R-WC for each R > 5 but neither WC
nor R-WC(A,) and R-WC(P) for any R > 0.

Remark 8.2.2. The pair of mappings which is R-WC for some value of R > 0 need
not be WC nor R-WC(Ag), R-WC(A,), R-WC(P) for the same value of R.

Example 8.2.3. Let X = [1, o). Define a * b = ab for a, b € [0, 1] and M(», y, f) =

£
t+ -yl

F: X x X = X and g: X — X be defined by F(, y) = > and gx = »* for %, y in X.

2

for all », y in X and £ > 0. Then (X, M, %) is a FM-space. Also, let

%2_
=+ =
4

Then, the pair (F, g) is not commuting, since F(gx, gy) = F(x?, y?) = %

gF(%, y) for », y in X. Also, for all %, y in X and £ > 0, we have

M(F(e, £9). ¢F04 Y). 0 = o = e = M(EGe ), . 0,

= 2_%
T f+|x 2

N

t
* o

M(F(gy, gn), gF(y, %), f) = " = M(E(y, »), gy, 1),

=[5 ™

which shows that the pair (F, g) is WC.
Further, for all %, y in X and £ > 0, we have

M(F(gx, gy), gF(x, y), ) = f: f

2 = = M(F(%’ Y)’ 2, f/R)’

- f+R‘u2 —§|

H
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£ £

M(F(gy, gn), gF(y, %), ) = f+|%‘ = wRp2Y]

= M(E(y, »), gy, t/R) for R > %

which shows that the pair (F, g) is R-WC for R > %

Also, the pair (F, g) is R-WC(4,) for R = % but neither R-WC(Ag) nor R-WC(P) for
any R > 0.

Clearly, forR = i, the pair (F, g) is R-WC(A,) but not R-WC.

Remark 8.2.3. In general, every pair of commuting mappings is always WC but the
converse need not be true. Further, the pair of R-WC(A,) mappings need not be
R-WC nor R-WC(Ag), R-WC(P).

Example 8.2.4. Let X = [1, ). Define a * b = ab for a, b € [0, 1] and M(», y, f) =

£
t+ -yl

forall %, yin X and £ > 0. Then, (X, M, *) is a FM-space. Let F: X X X = X
and g: X — X be defined by F(», y) =2»x + 1 and gx =% + 1 for x, y in X.
Now, for », y in X, we have
F(gn, gy) = 2 + 3, F(gy, gn) = 2y + 3, gF(x, y) = 2 + 2, gF(y, ) = 2y + 2,
F(E(x, y), E(y, #)) = 4n + 3, F(E(Y, %), F(x, ¥)) =4y + 3, gge == + 2, ggy =y + 2.
Then, the pair (F, g) is R-WC for R > 1 (and so is WC), R-WC(Ag) for R > 2,
R-WC(A,) for R =3, R-WC(P) for R > 4. Further, the pair (¥, g) is not commuting.

Recently, Dalal and Masmali [148] gave the notions of variants of compatible
mappings in coupled fixed point theory in FM-spaces. We summarize these notions as
follows:
Definition 8.2.2 ([148]). Let (X, M, *) be a FM-space and F: X X X - X, g: X = X
be the mappings. If whenever {x,} and {y,} are sequences in X such that
rlli—{?og(%“’ Vo) = rlli_{?og%“ =%, Illi_r)roloF(yn, ®y) = rlli_r)glogyn =y for some %, y in X, then, the
pair (F, g) is said to be

Q) Compatible of type (A) (we write, COM(A)), if

lim M(F (g, gyn), g°%n, ©) = 1, ImM(F(gys, gtn), g%yn, ) = 1

and
i M(gF (5, yn), E(FGta, yn), EGn, #0)), €) = 1,
1im M (gF (v, %), E(E(n, #0), FCtn,y0)), €) = 1, for £>0;

(i) Compatible of type (B) (we write, COM(B)), if
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lim M(F(gx,, gyn), F(0, y) , ©)

+ lim M(F(%, Y), F(F(%nr le)' F(Yn' %n))' f)'
lim M(F(gy,, g%,), F(y, %), ©)

+ lim M(F(y, x), F(F(yn, %), FOt, yn)), ©)

1
lim M (E(g%n, gyn), g°%n, ) 2 5 {

1
Illi_r)roloM (F(gyn, 2tn), 22yn, ©) = > {
and

1 1 (lim M(gF(xn, yn), g%, ©)

. 1 n

lim M(gFGtn, v ), EE (%n, yn ), EOm, %0, ©) 2 5 i Mg ghon.
n—oo

1 (lim M(gF(yn, ), 2y, ©)
i > _ n—oo
lim M(gE(n,%n), EE(Yn,20), EGt, y0)), 0 2 5 07 7 M(gy, g°yn, ©),
for > 0;
(iii)  Compatible of type (P) (we write, COM(P)), if

HmM(FF(ty, ¥n), F(n, %0)), 25%n, €) = 1
and HmMEE (Y, %), Fn, y0)), 2%y, © =1, for£>0;
(iv)  Compatible of type (C) (we write, COM(C)), if
lim M(F(grn, gyn), F(0¥), ©)
+ lim M(F(x,y), g% %, )
+ lim M(FGe,y), FF G, yn), F(yn, #0)), O,
lim M(F(gyn, g%n), ¥(y, %), ©)
1 .
lim M(F(gyy, gn), 82, ©) = 3 + lim M(F(y, %), g* yn, ©)
+ lim M(F(y, %), FF(n, %), FGtn, y0)), ©)

W[ =

lim M(E(gwy, gyn), 8% %, €) 2

and

1im M(E (4, yn ), (B, Yn), E (Y0, %0)), ©)

+11mM(g% F(F(n, Y1), F (Y, %0)), ©)
k + limM(gx, g2%,, ©),

Lim M(E(yn, %0 ), F(E(Yn, #n), ECtn, y0)), ©)

liIIlI I(gl (”n' yn) ¥, E)
1{
-3

limM(gF(yq,%a), 2y, O
§{+rlllmM(gy,F(F(yn,%n) F(ty,yn)), ©)
L + IIIILEOM(gy,g Yn O,
for £>0;

(V) Compatible of type (Ay) (we write, COM(Ay)), if
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mM(F(gxy, gyn), 8g%n, ©) = 1, ImM(F(gyn, g%0), g8yn, ©) =1, for £>0;
(vi)  Compatible of type (Az) (we write, COM(A,)), if
Lim M(gF (n, Y ), E(ECtn, yn), F(n, %0)), ©) = 1,

limM(gF(Yn' %n): F(F(yn; Mn); F(Kn; yn)); f) =1, for£>0.

The following example illustrates that the pair of compatible mappings need not
be COM(A), COM(P), COM(Ag), COM(A,):

£
t+x—yl

Example 8.2.5. Let X = R. Define a *x b= ab for a, b € [0, 1] and M(x, vy, ) =
for all %, y in X and £ > 0. Then, (X, M, ) is a FM-space. Let F: X x X — X and
g: X — X be defined by

. ny #0 L 0
F(n,y) = { Gy Y ~and g(x) = {KZ‘ ® for »,yE€EX.
3, otherwise 4, wn=

The pair (F, g) is compatible but neither COM(A) nor COM(P), COM(Ag), COM(A,).
For, let {x, = n?,n > 1} and {y, = 2n%,n > 1}. Then

limF(x,, yn) =0 = lim g, and limE(y,, »,) =0 = lim gy,,.
Also, since F(gx,, gy,) = 64n%*, F(gy,, gx,) = 64n%*, g?x, = n8, g%y, = 16nd,

F(F(%y,yn), F(yn, %n)) = (64n2*)3, F(F(yy, %,), FGtn, yn)) = (64n2*)3, gF (g, y4)
= 64n%*, gF(y,,®,) = 64n?*, we have

ImM(F(gnn, gyn) g%, # 1, ImMEFG, ), Fn ), g%, 0 # 1,
Lim M(gF (n, yn), F(ECtn, yn), E(yn, %n)), ©) # 1.

Thus, the pair (F, g) is neither COM(A) nor COM(P), COM(Ag), COM(A,).

Further, for the sequences {x,} and {y,}, with PLE‘OF(”H’ Vo) = % = i‘i?o gx, and
limF(y,, »,) =y = lim gy, for some %, y in X. Also, gF(n,yn) = (ayn)® =
F(g1y, gyn) and gF(yn, %) = (4,Yn)® = F(gYn, g%0), SO that, we have

. s t _
rlll—rgoM(gF(%n, Yn)! F(g%n, gyn)’ f) a I!ll—ILIO £+ |gF (n,yn ) —F(gxn, gyn)| =L

Similarly, imM™M(gF(y,, ®,), F(gy,, g#,), £) = 1, so that the pair (F, g) is compatible.
n—oo

The following example illustrates that if pair of mappings is COM(A), then, it

may not be compatible:
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Example 8.2.6. Let X = [0, 6]. Define a * b =ab for a, b € [0, 1] and M(x, y, f) =

f+| forallx yin X and £ > 0. Then, (X, M, =) is a FM-space. Let F: X X X —» X

andg:X—>be

m .
F(n, y) :{ . ,61fbothx,y€ [0,3)

,  otherwise

if % € [0,3)

and gx= {6 %
=1 6, otherwise

for», yin X.

Let {%n =3—--,n2> 1} and {yn =3—-——,n=> 1} be two sequences. Then, we get
rlliggoF(%n, yn) =3 = limgx, and IlliggF(yn, *y) =3 = limgy,.

Now, we have gF(x,,y,) = (3+%), gF(y,,ny) = (3+%), F(g»,, gy,) = 6,

Fleyn @) = 6 % = 6, g?y, = 6, F(FGto,yn), FOma)) = (3-1)

3
F(F(Yn'%n)' F(%nf Yn)) = (3 - E)
Now, the pair (F, g) is not compatible, since
llmM(gF(%n,yn) F(gn,, gyn), ©) = llmM(3 + -,6,0) %1, for £> 0.

