238103

December, 2019
M.Sc. (Physics) I SEMESTER
Quantum Mechanics (PHL-103)

Time : 3 Hours]

[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

1. (a) If $a=(0,4,0) ; b=(i,-3 i, i)$ and $c=(2,0,1)$; find that they are linearly independent or dependent.
(b) What are Dirac Notations?
[CO-1] (1.5)
(c) Find the value of $\left[\mathrm{L}-\mathrm{L}_{+}+\mathrm{L}_{+} \mathrm{L}_{-}\right]$. [CO-2] (1.5)
(d) Show that sum of two projection operators cannot be projection operator unless they commute. [CO-2] (1.5)
(e) State Pauli matrix.
(f) Define angular momentum in polar coordinate.
[CO-2] (1.5)
(g) How L-frame is different between CM-frame?
[CO-3] (1.5)
(h) What are Partial Waves in Scattering? [CO-3] (1.5)
(i) What do you mean by Zeeman effect? Can you explain Zeeman effect by perturbation theory? [CO-4] (1.5)
(j) Illustrate Harmonic Perturbations with an example.
[CO-4] (1.5)

PART - B

2. (a) Define Hilbert Space and illustrate its significance of quantum mechanics and prove that if two Hermitian operators commute, then their product is also hermitian operator.
[CO-1] (10)
(b) If \hat{X} and $\hat{\mathrm{P}}_{x}$ are the coordinate and momentum operators. Prove that $\left[\hat{\mathrm{X}}, \hat{\mathrm{P}}_{x}^{n}\right]=n i \hbar \hat{\mathrm{P}}_{x}^{n} . \quad[\mathrm{CO}-1](5)$
3. (a) Explain Schrödinger Picture. Obtain the time derivative of the expectation value of an observable in it.
[CO-2] (5)
(b) Find the matrix representation for angular momentum operators J^{2} and J_{2}. Deduce the eigen values of J^{2} and j_{z} for $j=1$.
4. Explain the Born approximation and prove its validity for weak potential at high energies.
[CO-3] (15)
5. (a) Explain perturbation theory for non-degenerate state with first order correction in wavefunction. [CO-4] (8)
(b) Define Fermi's Golden Rule.
[CO-4] (7)
6. (a) Differentiate between differential and total scattering cross-section. Prove that $\frac{d \sigma}{d \Omega}=|f(\theta, \phi)|^{2} .[$ CO-3] (10)
(b) Discuss Wavefunction including spin (Spinor).
[CO-2] (5)
7. Write short notes on the following :
(i) Ground state He atom.
(ii) Postulate of Quantum Mechanics. [CO-1]
(iii) Matrix representation of $|x\rangle\langle y| \quad$ [CO-1] $(5 \times 3=15)$
