238303

December, 2019
 M.Sc. (Physics) III SEMESTER

Laser Technology (PHL-303)

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART A

1. (a) Define amplification of light in Laser?[CO-1]
(b) Explain the type of coherence.
[CO-1]
(c) What are the requirements for lasing action?
[CO-1]
(d) Explain non-linear susceptibility.
[CO-3]
(e) Why population inversion plays important role in Lasing action? [CO-1] (1.5)
(f) Explain collision in dye laser with its states.
[CO-2] (1.5)
(g) Differentiate between Hetro and Homo Junction Laser. [CO-2] (1.5)
(h) Explain optical molasses in laser cooling system. [CO-4] (1.5)
(i) Explain two photon process. [CO-3] (1.5)
(j) Describe Laser-cooled Bose-Einstein condensate. [CO-4] (1.5)

PART - B

2. (a) Explain pumping process. Why is the lasing action not possible in two level atomic system. Prove

$$
\begin{equation*}
\mathrm{N}_{1}=\mathrm{N}_{2}=\mathrm{N}_{0} / 2 ? \tag{CO-1}
\end{equation*}
$$

(b) What are the properties of Laser Beam? [CO-1] (5)
3. (a) What are the conditions for Free Electron Lasers?
[CO-2]
(b) Define self-focusing and explain the expression for the self-focusing.
4. Explain the construction and working of CO_{2} laser by schematic and energy level diagram respectively.
5. (a) Differentiate between the Photoelectric effect and Multiquantum Photoelectric effect. [CO-3] (5)
(b) Explain Magneto-Optical Traps with diagram.
6. (a) Define resonator and Q -Switching. [CO-1] (5)
(b) Elaborate optical pumping in laser cooling through energy level diagram.
[CO-4] (10)
7. Discuss Raman Scattering Effects, which arises from non-linear interaction of a system with intense monochromatic radiation. [CO-3] (15)