But the pair (F, g) is COM(A), since

hmM(F(gx‘n; gYn) g %n:f)

n—)oo f+|6 6|

imM(F(gyn, gun), g%y, ©) = lim o =

and

i M(gF ¢y, yn), E(FGtn, ¥ ), EQn, #0)), €) = Hﬂiﬁ =1,
hmM(gF(yn,%n) F(F(yn,%n) F(%n,yn)) f) = 11m +‘ ‘ =1, fort>0.
4n

Lemma 8.2.1. Let (X, M, *) be a FM-space and F: X x X = X, g: X = X be two
mappings such that the pair (F, g) is COM(A) and any one of F or g is continuous,
then, the pair (F, g) is compatible.
Proof. W.L.O.G,, let g be continuous. Suppose that {»,} and {y,} be two sequences
in X such that rlli_r)glol:(xn, Vo) = rlli_{?og%“ = X, rlli_{?oF(y“’ Ky) = rlli_r)glogyn =y for some », y
in X. Now,

M(F(gxn, g¥n), F(%n, ¥0), ©)

> M(F(gtn, 2Yn), %, €/2) * M(g%n, 2F(tn, V1), £/2),

on letting n — oo in the above inequality, then, since the pair (F, g) is COM(A) and g
is continuous, it follows that IIIE?OM(F(g”“’ 2vn), gF (%, v,), £ = 1.
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Similarly, we can get limM(F(gy,, g«n), gF(yn, %n), £) = 1. Therefore, the pair (F, g)
n—oo

is compatible.
Likewise, it can be proved that if F is continuous and the pair (F, g) is COM(A), then,
the pair (F, g) is also compatible.
Lemma 8.2.2. Let (X, M, *) be a FM-space and F: X X X — X, g: X = X be two
mappings such that the pair (F, g) is compatible and both F, g are continuous, then, the
pair (F, g) is also COM(A).
Proof. Result follows immediately by using the definitions.
Lemma 8.2.3. Let (X, M, *) be a FM-space and F: X X X = X, g: X = X be two
mappings. If g is continuous, then the pair (F, g) is COM(Ag) iff the pair (F, g) is
compatible.
Proof. Let g be continuous. Suppose that {»,} and {y,} be two sequences in X such
that Illiir(}oF(%“' Vo) = Illig}ogxn =, Illi_{?oF(y“’ ) = Illig}ogyn =y for some %, y in X.
Let the pair (F, g) be COM(Ag).
Now, M(F(gnn, gyn), gF(%n, Y0, ©)
> M(F(gtn, gYn)> 2%, €/2) * M(g%n, gF(tn, ), £/2),

on letting n — oo and by continuity of g, it follows that

lim M(E(gxn, gyn), 2F(tn,yn), ) = 1.
Similarly, rlli_r)?oM(F(ng' ), gF (v, %), ©) = 1.
Hence, the pair (F, g) is compatible.
We conclude the proof by showing that the pair (F, g) is COM(Ag), if the pair (F, g) is
compatible. For,

M(F(grn, gYn), g%, )

> M(F(gxn, 2¥n), gF(tn, Y1), €/2) * M(gF (tn, Y1), 8%, €/2),

then, on letting n — oo and using the continuity of g, we get

lim M(F(gxy, gyn), g°%n, ©) = 1.
Similarly, rlli_r)?oM(F(ng' 2x,), g2y, ©) = 1.
Therefore, the pair (F, g) is COM(Ag). This completes the proof.
Lemma 8.2.4. Let (X, M, *) be a FM-space and F: X X X = X, g: X = X be two
mappings. If F is continuous, then, the pair (F, g) is COM(A,) iff the pair (F, g) is
compatible.

Proof. The proof can be obtained on similar lines of the proof of Lemma 8.2.3.
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Lemma 8.2.5. Let (X, M, *) be a FM-space and F: X x X = X, g: X = X be two
mappings. If the pair (F, g) is COM(A), then it is COM(B), COM(P), COM(Ay) and
COM(A,).

Proof. Let the pair (F, g) be COM(A). Then by definitions, the pair (F, g) is also
COM(B), COM(Ag) and COM(A,). We shall show that the pair (F, g) is COM(P).

For, let {x,} and {y,} be two sequences in X such that rlliigoF(xn, Vo) = rlli_r)glog%n =,
rlliigop(y“’ ®y) = rlli_r)ro1ogyn =y forsome x, y in X.

Now, for £ >0, we have

M(E(F(tn, Yn), F(Vn, %)), 27%n, ©)

> M(F(FCtn, Yn), (s %0)), F(gtn, gY0), €/2) * M(F(grtn, gY0), %0, €/2).
Taking n — oo in above inequality and using the definition of pair of COM(A), we get

lim M(F(EGn, yn), E(Vn, #0)), 2520, ©) = 1.

Similarly, we can get rlli_r)rolol\’[(F(F(yn,xn), F(%y,¥0)), 2%y, ©) = 1.

Therefore, the pair (E, g) is COM(P).

Remark 8.2.4. Using Lemma 8.2.5, the Example 8.2.6 illustrates the fact that “the
pair of the mappings which is COM(B)/ COM(P)/ COM(Ag)/ COM(A,) need not be

compatible”.

Lemma 8.2.6. Let (X, M, *) be a FM-space and F: X x X = X, g: X = X be two
continuous mappings. Then, the pair (F, g) is COM(B)/ COM(C)/ COM(P) iff it is
compatible.

Proof. Let the pair (F, g) is COM(B). We shall show that the pair (F, g) is compatible.

For, let {x,} and {y,} are sequences in X such that limF(x,, y,) = limgx, = x,

n—-oo n—oo
limF(y,, »,) = limgy, =y for some », y in X. Now, since the pair (F, g) is COM(B),
n—-oo n—-oo

then, using the continuity of F and g, by condition
lim M(F(gny,, gvn), Ft, y), ©)
n—oo
+ 1111—1130 M(F(%, Y): F(F(%n' YH)l F(an Mn))' f)'

we obtain that M(F(x, y), g, f) = 1, that is, F(x, y) = gx. Similarly, it can be obtained

1
lim M(E(gwy, gYn), 890, ©) 2 >

that F(y, %) = gy. Now, for f > 0, we get
M(gF (%4, yn), (g%, gyn), ©)
> M(gF(tn, yn), g, £/2) =« M(gx, F(gny,, gyn), £/2),
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then, on taking n — oo in the last inequality and using the continuity of F, g in the last
inequality, we get rlli_r};noM(gF(%n,yn),F(g%n,gyn),f) = 1. Similarly, we can obtain
rlli_r};noM(gF(yn,xn), F(gyn, gnn), ) = 1. Hence the pair (F, g) is compatible.
Conversely, let the pair (F, g) be compatible.
To show that it is COM(B). For, let {x,} and {y,} are sequences in X such that
rllilgF(%“’ Vo) = rllig}og”“ =%, rlliigp(yn’ Ky) = rlli_r)ro1ogyn =y for some %, y in X.
Now, we have
M(F(grn, g¥n), %%, ©)
> M(F(g%n, 2n), 8F(tn, ¥n), €/2) * M(2F (stn, Y1), 2220, €/2),
then, on taking n — oo and using the compatible hypothesis of (F, g) with continuity
of g, we get Illi_IEoM(F(g%n’ ay,), g2%,, ) = 1, that is, rlli_I)IC}OM(F(gxn, ay,), g2%,, ) = 1.
Also, by continuity of F, we get
1 lim M(E (g, gyn), E(,y), ©) } .
2|+ im MG y), FEGtn, ¥a) F (Y %)), ©)
Hence, we conclude that
lim M(E(gxn, gyn), F(4,y), ©)
+ imMCFC, ), F(F G, ) F @ 20)), 6.

Further, all the other conditions for (F, g) to be COM(B) holds.

1
lim M(F(grn, gyn), g%, ©) 2 5 {

Likewise, it can be easily proved that if F and g are both continuous, then, the pair
(E, g) is COM(C)/ COM(P) iff the pair (F, g) is compatible.

Example 8.2.7. Let X = [0, 2]. Define a * b = ab for a, b € [0, 1] and M(x, v, f) =

£
t+n—yl

and g: X — X be defined by

forall %, yin X and £ > 0. Then, (X, M, *) is a FM-space. Let F: X X X - X

~+%, ifny€0,3) ~—%, ifx€[0,3)
F(x,y) = 2, if%zyzé and  gn= %—%, ifxe(%,l)
1, otherwise 1, otherwise.

Then, the pair (F, g) is COM(B) but neither compatible nor COM(A), COM(C),
COM(P).

Lemma 8.2.7. Let (X, M, *) be a FM-space and F: X X X = X, g: X = X be two
mappings. If the pair (F, g) is COM(B) (or COM(C)) and both F, g are continuous,
then, the pair (F, g) is COM(A).
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Proof. Let the pair (F, g) be COM(B) and both F, g are continuous. We show that the
pair (F, g) is COM(A).
For, let {x,} and {y,} are sequences in X such that rlli_r>rO1OF(xn, Vo) = rlli_r)glog%n = x,
rlliigop(y“’ ®y) = rlli_r)ro1ogyn =y for some %, y in X. Since, the pair (F, g) is COM(B), we
have

_ ) . lim M(E(gxn, gyn), E(%,y), ©)

rlll_llloM(F(g%n:gYn)’g *n, ©) 22 N rlli_r)rc}oM(F(%rY)’F(F(%n’Yn)’F(Yn'%n))'f) ,

then, on using the continuity of F on the right side of the above inequality, we get
lim M(F (g, gyn), g°%n,©) 2 1, that is, im M(F (g, gyn), g%, ©) = 1.
Similarly, we can obtain Illi_r)ro101\’[(F(gyn, 2%,), 2%yn, ©) = 1.
We now show that I{ii?oM(gF(“n'yﬂ)' F(F(tn, yn), F(yn,%n)),€) = 1.

Since the pair (F, g) is COM(B), we have
lim M(gF (%, yn), g%, ©)

lim M(gF F(F F >— {77
nl_I;I;}O (g (%n' YH)’ ( (%n’ YH)l (YHi%n))' f) - 2 + llm M(g%, gzxn’f)
n—oo

then, on using the continuity of g on the right side of the above inequality, we obtain
that  limM(gF(ty, yn), F(FGtn, yu), EGn, #0)), ) 2 1,

sothat,  limM(gF(y, yn), F(FGtn, yn), FOm, %)), ) = 1.
Similarly, we can obtain
Lim M(gF (yn, %0 ), EF(Yn, n), ECtn,y0)), ©) = 1.

Hence, the pair (F, g) is COM(A).
Likewise, it can be obtained that if both F, g are continuous and the pair (F, g) is
COM(C), then it is COM(A).
Remark 8.2.5. In view of the above discussion, various relations between the variants
of compatible mappings can be obtained easily under certain conditions. For example,
we can easily observe that “If F and g are both continuous, then the pair (F, g) is
COM(B) iff it is COM(C)”.

