YMCA UNIVERSITY OF SCIENCE& TECHNOLOGY, FARIDABAD

MSc. Physics -II semester

Condensed Matter Physics (PHY 203) Reappear, MAY 2018

Time: 3 Hours

Max. Marks:60

Note:

It is compulsory to answer the questions of Part -1. Limit your answers within 20-40 word in this part.

Answer any four questions from Part -2 in detail.

Different parts of the same question are to be attempted adjacent to each other.

		<u>PART -1</u>	
Q1	(a)_	Explain the concept of effective mass.	(2)
	(b)	How can you determine the structure of a crystal?	(2)
	(c)	What is symmetry? Explain three types of symmetry.	(2)
	(d)	Give the definition of Fermi surface.	(2
	(e)	If V is the volume of the primitive cell of the direct lattice, show that the volume of the primitive cell of the reciprocal lattice is $8 \pi^3/V$.	(2
	(f)	Define Plasmon and polaron.	(2
	(g)	Draw the E-K diagram of free particle in reduced zone scheme.	(2
	(h)	Define bragg's law in reciprocal lattice.	(2
	(i)	Define atomic form factor.	(2
	(j)	What is Quantum Hall Effect?	(2
,		PART -2	
Q2	(a)	By the Kronig-Penny model, the relation between k , total energy E and potential barrier V_0 can be obtained as follows	(5
		$P_0 \sin \alpha a/\alpha a + \cos \alpha a = \cos ka$	
		where $P_0 = 4\pi^2 \ mV0ba/h^2$ How E will be expressed, (i) if the potential barrier is negligibly low, i.e., $V_0 = 0$, (ii) if the potential barrier is infinitively high, i.e., $V_0 \to \infty$, while the width b keep some finite value (so $V_0b \to \infty$).	
	(la)	For both cases, plot the E as a function of k .	(5)
	(b)	Calculate the packing fractions for the following three-dimensional lattices: simple cubic and body-centered cubic.	(3