
DESIGN OF REGRESSION TESTING TECHNIQUES

FOR WEB APPLICATIONS

THESIS

submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSOPHY

to

J.C.BOSE UNIVERSITY OF SCIENCE & TECHNOLOGY,YMCA

by

MUNISH KHANNA

 Registration No: YMCAUST/Ph.D-05-2k12

Under the Supervision of

 DR. NARESH CHAUHAN DR. DILIP KUMAR SHARMA

PROFESSOR PROFESSOR

DEPARTMENT OF COMPUTER ENGG. DEPARTMENT OF COMPUTER ENGG.

YMCAUST, FARIDABAD GLA UNIVERSITY, MATHURA

Department of Computer Engineering

Faculty of Engineering and Technology

J.C.Bose University of Science & Technology,YMCA,Faridabad

Sector-6, Mathura Road, Faridabad, Haryana, INDIA

JULY, 2019

ii

CANDIDATE’S DECLARATION

I hereby declare that this thesis entitled “DESIGN OF REGRESSION TESTING

TECHNIQUES FOR WEB APPLICATIONS” being submitted in fulfillment of

requirement for the award of Degree of Doctor of Philosophy in the Department of

Computer Engineering under Faculty of Engineering and Technology of J.C.Bose

University of Science and Technology, YMCA, Faridabad, during the academic year July

2012 to July 2019,is a bonafide record of my original work carried out under the

guidance and supervision of DR. NARESH CHAUHAN, PROFESSOR

,DEPARTMENT OF COMPUTER ENGINEERING, J.C.BOSE UNIVERSITY OF

SCIENCE AND TECHNOLOGY,YMCA, FARIDABAD and DR. DILIP KUMAR

SHARMA, PROFESSOR , DEPARTMENT OF COMPUTER ENGINEERING

,GLA UNIVERSITY,MATHURA and has not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been

submitted for the award of any degree either in this university or in any other university.

(MUNISH KHANNA)

Registration No: YMCAUST/PhD05/2K-12

iii

CERTIFICATE

This is to certify that the thesis titled “DESIGN OF REGRESSION TESTING

TECHNIQUES FOR WEB APPLICATIONS” by MUNISH KHANNA submitted in

fulfillment of the requirements for the award of Degree of Doctor of Philosophy in

Department of Computer Engineering under Faculty of Engineering & Technology of

YMCA University of Science & Technology Faridabad, during the academic year May

2011 to January 2016 is a bonafide record of work carried out under our guidance and

supervision.

We further declare that to the best of my knowledge, the thesis does not contain part of

any work which has been submitted for the award of any degree either in this university

or in any other university.

DR. NARESH CHAUHAN

Professor

Department of Computer Engineering

Faculty of Engineering and Technology

YMCA University of Science & Technology Faridabad

 DR.DILIP KUMAR SHARMA

Professor

Department of Computer Engineering

Faculty of Engineering and Technology

GLA University Mathura

Date:

The Ph.D. viva-voce examination of Research Scholar Munish Khanna

(YMCAUST/Ph.D05-2k-12) has been held on ………………………….

(Signature of Supervisors) (Signature of Chairman) (Signature of External Examiner)

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank God, the Almighty, for providing enough courage and

his blessings to me for completion of this thesis.

I would like to express my sincere gratitude to my thesis supervisor, Dr. Naresh

Chauhan, and Dr. Dilip Kumar Sharma for his continuous guidance, valuable advice,

constructive criticism and helpful discussions. I am very grateful to him for his continual

encouragement, motivation and long hours spent throughout the completion of my work.

He always offered wisdom, insight and a skilled hand in overcoming the hindrances

faced. I greatly value his timely and valuable advices. He gave me the opportunity to

learn various new things, and taught me a lot about research, teaching, and life. Without

his warm encouragement, I would not have been able to accomplish this thesis.

I am grateful to Prof. C. Patvardhan, without his blessings and guidance I am not able

to reach at this stage of my life. I am also thankful to Late Dr. A.K. Sharma, from whom

I have learnt a lesson of regularity and punctuality in life.

I gratefully acknowledge Dr. Komal Kumar Bhatia, Chairman Computer Engineering

Departmenta true well-wisher of mine, who always supports at every stage of completion

of this thesis. I express my sincere thanks to Dr. Atul Mishra who always support me

like elder brother and providing his valuable suggestions for accomplishing this task.

I am thankful to Dr. Harish Kumar and Mr. Vedpal for his continuous support and

encouragement for the completion of this thesis. I extend my thanks to faculty members

of Computer Engineering department for their support and cooperation. Although it is not

possible to name individual, I cannot forget my well-wishers for their persistent support

and cooperation. I am also thankful to all my students who helped me directly or

indirectly in completing my research work.

I am also thankful to Dr. Rajeev Kumar Upadhyay, Mr. Abhishek Toofani, Mr. Kapil

Srivastava, Mr. Pramod Kumar,Mr. Law Kumar Singh, Mr. Vijay Katta ,Dr.

Hitendra Garg and Mr. Anil Kumar. I would like to thank my students Achint

Chaudhary, Juhi Gajwani ,Vibhoo Gupta ,Dhanlaxmi, Deeksha Gupta, Ayushi

v

Verma, Meenakshi Bhatia,Somya Sharma for always providing me their support and

necessary resources for the completion of this thesis.

 I am grateful to my mother Smt. Susheela Khanna and my father Sh. Gopi Chand

Khanna for their blessings. I can’t forget father’s efforts for making me a true human in

my life. I am thankful to my mother in law Smt. Pushpa Ailawadi and father in law Mr.

H.K.L.Ailawadi for their blessings.

Finally I would like to express my gratitude to my wife Deepa Khanna and my dear son

Dev Khanna for the encouragement they have given to me, probably without knowing it.

Thanks to all of you!

(MUNISH KHANNA)

vi

ABSTRACT

Since the quantity and breadth of Web-based software systems continue to grow rapidly;

it is becoming critical to assure the quality, security and reliability of a Web application.

Moreover, as similar to traditional software there are functional requirements that the

web applications need to adhere to i.e., implement the requirements correctly and execute

the use case scenarios correctly. Web testing is the software testing that focuses on web

applications. Web application testing is a challenging work owing to its dynamic

behaviour, heterogeneous representations, novel data handling mechanism and complex

dependencies. So proper testing plays a distinctive role in ensuring reliable, robust and

high performing operation of web applications.

Keeping in view the problem of frequent updates in web applications, it is very difficult

to execute all the test cases of test set thus there is requirement to prioritize the execution

of test cases so as to detect faults early so that managing of large size test suite becomes

easy. Test case prioritization is a process of scheduling the test cases in a specific order

which results in increasing the chances of early bug detection, thereby improving the

software quality. This thesis focuses on the development of test case prioritization

techniques in case of web applications at regression testing level.

While prioritizing the test cases, single objective can be kept in mind or we can think

about managing multiple conflicting objectives during prioritization. This motivates us to

focus the presented work in both single objective test case prioritization direction and

multi objective test case prioritization direction. In case of single objective we focused on

early detection of faults which is measured in terms of Average Percentage of Fault

Detection (APFD) while in case of multi objective scenario we focused on three

conflicting parameters which are minimization of test case execution time to detect all the

faults, maximization of unit-of-fault-severity-detected-per-unit-of-test-cost which is

measured in terms of Cost-Cognizant Average Percentage of Fault Detection(APFDC)

and maximizing severity detection rate per execution of test case.

Sometimes it is not possible to execute all the test cases due to various constraints like

short interval of testing period of web applications or pressure of delivery of the updated

version of the product(dynamic websites) for the end-user and which motivates for the

vii

minimization of test suite known as test suite minimization (or test suite reduction). This

thesis also focuses on the reduction of test suite in multi objective environment where set

of large number of test cases is minimized to representative set having the same

effectiveness.

Thus this thesis largely focuses on the challenges found in performing regression testing.

To overcome these challenges, the work presented in this thesis concentrates on

designing and development of test case prioritization techniques and test case reduction

techniques, while testing web applications, which help the tester fraternity in minimizing

the testing efforts, cost and schedule of the project. However in this thesis we have also

thrown some light on prioritization of reduced representative test set, which is the new

area of research among practitioners that is implemented when the testers do not have so

much time to execute all the test cases of minimized test set. Most of the proposed

techniques being developed have been tested, implemented and compared with the

existing standard techniques.

viii

TABLE OF CONTENTS

Candidate’s Declaration ii

Certificate iii

Acknowledgements iv

Abstract vi

Table of Contents viii

List of Tables xiii

List of Figures xvi

List of Abbreviations xx

CHAPTER I: INTRODUCTION

 1.1 Introduction 1

 1.2 Need for Testing Web Based Systems 4

 1.3. Motivation and Research Objectives 6

 1.4 Challenges of Test Case Prioritization and Test Suite Reduction 10

 1.5 Organization of Thesis 12

CHAPTER II: LITERATURE SURVEY

 2.1 Introduction 15

 2.2 Regression Testing 17

 2.2.1 Test Suite Minimization 20

 2.2.2 Test Case Selection 21

 2.2.3 Test Case Prioritization 21

 2.3Prior Studies And Relevant Work 22

 2.3.1 Methodologies Applied for Web Applications

Testing

23

 2.3.1.1 Traditional Software Testing vs Web

Based Systems Testing

25

 2.3.1.2 Modeling Web Based Systems for Testing 26

ix

 2.3.1.3 Regression Testing of Web Based

Systems

31

 2.3.2 Discussion on Various Studies Published in the Area

of Test Case Prioritization

44

 2.3.3 Discussion on Various Studies Published in the Area

of Test Suite Reduction.

47

 2.3.4 Discussion on Various Studies Published in the Area

of Software Engineering and Software Testing

Where Different Soft Computing Techniques Have

Been Applied.

49

 2.3.4.1 Contribution from ACO 49

 2.3.4.2 Contribution using ABC 50

 2.3.4.3 Contribution using IGA 52

 2.3.4.4 Resembling Studies 53

 2.3.5 Discussion on Various Studies Published in the Area

of Software Engineering and Software Testing

where NSGA-II Have Been Applied.