Next, we discuss the relation between variants of compatible mappings and
weakly compatible mappings.
Lemma 8.2.8. Let (X, M, *) be a FM-space and F: X X X — X, g: X - X be two
mappings. If the pair (F, g) is compatible/ COM(A)/ COM(P)/ COM(B)/ COM(C)/
COM(Ag)/ COM(A,), then, the pair (F, g) is weakly compatible (w-compatible).
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Proof. First, we shall show that if the pair (F, g) is compatible, then, it is also weakly
compatible. For, let the pair (F, g) be compatible, then, we have

Lim M(gF (20, 1), F (g, gyn), ©) = 1
and rlli_rgoM(gF(yn,%n), F(gy,, gn,), ) = 1 for all £ > 0, whenever {x,} and {y,} are
sequences in X such that rlliigg(%“’ Vo) = rlliigog%“ = X, rllii?oF(y“’ Ky) = rllig(r)log,yn =y for
some x, y in X. Taking %, = a and y, = b, we obtain that ga = F(a, b) and gb = E(b, a)
implies that gF(a, b) = F(ga, gb) and gF(b, a) = F(gb, ga). Hence, every pair of
compatible mappings is always weakly compatible (w-compatible).
Next, we shall show that if the pair (F, g) is COM(A), then, it is also weakly
compatible. For, let the pair (F, g) be COM(A), then, we have

lim M(F (g, gyn), g°%n, ©) = 1, ImM(E(gyy, gtn), £%Y,,6) = 1
and

1im M(gF sy, yn), E(FGta, yn), EGn, #0)), €) = 1,

1im M(gE (v, %), F(E(n, %), EGtn, ), €) = 1,
whenever {x,} and {y,} are sequences in X such that li_)qgoF(xn, Vo) = Illiigog%“ =%,
Aif}op(y“’ Ky) = Illi_r){xl)gyn =y for some %, y in X. Taking %, = a and y, = b, we obtain
that ga = F(a, b) = and gb = F(b, a) = y. Also, then the condition

rlliI)?OM(F(g%n, gy,), g%%,, ) =1 becomes M(F(ga, gb), g?a, ) =1,
that is, M(F(ga, gb), gga, ) = 1, that is, M(F(ga, gb), gF(a, b),f) = 1 which implies
that F(ga, gb) = gF(a, b). Similarly, we can obtain that F(gb, ga) = gF(b, a). Therefore,
ga = F(a, b) and gb = F(b, a) implies that F(ga, gb) = gF(a, b) and F(gb, ga)
= gF(b, a). Hence, we can conclude that every pair of COM(A) is always weakly
compatible (w-compatible).
Now, we show that if the pair (F, g) is COM(B), then, it is also a weakly compatible.
For, let (F, g) of the mappings be COM(B), on taking %, = a and y,, = b, we obtain
that ga = F(a, b) = and gb = F(b, a) = y. Then, the condition

lim M(E(gxn, gyn), E(4 ), ©)

+ ImM(ECe, y), FFCtn, Yn), E(n, 20, ©)
in the definition of mappings of COM(B) becomes
M(F(ga gb), g%a, €) = %‘{M(F(ga, gb), F(%,y), ©) + M(F(ey), F(F(a, b), F(b, @), )},
that is,

i 1
limM(F(gn, gyn), g%, ©) 2 5
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M(E(ga, gb), gF(a b), ©) = 7 {M(F(ga, gb), F( y), ) + M(EG,y), F(¢,y), )},

or M(F(ga, gb), gF(a,b), ) = >{M(F(ga, gb), F(ga, gb), ©) + M(E(w,y), F( y), B},
that is, M(¥(ga, gb), gF(a, b),£) > 1, so that M(¥(ga, gb), gF(a, b),£) = 1, for £ > 0,
hence, we get F(ga, gb) = gF(a, b). Similarly, we can obtain that F(gb, ga) = gF(b, a).
Therefore, ga = F(a, b) and gb = F(b, a) implies that F(ga, gb) = gF(a, b) and
F(gb, ga) = gF(b, a). Hence, we can conclude that every pair of COM(B) is always
weakly compatible (w-compatible).

Likewise, we can prove that if the pair (F, g) is COM(P) or COM(C) or COM(Ag) or
COM(A,), then, it is weakly compatible (w-compatible).

The following example illustrates that the pair of weakly compatible mappings
need not be compatible nor COM(A), COM(B), COM(P), COM(C), COM(Ap).
Example 8.2.8. Let X = [1, 20] and * being any continuous t-norm. Define
M(x, y, f) = e YI/€ for all %, y in X and £ > 0. Then (X, M, ) is a FM-space. Let
F: X x X = X and g: X = X be defined by

1, ifr=1
and g =412, ifl<x <4
n—3, ifn> 4.

(1, ifu=1,orx>4y €X
F(“’y)‘{ 5, ifl<n<4y€eX

Then, the pair (F, g) is not compatible, since for the sequences {»,} and {y,} with »,
=4+ % andy, =4+ %ﬂ forn > 1, we have F(%,,y,) = 1, g, = 1, E(y,, %) =1,

gyn = L, M(F (%, ¥i), F(gn, gyn), ©) =e™*E» Lasn - oo,

Also, for the above defined sequences {x,} and {y,}, we have
M(F(2x,, 2Vn), 2%y, £) = e77/E 5 1 as n — oo, so that (F, g) is neither COM(A) nor
COM(Ag). Next, we show that the pair (F, g) is not COM(B). Contrarily, let the pair
(E, g) be COM(B), then, we must have

lim M(F(gxn, gyn), ¥(0 ¥), ©)

1
lim M(F ) LTI ) e .
lim M( (g%n, Yn), &%, ©) 2 |+ 1lim M(E(G, y), FE,, Vi), F¥m %), ©),

iff e‘7/f2%(1 + e7*/t)iff 2 > (e7/f+ €3/f), which is not possible for f > 0.

Hence, the pair (F, g) is not COM(B). Similarly, it is easy to obtain that the pair (F, g)
is neither COM(C) nor COM(P). But the pair (F, g) is weakly compatible, since F and
g commute at their only coupled coincidence point (1, 1).

Remark 8.2.6. (i) Since every pair of compatible mappings is weakly compatible, so

that the pair (F, g) in Example 8.2.5 being compatible is also weakly compatible.
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Also, the pair (F, g) in Example 8.2.5 is not COM(A,). Hence, Example 8.2.5

illustrates the fact that weakly compatible mappings need not be COM(A,).

(ii) If the pair (F, g) of mappings is commuting/ WC/ R-WC / R-WC(Ap)/

R-WC(A,)/ R-WC(P), then, it is also weakly compatible (w-compatible). However, in

general, the converse need not be true.

Next, we give the metrical version of the above definitions of variants of weakly

commuting and compatible mappings.

Let (X, d) be a metric space, then we define the following notions:
Definition 8.2.3. Let F: X X X = X and g: X — X be two mappings. Then, the pair

(E, g) of mappings is said to be

()
and

(i)

and

(iii)

and

(iv)

and

(v)

and

Weakly commuting (we write, WC), if for all %, y in X, we have
d(F(gx, gy), gF(x, ¥)) < d(F(», y), gx)

d(F(gy, g»), gF(y, »)) < d(E(y, »), gy);
R-weakly commuting (we write, R-WC), if there exists some R > 0 such

that for all », y in X, we have

d(F(gx, gy), gF(x, ) < RA(F(%, y), g%)

d(F(gy, g0), gF(Y, »)) < RA(E(Y, %), gy);
R-weakly commuting of type (Ay) (we write, R-WC(Ay)), if there exists
some R > 0 such that for all %, y in X, we have

d(E(gx, gy), gg») < RA(E(x, y), gx)

d(E(gy, gn), ggy) < RA(E(y, »), gy);
R-weakly commuting of type (A,) (we write, R-WC(A,)), if there exists
some R > 0 such that for all %, y in X, we have

d(gF(x, y), E(F(x, y), ¥(y, %)) < Rd(F(x, y), gx)

d(gF(y, %), E(E(y, %), F(x, ¥))) < RA(F(y, %), gy);
R-weakly commuting of type (P) (we write, R-WC(P)), if there exists
some R > 0 such that for all %, y in X, we have

d(F(F(x, y), E(y, %)), ggx) < Rd(F(x, y), gx)

d(E(E(y, %), E(x, y)), ggy) < RA(E(y, %), gy).

Definition 8.2.4. Let F: X X X — X and g: X — X be two mappings. If whenever

{»,} and {y, } are sequences in X such that limF(x,, y,) = limgx, = », limE(y,, »,)
n—oo n—oo n—oo

= limgy, =y for some », y in X, then, the pair (F, g) is said to be
n—oo
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(i) Compatible of type (A) (we write, COM(A)), if
lim d(F(gx, gyn), g°n) =0, limd(F(gyn, g4,), 8%Y,) =0
and

limd (gFGea, ¥), F(FGn, ¥), F %)) ) =0,

limd (gF (v, 20), E(E T, ), G, ) ) = O
(i) Compatible of type (B) (we write, COM(B)), if
limd(F(gx,, gyn), F(,y))

I 8V, 85%) 2
nl_f}go(l(F(g%n gy ) g™ ) < 2 {+ Illl_r,{)lod’ (F(%‘y)‘ F(F(%n,yn), F(yn,%n))),

limd(F(gyn, g%n), F(y, %))

. 2 1
limd(E(gyn, g4n), 27Y,) <3 {+ limd (F(y, M),F(E(yn,xn),F(%n,yn))),

and
| 1 rlll_I)Elo(l(gF ('Kn; Yn)l g%)
rlll—r>rolcndj (gF(%n: Yn)f F(F(%n’ yn)’ F(yn' %n))) = E + limCl(g%, gzxn)l
n—oo
lim d(g¥(yn, %n), £Y)

] 1
Al_l)l(}o(l (gF(yn’%n)' F(F(Yn' %n): F(%n’yn))) s E + llmd;(gY: gZYn) ,
n—oo

(i)  Compatible of type (P) (we write, COM(P)), if
i d(E(E G, yn), F(n %)), 820 ) =0,
lim d(F(F(yn, %), F(a, Y1), €°¥n) = 0;

(iv)  Compatible of type (C) (we write, COM(C)), if

[ limd(F(gnn, gya), )
limd(F (g, gyn), 8%%0) <5 1 + limd(FGo y), g%)

|+ limd (F(%, ¥, E(F(tn, ¥n) F(yn.%n)));

( limd(F(gyn, g#a), F(y, %))
limd(F(gyn, @), 8%n) <3 1 + Imd(E(y, %), g°¥n)

|+ limd (F(y, %), F(F (¥, %), F(%n,yn))),

and

1imd (gF Gt ), F(FGtn, ), F (5 %))
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limd(eF Gen, 7))

(
< 14 +1imd (g E(FGtn ), B 0)) )
L + limd (g, g*xy),
limd (gF (7, %n), E(EGn, ), B, v)))
( lim d(F (yn, %), 2y)
< %4 +1limd (2v, F(Fn %0), FGtn, ) );
+ limd(gy, g°yn)
(V) Compatible of type (Ay) (we write, COM(Ap)), if
lim d(E(gn, gyn), g%0) =0 and  limd(F(gyn, gn), ggyn) = 0;
(vi)  Compatible of type (A,) (we write, COM(A,)), if

1111—1}30(1 (gF(%n: YH)I l:(F(%ni Yn)J F(Yn'%n))) = 0’

1imd (2B, #n), E(EWn, %), B, ) ) = 0.
Remark 8.2.7. The relation between various mappings in the setup of fuzzy metric

spaces established earlier also holds among the metrical versions of those mappings.

