December, 2019 M.Sc. Physics SEMESTER-I Mathematical Physics (PHL-101)

Time: 3 Hours Instructions:

Max. Marks:75

It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
Answer any four questions from Part -B in detail.

3. Different sub-parts of a question are to be attempted adjacent to each other.

	-	PART -A	
Q1	(a)		
V 1		Discuss the singularity of the complex function, $f(z) = \frac{\sin(z-a)}{(z-a)^4}$.	(1.5)
	(b)	Evaluate $\int_C \frac{dz}{z(z+\pi i)} dz$ where C is a circle $ z+3i =1$, by Cauchy's integral formula.	(1.5)
	(c)	Find the residue of the function $f(z) = \frac{1}{(z^2 + a^2)^2}$ at $z = ia$.	(1.5)
	(d)	Show that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.	(1.5)
	(e)	Find the value of $\int_{-\infty}^{\infty} e^{-x^2} [Hn(x)]^2 dx$.	(1.5)
	(f)	Prove that $\sum_{n=0}^{\infty} P_n(x) = \frac{1}{\sqrt{2-2x}}.$	(1.5
	(g)	Prove that the group of order three is always cyclic.	(1.5
	(h)	Show that the characteristic roots of a Hermitian matrix are all real.	(1.5
	(i)	Evaluate the Fourier Transform of Dirac-delta function.	(1.5
r	(j)	If $L{f(t)} = L(s)$ then show that $L{f(at)} = \frac{1}{a}L\left(\frac{s}{a}\right)$.	(1.5
		PART -B	
Q2	(a)	Let $f(z) = u(x,y) + iv(x,y)$ be an analytic function. If $u = 3x-2xy$, then find the imaginary part of $f(z)$.	(5
	(b)	Obtain C-R equations in polar form.	(5
	(c)	Show that $\log z = (z-1) - \frac{(z-1)^2}{2} + \frac{(z-1)^3}{3} + \dots$	(5
Q3	(a)	By contour integration, prove that $\int_{0}^{\infty} \frac{\sin mx}{x} dx = \frac{\pi}{2}$.	(10
	(b)	Expand $f(z) = \frac{z}{z^2 - 3z + 2}$ in a Laurent series in the region $ z - 1 > 1$.	(!

0.			
Q4	(a)	For Legendre's polynomial of order n, prove that $P_n(x) = \frac{1}{2^n n!} \cdot \frac{d^n}{dx^n} (x^2 - 1)^n$.	(10)
	(b)	Show that $\int_{-1}^{+1} [P_n(x)]^2 dx = \frac{2}{2n+1}$.	(5)
Q5	(a)	For Bessel's function of order n, show that $\int_{0}^{1} x J_n(\alpha x) J_n(\beta x) dx = 0$, where α and β are the roots of $J_n(x) = 0$.	(10)
	(b)	For Hermite polynomial, show that $2n H_{n-1}(x) = H'_n(x)$.	(5)
Q6	(a) (b)	Find the Fourier Cosine Transform of $f(x) = 5e^{-2x} + 2e^{-5x}$. Find the Laplace transform of $(1 + \sin 2t)$.	(5)
_	(c)	Evaluate $L^{-1}\left\{\frac{s+4}{s(s-1)(s^2+4)}\right\}$.	(5) (5)
Q7	(a)	Find a matrix P such that P-1AP is diagonal matrix where, $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$.	(10)
	(b)	$\begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$ Show that three cube roots of unity form an abelian group under multiplication.	(5)

0