55

 2.3.6 Discussion on Various Studies Published in the Area

of Software Engineering and Software Testing

where Bayesian Network Have Been Applied

57

 2.4 Conclusion 59

CHAPTER III: A NOVEL APPROACH FOR REGRESSION TESTING OF

WEB APPLICATIONS

 3.1 Introduction 61

 3.2 Proposed Technique 62

 3.2.1 Artificial Bee Colony Algorithm (ABC) 66

 3.2.1.1 Applying ABC in Regression testing of

Web Application in deletion case

69

 3.2.1.2 Applying ABC in Regression testing of

Web Application in addition case

70

 3.2.2 Applying Ant Colony Optimization (ACO) 71

 3.2.2.1 Applying ACO in Regression testing of

Web Application in deletion case and

addition case

 74

x

 3.2.3 Random Approach and Greedy Approach 74

 3.3 Results And Discussion 75

 3.4 Conclusion 82

CHAPTER IV: SEARCH FOR PRIORITIZED TESTCASES DURING WEB

APPLICATION TESTING

 4.1 Introduction 85

 4.2 Proposed Work 85

 4.2.1Novel greedy algorithm for APFD 87

 4.2.2 Novel greedy algorithm for APFDc 90

 4.2.3 IGA and GA Algorithm 93

 4.2.4 Discussion on Implemented ABC Algorithm 95

 4.3 Results 99

 4.4 Comparing With Prior Studies 108

 4.5 Conclusion 110

CHAPTER V: SEARCH FOR PRIOIRTIZED TEST CASES IN MULTI

OBJECTIVE ENVIRONMENT DURING WEB APPLICATION TESTING

 5.1 Introduction 111

 5.2 Proposed Approach 112

 5.3 Discussion On Parameters 118

 5.4 Experimental Setup 122

 5.5 Results And Discussion 126

 5.6 Conclusion 144

CHAPTER VI: A MULTI OBJECTIVE APPROACH FOR TEST SUITE

REDUCTION DURING TESTING OF WEB APPLICATIONS

 6.1 Introduction 145

 6.2 Description On The Selected Objectives And Implemented

Algorithms.

148

 6.2.1 Detailed Explanation on Selected Algorithms 148

 6.2.2 Discussion on Selected Objectives 159

xi

 6.3. Experimental Setup 161

 6.4 Experimentation Performed, Generated Results 162

 6.5 Discussion 178

 6.6 Conclusion 185

CHAPTER VII: TEST CASE PRIORITIZATION DURING WEB

APPLICATION TESTING

 7.1 Introduction 187

 7.1.1 Bayesian Network 189

 7.2 Proposed Model 191

 7.2.1 Overview 191

 7.2.2 Acronym and Terminology 192

 7.3.Bayesian Network With Conditional Probability 193

 7.3.1 Dependency of System on Module 193

 7.3.2 User Behavior 193

 7.3.3 Efficiency of Test Case 195

 7.3.4 Code Change 195

 7.3.5 Coupling Among Pages 196

 7.3.6 Importance of Function Given Dependency of the

System on the Function

197

 7.3.7 Importance of Function given User Behavior 199

 7.3.8 Importance of Test Case Given the Importance of a

Module

199

 7.3.9 Importance of Test Case given the Efficiency of

the Test Case

199

 7.3.10 Fault proneness given code change 199

 7.3.11 Fault Proneness given Coupling 200

 7.3.12 Success of Test Case given Fault Proneness 200

 7.3.13 Probabilistic Inference Algorithms 200

 7.4 Experimental Setup 201

 7.5 Result And Analysis 204

CHAPTER VIII: CONCLUSIONS AND FUTURE SCOPE

xii

 8.1 Conclusions 209

 8.2 Benefits of the Proposed Work 209

 8.3 Future Scope 209

REFERENCES 211

APPENDIX-A 225

BRIEF PROFILE OF RESEARCH SCHOLAR 227

LIST OF PUBLICATIONS OUT OF THESIS 228

xiii

LIST OF TABLES

Table 2.1 Summary of Literature Review 57

Table 3.1 Results of the Experimentation Process. 78

Table 3.2 Tabular Comparison of Prior published studies with Proposed

Approach.

81

Table 4.1 Table Depicting Various Heuristics and Generated Sequence. 86

Table 4.2 Test cases Versus Fault matrix. 87

Table 4.3 Test cases Versus Fault matrix. 89

Table 4.4

Matrix M3# Fault Severity matrix.

91

Table 4.5 Matrix M2 # Test Case Execution Time matrix. 92

Table 4.6 Matrix M1# Test Cases Vs Fault matrix. 92

Table 4.7 Deviation table of APFD. 103

Table 4.8 Deviation table of minimum required test cases. 103

Table 5.2 (a) Test cases Versus Fault matrix. 119

Table 5.2 (b) Fault Severity matrix. 119

Table 5.2 (c) Test Case Execution Time matrix. 119

Table 5.2(d) Performance matrix of test sequences. 120

Table 5.3 Representation of Version data of the five websites used in test
case prioritization.

124

Table 5.4 Performance matrix of various algorithms while solving the

problem shown using Table 5.2(a, b and c) .

128

Table 5.5 Performance matrix of NSGA-II while solving the problem shown

using Table 5.2(a, b and c).

128

Table 5.6 Table presenting solutions that exist in the first front along with

details and performance.

129

Table 5.7 Result matrix depicting performance in terms of APFDC of all the

algorithms when applied on all versions of all the websites under

131

xiv

test.

Table 5.8 Result matrix depicting the performance in terms of severity of all

the algorithms when applied on all versions of the websites on test.

133

Table 5.9 Result matrix depicting the performance in terms of cost of all the

algorithms when applied on all versions of all considered websites.

134

Table 5.9(a) Result matrix depicting the average performances of all the

algorithms over all parameters when applied on all versions of all

considered websites.

138

Table 6.1 Representing various Artifacts of subject websites. 162

Table 6.2(a) Test cases Vs Fault matrix. 163

Table 6.2(b) Fault severity matrix. 163

Table 6.2(c) Test case execution time matrix. 163

Table 6.2(d) Table presenting the performance of all the algorithms on each

suggested objectives.

163

Table 6.3(a) Test cases Vs Fault matrix. 164

Table 6.3(b) Fault severity matrix. 164

Table 6.3(c) Test case execution time matrix. 164

Table 6.3(d) Table presenting the performance of all the algorithms on each

suggested objectives.

164

Table 6.4(a) Test cases Vs Fault matrix. 164

Table 6.4(b) Fault severity matrix. 165

Table 6.4(c) Test case execution time matrix. 165

Table 6.4(d) Table presenting the performance of all the algorithms on each

suggested objectives.

165

Table 6.5 Result matrix depicting performance in terms of cost of all the

algorithms when applied on all versions of all the subject websites

under test.

172

Table 6.6 Result matrix depicting performance in terms of severity detected

by all the algorithms when applied on all versions of all the subject

websites under test.

174

Table 6.7 Result matrix depicting performance in terms of APFDC achieved

by all the algorithms when applied on all versions of all the subject

websites.

177

Table 6.8 Matrix depicting the average of generated results by all the 180

xv

algorithms over all the suggested objectives and percentage

wise test suite reduction, when applied on all versions of each of

the subject websites.

Table 6.9 Result matrix depicting performance in terms of percentagewise

original test suite reduction by the selected algorithms when

applied on all versions of all the subject websites.

182

Table 7.1 Sample Data Table. 202

Table 7.2 Various relevant information about subject websites. 203

Table 7.3 Result analysis of all techniques. 204

xvi

LIST OF FIGURES

Figure 1.1 Different Methodologies that can be implemented during

Regression Testing.

1

Figure 1.2 The basic structure of a single objective function

optimization.

2

Figure 1.3 Optimizing Test suite satisfying Multi-objective criteria 3

Figure 2.1 Procedure of proposed MCCTCP 42

Figure 3.1 Block Diagram of Test Cases Creation and Path Testing

using various Approaches.

76

Figure 3.2 Dependency Graph of Online Book Store 76

Figure 3.3 Dependency Graph of CITS website 77

Figure 3.4 Dependency Graph of 40 pages Website with representation

of Updations.

77

Figure 4.1 Proposed Algorithm for improving APFD in case of tie. 88

Figure 4.2 APFD Graph for smarter_greedy and smart_greedy 90

Figure 4.3 Proposed Algorithm for improving APFDC in case of tie 91

Figure 4.4 APFDC Graph for smarter_greedy and smart_greedy 92

Figure 4.5 Proposed Pseudo Code for Vaccination Process in IGA

Algorithm.

93

Figure 4.6 Proposed IGA Algorithm. 94

Figure 4.7 Overall Layout of the Proposed Model for Single Objective

TCP optimization problem.

98

Figure 4.8.1 Figure representing Performance of Various Algorithms

while solving 12*12 matrix.

100

Figure 4.8.2 Figure representing Performance of Various Algorithms

while solving 62*33 matrix.

101

Figure 4.8.3 Figure representing Performance of Various Algorithms

while solving 100*100 matrix.

101

Figure 4.8.4 Figure representing Performance of Various Algorithms

while solving 125*125 matrix.

101

Figure 4.8.5 Figure representing Performance of Various Algorithms 101

xvii

while solving 150*150 matrix.

Figure 4.8.6 Figure representing Performance of Various Algorithms

while solving 250*250 matrix.

102

Figure 4.8.7 Figure representing Performance of Various Algorithms

while solving 300*300 matrix.

102

Figure 4.8.8 Figure representing Performance of Various Algorithms

while solving 400*400 matrix.

102

Figure 4.8.9 Figure representing Performance of Various Algorithms

while solving 500*500 matrix.

103

Figure 4.9.1 Graph representing the behavior of meta heuristic algorithms

while reaching towards best solution for 100*100matrix.

104

Figure 4.9.2 Graph representing the behavior of meta heuristic algorithms

while reaching towards best solution for 125*125matrix.

104

Figure 4.9.3 Graph representing the behavior of meta heuristic algorithms

while reaching towards best solution for 150*150matrix.

104

Figure 4.9.4 Graph representing the behavior of meta heuristic algorithms

while reaching towards best solution for 250*250matrix.

105

Figure 4.9.5 Graph representing the behavior of meta heuristic algorithms

while reaching towards best solution for 300*300matrix.