8.3. RESULTS FOR WEAKLY COMPATIBLE MAPPINGS

In this section, we give results for weakly compatible mappings and various
mappings discussed in section 8.2, in the context of coupled fixed point theory in FM-
spaces.
Let us denote by W the class of all continuous, non-decreasing functions
w: [0, 1] = [0, 1] with the property that w(a) = 1 iff a = 1. Also, denote by V the class
of all continuous functions y: [0, 1] — [0, 1].
Lemma 8.3.1. Let y € V and w € W. Assume that y(a) = w(a) for a € [0, 1]. Then,
y(1) =1
Proof. Let {a,} < (0, 1) be a non-decreasing sequence with lima, = 1. By

n — o

hypothesis we have y(a,) = w(a,), n € N. Using the properties of y and w, we can
obtain that y(1) > w(1) = 1, which implies that y(1) = 1. This completes the proof.

In order to give our main result, we shall first consider the following:
Let (X, M, *) be a FM-space with (FM-6), * being continuous t-norm of H-type. Let
A, B: XXX > Xand S, T: X = X be four mappings such that A(X X X) S T(X),
B(X X X) € S(X) and there exists ¢ € @, such that
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o (M(A@,y), B(u, v), (9) * M(Ay, %), B(v,0), $(D)) )
= y(M(S%, Tu, ) * M(Sy, Tv, ©), (8.3.1)
for all %, y, u, v in X and £ > 0, where y € ¥V and w € W such that y(a) = w(a) for
a € [0, 1]. Since A(X X X) < T(X), so for arbitrary points »,, y, in X, we can choose
%1, 1 In X such that Tug = A(%o, ¥o), Ty1 = (Yo, %o)-
Again, since B(X X X) € S(X), we can choose %, y, in X such that Sx, = B(x, y;)

and Sy, = B(y1, %1).
Continuing likewise, the sequences {z,} and {z,} can be constructed in X such that

Zon+1 = &(M2n, Yon) = T(Man+41): Zantz = B(Mon+1, Yan41) = SHon+2 (8.3.2)

and
Zont1= &(Von: %2n) = T(V2n+1)s Zontz = Bon+1s %ont1) = SYzn+2s (8.3.3)
foralln > 0.

To prove the main result, we shall consider the following lemma:
Lemma 8.3.2. The sequences {z,} and {z,} defined by (8.3.2) and (8.3.3),
respectively are Cauchy sequences in X.
Proof. Since = is a t-norm of H-type, for o > 0, there exists ¢ > 0 such that
1-9*(1—-0)*..x(1—0) = (1—o0),forallieN. (8.3.4)

1

By (FM-6), there exists £, > 0 such that

M(Sxg, Ty, €) = (1 —@) and M(Syo, Ty, £) = (1 — ). (8.3.5)
Also, since ¢ € @y, by (¢-3), for any £ > 0, there exists n, € N such that
£> 3070, P (£)). (8.3.6)

Using (8.3.1), we can get

® (M(zl, 22, 0 (€)) * M (21,2, qb(fo))>

= w (M(ACto,70), BGu, 1), ¢ (E)) * M(A(y0,%0), By1, 1), 6 (60)))
>y (M(Sxg Ty, €9) * M(Syo, Ty, £0))

= w (M(S%O, T%y f0) * M(SYO! Ty1'f0))v

then, using the monotone property of w, we get

M(z1,22, ¢(£y)) * M (Z'le'Z: ¢(fo)) > M(Sx,, Txy, €) * M(Syo, Ty1, o).

Again using (8.3.1), we get
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w (M(z2,73, 07 (60)) + M (2,25, 42 (6) )

Zw (M(B(M'Yﬂ; A1, y2), 92 (E9)) * M(B(y1,%1), A(y2, %), ¢2(f0)))

=y (M(Snz, Trg, @ () * M(Syz, Ty1, ¢(€0)))

= w(M(Snp, Trg, P(€)) * M(Sy2, Tyr, d(£)))

= w(M(Zz; 71, ¢(£p)) * M(Zé'zi» ¢(fo)))

then, by monotone property of w, we get

M2z, 73, 2 (6)) * M (7,25, $%(€9) ) = M(21, 22, P (E0)) * M (21, 75, B (60) ).
Similarly,

M(z3, 74, % (60)) * M (73, 21, % (€9) ) = M(22, 23, 92 () * M (23, 73, 2 (&) ).

Continuing likewise, for all n > 0, we can obtain
M(Zn41, 242, " (6)) * M (Z;1+1'Z;1+2» P t! (fo))

> M(20, 2041, " (€)) * M (20, 2041, 0" (&) ),
which implies that
M(20 11, 22, 01 () * M (71, 2oz 91 (60) )
> M(S%y Ty, €0) * M(Syo, Ty, o).
Now, using (8.3.4) — (8.3.6), for m > n > n,, we get
M(2y, Zm, £) * M(2,, 2, £)
> M(2n, Zm) X2y 9 (€0)) * M(2Zn, 2m) T2, ¢ ()
> M(2n, #m, X &' (€0)) * M(2n, 2m, T2 &1 (60))
> [M(2zy, 2011, @™ (€0)) * M(Zn11) 212, "1 (€0)) * v M2 1, Zm, ¢ 1(€0))]
M (20, 2011, 0 (60)) * M (241, Zna2, 6" (6)) % oot M (2, 20, ™1 () )]
= [M(z0, 2011, 8" (60)) * M (70, 7041, 9" (€))

" [M(Znﬂ: Zni2, P TL(E)) * M (Z;l-f-l’ Zn42 "1 (fo))]

(M2, 2, 6™ 71 (60)) * M (201, 7, 9™ 71 (E0) )|
> [M(Sx, Try, €9) * M(Syo, Ty1, €)1 * [M(Sxo, Try, €) * M(Syo, Ty1, €o)] * ...
* [M(Sno, Try, £) * M(Syo, Ty, )]

> 1-9*x1-@*.x(1-0 =(1-o0),
2(m—n)
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which implies that M(z,, z,,, ) * M(z,, 2, ) = (1 — ), forall m, n € N with m > n
>n, and £> 0. So that {z,} and {z,} both are Cauchy sequences in X.

Now, we give our main result as follows:
Theorem 8.3.1. Let (X, M, *) be a FM-space with (FM-6), * being continuous t-norm
of H-type. Let A, B: X X X = X and S, T: X = X be four mappings such that
A(X X X) € T(X), B(X x X) € S(X) and there exists some ¢ € @y such that (8.3.1)
holds for all %, y, u, v in X and £ > 0 with y € V and w € W such that y(a) = w(a) for
a € [0, 1]. Suppose that the pairs (#, S) and (B, T) are weakly compatible, one of the
subspaces A(X x X) or T(X) and one of B(X X X) or S(X) are complete. Then, there
exists a unique point « in X such that 4(a, @) = Sa = a = Ta = B(a, a).
Proof. By Lemma 8.3.2, both the sequences {z,} and {z,} defined respectively by
(8.3.2) and (8.3.3) are Cauchy sequences. The proof is divided into four steps as
follows:
Step 1. We assert the existence of some «, 8 in X such that

Ta=B(a, B), TB=B(B, @) and Sa =#A(a, B), SB =4(B, a).

W.L.O.G., assume that the subspaces T(X) and S(X) are complete. Since {2,411},
{Zon+2} and {z;,.1}, {z,n4,} are the sub-sequences of the Cauchy sequences {z,}
and {z,} respectively, so they are also Cauchy sequences. By completeness of T(X),
there exists «, 8 in T(X) € X such that {z,, .1} = a and {z,,,,} = B asn - . By
convergence of sub-sequences {z,,,1} and {z,,..}, it is easy to establish the
convergence of the original Cauchy sequences {z,} and {z,} respectively, such that
{z,} » a and {z,} — B as n - oo. Consequently, it follows that the sequences

{z2n1} {22042}, {22} converges to @ and {z;,41}, {Z2n+23}, {2} converges to B.

Since a, f € T(X), there exist some p, q in X such that Tp = a, Tq = 8, so that, we

have
limzy, 1 = limA&(%z,, y2,) = limTayn 4 = a = Tp,
n—oo n—oo n—oo
limzy,4, = ImB(#gp41,Y2n+1) = limSuyp 4 = a = Tp,
n—-oo n—oo n—oo
limz,, 1 = im#A&(y,n, %2n) = lim Ty = =Tq

and limz;, 1, = imB(y2n41,%20+1) = limS§y2,4, = B = Tq.

By (8.3.1), we can obtain

© (M(AGton, Y20), B®, D), $(6) * M(A(20,%20), B(a, p), (©))
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> y(M(S%2n, TP, ©) * M(Sy2n, Tq, ©)
> w(M(Sxzn, Tp, © * M(Syzn, Tq, 0),
then, using the monotone property of w, we get

M(A (2, Y20), B, @), ¢ () * M(AF 20, %20), B(a, p), ¢ (D))

= M(Sxzn, Tp, ©) * M(Sy2n, Tq, O,

then, on letting n — oo, we obtain that

M(Tp, B(p, ), p(6)) * M(Tq, B(q, p), ¢(©) = 1,
which implies that Tp = B(p, q) = a and Tq = B(q, p) = . As the pair (B, T) is
weakly compatible, so that Tp = B(p ,q) = a implies that Ta = B(a, £). Similarly, we
can get TS = B(pB, a). Also, since S(X) is complete, so a, f € S(X), which implies the
existence of some r, s in X such that S = a, Ss = .

