YMCA UNIVERSITY OF SCIENCE \& TECHNOLOGY, FARIDABAD
 M.Sc. Physics, Sem - I
 MATHEMATICAL PHYSICS (PHL-101)

Time: 3 Hours
Max. Marks:75
Note: 1. All the questions of Part-A are compulsory.
2. Answer any four questions from Part - B in detail.
3. Different parts of the same question are to be attempted adjacent to each other.
4. Assume suitable standard data wherever required, if not given.

Part-A

Q. 1 (a) Separate $\log (x+i y)$ into real and imaginary parts.
(b) Obtain C-R equations in Polar form
(c) Evaluate $\int_{C} \frac{e^{z}}{(z-1)(z-4)} d z$ where C is a circle $|z|=2$, by using Cauchy's Integral formula.
(d) Define Jordan's Lemma Theorem.
(e) Obtain the roots of the indicial equation corresponding to the differential equation

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0 \tag{1.5}
\end{equation*}
$$

(f) Show that $J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$
(g) Show that every diagonal element of a Skew-Hermitian matrix is either zero of purely imaginary.
(h) If a Group has four elements, show that it must be abelian.
(i) Evaluate $\int_{0}^{\infty} t^{2} e^{3 t} \sin ^{2} t d t$
(j) If $F\{f(x)\}=F(s)$ then show that $F\{f(a x)\}=\frac{1}{a} F\left(\frac{s}{a}\right)$

Part-B

Q. 2 (a) Show that $\ln z=(z-1)-\frac{(z-1)^{2}}{2}+\frac{(z-1)^{3}}{3}+\cdots$
(b) Expand $f(z)=\frac{7 z-2}{z^{7}-z^{2}-2 z}$ in a Laurent series in the region $|z+1|>3$.
(c) Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in a Laurent series valid for
(i) $1<|=|<3$
(ii) $|z|<1$
Q. 3 (a) Using Residue theorem. evaluate $\int \frac{z^{2} d z}{(z-1)^{2}(z+2)}$ where C is $|z|=3$.
(b) Evaluate the real integral $\int_{" 1}^{x} \frac{d x}{1+x^{\prime \prime}}$
Q. 4 (a) If $F\{f(x)\}=F(s)$ then show that $F\left\{f^{n}(x)\right\}=(-i s)^{n} F(s)$ where $f^{n}(x)$ is the $n^{\text {th }}$ derivative of the function $f(x)$.
(b) Prove that $L\left\{\int_{0}^{1} f_{1}(x) f_{2}(x) d x\right\}=F_{1}(s) \cdot F_{2}(s)$
(c) Evaluate $L^{-1}\left\{\frac{s+4}{s(s-1)\left(s^{2}+4\right)}\right\}$.
Q. 5 (a) Prove that $\cos (x \sin \theta)=J_{0}+2 J_{2} \cos 2 \theta+4 J_{4} \cos 2 \theta+\ldots \ldots \ldots$
(b) Prove that $x J_{n}^{\prime}=n \cdot J_{n}-x J_{n+1}$
(c) Prove the orthogonal property of Hermite polynomial
Q. 6 (a) Prove that $P_{n}(x)$ is the coefficient of z^{n} in the expansion of $\left(1-2 x z+z^{2}\right)^{-1 / 2}$ in ascending powers of x.
(b) Prove that $n P_{n}=x P_{n}^{\prime}-P_{n-1}^{\prime}$.
Q. 7 (a) Prove that if G be an infinite cyclic group then G has exactly two generators.
(b) Prove that the characteristic roots of a Hermitian Matrix are all real.
(c) Find the eigen values and all the eigen vectors of the matrix A given by

$$
A=\left[\begin{array}{ccc}
2 & -1 & 1 \tag{7}\\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]
$$