105

Figure 4.9.6 Graph representing the behavior of meta heuristic algorithms

while reaching towards best solution for 400*400matrix.

105

Figure 5.1 2-opt Algorithm. 114

Figure 5.2 Improved 2-opt Algorithm 115

Figure 5.3 Proposed GA Algorithm for implementing NSGA-2

Algorithm

116

Figure 5.4 Diagrammatic representation of crossover operation 118

Figure 5.5 Overall Layout of the Multi Objective TCP optimization

Proposed Model.

121

Figure 5.6 Various APFDC graphs representing the performances of

different algorithms while solving the problem represented

by Table5.2 (a,b and c).

125

xviii

Figure 5.7 NSGA-II Front diagram of Table 5.2(a) 127

Figure 5.8(a) Graphical representation of log files of Website 1 and its four

versions.

139

Figure 5.8(b) Graphical representation of log files of Website 2 and its four

versions.

139

Figure 5.8(c) Graphical representation of log files of Website 3 and its two

versions.

140

Figure 5.8(d) Graphical representation of log files of Website4 and its three

versions.

140

Figure 6.1(a to j) Figure presenting the diagrammatic representation of the

APFDC achieved by all the algorithms while solving instance

of size 10*10(Table 6.4(a)-6.4(c)).

166

Figure 6.2 Pictorial representations of solutions, in three dimensions,

generated by various algorithms while solving above running

example (Table 6.2).

167

Figure 6.3 Pictorial representations of solutions, in three dimensions,

generated by various algorithms while solving above running

example (Table 6.3).

167

Figure 6.4 Pictorial representations of solutions, in three dimensions,

generated by various algorithms while solving above running

example (Table 6.4).

168

Figure 6.5(a to d) Visual representation of the performance of NSGA-II while

achieving the objectives during website 3 and their respective

versions.

170

Figure 6.6(a to d) Visual representation of the performance of NSGA-II while

achieving the objectives during website 4 and their respective

versions.

170

Figure 6.7(a to d) Visual representation of the performance of NSGA-II while

achieving the objectives during website 1 and their respective

versions.

171

xix

Figure 6.8(a to d) Visual representation of the performance of NSGA-II while

achieving the objectives during website 2 and their respective

versions.

171

Figure 7.1
Proposed Bayesian Network model for TCP.

193

Figure 7.2 Data and link dependency of website. 198

Figure 7.3 Functional Dependency of website. 199

Figure 7.4 Block Diagram of Prioritization Model. 201

Figure 7.5 Result analysis wrt Faults and APFD 205

Figure 7.6 Result analysis wrt Test cases and APFD. 206

xx

LIST OF ABBRIVIATIONS

APFD Average Percentage of Fault Detection.

APFDC Cost Cognizant Average Percentage of Fault Detection.

GA Genetic Algorithm.

IGA Immune Genetic Algorithm.

ACO Ant Colony Optimization.

ABC Artificial Bee Colony.

NSGA-II Non-dominated Sorting Genetic Algorithm-II.

SDLC Software Development Life Cycle.

TCP Test Case Prioritization.

BN Bayesian Network.

1

Chapter I

INTRODUCTION

1.1 INTRODUCTION

Software testing of any system, like web applications, is an imperative and critical

part of the software development process, on which quality of software product is

strictly dependent. It is performed endlessly during the software development life

cycle with the intention of detecting the faults as earliest. Testing related activities

consume almost half of the total time incurred in the software development process

and also consume a large part of the effort required for producing software [1, 2, 3, 4,

5].There exist many types of testing and test strategies, however all of them share a

common goal that is, increasing the software engineer’s confidence in the proper

functioning of the software, enhancing the quality of the product and ultimately

increasing the confidence of all stakeholders.

Regression testing of web based systems is the process of retesting the customized

parts of the software to ensure that no new fault(s) have been introduced into the

existing code. Essentially, whenever new features are incorporated to an existing

software system, not only the new features should be tested, but also the existing

features should be tested to ensure that their behaviours are not affected by the

modifications. Testing, with support of test-cases, ensures that whether the software-

system is working as per the requirements or not.

Figure 1.1: Different Methodologies that can be implemented during Regression Testing.

Regression Testing

Test case prioritization Test case

 Reduction / minimization

Reset all test cases

2

Since test cases in the existing test suite can often be used to test a modified program,

the test suite is used for retesting. However, if the test suite is inadequate for retesting,

new test cases may be developed and added to the test suite. Commonly three

methodologies are followed in regression testing, Figure 1.1, however due to resource

constraints, it is almost impossible to execute all the test cases. Basically, either of the

two strategies, test case reduction or test case prioritization, are generally followed

during web testing.

Test suite reduction is a process in which the redundant and irrelevant test cases are

eliminated from the test suite based on a criterion i.e., selection of the smallest subset

the test cases from a pool of test cases to be audited for a program.Test case reduction

is performed so as to reduce the size of original test suite and testing cost, by

constructing a subset of test cases, without compromising the coverage criteria. Test

suite reduction seeks to reduce the number of test cases in a test suite while retaining a

high percentage of the original suite’s fault detection effectiveness. This work also

focuses on finding novel ways for test suite reduction, while satisfying certain criteria.

Test suite minimization techniques seek to reduce the effort required for regression

testing by selecting an appropriate subset of test suite.

This minimization problem is also well known as the minimal set-cover problem. This

approach mainly emphasizes on how to remove the redundant and to construct the

minimal test cases. Since this problem is NP complete, many heuristics methods are

encouraged and the methods like greedy method and soft computing methods are

commonly applied.

Figure 1.2: The basic structure of a single objective function optimization.

Traditionally, in case of test suite reduction or test case prioritization generally only

one objective is taken into consideration. Above Figure 1.2 gives the basic structure

Test

Suite

Optimized

Test Suite

Objective

Function

3

of a single objective function optimization. In this optimization, the test suite is

optimized based on a single objective function like minimizing cost or maximizing

fault coverage etc. This type of optimization is a useful tool for the decision makers

with insights into the nature of the problem. But usually it cannot provide a set of

alternative solutions that trade off different objectives against each other.

Many real-world decision making problems need to use several conflicting objectives

like minimized cost, maximized coverage, minimized memory usage and maximized

fault detection rate etc. So, it is necessary to use multi objective optimization which

deals with conflicting objectives. Multi objective optimization or multi objective

programming is the process of simultaneously optimizing two or more conflicting

objectives subject to certain constraints. The interaction among different objectives

gives a set of compromised solutions, largely known as the tradeoff, non dominated,

non inferior or Pareto-optimal solutions.

Figure 1.3: Optimizing Test suite satisfying Multi-objective criteria.

Optimized Test Suite

 Applying various Optimization Approaches

Test Suite

Test Case

Execution Time

(To be minimized)

Severity Detection

per Test case

Execution (To be

maximized)

Rate of Severity

Detection

(To be maximized)

4

In case of prioritization of test cases, execution of test cases takes place so as to

achieve one or more objectives which includes increase chances of early detection of

faults/branch coverage/loop coverage/function coverage/requirement coverage[6,7,8].

Test case prioritization is the process of ordering the test cases of the test suite based

on certain criteria like code coverage, fault detection capability, risk exposure etc. so

that critical faults may be detected earlier. Test case prioritization can be done at Unit

testing, Regression Testing and System testing level.

 As it may not be possible to execute all the test cases in all the testing iteration due to

resource constraints, therefore, prioritization is done in which the test cases are

ordered such that those with higher priorities ,according to some criterion, are run

earlier than those with lower priorities based on some Regression Testing.

The basic purpose of working, in these proposed studies, is in terms of finding novel

ways for improvement in fault detection rate which is a measure to find out, how

quickly faults are detected within the testing process and are represented in terms of

APFD and APFDC. An improved rate of fault detection can improve earlier feedback

for earlier debugging. Prioritization techniques are usually preferred than optimization

techniques because prioritization deals with original test suite and they do not

eliminate any tests from the initial test suite.

1.2 NEED FOR TESTING WEB BASED SYSTEMS

A web application is a dynamic extension of a web or application server. Web

applications are meant to be viewed by human user. A web application is an

application that is accessed using web browser over a network. It is also a computer

software application that is coded in a browser supported language like Java,

JavaScript, and HTML etc. In conventional software’s focus is on functions and in

web applications web projects are document centered.

 With the prevalence of the internet, Web applications have grown quickly in last

decade. In fact, Web Applications are so widely accepted and employed that they

have become crucial to the success of many businesses. Web applications are also

5

being used to support wide range of other important activities: scientific activities like

information sharing, and medical systems such as expert system-based diagnoses.

Thousand of websites launched every year and nothing can be worse than a poor

functioning of a site. As the usage of web application increases, their complexity also

increases. Since the quantity and breadth of Web-based software systems continue to

grow rapidly; it is becoming critical to assure the quality, security and reliability of a

Web application. Moreover, as similar to traditional software there are functional

requirements that the web applications need to adhere to i.e., implement the

requirements correctly and execute the use case scenarios correctly. Web testing is the

software testing that focuses on web applications. Web application testing is a

challenging work owing to its dynamic behaviour, heterogeneous representations,

novel data handling mechanism and complex dependencies. So proper testing plays a

distinctive role in ensuring reliable, robust and high performing operation of web

applications.

Complete web testing of a system before going live is the primary step to get assured

of an entire web application’s ability to work properly. It can help address such issues

like readiness of the web server for the expected traffic and for the increasing number

of users, the ability to survive a massive spike in user traffic, server hardware

sufficiently and so on. After performing web tests bottlenecks can be easily found in

the systems before they happen in the production environment. Neglecting

performance problems can lead not only to poor end- user experience, but even the

application crashes. Usability, quality, compatibility, security, performance,

availability, as well as reliability are considered as key success criteria of businesses

on the World Wide Web.

Main characteristic of web application is that web applications are enormously

heterogeneous in nature[9,10]. Web application heterogeneous execution environment

composed of different hardware, network connection, operating system, web services

and web browser .Web applications include large variety of software components that

makes it heterogeneous in nature. All components can be constructed on different

technologies (i.e., different programming language etc). Web application testing is a

tedious task because of features provided by different technology to design an

efficient and feature emerged application. Various technologies merged at one place

affect testing complexity.