Again using (8.3.1), we obtain that
o (M(A(, 5), BGtan+1, Yons1), #(0) * M(A(S, ¥), B(z2n41, %2n+1), (D))

> y(M(St, Trgnt1, ©) * M(SS, Tyans1, ),
then, on letting n — oo and using the continuity of w, y we can obtain

1) (M(A(r, S),a, ¢(f)) * M(A(s, ¥), 3, (,b(f))) >y(1) =1,
which implies that A(r, s) = @ = Sr and A(s, ¥) = f = Ss. Since, the pair (%, ) is
weakly compatible, it follows that A(a, ) = Sa and A(S, a) = SpS.
Step 2. Next, we show that Sa = Ta and S =Tg.
Since * is a t-norm of H-type, for o > 0, there exists ¢ > 0 such that
1-9*(1-0)*..x(1—0@) = (1—o0),forallieN.

1

By (FM-6), there exists £, > 0 such that

M(Sa, Ta, tp) = (1 — @) and M(SB, TB,£) = (1 —0).
Also, by (¢-3), for any £ > 0, there exists ny € N such that > 2 | @ (£)).

By (8.3.1), we obtain that
o (M(S Ta, p(6)) * M(SB, T, ¢ (6)))
= w (M(A(a, ), B(a, B), ¢ (€)) * M(A(B, @), B(B, @), p(€2)))

= ]/(M(Sa, Ta! fO) * M(Sﬁt TﬁﬁfO))
Since y(a) = w(a) for a € [0, 1], by last inequality, we get

o (M(St, Ta, (E)) * M(SB, TR, ¢ (£0))
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> w(M(Sa, Ta, t) * M(SB, TB, £0)).
By the monotone property of w, we obtain that
M(Sa, Ta, ¢(€0)) * M(SB, TB, p(£o))

= M(Sa, Ta, £) * M(SB, TB, to).
Reasoning as above, in general for all n > 1, we can obtain
M(Sa, Ta, ¢" (£)) * M(SB, TB, ¢" (£))

= M(Sa, Ta, £) * M(SB, TB, to).
Thus, for o >0 and £ > 0, we have
M(Sa, Ta, ©) * M(SB, TB, )
> M(Sa, Ta, 520, ¢ (£0)) * M(SB, TB, 20, ¢! (£0)
> M(Sa, Ta, p"0 (€)) * M(SB, TB, ™ (€0))
= M(Sa, Ta, ) *M(SB, TB,t) =2 1 - *(1-0) = (1 —-0).
Hence, Sa =Ta and SB =Tp.
Therefore, Sa = A(a, ) =B(a, ) = Ta and SB = A(B, a) =B(B,a) =TB.
Step 3. We next show that Sa = a and S = (.
Since * is a t-norm of H-type, for any ¢ > 0, there exists ¢ > 0 such that

1-0*x(1—0)*..x(1—0) = (1—o0)forallieN.

1

By (FM-6), there exists £, > 0 such that
M(a, Sa, tp) = (1 —¢) and M(B, $B, ty) = (1 - o).
Also, since ¢ € @y, by (¢-3), for any £ > 0, there exists n, € N such that

0> 370, ) (6).

By (8.3.1), we have
o (M(Sa @, (6)) * M(SB, B, $(€0)) )
= w (M(A(a, £), B(p, @), ¢(6)) * M(A(B, @), B(q, p), $(£5)) )

> y(M(Sa, Tp, &) * M(SB, Tq, €))

=y(M(Sa, @, to) * M(SB, B, ),
then, using the fact that y(a) = w(a) for a € [0, 1] and the monotone property of w,

we obtain that

M(Sa, a, d(€5)) * M(SB, B, d(€5)) = M(Sat, a, ) * M(SB, B, o).

In general, for all n > 1, we obtain that

M(Sa, a, ¢" (€0)) * M(SB, B, 9" (£)) = M(Sa, a, ) * M(SB, B, o).
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Now, for any o > 0 and for all £> 0, we have

M(Sa, a, ©) * M(SB, B, ©)

> M(Sa, a, 52y, ¢ (€0)) * M(SB, B, XZn, &' (€0)

> M(Sa, a, ¢ (€)) * M(SB, B, d™ (€)) = M(Se, @, £5) * M(SB, B, o)

>2(1-*(1-0=(1-o0).

Therefore, Sa¢ = a and SB = B. Thus, we have B(a, ) = Sa = a = Ta = A(a, B)

and B(B,a) =S =B =T = #(B, a).

Step 4. We now show that a = S.

Since * is a t-norm of H-type, for any ¢ > 0, there exists ¢ > 0 such that
l1-9*(1-@*..x(1—0) = (1—o)forallieN.

1

By (FM-6), there exists £, > 0 such that
M(a, B,£5) = (1 — o).
Also, since ¢ € @y, by (¢-3), for any £ > 0, there exists n, € N such that
£> 572, ¢! (6).
By (8.3.1), we have

w (M(a, B, ¢(£)) * M(B, a, ¢(f0)))
= o (M(AG, ), B(a, p), §(6)) * M(A(q, p), B, ), $(60)))

> y(M(Sp, Tq, &) * M(Sq, Tp, £))

=y(M(o, B, &) * M(B, o, €)).
then, using the fact that y(a) = w(a) for a € [0, 1] and the monotone property of w,
we get
M(“J ﬁr (p(fO)) * M(ﬁ' a, ¢(f0)) = M((I, ﬁ' f0) * M(ﬁ, a, fO)
In general, for all n > 1, we obtain that
M(“J ﬁr (pn(EO)) * M(ﬁ' a, ¢n (EO)) = M(a' B' f0) * M(ﬁ' a, f0)
Then, for ¢ > 0 and for all £ > 0, we have
M(a, ,B, E) * M(ﬁ, a! E)
> M(a, B, X2, ' (£0)) * M(B, &, X2, ¢ (E0))
= M(C{, ,8' ¢n0 (fO)) * M(IB' a, ¢n0 (fO))
= M((X, B'EO) * M(ﬁ' a, fO)
2(1-0*(1-0=(1-0),
which implies that a = 3.
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Hence, there exists some point « in X such that &(a, @) = Ta = a = Sa = B(«a, ).
Uniqueness of the point a follows immediately by using (8.3.1).
Theorem 8.3.2. Theorem 8.3.1 remains true if the ‘weakly compatible property’ is
replaced by any one of the properties (retaining the rest of the hypotheses):

Q) Compatibility;

(i)  COM(A);
(i)  COM(P);
(iv) COM(B);
(v)  COM(C);

(vi)  COM(Ag);
(vii) COM(A,).
Proof. Using Lemma 8.2.8, the proof follows immediately.
Theorem 8.3.3. Theorem 8.3.1 remains true if the ‘weakly compatible property’ is
replaced by any one (retaining the rest of the hypothesis) of the properties:
Q) Commuting;
(i)  WC;
(i) R-WC;
(iv)  R-WC(Ag);
(V) R-WC(A,):
(vi)  R-WC(P).
Proof. Using the (ii) part of Remark 8.2.6, the proof follows immediately.

8.4. PROPERTY: (E.A.), (CLRg), COMMON PROPERTY (E.A.) AND (CLRgy)
This section deals with the notions of property (E.A.), (CLRg) property, common
property (E.A.) and (CLRgy) property in coupled fixed point theory. Further, utilizing
these notions, the results of Hu [146], Hu et al. [147] and Jain et al. [63] (that is,
Theorems 8.1.1, 8.1.2 and 8.1.3, respectively) are also generalized.
We now discuss the following notions:
Definition 8.4.1. Let (X, d) be a metric space and F: X x X — X, g: X = X be two
mappings. Then, the pair (F, g) is said to satisfy property (E.A.), if there exist

sequences {x,} and {y,} in X such that limF(x,, y,) = limgx, = », limF(y,, %x,) =
limgy, =y for some %, y in X.
n—-oo

The fuzzy metric analogue of Definition 8.4.1 is as follows:
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“Let (X, M, *) be a FM-space and F: X X X — X, g: X = X be two mappings. Then,
the pair (F, g) is said to satisfy property (E.A.), if there exist sequences {x,} and {y,}
in X such that {F(»,,y,)}, {gx,} converges to x and {F(y,,»,)}, {gy,} converges to
y for some %, y in X, w.r.t convergence in (X, M, *)”.

Definition 8.4.2. Let (X, d) be a metric space and F: X x X — X, g: X = X be two
mappings. Then, the pair (F, g) is said to satisfy (CLRg) property, if there exist

sequences {x,} and {y,} in X such that limF(x,, y,) = limgx, = gp, limE(y,, %,) =
n—oo n—oo n—oo

limgy, = gq for some p, g in X.
n—-oo
The fuzzy metric analogue of Definition 8.4.2 is as follows:
“Let (X, M, *) be a FM-space and F: X X X — X, g: X — X be two mappings. Then,
the pair (F, g) is said to satisfy (CLRg) property, if there exist sequences {»x,} and

{yn} in X such that {F(xy,yn)}, {gxn} converges to gp and {F(y,, %)}, {gyn}
converges to gq for some p, g in X, w.r.t convergence in (X, M, *)”.

We now extend Definition 8.4.1 under the following notion:
Definition 8.4.3. Let (X, d) be a metric space and &, B: X X X - X and S, T: X - X
be the mappings. Then, the pairs (%, S) and (B, T) are said to share common

property (E.A.), if there exist sequences {x,}, {y,} and {p_}, {a}in X such that
limA(x,,y,) = limB(f)n,qn) =limTp = limSx, =q,
lim&(y,,»,) = limB(qn,f)n) =1limTq_ = limSy, =b for some a, b in X.
The fuzzy metric analogue of Definition 8.4.3 is given as:
“Let (X, M, *) be a FM-space and &, B: X X X - X and S, T: X — X be the
mappings. Then, the pairs (%, $) and (B, T) are said to share common property
(E.A.), if there exists sequences {x,}, {y,} and {p_}, {a ,} in X such that {&(x,,y,)3},
{B(B, @)} {TB, }, {Sn} converges to a and {A(yy, )}, {B(a,,, b,)} {Ta, b (Sya}

converges to b for some a, b € X, w.r.t convergence in (X, M, *)”.
Remark 8.4.1. On taking & = B = F and S = T = g in Definition 8.4.3, we obtain
Definition 8.4.1.

Next, we define the notion of (CLRgt) property in coupled fixed point theory.
Definition 8.4.4. Let (X, d) be a metric space and &, B: X X X - X and S, T: X - X
be the mappings. Then, the pairs (A, $) and (B, T) are said to satisfy (CLRgry)
property, if there exist sequences {»,}, {y»} and {p_}, {a } in X such that
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lim A%y, y,) = imB(p_,q ) = imTp_ = limSx, = a,
limA(y,, ®,) = limB(qn,[)n) =1limTq_ = lim§y, =b,
for some a, b € S(X) N T(X).
Following is the fuzzy metric analogue of Definition 8.4.4:
“Let (X, M, *) be a FM-space and A, B: X X X - X and S, T: X — X be the
mappings. The pairs (A, $) and (B, T) are said to satisfy (CLRgy) property, if there
exists sequences {x,}, {y,} and {p_}, {a_} in X such that {&(x,,y,)}, {B(p, a )}

{TB, }, {Sx,} converges to a and {A(y,, %)}, {B(a. B, )} {Ta,}, {Sya} converges to
b for some a, b € $(X) N T(X), w.r.t convergence in (X, M, *)”.

