\qquad

JC Bose University of Science \& Technology, YMCA, Faridabad
 M.Sc. (Physics) Semester-I (2016 Scheme)
 Quantum Mechanics-I (PHY-103)

Time: 3 Hours
Max. Marks:60
Note: 1. It is compulsory to answer the questions of Part-A. Limit your answers within 20-40 word in this part.
2. Answer any four questions from Part -B in detail.
3. Different parts of the same question are to be attempted adjacent to each other.
4. Use of non-programmable simple calculator is allowed.
5. Assume suitable standard data wherever required, if not given.

Part-A

Q1 (a)
Obtain the Hermitian conjugate of the operator $\hat{x} \frac{d}{d x}$.
(b) Describe Hilbert space.
(c) Prove the following commutation relations:
$\left[x, p_{z}\right]=0$ $\left[z, p_{z}\right]=i \hbar$
(d) Discuss the completeness condition.
(e) Obtain the commutation relation relation between $\mathrm{L}+$ and L ..
(f) For Pauli spin matrices, prove that $\sigma_{x} \sigma_{y}=2 i \sigma_{z}$.
(g) Define differential and total scattering cross-section.
(h) Discuss the validity of Born approximation.
(i) Explain Zeeman effect using perturbation theory.
(j) What is Harmonic perturbation.

Part-B

Q2 (a) Define basis and operators in quantum mechanics.
(b) Define projection operator and obtain Pa^{2}.

Q3 (a) Explain Schrödinger's picture. Obtain the time derivative of the expectation value of an observable in it.
(b) Consider the states $\left|\psi_{1}\right\rangle=\left|\phi_{1}\right\rangle+2\left|\phi_{2}\right\rangle+3\left|\phi_{3}\right\rangle$ and $\left|\psi_{2}\right\rangle=a\left|\phi_{1}\right\rangle+4\left|\phi_{2}\right\rangle+2\left|\phi_{3}\right\rangle$, where $\left|\phi_{1}\right\rangle\left|\phi_{2}\right\rangle$ and $\left|\phi_{3}\right\rangle$ are orthonormal kets. Find the constant ' a ' such that $\left|\psi_{1}\right\rangle \&\left|\psi_{2}\right\rangle$ are orthogonal.

Q4 Define raising and lowering operators J_{+}and J - using representation in which J^{2} and J_{z} are diagonal. Also obtain the matrix element for J_{x} and J_{y}.
Q5 Find the matrix representation for angular momentum operators J^{2} and J_{2}. Obtain the eigen values for J^{2} and J_{z} operators when $\operatorname{spin} j=3 / 2$ and $j=1$.
Q6 (a) Calculate the differential scattering cross-section in the Born approximation for the scattering of a particle by an attractive square well potential:
$V(r)=\left\{\begin{array}{cc}-V_{0} & \text { for } r<a \\ 0 & \text { for } r>a\end{array}\right.$; where $V_{0}>0$.
(b) Derive an expression for phase shift using partial wave method.

Q7 (a) Discuss the time independent perturbation theory for non-degenerate systems and obtain the expression for first order correction to energy.
(b) Explain Fermi Golden rule for the rate of transition to a continuum of final states due to constant perturbation.