6

Most web-based applications are not developed according to a formal process model

[11]. The development for Web application is usually in the style of the Rapid

Application Development (RAD) method, it has shorter developing time .Web based

applications are subject to high levels of complexity and pressure to change,

manifesting in short delivery times, emerging user needs, and frequent developer

turnover, among other challenges [12]. Under such extreme circumstances, systems

are delivered without being tested, potentially resulting in functionality losses on the

order of millions of dollars per hour [13,14,15]. Such breakdowns are not isolated

incidents; user-visible failures are endemic to about 70% of top-performing web-

based applications, a majority of which could have been prevented through earlier

detection. Such monetary losses can be avoided by designing web-based applications

to meet high reliability, usability, security, and availability requirements, which

translates into well-designed and well-tested software. So broadly web application can

undergo regression testing, system testing, functional testing, stress testing, load

testing and performance testing.

Filippo Ricca and Paolo Tonella [16] presented a fault model which depicts some web

specific faults that are authentication problem, incorrect multi language support,

hyperlink problem, cross-browser portability problem, incorrect form construction,

incorrect cookie value, incorrect session management, incorrect generation of error

page, etc.

1.3. MOTIVATION AND RESEARCH OBJECTIVES

Although there exist many test case prioritization and test case reduction techniques in

the literature, there are certain points where the existing methods can be optimized or

there is requirement of new technique. A critical study of literature available in both

of these areas has been performed and some shortcomings were identified which

motivated to pursue this research work [17-19,11, 20-26].

1. While performing the white box testing for a module, there may be large

number of test cases executed by the developer to ensure the correct

functionality of their code. This process involves a lot of efforts. But if

somehow a developer is able to get the prioritized order of the test cases which

7

he/she is going to execute to ensure the correct functionality during the

process of white box testing, makes the task easier.

2. As it is known that the structure of the dynamic websites is complex in nature,

in case of web based systems, all the paths begins from home.jsp (home page)

and may terminate in one of the pages. Testing all these paths, beginning from

home page, is next to impossible due to various constraints, already

mentioned. This gives rise to the motivation for creation of a model in which

selected path testing is performed, the selection of these paths will be decided

on the basis of internal structure of the dynamic website and the portion of the

website where user’s interacts the most.

3. During the literature survey it has been concluded that no model has been

proposed before for web application testing which is based on Bayesian

network. The earlier existing models were basically created for object oriented

systems [27] and usually for fault prediction. There is only one prior published

study in which test cases were prioritized for object oriented system[28]. This

gives the motivation for proposing the model for prioritizing test cases for web

based systems. Moreover the earlier existing models have not worked out on

the parameters which we have considered in our model. The parameters are

derived from the structure of the website as well as the user’s behaviour who

interacts with these systems. This model proposes a novel approach towards

prioritization of test cases during regression testing of web application using

Bayesian network. Initially, a Bayesian Network (BN) is formed using various

parameters which affect the success of a test case as well as promote testing of

more crucial sections of the web application (dynamic website). Thereafter,

the conditional probability table and probabilistic inference algorithms are

applied to evaluate the success probability and ultimately priority (importance)

of a test case. Execution of the test cases takes place on the basis of their

respective priority.

4. Regression Testing is considered a challenge, as the existing test suite with

probable additional test cases needs to be tested again and again whenever

there is modification [4]. The following difficulties occur in retesting:

8

 Large systems can take a long time to retest.

 It can be difficult and time-consuming to create the tests.

 It can be difficult and time consuming to evaluate the tests. Sometimes,

it requires a person in the loop to create and evaluate the results.

 Cost of testing can reduce resources available for software

improvements.

Therefore, there is need to prioritize the test cases while performing regression

testing. In literature, there exist many techniques for regression test case

prioritization [29, 30, 31, 2, 32, 33, 34, 5, 35], and it has been proved that test

case prioritization belongs to the class to “NP” problems. Finding the optimal

solution of this category of problems is a challenging task for computer

engineers and researchers since many years. Research community has applied

various approaches for prioritizing test cases to generate near optimal solution.

These applied approaches are basically based on greedy methodology and soft

computing techniques. There exists a scope where the performance of new soft

computing techniques is found to be better than that of previously applied

techniques in similar type of problem.

5. As mentioned in the previous point that TCP with single objectives belongs to

“NP” class of problems, so is the case when there are multiple objectives

which are to be either maximized or minimized. Literature survey [19]

confirms that very less work has been published while prioritizing test cases in

multi-objective environment especially for web-based systems. Authors have

proposed various objectives for creating Multi Objective Regression Test

Optimization (MORTO) problem. Hence this gives the motivation for

applying soft-computing techniques for prioritizing test cases in multi-

objective environment; the three parameters selected for optimization were

never selected in any of the prior published study. Moreover, the proposed

technique will helps in detecting the high severity bugs very early

6. As mentioned in the published literature that test suite reduction belongs to

“NP-Hard” problems. The three benchmark algorithms for test suite reduction

are GE (Greedy and Essential), GRE (Greedy, Redundant and Essential) and

9

HGS algorithms, presented many years before. Lin et al.[36] in their latest

benchmark experimental study anticipated various greedy based approaches

for test suite reduction and presents the idea of irreplaceable tests(test cases) .

They proposed various algorithms named as GreedyIrreplacable, GreedyEIrreplacable,

GRERatio, GREIrreplacable, GREEIrreplacable ,HGSRatio, HGSIrreplacable and

HGSEIrreplacable. The authors proved that performance of GreedyEIrreplacable was

superior among all the competitors; this gave us the motivation for selecting

this algorithm in our research study. The next short listed greedy algorithm,

for comparison, is selected from a recently published study in reputed journal

[37] which suggests some improvements in results when comparing with

GreedyEIrreplacable algorithm [36] and proposed the novel algorithm.

It has been concluded during literature study that almost no work has been

identified, while reducing the test suite reduction problem in multi-objective

environment with suggested parameters of ours. Hence, there seems that there

is a scope of work in this area.

Earlier the researchers were trying to solve the test case prioritization and test

suite reduction problem as separate domain. However during last five-six

years researchers fraternity have thought the problem of prioritizing the

reduced test suite [38], rather than solving the problem separately because

there may be a case when the tester does not have enough time to execute the

entire reduced test suite, he will prioritize the test cases valuable in the

reduced test suite. Very less work has been published in this area also, which

gives the motivation for the work in this area.

The main objective of this research is to design test case prioritization techniques and

test suite reduction techniques for regression test suites. To achieve this objective, the

work on following goals has been performed in this study:

 To develop and validate a method for test case prioritization with the help

of Bayesian network which makes use of analysis of structure of the

dynamic website, under test, and the behaviour of the user’s who have

interacted with the website.

10

 To develop and validate a method for path testing, test case generation and

test suite reduction based on the analysis of structure of the dynamic

website ,under test, and the behaviour of the user’s who have interacted

with the website.

 To develop and validate a method for Regression Test case Prioritization

based on fault detection capability.

 To develop and validate a method for multi-objective Regression Test case

Prioritization based on fault detection capability, test case execution time

and fault severity.

 To develop and validate a method for Regression Test Suite minimization

based on fault detection capability and test case execution time.

 To develop and validate a method for Regression Test case Prioritization

of minimized test suite based on fault detection capability, test case

execution time and severity of the faults.

1.4 CHALLENGES OF TEST CASE PRIORITIZATION AND TEST SUITE

REDUCTION

 Based on the motivational points considered and thereby objectives defined, this

section discusses the challenges and their solutions while performing regression

testing.

Creation of test cases and Performing Path testing while performing regression

testing: The issue is to manage and test multiple paths generated from home page of

the dynamic website when the testing resources are available in constrained

environment.

Solution: The issue is managed by proposing a model in which most significant paths,

which needs to be tested, are identified so that the path testing can be performed on at

11

least these paths rather than covering and testing each and every path. The

significance is decided on the basis of the structure of the website as well as the

usability of the website structure by the users.

Prioritizing the test cases while performing system testing: The issue is to manage

large number of test cases while performing system testing as it involves various

grounds of testing such as detecting the faults as earliest.

Solution: In order to prioritize system test suite, a Bayesian model based test case

prioritization approach has been proposed based on a various comprehensive factors.

These factors represent the structure of the website under test and the behaviour of

the users who interacts with the website. The conditional probability table and

probabilistic inference algorithms are applied to evaluate the success probability and

ultimately priority (importance) of a test case. Thus a test case prioritization

technique to obtain prioritized test suite has been proposed.

Prioritizing the test cases while performing regression testing in single-objective

environment: The issue is to rerun all the test cases while performing regression

testing even a small change has been made.

Solution: In order to have a prioritized regression test suite in single-objective

environment, a fault detection based test case prioritization technique has been

proposed in which all the faults should be detected as earliest i.e, maximizing

Average Percentage of Fault Detection (APFD)

Prioritizing the test cases while performing regression testing in multi-objective

environment: The issue is to rerun all the test cases while performing regression

testing with even a single line change in code.

Solution: In order to have a prioritized regression test suite in multi-objective

environment , a fault effect based test case prioritization technique has been

proposed that uses information retrieved from various parameters to prioritize the

test cases so as to satisfy all the objectives while detecting all the faults as earliest i.e.

maximizing Cost Cognizant Average Percentage of Fault Detection (APFDC).

12

.

Prioritizing the reduced test suite while performing regression testing: The

testers may not have ample amount of time for the execution of reduced test cases.

Solution: To resolve this issue first test cases suite is reduced with the help of novel

greedy approach based algorithm/existing meta-heuristic technique, further the

reduced test suite is prioritized on the basis of greedy approach or meta-heuristic

based approach.

1.5 ORGANIZATION OF THESIS

The thesis has been organised in the following chapters:

Chapter 1: Covers the introduction of the thesis.

Chapter 2: The basic concepts of software testing, regression testing, test case

prioritization and test suite reduction are discussed in this chapter. A detailed review

of the available test case prioritization and test suite reduction techniques and the

problems associated with these techniques are also discussed.

Chapter 3: A test case generation followed by test case reduction technique for path

base testing based on analysis of structure of the website, behaviour of the user which

really interacts with it and various realistic parameters are used for the construction of

the model and presented in this chapter. The proposed approach has been validated to

show the efficacy as compared to the various other techniques.