Remark 8.4.2. Taking &# = B = F and S = T = g in Definition 8.4.4, we obtain
Definition 8.4.2.

We now give our main result that generalizes Theorems 8.1.1 and 8.1.2.
Theorem 8.4.1. Let (X, M, *) be a FM-space with (FM-6), * being continuous t-norm
of H-type. Let F: X X X — X and g: X — X be two mappings and there exists ¢ € @,
satisfying (8.1.1). Suppose that the pair (F, g) is weakly compatible and satisfies
(CLRg) property. Then, there exists a unique » in X such that F(x, ») = x = gx.

Proof. As (F, g) satisfies (CLRg) property, there exist sequences {x,}, {y,} in X such
that imF(x,, yn) = limgx, = gp, limE(y,, %,) = limgy, = gq for some p, q in X.
The proof consists of the following steps:

Step 1. We assert that F and g have a coupled coincidence point.
By (8.1.1), for £ > 0, we have
M(F(tn, yn), F(p, @), ) = M(F(y, ), F(p, @), ¢ (6)
= M(gny, gp, £) * M(gyn, g0, ©),

then, on letting n — oo, we get M(gp, F(p, q), f) = 1, that is, F(p, q) = gp = = (say).
Likewise, we can get F(q, p) = gq =y (say). As (F, g) is weakly compatible, so, we
can obtain that gF(p, q) = F(gp, gq) and gF(q, p) = F(gq, gp), that is, g»x = F(x, y) and
gy = ¥(y, »).
Step 2. We show that gx =%, gy = V.
Since * is a t-norm of H-type, for any ¢ > 0, there exists ¢ > 0 such that

1-0*(1-9@)*..x(1—0)=(1—o0),forallieN.

1

By (FM-6), there exists £, > 0 such that
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M(gx, #, tp) = (1 — @) and M(gy, y, f) = (1 - 0).
As ¢ € @, by (¢-3), for any £> 0, there exists n, € Nsuchthat £>3% 2 O ().
Using (8.1.1), we have
M(gx, %, ¢(£o))
= M(F(x, y), E(p, 9), ¢(fo))
= M(gx, gp, o) * M(gy, g9, fo)
= M(gx, %, tp) * M(gy, Y, o)
and Mgy, y, ¢(to)) = Mgy, Y, to) * M(gx, %, ).
Again using (8.1.1), we have
M(gx, %, $*(f))
=M(F(x, y), F(p, 9), $°(£0))
= M(gx, gp, $(to)) * Mgy, g9, $(to))
= M(gx, %, ¢(fo)) * M(gy, ¥, ¢(£))
> [M(gn, %, £)]% * [M(gy,y, €)1,
and Mgy, Y, $*(£)) = [M(gy,y, £)]% * [M(2n, %, )],

Continuing likewise, for all n € N, we can get

M(gx, %, ¢ (€0)) = [M(gn %, €)12" " * [M(gy, v, €)1,

Zn—l

Mgy, Y, ¢"(€0)) = [M(gy,y, €)% * [M(2, % €)1
Then, we have

M(gx, », )
> M(gx, %, %2y, ¢ (£))
= M(gn, %, ¢"(£))
> [M(gw, %, €)1 = [M(gy,y, £)1"
2(1-@*(1-+*..(1-@=(1-0),

2no

that is, for any o > 0, we have M(gx, », f) = (1 — o), forall £> 0.

Therefore, we get gx = %. Similarly, we can get gy =y.

Step 3. We now show that x = y.

Since * is a t-norm of H-type, for any ¢ > 0, there exists ¢ > 0 such that
1-0*(1-90@)*..x(1—0)=(1—0),forallieN.

1

By (FM-6), there exists £, > 0 such that
M(x, y, ) = (1 - 0).

222



As ¢ € Dy, by (¢-3), for any £ > 0, there exists ny € N such that £ > 3.2 ¢ ().
Using (8.1.1), we get
M(x, Yy, ¢(£o)) = M(E(p, 0), F(a, p), ¢(to))
> M(gp, gq, £o) * M(gq, gp, o)
= M(%’ Y, f0) * M(y’ X, fO)
Continuing likewise, for all n € N, we get
M, Y, " (E0)) 2 My, €)1 * [M(y, %, )1
then, we have

M(%! Ys f) = M(%, Ys Zizno d)k(fO)) = M(%’ Y, d)no(fO))

> My, )] * [M(y,%6)]2"" 2 (1 - *(1-@) *..(1—) = (1-0),

2no

which implies that x = y. Therefore, F and g have a common fixed point % in X.

Step 4. Finally, we show the uniqueness of ».

Let z be any point in X with gz = z = F(z, z).

Since * is a t-norm of H-type, for any ¢ > 0, there exists ¢ > 0 such that
(1-9*(1—@*..x(1—@)=(1—o0) foralli€eN.

1

By (FM-6), there exists £, > 0 such that
M(%, Z, fO) = (1 - Q)
As ¢ € @y, by (¢-3), for any £ > 0, there exists ny € N such that £> ;2 @ (£).

Using (8.1.1), we have
M(x, z, p(£)) = M(E(x, %), F(z, 2), ¢(£))
= M(gx, gz, fo) * M(gx, gz, f)
=M(x, 2, ) * M(x, z, £5) = [M(%, 2, £)]?.
Continuing likewise, for all n € N, we can obtain

M, 7 87 (6)) = (IM(%, 2 )17 )",

Then, we have

Mt 2,0 = MO, 2, $i, ¢ (60)) = MO, 2, 9" () = (MGt 2,601

=M z6)) ' >2(1-*x(1-@*..x(1—-@ =(1-0),

2n0

which implies that x = z. Hence, F and g have a unique common fixed point in X.
Remark 8.4.3. Theorem 8.4.1 generalizes Theorems 8.1.1 (Hu [146]) and 8.1.2
(Hu et al. [147]) for weakly compatible mappings along with (CLRg) property.
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Theorem 8.4.1 does not require continuity hypothesis of any of the mappings involved
and also relaxes the containment condition of the range subspace of the mapping F
into the range subspace of the mapping g. Further, the completeness of the space or
the range subspaces has also been relaxed on using (CLRg) property.

Next, we give another generalization of Theorems 8.1.1 and 8.1.2 as follows:
Corollary 8.4.1. Let (X, M, *) be a FM-space with (FM-6), * being continuous
t-norm of H-type. Let F: X X X — X and g: X — X be two mappings and there exists
¢ € @, satisfying (8.1.1). Suppose that the pair (F, g) is weakly compatible and

satisfies property (E.A.). If g(X) is closed subspace of X, then there exists a unique %
in X such that F(x, ») =% = gx.
Proof. As (F, g) satisfy property (E.A.), there exist sequences {x,}, {y,} in X such
that {F(x,,yn)}, {gn,} converges to » and {F(y,,%,)}, {gy,} converges to y for some
%,y in X, as n — oo. Since g(X) is closed in X, so » = gp, y = gq for some p, q in X.
Consequently, the pair (F, g) satisfies (CLRg) property. Now, by Theorem 8.4.1, F
and g have a unique common fixed point in X.
Remark 8.4.4. (i) The significance of (CLRg) property and property (E.A.) is that
both the properties not only relaxes the continuity hypothesis of all the mappings
involved but also relaxes the containment condition of the range subspace of the
mapping into the range subspace of the other mapping.
(i) It has been noticed that property (E.A.) replaces the completeness requirement of
the space and range subspaces of the mappings with a more natural condition of the
range subspaces to be closed whereas (CLRg) property ensures that one does not
require even this condition also.

Next, we extend Theorem 8.4.1 for two pair of mappings sharing (CLRgy)
property and generalize Theorem 8.1.3 (Jain et al. [63]) as follows:
Theorem 8.4.2. Let (X, M, *) be a FM-space with (FM-6), * being continuous t-norm
of H-type. Let A, B: X X X = X and S, T: X — X be the mappings and there exists
¢ € @y such that (8.1.2) holds. Suppose that the pairs (4, S) and (B, T) share

(CLRgy) property and are w-compatible. Then, there exists a unique a in X such that
#(a, a) = Sa=a=Ta=B(q, a).
Proof. Since the pairs (#, ) and (B, T) share (CLRgy) property, there exist sequences

{n}, {yn}and {p_}, {a } in X such that

limA (G, y,) = imB(p,, a,,) = im TP, = limSx, = a,
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limA(y,, %,) = limB(q,,,p,) = limTq,, = limSy, =",
for some a, b € S(X)NT(X).
Then, there exist some p, q, £, s in X such that Sr = a="Tp, Ss =b = Tq.
The proof is divided into following steps:
Step 1. We show that &(a, b) = Sa, A(b, a) = Sb and B(a, b) = Ta, B(b, a) = Tb.
Since ¢ € @4, we have ¢(f) <t forall £> 0. Then, using (8.1.2), for £> 0, we have

M(A&(n, Yn), B(p, 0), ) = M(& (%, yn), B(p, 1), (1))
= M(Sxn, Tp, ©) * M(Syn, Tq, ),

then, letting n — oo in the last inequality, for £ > 0, we obtain that

M(a, B(p, q), f) = M(a, Tp, f) * M(b, Tq, )

=M(a, a, f) * M(b, b, )
=1x1=1,

that is, M(a, B(p, q), f) = 1 and hence, B(p, q) = a. Therefore, B(p, q) = a = Tp.
Similarly, we can show that B(q, p) =b=Tq.
Again, using (8.1.2), for £ > 0, we have

M(AG, 5), B(B,, a.,), ) = M(AG, 5), B(B,,a,,), #(5)

= M(Sx, TP, ©) * M(Ss, Ta,, ),
on letting n — oo in the last inequality, for £ > 0, we obtain that
M(A(x, s), a, f) = M(St, a, f) * M(Ss, b, f) = M(a, a, f) * M(b,b,f) =1 %1 =1, so that,
M(a, #(1, s), f) = 1 and hence, A(t, s) = a. Therefore, A(#, s) = a = Sr. Similarly, we
can obtain that A(s, r) =b = Ss.
Now, since the pair (B, T) is w-compatible, so that B(p, q) =a=Tp and B(q, p) =b =
Tq implies that B(Tp, Tq) = T(B(p, q)) and B(Tq, Tp) = T(B(q, p)), that is, B(a, b) =
Ta and B(b, a) = Tb.
Also, since the pair (%, S) is w-compatible, so that #A(r, s) = a = Sr and A(s, ¥r) = b =
Ss implies that A(a, b) = Sa and (b, a) = Sb.
Step 2. We next show that A(a, b) = Sa=a=Ta=B(a, b) and A(b, a) =Sb=b=Tb
=B(b, a).
Since * is a t-norm of H-type, for o > 0, there exists ¢ > 0 such that
1-9*(1—-9@*..x(1—0)=(1—o0),forallieN.

