1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

(a) Define mixer circuit and intermediate frequency. (1.5)
(b) What is over modulation and under modulation?
(c) Define Narrowband wideband FM.
(d) Why we need of modulation?
(e) What will be the bandwidth required for a FM signal if the modulating frequency 1 kHz and the maximum deviation is 10 kHz ?
(f) What is sampling and quantization?
(g) Explain the difference between PAM and PWM.
(h) Define duty cycle and pulse energy.
(i) What is uplink and downlink?
(j) Define coaxial cables and fiber optics.

PART-B

2. (a) Define Amplitude modulation and derive the equation for Amplitude modulated wave.
(b) The antenna current of an AM transmitter is 8 A when only carrier is sent but it increases to 8.93 A when the carrier is sinusoidally modulated. Find the $\%$ of modulation.
(5)
3. (a) Explain the operation of the balanced slop detector, using a circuit diagram and response characteristics.
(b) Write short notes on CW Doppler radar.
4. Explain Time division multiplexing and frequency divisior multiplexing. What are the important advantages of TDM over FDM.
5. (a) Explain how PPM and PWM signals are generated from PAM signals.
(11)
(b) Explain the methods of demodulation of PAM signals.
(5)
6. (a) Briefly describe the principle of operation behind the use of radar for measuring target range, velocity and location.
(b) An angle modulated signal is expressed by $\mathrm{x}(\mathrm{t})=\cos \left(2^{*} 10^{8} \mathrm{t}+75 \sin 2 * 10^{3} \mathrm{t}\right)$. Calculate the peak frequency deviation of the carrier.
7. Write short notes on:
(a) Superhetrodyne receiver.
(b) Pulse radar system.
(c) Pulse code modulation.
