300202
May 2019
B.Tech. (Civil)-IInd Semester

MATHEMATICS-II
(Differential Equations)
(BSC106B)

Time : 3 Hours]
[Max. Marks : 75

Instructions:
(i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Solve $(y \log y) d x+(x-\log y) d y=0$.
(b) Solve $p=\sin (y-x p)$.
(c) Express $f(x)=x^{2}+2 x+1$ in terms of Legendre polynomials.
300202/300/111/197
[P.T.O.
15/5
(d) Find the regular points of the differential equation $x(1-x) \frac{d^{2} y}{d x^{2}}-(1+3 x) \frac{d y}{d x}-y=0$.
(e) Form the partial differential equation from the relation $z=f(x+i t)+g(x-i t)$.
(f) Solve $(p q-p-q)(z-p x-q y)=p q$ (Clairut's equation).
(g) State Duhamel's principle for one-dimensional wave equation.
(h) Solve $\left(2 \mathrm{D}^{2}+5 \mathrm{DD}^{\prime}+2 \mathrm{D}^{\prime 2}\right) z=0$.
(i) Obtain the differential equation of the coaxial circles of the system $x^{2}+y^{2}+2 a x+c^{2}=0$, where ' c ' is a constant and ' a ' is a variable.
(j) Express $\mathrm{J}_{3}(x)$ in terms of $\mathrm{J}_{0}(x)$ and $\mathrm{J}_{1}(x)$.

PART-B

2. (a) Solve $y=2 p x+p^{n}$.
(b) Solve $y=2 p x+y^{2} p^{3}$ (for x).
3. (a) Solve by Method of variation of parameters :

$$
\left(\mathrm{D}^{2}-2 \mathrm{D}+1\right) y=e^{x} \log x, \text { where } \mathrm{D}=d / d x
$$

(b) Prove that
(i) $\frac{d}{d x}\left[x^{n} \mathrm{~J}_{n}(x)\right]=x^{n} \mathrm{~J}_{n+1}(x)$
(ii) $\frac{d}{d x}\left[x^{-n} \mathrm{~J}_{n}(x)\right]=-x^{-n} \mathrm{~J}_{n+1}(x)$.
4. (a) Solve the non-linear partial differential equation $p x+q y=p q$.
(b) Solve the linear partial differential equation

$$
\begin{equation*}
\left(z^{2}-2 y z-y^{2}\right) p+(x y+z x) q=x y-z x . \tag{8}
\end{equation*}
$$

5. (a) Solve the wave equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with the boundary conditions $u(x, 0)=3 \sin n \pi x, u(0, t)=0$ and $u(1, t)=0$, where $0<x<1, t>0$.
(b) Solve $\left(\mathrm{D}^{2}-\mathrm{DD}^{\prime}\right) z=\cos x \cos 2 y$.
6. (a) Solve $(1+x y) y d x+(1-x y) x d y=0$.
(b) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$.
7. (a) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$ by Lagrange's method.
(b) Derive the solution for three-dimensional Laplace's
equation in cylindrical form.