1

By (FM-6), there exists £, > 0, such that
M(a, Ta, £) = (1 — @) and M(b, Tb, ty) = (1 — o).
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As ¢ € @y, by (¢-3), for any £ > 0, there exists ny € N such that £> 32 P (£p).
Using (8.1.2), we have
M((l, Iaa ¢(f0))
= M(iéi(f, S), B((l, b): (nb(fO))
= M(SY, T(l, EO) * M(SS, Ibo EO)
=M(a, Ta, £y) * M(b, Tb, £;).
Similarly, we can get
M(b: Tba ¢(f0)) = M(ba Tb: EO) * M(Cl, T(l, f0)
Now,
M((l, T(l, ¢2(EO)) = M((l, TG‘, ¢(¢(f0))) = M((l, TG’ ¢(f0)) * M(b: Tb’ ¢(f0))
= [M((l, TQ, fO) * M(b’ Tba f0)] * [M(G, T(l, f0) * M(b: Tb’ fO)]
= [M(a, Ta, £)]? * [M(b, Tb, £5)]°.
Similarly, we can obtain that
M(ba Tba ¢2(f0)) = [M(av TQ, f0)]2 * [M(bv Tb’ E0)]2-
Also, we have
M((l, T(l, ¢3(EO)) = M((l, TG‘, ¢(¢2(f0))) = M((l, TG’ d)z(fO)) * M(b: Tb’ d)z(fO))
= [M((l, T(l, EO)]Z * [M(b’ Tbv fO)]2 * [M(av Tq’ f0)]2 * [M(b’ Tb, f0)]2
= [M(a, Ta, €)]* * [M(b, Tb, £)]*.
Similarly, we can obtain that
M(b: Tbo ¢3(EO)) = [M(av Tq’ fO)]4 * [M(bv Tb’ f0)]4'-
Again, we have
M((l, Taa ¢)4(EO)) = M(a> TG, ¢(¢)3(f’0))) = M((l, TG’ ¢3(f0)) * M(bs Tb’ ¢3(f0))
= [M((l, T(l, EO)]4 * [M(b’ Tbv fO)]4 * [M(av Tq’ f0)]4 * [M(b’ Tb, f0)]4
= [M((l, T(l, f0)]8 * [M(b1 Tb! f0)]8'
Similarly, we can obtain
M(b5 Tba ¢4(E0)) = [M((l, T(l, f0)]8 * [M(b1 Tb! f0)]8-
In general, for n > 1, we obtain that
M(a, Ta, " (f)) = [M(a, Ta, €)]2" * [M(b, Tb, )]
and  M(b, Tb, ¢"(€)) = [M(a, Ta, €)1 * [M(b, Tb, £)]
Then, for £> 0, we have
M(a, Ta, f)
= M((l, Taa Z;ino ¢] (fO))
= M(aa Tq’ d)no(fO))

Zn—l

2n—1

226



= [M(Cl, Tav EO)]ZHO_1 * [M(bv Tb’ EO)]ZHO_1
>1-0*x(1-9@*..x(1—0)=(1-0).

210

Similarly, for £ >0, we can get

M(b, Tb, f) = (1 — o).
Therefore, for ¢ > 0, we have M(a, Ta, f) = (1 — o) and M(b, Tb, f) = (1 — o) for all
t > 0, so that we have Ta = a and Tb = b. Similarly, we can obtain Sa =a and Sb ="b.
Therefore, we have

#A(a, b) =Sa=a=Ta=B(a, b) and A(b, a) =Sb=b=Tb=B(b, a).
Step 3. We assert that a =b.
Since * is a t-norm of H-type, for o > 0, there exists o > 0 such that

1-0*(1-9@=*..x(1—0)=(1—o0),forallieN.

1

By (FM-6), there exists £, > 0, such that
M(a, b, £)) = (1 — ).
As ¢ € Dy, by (¢-3), for any £ > 0, there exists ny € N such that £ > 3.2 & (£).
Using (8.1.2), we have
M(a, b, ¢(o))
= M(A(a, b), B(b, a), ¢(fo))
= M(Sa, Tb, £5) = M(Sb, Ta, t))
=M(a, b, ;) * M(a, b, £,) = [M(a, b, ,)]?.
Also,
M(a, b, $*(£)) = M(#A(a, b), B(b, @), $(¢(£0)))
= M(Sa, Tb, ¢(to)) * M(Sb, Ta, ¢(£)) = M(a, b, (o)) * M(a, b, p(fo))
= [M(a, b, ¢(€))]* = [M(a, b, £)]*.
In general, for n > 1, we have
M(a, b, " (£y)) = [M(a, b, £)]*".
Now, for o > 0 and £ > 0, we have
M(a, b, ) = M(a, b, 52y, @ (£)) = M(a, b, ¢ (Ey))

> [M(a, b, £)]"° > 1-0*1-0@*..(1—0) > (1—0),

AL

which implies that a = b.
Step 4. Finally, we show the uniqueness of point a.
Let @ € X such that &(a, @) = Sa = a = Ta = B(a, a). We claim that a« = a.
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Since = is a t-norm of H-type, for ¢ > 0, there exists o > 0 such that
(1-0*(1-@*..x(1—-0)=2(1—o0),forallieN.

1

By (FM-6), there exists £, > 0, such that
M(a, a, £) = (1 - 0).
As ¢ € @y, by (¢-3), for any £ > 0, there exists ny € N such thatt> 2 P (£p).

By (8.1.2), we have
M((l, a, ¢(f0)) = M(Zéi((l, Cl), B((X, (l), (nb(fO)) = M(Saa Tav fO) * M(Saa Tav f0)
=M(a, , €y) * M(a, a, ;) = [M(a, , £)]?.
In general, for n > 1, we can obtain
M((l, a, ¢n(f0)) = [M((l, a, f0)]2n'
Now, for ¢ >0 and £ > 0, we have
M((l, a, f) = M((l, a, Zj?ino (tb](fO)) = M(a9 a, ¢n0 (EO)) = [M((l, a, f0)]2110

2(1—9)*(1—9)*---(1—9)
2M0

>(1-o0),

so that, we can obtain a = a.

This completes the proof of our result.

Remark 8.4.5. (i) On taking &# = B = F and S = T = g in Theorem 8.4.2, we obtain
Theorem 8.4.1.

(if) Theorem 8.4.2 also generalizes Theorems 8.1.1 (Hu [146]) and 8.1.2 (Hu et al.
[147]).

(iti) Theorem 8.4.2 generalizes Theorem 8.1.3 (Jain et al. [63]), since in
Theorem 8.4.2, the completeness assumption of the space or the range subspaces has
been relaxed entirely and further, the containment condition of range subspaces of
mappings into the range subspaces of the other mappings has also been relaxed.
Theorem 8.4.3. Let (X, M, *) be a FM-space with (FM-6), * being continuous t-norm
of H-type. Let A, B: X X X = X and S, T: X = X be the mappings and there exists
¢ € @y such that (8.1.2) holds. Suppose that $(X) and T(X) are closed subsets of X,
the pairs (&, S) and (B, T) share common property (E.A.) and are w-compatible.
Then, there exists a unique a in X such that #(a, a) = Sa=a = Ta = B(q, a).

Proof. As the pairs (%, S) and (B, T) share common property (E.A.), there exist
sequences {x,}, {y,}and {p_}, {a}in X such that

limA(x,,y,) = limB(f)n,qn) =1limTp_ = limSx», =q, (8.4.1)
n—o0 n—oo n—oo n—oo
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limA(y,, %,) = limB(a,,,p,) = limTq,, = limSy, =, (8.4.2)
for some a, b in X.
Now, since S(X) and T(X) are closed subsets of X, then using (8.4.1), we have
a € S(X) and a € T(X), so that a € S(X)NT(X). Similarly, using (8.4.2), we can
obtain b € S(X)NT(X). Hence, it follows that the pairs (#, S) and (B, T) shares the
(CLRgr) property. Now, applying Theorem 8.4.2, we can obtain the required result.
Remark 8.4.6. Theorem 8.4.3 also generalizes Theorems 8.1.1 — 8.1.3.
Theorem 8.4.4. Let (X, M, *) be a FM-space with (FM-6), * being a continuous
t-norm of H-type. Let &, B: X X X = X and S, T: X — X be the mappings and there
exists ¢ € @, satisfying (8.1.2). Suppose that
(a) the pair (#, S) satisfies the (CLRg) property, A(X X X) € T(X), T(X) is a
complete subspace of X and {B(p_,qa )}, {B(a . b, )} converges for every
sequences {p_}, {a ,} in X, whenever {Tp_}, {Tq_} converges;
or
(b) the pair (B, T) satisfies the (CLRy) property, B(X X X) € $(X), S(X) is a
complete subspace of X and {A(x,,y,)}, {A(y., %,)} converges for every
sequences {x, }, {yn} in X, whenever {Sx,}, {Sy,} converges.
Then, there exists a unique u in X such that #(u, u) = Su = u = Tu = B(u, u), if the
pairs (%, S) and (B, T) are w-compatible.
Proof. W.L.O.G., let condition (a) holds, so that the pair (4, S) satisfies (CLRg)
property. Then, there exist sequences {x, } and {y,} in X such that
limA (e, y,) = lim$, = a, im#A(y,,%,) = limSy, =b,
for some a, b € S(X).
By given condition, A(X X X) € T(X) (with T(X) being complete), for each {»,} and
{yn} in X, there correspond sequences {p_} and {q_} in X such that A(x,,y,)

= TP, and A(yn,%,) = Tq . Therefore, limA(x,,y,) = imTp = a, limA(y,,%,) =

limTq  =b, so that a, b € T(X). Thus, we conclude that a, b € S(X)NT(X).

n—oo

Next, we assert that {B(p_,q_ )} converges to a and {B(q_,p_)} converges to b.
Now, since ¢ € @4, we have ¢(f) <t for all £ > 0. Then, using (8.1.2), for £ > 0, we

have

M(A&Gt, yn), B(P,,a,). ©)
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> M(& (%0, ¥n), B(,, @), 9(0) = M(Sxa, TB,, ©) * M(Syn, Tat,,, ),
then, letting n — oo in the last inequality, we obtain that limM(a, B(p,_,q, ),t) =1, so

that {B(p_,a,)} - a as n — oo. Similarly, we can obtain {B(q_,p_)} = basn - co.
Hence, we have

I A 0) = ImB(6,0,) = ImS, = TS, =

limA(y,, %,) = limB(a,,, B,) = limSy, = limTq,, =b,
for some a, b € S(X)NT(X). Therefore, the pairs (%, ) and (B, T) shares the (CLRgy)

property. Now, the proof is similar to the proof of Theorem 8.4.2.