Chapter 4: A test case prioritization technique for prioritizing the test cases is

proposed in this chapter. To demonstrate the proposed approach various versions of

the website under test is created. The proposed approach is also compared with

various previous existing approaches. The efficiency is measured in terms of

improvement in APFD.

Chapter 5: A regression test case prioritization technique for prioritizing the various

test cases in multi-objective environment is proposed in this chapter. To demonstrate

13

the proposed approach various versions of the website under test is created. The

proposed approach is also compared with various previous existing approaches and

few updated versions of existing algorithms are presented. The efficiency is measured

in terms of improvement in APFDC.

Chapter 6: A test case prioritization technique for prioritizing the reduced set of

system test cases in multi-objective environment is proposed in this chapter. Initially

original test suite is minimized followed by prioritization of reduced test suite. To

demonstrate the proposed approach various versions of the websites under test is

created. The proposed approach is also compared with various previous existing

approaches and few updated versions of existing algorithms are also presented. The

efficiency also is measured in terms of improvement in APFDC along with results

achieved for other parameters too.

Chapter 7: A test case prioritization technique for structure testing based on analysis

of structure of the program and the behaviour of the user which really interacts with it

which makes use of Bayesian Model and probability is presented in this chapter. The

proposed approach has been validated to show the efficacy as compared to the various

other techniques.

Chapter 8: It concludes the outcome of the work proposed in this thesis. It also

discusses the possibilities of future research work based on the proposed approaches.

14

15

Chapter II

 LITERATURE SURVEY

2.1 INTRODUCTION

Software testing is the process of analysis so as to find out the difference between the

observed and the required conditions and to evaluate its features [39, 40, 41, 42, 43].

Software Testing is the process of verifying a system or its component with the intent

to check whether it satisfies the desired requirements as stated by the end customer.

This activity is an important and critical part of the software development process, on

which quality of software product is strictly dependent [44]. Testing related

activities consumes almost half of the total time incurred in the software development

process and also consumes a large part of the effort required for producing software.

Software testing helps in developing quality software [39, 45, 46, 47, 48, 49, 50]. It is

a process which continues all the way through software development.

Software testing basically incorporates Verification and Validation activities [51, 52].

The verification and validation activities are the basis for the any type of testing. It

can also be said that the testing process is a combination of verification and

validation. The purpose of verification is to check the software with its specification

at every development phase such that any defect can be detected at an early stage of

testing and will not be allowed to transmit further. The validation process starts

replacing the verification in the later stages of SDLC. Validation is a very general

term to test the software as a whole in accordance with the end user expectations.

Verification and Validation (V&V) are the building blocks of the testing process.

Validation process has following three activities which are also known as the three

levels of validation testing.

16

 Unit Testing

Unit is the smallest possible testable component of the software [4].Unit

Testing is a basic level of testing which cannot be overlooked and confirms

the behaviour of a single module according to its functional requirements [1,

53, 54].

 Integration Testing

This validation technique combines all unit tested modules and performs a test

on their integration. Unit modules are not independent and are related to each

other by interface specifications between them. When one module is combined

with another in an integrated environment, interfacing between units must be

tested. Therefore ensuring proper communication between the modules

integration testing has to be performed.

 System Testing

This particular level of software testing focuses on the testing of entire

integrated system. This type of testing incorporates many types of testing, as

the full system can have various users in different environments. These are

performance testing, load testing, stress testing, compatibility testing etc. The

validity of the whole system is checked against the requirement specifications.

Testing can be classified in many ways. One of the most basic classifications is that

on the basis of the knowledge testing in which code is known is called white box

testing where as the other is called black box testing. The goal of both white box

testing and black box testing is to improve the fault finding capacity of the software.

Towards this general goal, a piece of software can be tested to achieve various more

direct objectives such as exposing potential design flaws or deviations from user’s

requirements, measuring the operational reliability, evaluating the performance

characteristics, and so on. To serve each specific objective, different techniques can

17

be adopted. During the review it was realized that testing forms an integral part of

management actives and is even used in medical field and essential in new

technologies like cloud [55,56,57,58,59,60,61,62,63,64]. The development of ERP

systems has also increased the importance of testing [65]. The security

implementations are also highly dependent of good testing [66].

Software requirements are continuously changing. Due to these changing

requirements software is modified accordingly to satisfy the needs of the customer.

When software is modified there is always need to write new test cases for the

modified version. These new test cases are executed to ensure that the modifications

do not have any adverse effect on the previously working software. For this purpose

regression testing is performed. This review has been conducted as per the guidelines

proposed by Kichenham [67].

2.2 REGRESSION TESTING

In real life scenario whatever the type of product produced/generated by the variants

of the industry, in order to meet customers satisfactions regarding quality, various

practices are followed by industry. Similarly in case of software industry, in order to

meet the high standard of software quality assurance separate division as well as

separate process is created by the practitioners which is called as testing division and

testing process ,of software development life cycle(SDLC) respectively.

Prior studies reported that testing process of SDLC is one of the most resource

consumable process and consume half of the total time incurred in the software

development process and also consume a large part of the effort required for

producing software[54, 68, 69, 70, 71, 72].The ultimate goal of testing process and

test engineer’s is to improve the confidence of various stakeholders on the ultimate

developed software product by proving that it is working as per the requirement

specifications. To satisfy this overall goal various sub goals may need to be tested like

exposing potential design flaws or deviations from user’s requirements, measuring the

operational reliability, evaluating the performance characteristics, and so on. To serve

each specific objective, different techniques can be adopted.

18

As the presented work focuses on the testing of web applications(dynamic websites),

in order to incorporate the endless user requirements/expectations from these

applications and in order to compete in this highly competitive E-Commerce oriented

scenario it is very challenging task to update the applications without

interrupting/stopping the provided services as many previous studies reported that

stopping these applications for small interval of time may result in a huge monetary

loss.

Software testing [51, 39, 73] is performed continuously during the software

development life cycle to detect errors as early as possible. There are various types of

objectives while testing which includes requirement coverage, branch coverage,

statement coverage, loops, blocks and fault coverage. Due to frequent updates in web

applications the application needs to be tested to ensure that the updates should not

introduce any new fault in previously working flawless system. This type of testing is

known as regression testing. Regression testing is performed whenever web

applications (or any software) are updated in order to incorporate changes.

During regression testing some of the new test cases may be added in the original test

suite which results in the increment in the size of test suite. But due to hard deadlines

of delivery , testing the updated software thoroughly is not a wise step due to resource

constraints.

Test case prioritization is measured in terms of Average percentage of

Faults/Blocks/Loops/Statements coverage; however average percentage of faults

coverage is calculated with the help of formula 2.1[204]

where n is the number of test cases which reveals a set of m faults. (i=1 to m) is

the first test case in the ordering of T which reveals fault i. However in equation (1)

all the faults are considered to be of equal severity and the execution time of each test

case is considered to be unity. In real life scenario this may not be the case and the

severities of the considered faults may vary and similarly the execution time of these

cases may also vary. This gives rise to the motivation for developing Cost-Cognizant

19

Average percentage of fault detection formula for calculating the efficacy of

prioritized test cases and given by the formula 2.2 [204]

 --- (2.2)

where ti is the execution time of i
th

 test case,fi is the fault severity of i
th

 fault , is

the execution time of TFi-th test case in the test sequence which detects the i
th

 fault

first, m is the total number of faults and n is the total number of test cases.

Regression testing is a kind of software testing that intends to find new software bugs,

in existing software system after changes such as modifications, patches or

configuration changes, have been made to the system. The main purpose of regression

testing is to ensure that changes as mentioned above have not introduced new faults in

the software [54, 75, 76, 77]. IEEE software glossary defines regression testing as

follows [78].

Regression testing is the selective retesting of a system or component to verify that

modifications have not caused unintended effects and that the system or component

still complies with its specified requirements.

The main reason for regression testing is to check whether a change made in one part

of the software affects other parts of the software or not [52]. Regression testing can

be performed to test a system by selecting the appropriate minimum set of test cases

needed to adequately cover a particular change [79]. Regression testing is a resource

and time consuming activity. While performing the process of regression testing a

tester has to execute the previous test cases written for ensuring the correct

functionality of the software as well as the new test cases which have been introduced

due to the modification. So, there are a large number of test cases required to test the

software. However, due to time and cost constraint it may not be possible that all past

test cases be executed whenever change is made in software.

The three techniques for accomplishing this task are selection, minimization and

prioritization. Minimization techniques describe the elimination of redundant test

cases from a test suite. It attempts to select the minimal set of test cases T, a subset of

https://en.wikipedia.org/wiki/Regression_testing#cite_note-1

20

initial test case suite, which yields coverage of the modified or effected portion of the

program [53]. Selection technique opts for the test cases that are significant to the

recent modifications [51, 52, 80, 81]. Prioritization techniques prioritize the test case

so that if the testing is prematurely terminated, even then also the fault detection is

maximized. The process increases the plausibility of the test cases being executed in

the given order; they will more closely meet the objective of finding maximum faults

then otherwise [51, 82, 83].

2.2.1 Test Suite Minimization

This section discusses the concept of test suite minimization and its various

approaches that have been put forward in the literature and future directions. The

attributes of good test suite minimization techniques have been considered while

analyzing various techniques.

Test suite minimization is the technique to reduce the size of the test suite [52]. This

can be done by removing the redundant test case. The removal of the redundant test

case has the risk that minimization should not lead to a scenario where robustness of

the testing process is compromised. There are two problems involved here. The

minimization process has been mapped to minimal hitting set formulation. Two

approaches have been suggested in the literature. The first one is to decompose a

bigger requirement into smaller one, so that each requirement is satisfied by a single

test case [54]. The second approach suggests crafting of the test cases in such a way

that they cater to a particular requirement.

The minimization problem is an NP Complete problem [52]. Therefore, the technique

used to solve NP Complete problem can be used to solve the above problem as well.

The literature suggests two ways of dealing with the problem. The first is the

application of approximation algorithm and the second is the application of AI based

search techniques like genetic algorithms and Ant Colony Optimization [84, 85, 86,

87]. However, it will be not apt to compare the techniques as they have different

goals.

