YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY, FARIDABAD

M.Sc. Physics I Semester

Classical Mechanics (PHL-102)

	Classical Meenanies (1 ma 1)	Max. Marks: 75
Time: 3 H Instructio	(15 marks each) of Part - A in sho	rt.
	PART -A	
Q1 (a)	What is meant by degrees of freedom? What is the number of deg	grees of (1.5)
	freedom of a body which is constrained to move along a space curve?	
	State and explain D' Alembert's principle.	(1.5)
(c)	Explain holonomic and non-holonomic constraints, giving examples.	(1.5)
	Prove that a co-ordinate which is cyclic in the Lagrangian is also	cyclic in (1.5)
	Hamiltonian.	
(e)	Define Poisson's brackets and write its fundamental properties.	(1.5)
(f)	Explain stable, unstable and neutral equilibria on the basis of p function.	ootential (1.5)
(g)	What is the central force? Are all central forces conservative?	(1.5)
(h)	State and explain the Hamilton-Jacobi equation for Hamilton's p function.	
(i)	What is chaos? Give an example.	(1.5)
(i)	Write the principle of Least action.	(1.5)

<u>PART -B</u>

- Q2 (a) Obtain the Hamiltonian H and the Hamilton's equations of motion of a simple (10) pendulum. Prove that H represents the constant of motion and total energy.
 - (b) Obtain Lagrangian L from Hamiltonian H and show that it satisfies Lagrange's (5) equations of motion.
- Q3 (a) Show that following transformation is canonical: $Q = \sqrt{2q} e^{\alpha} \cos p \qquad P = \sqrt{2q} e^{-\alpha} \sin p \qquad \alpha \text{ is a constant}$
 - (b) Apply Hamilton-Jacobi theory to solve the motion of one-dimensional (10) harmonic oscillator.
- Q4 Determine the frequencies and normal modes of vibration of a system of linear (15) triatomic molecule.

Q5 (a) Explain the following with the local phase flow curves:

(5)

(i) stable node (ii) unstable node (iii) hyperbolic point (iv) unstable spiral point (v) elliptic point.

- (b) Draw the phase curve of a simple pendulum and match it with the curve (10) representing the potential.
- Q6 (a) Find Poisson bracket of $[L_x, L_y]$ where L_x and L_y are angular momentum (5) components.
 - (b) Define the Hamiltonian and hence derive the Hamilton's canonical equation of (5) motion.
 - (c) A rigid body capable of oscillating in a vertical plane about a fixed horizontal (5) axis is a called compound pendulum.
 (i) Set up its Lagrangian (ii) obtain its equation of motion (iii) find the period of the pendulum.

De la constante de la constant

(5x3)

- Q7 Write short notes on the following:
 - (a) Liouville's theorem and its applications
 - (b) Henon-Hiels Hamiltonian
 - (c) Damped driven pendulum

