Roll No.

.

Total Pages : 3

238201

May, 2019 M.Sc. SEMESTER II Atomic and Molecular Physics (PHL201)

Time : 3 Hours]

[Max. Marks: 75

17/5

Instructions :

Y

- It is compulsory to answer all the questions (1.5 marks 1. each) of Part-A in short.
- Answer any four questions from Part-B in detail. 2.
- Different sub-parts of a question are to be attempted 3. adjacent to each other.

PART-A

1 .	(a) What is meant by space quantization.	(1.5)
Se.	(b) Define space-lattice relaxation time.	(1.5)
	(c) Find Lande's g factor for $2_{P_{3/2}}$.	(1.5)
	(d) Differentiate dissociation and pre c energy.	lissociation (1.5)
	(e) How many peaks would you expect in of propane.	NMR specra (1.5)
	(f) What is Lande Interval Rule?	(1.5)
2	938201/80/111/260	[P.T.O.

238201/80/111/260

- (g) How Raman spectra explain the structure of molecule. (1.5)
- (h) What is Stark effect? (1.5)
- (i) What is chemical shift? (1.5)
- (j) The exciting line is 4358 Å and Sokes line is at 4458 Å. Find the wavelength of anti-stokes line.

(1.5)

6.

PART-B

- (a) What is Anomalous Zeeman effect? Discuss the Zeeman pattern of the resonance (D₁, D₂) lines of sodium? (10)
 - (b) Calculate the possible orientations of the total angular momentum vector corresponding to j = 3/2 with respect to a magnetic field along the z axis. (5)
- 3. (a) How does the spin-orbit interaction when combined with the relativity correction, explain the hydrogen fine structure? (10)
 - (b) Explain the intensity alternation in the Rotational Raman Spectra of H₂ molecule with special reference to nuclear statistics. (5)
- 4. (a) Discuss the principle and significance of Stern-Gerlach Experiment. (10)
 - (b) Explain the intensity distribution in absorption bands from Franck-Condon principle. (5)

238201/80/111/260

2

- (a) Determine the electron configuration and term types for the lowest configuration of H₂⁺ using co-relation diagram. (5)
 - (b) "The molecular wave function can be written as a product of electronic and nuclear wave functions." Elucidate this statement. (10)
 - (a) What is spin-spin coupling in NMR spectroscopy & how it affects the peaks present in spectrum? Explain with example? (10)
 - (b) What is the difference between NMR and ESR? (5)
- 7. Discuss rotational fine structure of electronic vibrational transition. Discuss the condition under which the band heads are degraded towards violet or red. (15)