21

2.2.2 Test Case Selection

Regression test case selection is similar to test case minimization, in the sense; both of

them reduce the test case suite. However, the key difference in the approach as

observed in the literature is that while the test case selection concentrates on the

changes between the prior and the subsequent version of the program [88, 89]. One of

the earliest studies by Rothermel et al. [97] proposed a technique which reveals the

test cases relevant to modification.

It may be noted that if there are any modifications in the program, then the code is

bound to change. The change in the code, referred to as textual difference can be a

good source of finding out the modifications. This approach was used by Volkolos

and Frankl [90]. In the approach they used a Unix tool called diff for identifying the

differences. The name of the tool developed was Pythia. The tool was capable of

analyzing large software systems written in C [90]. However, it may be noted that

Graph walk approach proposed by Rothermel and Harrold [97] was carried forward in

different works in the 1993-1997 period. Investigation of these graphs showed that

their size may be quadratic. In some of the studies, it was also observed that the

relationship between control dependence graph size and program size is linear. An

experiment performed implemented tools for constructing the two types of control

dependence graphs. This was made to run on about 3000 C functions extracted from a

wide range of source programs. The results supported the earlier conclusions. The

concept of Control dependency graph was extended to system dependency and finally

to System dependency graph. The idea of textual difference explained earlier in the

section depends on the graph walk. In the review many other techniques were also

studied [91, 92,93,94].

2.2.3 Test Case Prioritization

Prioritization techniques promote reusability by implying effective regression testing.

It is an important phase in software maintenance activities [95, 96]. The goal is

achieved when the software program performs better than the earlier version.

Prioritization of Regression Test Cases is an approach that converts the original test

22

suite to one that has priority associated with each test case. A test case that covers

large number of potential points of faults may have higher priority.

Testing is an essential and vital part of the web application development process,

effective testing produces high quality web application product. Testing related

activities consumes almost half of the total time incurred in the web application

development process and also consumes much effort required to develop web

application. There are many different types of testing and many test strategies,

however all of them share a common goal that is, proper functioning of the web

application. Towards this general goal, primary motive of testing any web application

to achieve various objectives such as performance characteristics, reliability, design

flaws and user’s acceptance. There are different techniques to serve each objective.

Web application testing is done parallel and continuously during the web application

development life cycle to locate the errors as earliest. Test cases from the existing test

suite are generally used to test a modified program, and updated according to fulfill

the requirements of retesting the web application. Thus, the sizes of test suites grow as

web application evolves. To increase the chances of early fault detection there is a

requirement of prioritize of test cases so that resources and time would be optimized.

As the size of the test suite decreases, it reduces the effort to manage all the test cases

in existing test suite that are used frequently to test the web application after changes

are incorporated in the web application.

2.3. PRIOR STUDIES AND RELEVANT WORK

Complete work which is presented in this report is categorized under following heads

 Test cases generation and test set (suite) reduction with the help of various

techniques (random, greedy and various meta heuristic techniques).

 Test case prioritization with support of Bayesian Networks

 Single objective test case prioritization with the support of various techniques

(random, greedy and various meta heuristic techniques).

 Multi objective test case prioritization with the support of various techniques

(random, greedy and various meta heuristic techniques including NSGA-II).

23

 Multi objective test set (suite) reduction with the support of various techniques

(random, greedy and various meta heuristic techniques including NSGA-II).

We have also discussed prioritization of reduced test suite as secondary work.

In order to understand what previous scholar community have performed in these

areas we have performed a comprehensive survey and we have divided this into

different sub-sections, which are as below

 Sub-Section 2.3.1---Various methodologies applied for Web applications

testing.

 Sub-Section 2.3.2---Discussion on various studies published in the area of test

case prioritization.

 Sub-Section 2.3.3---Discussion on various studies published in the area of test

suite reduction.

 Sub-Section 2.3---Discussion on various studies published in the area of

software engineering and specifically software testing where different soft

computing techniques have been applied. The discussion will be on Genetic

Algorithm, Ant Colony Algorithm, Immune Genetic Algorithm and Artificial

Been Colony Algorithm.

 Sub-Section 2.3.5---Discussion on various studies published in the area of

software engineering and specifically software testing where NSGA-II have

been applied.

 Sub-Section 2.3.6---Discussion on various studies published in the area of

software engineering and specifically software testing where Bayesian

network have been applied.

2.3.1 Methodologies Applied for Web Applications Testing

A web application is an application which is accessed using different web browser

over a network. With the increase in number of users over the internet, Usability of

web applications increased quickly in last few years. In fact, Web Applications are

now part of the main business process to automate the information transmission as

well as for the real-time updates. In every year thousands of new websites launched

but due to the poor functioning of a site not every site found the usability as expected.

As the usage of web application increases, their complexity also increases. Thus the

24

size of code grows rapidly which increases complexity to assure the quality, security

and reliability of a Web application. Moreover, as similar to traditional software’s

there are functional requirements that the web applications need to adhere i.e.,

implement the requirements correctly and executes the use case scenarios correctly.

Testing of web application is quite challenging due to its dynamic behaviours,

heterogeneous representations, novel data handling mechanism and complex

dependencies. So proper testing plays a distinctive role in ensuring reliable, robust

and high performing operation of web applications. In order to get assured that entire

web based system has the capability to work properly; the primary step is the

complete web testing of a system, before going live. It can helps in addressing various

issues like the ability to survive when a massive spike in user traffic occurs, readiness

of the web server for the expected traffic and for the increasing number of users,

server hardware sufficiently and so on. Success criteria of businesses on the World

Wide Web are generally considered as usability, security, quality, compatibility,

availability, performance, as well as reliability.

One of major attribute of these web based applications is its heterogeneity in many

verticals which includes a range of execution environment i.e., hardware, network

connection, operating system, web services, web browser and heterogeneous software

component constructed on different programming language/technology. Due to this

heterogeneity among almost all the components makes the testing a tedious task to

make it an efficient and feature emerged application. Due to merging of diverse

technologies at one spot may affect testing complexity. It has also been reported in the

literature that generally guidelines mentioned in formal software development life

cycle model is not followed during development of systems.

. The main reason of choosing Rapid Application Development (RAD) method for the

development for Web application is usually decreasing the time to live. There are

some unavoidable constrains with web based systems that are high levels of

complexity, frequently changes according to demand, emerging user requirements,

frequent developer turnover and short delivery time so web application must undergo

regression testing, system testing, functional testing, stress testing, load testing and

performance testing.

25

2.3.1.1 Traditional Software Testing vs Web Based Systems Testing

In case of web based systems many features like testing of functionality,

configuration, and compatibility is just like that of desktop systems. In case of web

based systems focus is on web fault while in case of other systems attention is on

generic software faults.

There is a mixture of non-equivalence issues between traditional software testing and

web based systems testing. In prior published study, [173], some of the following

issues are depicted:

 Web based systems generally undergo for maintenance and updating

very frequently due to the latest technology change as well as the

requirements change.

 Web based systems have a large user base, it requires high demand of

server’s performance and the ability of undergo with concurrent

transaction. Moreover, when a huge number of users access web

application simultaneously, requirement is to deliver web content

properly using load balancing technique.

 Unexpected page load like via browser back button hit to surf previous

page in a web site using Ajax or direct URL entry in a address bar of

the browser. A malformed URL in a dynamically constructed web

page is a syntax related fault.

 Web applications should be tested to check its working on different

types of web browser and running on different operation system.

 One main difference between traditional and web specific testing is

architecture. In web based systems testing process, it is often difficult

to pin point where the error occurs and in which layer because of its

multitier architecture. Web based systems generally build on three

tiered architecture but for enterprise wide application multitier

architecture are used.

 Web applications are able to render software components dynamically

at run-time according to inputs given by user as well as on the basis of

server response. Author’s of prior studies [174] presented a fault

26

model, which depicts some web specific faults that includes the

problem of authentication, incorrect support for multi-language,

problem of cross-browser portability, incorrect cookie value and form

construction, incorrect generation of error page and incorrect session

management.

2.3.1.2 Modelling Web Based Systems for Testing

There are various modelling techniques by which web applications are modelled. This

modelling can be done in different ways which includes Unified modelling language

(UML) and Finite State Machine (FSM). UML is a standard language for writing

software blueprints. UML is a means for building models that are accurate, definite

and comprehensive. It provides the specification of analysis, design and

implementation details for software system development and deployment.

Researchers have been extensively using Finite State Machines (FSMs) to model

application-specific dependencies. A Finite State Machine is represented as inputs,

outputs and sets of states. For transiting from one state to another a set of inputs is

applied to the machine and may produce a set of outputs. These models are used to

check whether implementation of a software application is as per its specifications.

FSM can be used to describe specifications. Researchers have proposed a number of

Web testing techniques for Web based systems, they all have their own origins and

developed for different test goals for testing the specific characteristics of Web based

systems. A link tester is used to identify the proper connectivity of different

documents in the surface web application and verify the hyper linked structure of

web. Form testers is developed to check the proper initialize of a form, as well as

filling the text fields with predefined text and testing proper action link which forward

data by using get or post method. Dynamic navigation test tool such as VeriWeb is

used to generate the connectivity graph to show the proper connectivity of pages to

the linked document, the graph shows the page as the node and link as the edge and

the size of the graphs is depends upon depth of hierarchy. In [175], S. Elbaum et al.

proposed a method that generates test cases according to the submitted users session

data for Web applications. The user session data is captured as a name value pair from

the HTML forms and remembered for next user activity to verify the correctness of

27

inputted text. The results of the experiments depicts that user session data can be used

to develop effective test suites with respect to existing methods.

A. Andrews et al. [176] proposed a FSM based method for deriving tests. In order to

restrict the state space explosion problem they use input constraints. Theoretically we

can completely model web based systems using FSMs; but even simple web based

system can suffer from state space explosion problem. Filippo Ricca et al. [174]

proposed a UML model of web based systems which is the starting point for different

analyses and used to verify static site structure. They derived web application testing

method in which they proposed white box testing criteria and semi-automatically

generation of associated test cases. These techniques can be applicable to test several

real world Web applications.