8.5. APPLICATION TO METRIC SPACES

As application of the results proved in different sections of this chapter, we now
formulate some corresponding results in metric spaces.
Theorem 8.5.1. Let (X, d) be a metric space and A, B: X X X - X and S, T: X - X

be four mappings and there exists some k € (0, 1) such that
max{d(A(x, ), B, v)), d(A(y, ), B(v, 1)} < 3 [d(Sx, Tw+d(Sy, TV)], (8.5.1)

for all %, y, u, v in X. Also, suppose that A(X X X) € T(X), B(X X X) € S(X), the
pairs (%, $) and (B, T) are weakly compatible, one of the subspaces A&(X X X) or
T(X) and one of B(X X X) or S(X) are complete. Then, there exists a unique point «
in X such that &(a, @) = Sa = a = Ta = B(«a, ).

£
£+ dGey)

Further, M(x, y, f) = 1 as f — oo for all %, y in X. Then, (X, M, ) is a FM-space with

Proof. For all »#, y in X and £ > 0, define M(x, y, f) = and a * b =min{a, b}.

(FM-6), where * being the Hadzi¢ type t-norm.
We now show that the inequality (8.5.1) implies (8.3.1) for ¢(f) = kf with £ > 0,
0 <k <1 and w, y being the identity mappings on their respective domains. If

otherwise, from (8.3.1), for some £ >0 and », y, u, v in X, we have

. £ £ : £ £
min {f + % d(AGy), Bu,v)) €+ % d(A(y, ), B(v,u))} < min {f +d(S% Tw’ €+d(Sy, TV)}'

then, either
£ . £ £
€+ d(AGuy), Bu,v) < min {f +d(s%, Tw €+ d(Sy, Tv)}’ (8.5.2)
£ . ¢
o £+ i d(A(y, %), B(v,u)) < min {f +d(Sx, Tu) " £+ d(Sy, TV)}' (8.5.3)

From (8.5.2), we get
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t+ id‘)(iéi(%, y), B(u,v)) > £+ d(S», Tw), (8.5.4)

£+ id,(z%(%, y), B(u,v)) > £+ d(Sy, Tv). (8.5.5)
Combining (8.5.4) and (8.5.5), we get
d(A G y), Bv)) >3 [d(S% Tw) + d(Sy, V)] (8.5.6)
Similarly, by (8.5.3), we have
d(A(y, %), B(v,w) >3 [d($%, TW + d(Sy, TV)]. (85.7)

Using (8.5.6) and (8.5.7), we get

max{d(A (¢ y), B(u, v)), d(A(y, %), B(v, u))} >~ [d(S%, Tw) + d(Sy, Tv)],
a contradiction to (8.5.1). Then, the result holds immediately by applying
Theorem 8.3.1.
Theorem 8.5.2. Theorem 8.5.1 remains true if the ‘weakly compatible property’ is
replaced by any one (retaining the rest of the hypotheses) of the following properties:

Q) Compatibility;

(i)  COM(A);
(iii)  COM(P);
(iv) COM(B);
(v)  COM(C);

(vi)  COM(Ag);

(vii) COM(A,);

(viii) Commuting;

(ix) WC;

(x) R-WC;

(xi)  R-WC(Ap);

(xii) R-WC(Ay);

(xiii) R-WC(P).
Proof. The proof follows immediately by using the relationship between weakly
compatible mappings and the variants of weakly commuting and compatible
mappings.
Theorem 8.5.3. Let (X, d) be a metric space and A, B: X X X » X and S, T: X - X

be four mappings and there exists some k € (0, 1) such that

d(#&(x, y), B(u, v)) < 3 [Q(S% Tw) +d(Sy, TV)1, (8.5.8)
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for all %, y, u, v in X. Also, suppose that the pairs (#, ) and (B, T) share (CLRgy)
property and are w-compatible. Then, there exists a unique point a in X such that
A(a, a)=Sa=a=Ta=B(a, a).

t
E+dGey)

Further, M(», y, f) » 1 as f —» oo for all %, y in X. Then, (X, M, %) is a FM-space with

Proof. For all », y in X and £ > 0, define M(x, y, f) = and a * b = min{a, b}.

(FM-6), where = being the Hadzic¢ type t-norm. We next prove that the inequality
(8.5.8) implies (8.1.2) for ¢(f) = kf with >0 and 0 < k < 1. If otherwise, from (8.1.2),

for some £ >0 and », y, u, v € X, we have

t . £ t
<
£+ % d(AGey), Bu,v)) mm{f +d(Sx, Tu) " £+ d(Sy, TV)}’

then, we have

E+i d.,(ﬁ(y:y), B min{f + ct(;x, Tu) €+ d_,(sfy, TV)}’
which implies that
£+ d(ACoY), Buv)) > €+ d($%, Tw), (85.9)
£+ d(AGoY), Buy) > €+ d(Sy, TV). (8.5.10)
Combining (8.5.9) and (8.5.10), we get
d(AGoy), Buy)) >3 [d(S% Tw) + d(Sy, TV)],

a contradiction to (8.5.8).
Then, the result holds immediately by applying Theorem 8.4.2.

232



CONCLUSION

The outcome of the present work is in accordance with the objectives proposed in

section 1.7. Present work extends various notions present in the literature. Further, the

results obtained generalize and extend a number of existing works. We shall discuss

the conclusion of the presented work as follows:

New (¢, ¥) — contractive conditions are introduced in POMS and POPMS.
Using theses notions some results in coupled fixed point theory are formulated
that generalize and extend the recent results of Berinde [149, 150]. Further, the
obtained results weaken the results of Bhaskar and Lakshmikantham [55],
Luong and Thuan [67] and Alotaibi and Alsulami [68].

The notion of generalized symmetric g-Meir-Keeler type contraction has been
introduced and utilized to obtain coupled common fixed points in the setup of
POMS. This notion extends the notion of generalized symmetric Meir-Keeler
contractions due to Berinde and Pacurar [155].

The notions of (a, ) - weak contraction conditions in POMS have been
introduced and utilized for establishing coupled common and coupled fixed
point results. Our work improves and extends the main result of Karapinar and
Agarwal [158] to the pair of compatible mappings and generalizes the recent
results of Jain et al. [159], Berinde [149] and weakens the contractions
involved in the works of Bhaskar and Lakshmikantham [55] and Mursaleen et
al. [157]. Further, a new concept of a - regular spaces has also been designed.
New contractions in the setup of G-metric spaces have been framed and
utilized to formulate coupled common fixed point results. Recent works of
Choudhury and Maity [103], Nashine [161], Karapinar et al. [162],
Mohiuddine and Alotaibi [163] and Jain and Tas [164] have been generalized.
As applications of the obtained results some results of integral type have been
obtained. Further, applications to the solutions of integral equations have also
been achieved.

The technique introduced by Sintunavarat et al. [166] which was utilized by
Hussain et al. [167] to compute coupled coincidence points has been

improved. Utilizing the new improved technique, the recent results of

233



Hussain et al. [167], Choudhury et al. [56], Alsulami [168], Choudhury et al.
[119] have been improved.

The errors and omissions in the recent papers of Alotaibi and Alsulami [68],
Turkoglu and Sangurlu [169], Zhu et al. [120], Singh and Jain [170] are
rectified.

Fixed point results for generalized weak (y > ¢) — contraction mappings are
established in the setup of POMS. Further, some corresponding results in
coupled fixed point theory are also formulated. The obtained results generalize
the recent works of Ran and Reurings [40], Nieto and Lopez [41], Harjani and
Sadarangani [47, 48], Amini-Harandi and Emami [53], Ciri¢ et al. [52],
Bhaskar and Lakshmikantham [55], Harjani et al. [58], Choudhury et al. [56],
Berinde [149], Rasouli and Baharampour [70], Jain et al. [159].

Coupled coincidence point and coupled common fixed point results for the
pair of mappings lacking MgMP under a new generalized nonlinear
contractive condition are obtained. The obtained results generalize the results
of Bhaskar and Lakshmikantham [55], Harjani et al. [58], Rasouli and
Bahrampour [70], Choudhury et al. [56], Luong and Thuan [69], Karapinar et
al. [57] and Chandok and Tas [174].

Relationship among the variants of weakly commuting mappings is obtained
in context of coupled fixed point theory. Further, relationship among the
variants of compatible mappings is also attained.

The notions of property (E.A.), (CLRg) property, common property (E.A.) and
(CLRgy) property are designed in the context of coupled fixed point theory.
Utilizing these notions some results are obtained that generalize certain
existing results. In particular, the results of Hu [146], Hu et al. [147] and Jain
et al. [63] are generalized in FM-spaces.

Metrical version of some results proved in FM-spaces has also been obtained.
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SCOPE FOR FURTHER WORK

The work done in the thesis fulfils the objectives of the present study. However,

while achieving the proposed objectives, some new avenues of research get opened

for further investigation as mentioned below:

The work for variants of weakly commuting mappings and variants of
compatible mappings in coupled fixed theory is in initial stage, many
interesting results can be obtained using these variants under different
contractions.

In the context of coupled fixed point theory, the work comprising the notions
of property (E.A.), (CLRg) property, common property (E.A.) and (CLRsy)
property is in its inceptive stage, many important results can be attained
utilizing these notions.

The notions of generalized symmetric g-Meir-Keeler type contraction and
(a, ) - weak contraction conditions can be defined in G-metric spaces and
can be used to obtain the existence and uniqueness of coupled common fixed
points for the pair of mappings.

The new improved technique formulated in Chapter — VI can be used to
generalize more results present in various spaces.

Fixed points for generalized weak (y¥ > ¢) — contraction mappings can be

obtained in partial as well as in G-metric spaces.

As this theory is developing enormously day-by-day, more interesting outcomes

can be drawn in it.
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