Filippo Ricca et al. [175] developed 2 tools ReWeb and TestWeb. New Test case

generation technique was proposed in the work which was based on the computation

of the path expression of the reduced web site graph. Another FSM based model has

been proposed by Andrews et al. [176] to automate conformance testing of Web based

systems. This model is used to describe the states and inputs of Web application. A

state is defined as logical Web page (LWP) that can be any web form or web page

used to interact with the application. States changed through LWPs in response to user

inputs such as submitting username and password for authentication. Inter-request

dependencies controlled by the allowing bounded transitions between LWPs. The

authors also used annotate for specifying transitions and states to demonstrate other

types of dependencies. There are three integrating model proposed by Xu [177] for

web applications they are architectural model, object model and interactive relation

model they also proposed four different testing methods to test web based system. In

the research they proposed to do regression testing of all the components that

changed, they also discussed that traditional testing methodology is insufficient to test

web application due to the complexity and dynamic behavior. In [178], Xu used

System Dependency Graph (SDG) for the modelling of web based systems and

introduced a new regression testing technique for web based systems which is based

on slicing. The slicing technique proposed by them improves working efficiency by

targeting the simplified contents. A system-level testing technique has been proposed

by Andrews et al. [176] that combines finite state machines and constraints to

28

generation test. In the concept hierarchies of Finite State Machines (FSMs) is used to

model large Web applications and then generates sub sequences of different states in

the FSMs based on test constraints. These sub sequences are merged to get full tests

case. The reduced sets of inputs are constructed by using constraints to achieve

solution of state space explosion. Mahnaz Shams et al. [179] has generated

application model that is used to analyze the dependencies in a Web-based system

termed as inter-request dependency and refer to these systems as session-based

systems. All the sessions stored for signal user which are sequence of inter-dependent

requests characterized as workload in terms of sessions. Due to the inter dependency

of each request on previous response based on session it is very challenging to test the

performance of the web based. One of the problems discussed in the paper was

”Inability to fully support inter-request dependencies” that is when user submitted any

request after the previous one, the state changes which directly depends on current

state and provided input. With the example of e-commerce system author discussed

the problem of interstate dependency. An FSM of 7 states that are [Home, View, Add,

View, Add, Delete, Purchase] can be constructed on the basis of session and if user

performed delete after adding a single item in a cart FSM could cause a sequence

([Home, View, Add, Delete, Purchase]) which violet inter-request dependencies for

the system.

In the next considered study authors, Tarhini et al. [180],two event-dependency

graphs ,one of the original web application and other one of the modified version of

the same, is created for regression testing. After that two event test tree is constructed,

from the previous step graphs, which are used to identify affected and potentially

affected nodes so that selection of test cases can be implemented and finally reducing

the test suite size.

The regression testing technique proposed is summarized by the following steps:

 Generate Event driven graph model of web based system and modified

system.

 By comparing both the graph identify the changed nodes.

 Identify the potentially affected nodes.

29

 Apply only those test cases which pass through the potentially affected

nodes and/or changed nodes.

In the subsequent study proposed by Akshi Kumar et al. [181], author moves one step

forward with respect to the work presented in previous study [180] by suggesting the

solution to cyclic redundancy problem and moreover suggesting the test process

necessary for suitable selection of subsets of test cases.

The basic terminologies used in the proposed paradigm [180], [181] are as follows:

 Event

 Event-based dependencies

 Link dependency.

 Visible effect dependency.

 Event- Dependency Graph (EDG)

 Event- Test Tree (ETT)

 Affected and Potentially Affected Nodes

The approach can be summarized by the following steps:

 Event Dependency Graph is used to model the modified web

application and the web application.

 Convert event dependency graph to event test tree which will avoid

scalability and redundancy issues for original and modified web

application

 By comparing the nodes in between trees changed (affected) nodes will

be identified.

 Identify the potentially affected nodes.

 Select the test cases that can go through the potentially affected nodes

and changed nodes.

 Calculate the percentage decrease in test cases from original and

modified one. First uncover the test cases in original system thereafter

calculate the test cases required for modified system and finally

calculate the reduction in test cases which can be calculated as ,

 Test cases in original system: a

30

 Test cases in modified system: b

 Number of test cases eliminated: a-b

 Percentage reduction in test cases: (a-b/a)*100

Elbaum et al. [175] mention the differences between the traditional software’s and

web applications which includes the usability of web applications which can change

rapidly, these applications typically undergo maintenance at a faster rate than other

software systems and finally web applications typically constructed using multi-

tiered, heterogeneous architectures and having complex dependencies. In the research,

a testing approach is proposed that generates test cases on the basis of utilizes data

captured in user sessions. Elbaum et al. [175] has implemented two strategies of test

case generation first implementation named as WhiteBox-1, attempts to create test

case on the basis of path expression. In other approach named as WhiteBox-2 which

incorporates input value selection strategy. WB-2 uses boundary values as inputs and

combines them by applying concept of each condition/all conditions. The main

problem with White Box testing is to find the cost of computing inputs. Selection of

these inputs takes a lot of time and it must be done manually. User-session based

techniques solve it by collecting user interactions based information stored in session

and transforming them into test cases. The technique generates the test cases based on

the input provided by the user in the form of URL and name value pair. With the

given collected URL and name-value pairs, the simplest approach to generate a test

case is to sequentially replay individual user sessions. Second one is to replay a

mixture of communications from several users. In third approach concurrent and

parallel sessions are replayed and in fourth approach problematic requests are mixed

with regular user requests.

Wang et al. [182] present a test sequence generation that is based on connection

between two pages. so that both pages are visited in the defined sequence. They

proposed a ”test sequence generation algorithm” with two case studies in which all

the test sequences are created to find pair wise interaction coverage for two different

web applications. The main approaches for testing interactions are to identify all

possible sequence of traversal between dynamic pages and each sequence represents a

defined path in which they can interact with each other. There are two problems, first

one, the size of web site is increasing rapidly that means the size of sequences also

31

grow accordingly but it is impractical to test all the paths. Second, a fault generally

occurs only in few sequences, it is wastage of resources to test all possible paths of

sequences, which do not play any role in fault. An author has proposed a concept of

test sequence generation to address the problems of testing prioritize sequence. This

approach generates all the test sequences to cover every pair of interactions. Proposed

approach involves three major steps: First, create a graph of the navigation structure,

where each node represents a web page or object, and each edge represents a

hyperlink from one node to another. Second, all pair wise interactions have been

computed using navigation graph that may occur in the web application. Finally, few

of the paths are selected from the navigation graph where interactions exist. These

paths are used to generate test sequence.

2.3.1.3 Regression Testing of Web Based Systems

Regression testing covers selective component retesting or entire system retesting to

confirm that due to modifications no unintentional effects have occurred and the

system is working with its specified requirements Regression Testing handles two

major issues:

 Test suite minimization (reduction).

 Test case prioritization and selection.

Maintenance and evolution are critical for web applications reliability since the

requirement often changes, development time is shorter and the life cycle is longer. In

other words, quick turnaround time, coupled with growing popularity and changeable

user demands motivates the need of automated cost-effective and time efficient web

application regression testing strategies. Regression testing is a quite expensive

process and testing costs sum billion of currency annually in the United States [183].

In order to reduce the cost of regression testing, their test cases need to prioritized and

reduced. This would enable, those test cases, which are important according to the

criteria to run prior in the regression testing process. Regression testing has been used

widely accepted in the software industry as it provides the confidence in the reliability

and the quality of software. However due to recurrent nature of updates and the

32

difficulty of automatically comparing test case of web site regression testing has not

gained much importance in web based systems.

1) Why test suite grows:

o The criteria of testing are imposes requirements on a set of test cases

which are generally a combination of rules. Stake holders like Test

engineers measure coverage by evaluating the extent to which a

specified criterion is satisfied; if the results completely satisfies the

required criterion a test set called 100% effective. If the score is less

than 100 % it is called as partial coverage on the basis of required

criteria. Coverage criteria are used as a stopping point to decide when a

program is sufficiently tested. In this case, additional tests are added

until the test suite has achieved a specified coverage level according to

a specific adequacy criterion.

o Test suites can be used in future as the software updates. This is very

common in software industry that each test case is used further for

regeneration testing. The half of the cost of software maintenance is

covered by these test suites along with other regression testing

activities

o Unnecessary test cases in the test suite define obsolete and redundant

test cases. Due to the changes in program, test case(s) may become

obsolete or redundant. Thus, these obsolete and redundant test cases

increases the size of the test suite continues.

o Due to the new or changed requirements, new test case is added to the

test suite which increases the size of test suite so the cost of regression

testing on the modified software increases.

2) Minimizing the test suite and its benefits: The test suite grows to the extent such

that is nearly impossible to execute all of them. In this case, it becomes necessary to

minimize the test cases such that they are executed for the maximum coverage of the

software. The following may be reasons why minimization becomes important:

 Release date of the product is near.

 Limited staff to execute all the test cases.

33

 Limited test equipment or unavailability of testing tool.

At every change in the program there is a requirement of running test suites

repeatedly so small test suite always advantageous. If test suites are minimized, then

following benefits are there:

 Sometimes, as the test suite grows, it can become prohibitively

expensive to execute on new versions of the program. These test suites

will often contain test cases that are no longer needed to satisfy the

coverage criteria, because they are now obsolete or redundant.

Through minimization these redundant test cases will be eliminated.

 Cost of the projects is directly propositional to the sizes of test sets.

Test suite minimization techniques helps to reduce the overall testing

cost.

 A minimization of test suite decreases test suite management effort as

well as the number of test cases that rerun after the changes of

software, thereby reducing the overall regression testing cost. So

reduction of the size of test cases is beneficial. The goal of test suite

reduction is the creation and execution of smaller set of test cases but

its efficiency is almost same as that of larger original test suite. There

may be real cases here the execution time of reduced test suite is even

larger than that of the provided time.

3) Test Suite Minimization Problem: The definition of the problem of minimizing the

test suite as given below.

Given: A test suite ST, having subsets of ST1, ST2, . , STn for testing requirements R

having subset r1, r2 ,.., rn for covering desired testing of the program, and each ri is

associated with respective ST is Problem: Find a subset of test cases from ST that

satisfies all of the ri’s. The ri’s can be those requirements related to program updating

or those test cases requirements required to test all of the program’s. A subset of ST

must contain at least one test case from each STi’s to satisfy the ri’s. Such a set is

called a hitting set of the group of sets ST1, ST2, STn. A maximum reduction can be

achieved through finding only those test cases which satisfy all requirements. Finding

of the minimum cardinality hitting set is NP-complete.

34

4) Test Suite Prioritization: The test suite reduction means that the test cases in the

test suite are prioritized in some permutation. To permute all the test cases present in a

test suite depends upon the criteria of prioritization technique. Instead of reducing the

test case prioritizing of a test suite is appropriate in two following cases:

 First, in order to avoid any fault detection loss the prioritization supports tester

to give an ordered test suite to rerun all the test cases. This ordered test suite

can lead to early discovery of failures.

 Second, when allotted time is limited, execute ordered suite until the allotted

time expires. If the execution time is greater than the allotted time, execute the

ordered test suite until the allotted time expires. If the execution time is lower

than the allotted time required for a reduced suite, we can run additional test

cases to achieve better fault detection. The purpose of prioritization is to have

the set of test cases based on some rational, non-arbitrary, criteria, while

aiming to select the most appropriate tests. For example, the following priority

categories can be determined for the test cases:

 Priority 1: The test cases must be executed otherwise there may be worse

consequences for the release of the product. For example, if test cases for

this category are not executed, critical bug may appear, critical

functionality are not tested, etc.

 Priority 2: The test cases may be executed, if time permits.

 Priority 3: The test case is not important prior to the current release. It may

be tested shortly after the release of the current version of the software.

 Priority 4: The test case is never important as its impact is nearly

negligible. In prioritization scheme, the main guideline is to ensure that

low priority test cases do not cause any severe impacts on the software.

There may be several goals of prioritization. These goals can become the basis for the

prioritization of test cases. Some of them are discussed below:

 Testers or customers may wish to have some critical features to be

tested and present in the first version of the software. Thus, the

important features become the criteria for prioritizing the test cases.

But the consequences must be checked if some low priority features

35

are not tested. Therefore, risk factor should be analyzed for every

feature into consideration.

 Prioritization can be on the basis of the functionality advertised in the

market. It becomes important to test first the functionality and their

corresponding test cases, which have been promised by the company to

the customer.

 Fault detection rate of a test suite can expose the possibility of faults

earlier.

 When we increase the overall code coverage through test at a faster

rate, it permits a code coverage measure to be met prior in the testing.

 If the rate is high to detect the high-risk faults, faults can be identified

prior during the test.

5) Applying Regression testing on Web Based Systems:

Existing testing tools for web based systems are still insufficient. As the design

specifications of web based systems are missing or inadequate, so generation of

effective test cases deign is still informal. Testing of web based systems is

knowledge-driven and labour intensive activity [184]. Testing requires professionals

having reasonable experience and proficient ability with systematic approach to guide

the testing sequence. General testing approaches are not much beneficial for the web

based systems. To model the component interactions, Brim et al. [185] proposed a

model of Component-Interaction automata that preserve every interaction properties

which can be used for further research. In other study researchers considers a web

based system consisting of different interactive logical components. Authors

combined logical components with agent to support automatic test cases generation

for testing of web based systems. With the help of Pages-Flow-Diagram of web

system under test, web system is successively partitioned into Logical components at

different level of abstraction. Each of these logical components consists of Web pages

and other logical components. Relative work avoids the problem of state space

explosion by using an agent as a coordinator to overcomes alterations in actions

between logical components and also improves the reuse of component interactions.

Authentic user profiles are used by User-session-based testing for automatic

generation of test cases. Set of heuristics and the clustering user sessions on the basis

36

of concept analysis are the major contributions of Sampath et al. [186]. In order to

avoid collection and maintenance of huge user-session data sets, on hand incremental

concept analysis algorithms are inefficient which will ultimately provide scalability.

Complete automation of the process has been proposed which starts with user session

collection followed by test suite reduction all the way through test case replay. Author

proposed that concept analysis has the capability to use newly captured user sessions

for incrementally updating reduced test suites. Concept analysis has almost same fault

detection potential and program coverage. The paper also comes up with a method for

attaining scalable user session based testing the systems. The series of events

achieved by the user with the web site acts as a use case and the pool of logged user

sessions acts as set of use cases. The criteria for the reduction of test suites is the

covering of all base requirements in the current test suites and covering distinct use

cases i.e. set of base requests. Available incremental concept analysis techniques can

be used to examine the user sessions because every sessions can be taken and

transformed into test cases. Authors constantly reproduce the set of use cases by a

reduced test suite to represent actual user behavior. During previous work of the same

authors, the performance of the reduced test suite is comparable with the original test

suite with respect to resulting program coverage while the fault detection capability of

reduced test suite remains almost intact. In their paper authors proposed and evaluated

two new heuristics for test suite reduction by using two new web based systems on

collected user session to attain experimental results.

The Sampath et al. [186] contributed as:

 With the help of ”concept analysis” to test web applications using user session

they developed the test suite reduction problem.

 When there is an evolving active profile of the application and large number

of uses session data incremental concept analysis can be used for test suite

reduction.

 They have experimented on three different web applications to justify

effectiveness of test suite reduction based on three heuristics developed by

concept analysis.

37

Test cases prioritization and test suite reduction are two approaches to deal during

regression testing. During test suite reduction smaller test suites are selected from the

larger original one in such a fashion that the reduced suite completes all of the

requirements which were fulfilled by the original suite. New permutation of test cases

belonging to the test suite is produced in test suite prioritization with the goal of

refining fault detection rate. This strategy helps the tester in executing the best test

cases early to increase the efficiency of testing within the constraints of limited time

and cost. Most of the times, these two strategies of regression testing are handled

separately. There can be a case where the time allotted to execute the complete

reduced test suite, generated from reduction techniques, is smaller than that of its

execution time. Sreedevi Sampath et al. [187] proposed an ordering of test cases

which would be helpful for the tester who handled the restrictions of limited time and

restricted resources for the finalization of testing procedure. Now researchers have

start thinking to incorporate test suite reduction and test cases prioritization

techniques of regression testing. Bertolino et al. [51] identified test case prioritization

and test suite reduction to improve ordering of reduced test suite. Author’s [188]

recognizes that testers can be under pressure due to available constraints and can stop

testing so the ordering of test suite is must. They promoted that objective of test suite

reduction will be to choose those test cases which meets the coverage criteria of test

requirements. The ordering of these chosen test cases will be done with the goal of

fault detection. To achieve these, they assess the efficiency of reduced test suites

using a rate of fault detection measure. Available reduction heuristics are applied on

four applications .APFD was used to measure the efficiency of reduced test suites.

However, ordering of the reduced suite was not proposed in their work. Sreedevi

Sampath et al. [187] look into the concept of ordering a reduced suite and applied this

on the web based systems. She used usage logs as test case for user session based

testing of web based systems. Large set of test cases can be generated using web

usage logs of commonly used web systems. The purpose of test suite reduction is to

select a less number of test cases from the larger original one with the purpose of

keeping the requirement coverage of the original test suite.

6) Automatic Generation of Regression Test Cases:

 Zhongsheng Qian et al. [189] proposes a web testing model for generation of

regression test cases in which page flow diagram is transformed as a page test tree

38

with the help of proposed algorithm. With the help of page test tree test paths will be

generated. For the web based Login system the Page flow diagram, Page test tree and

paths can be generated as follows. There are five test paths; all of these have the home

page as starting point. These are:

startview

 startloginsubmitreturn

startloginsubmitbrowsecontinue

startloginsubmitbrowseexit

startloginsubmitlogouthome

Proposed method by Zhongsheng Qian et al. [189] treats the Web Based System

using” divide and conquer” strategy. As WA are divided into various sub WA’s, so

the testing effort of entire WA is also divided and becomes more controllable and less

complex process, so as sub WA’s. These sub WA’s can be tested concurrently on

different machines by different testers which gives rise to flexibility in testing. PFD

and PTT are the higher level of abstraction of the Web based Systems. Major benefit

of proposed Web testing approach is that there is no need to access the source code of

the software. An algorithm was proposed in the paper which creates PTT from a given

PFD. With the help of path expressions, test paths can be generated from Page Test

Tree. How to describe the test path using XML is depicted in the paper. The page

flow testing methodology is based on the proposed test path generation approach and

checked on Web based Login System for their efficiency. Entire proposed approach is

automatic except the manual creation of PFD and a minor modification in test script

framework, the. Authors also claimed that on applying divide and conquer” strategy

for converting WA into sub WA, the state space explosion problem will not be

generated if Web application under test is divided reasonably.

Gagandeep et al. proposed the framework which consists of the following steps.

1 Domain Analysis and Modelling

2 Model traversal and test case generation

3 Optimizing test cases using coverage criteria

4 Regression test suite generation.

39

Authors implement model driven representation for designing and implementing

automation. With the help of Specification document, a Graphical Web Model of the

component is constructed. The model is traversed using “All Link Coverage” to

generate test sequences. With the help of this author wants to assure that all the

available links of the web applications should be tested at least once.

Definition of Web Application Test Sequence WTS is as follows:

T0T1T2... Tm is a sequence starting from root page to some leaf page that can

be traversed, T0 is the initial page and ”m” represents total number of Test Sequences

. WTS represents available navigation from page T0 to Tm by traversing different

intermediate pages. The last step of the framework is to generate regression test suite.

The modified version of web application may incorporate or delete some pages or

links. Once again it goes through Domain Analysis and Modelling activity. Optimized

set of test sequences are generated in such a way so that all the links are covered. Test

sequences following the same traversal path that differs only at the end points are

merged. Authors also have approached for test case generation from UML state chart

diagram. First, state chart diagram transformed into a labeled graph, labeled graph

transformed into the intermediate testable model (ITM). From this intermediate

diagram they generated the test cases. The technique solves the problem occurs in

nesting of structure in the state chart diagram.

Tung et al. [190] proposed the two-phase approach for automatic test case generation

on the basis of structure of the web application. Authors define the dependence

relationships as two dependencies first data dependence and second control

dependence for the Web application and identify the relationships from source code to

enhance the test case generation with its results. The experimental result depicts that

the proposed approach can decrease test case set in test case generation procedures.

The main contributions of Tung et al. [190] are as follows:

o A novel prototyping tool developed for automatic test case generation

for Web system.

o By extracting the different dependencies such as control dependence

and data dependence, of Web application it formulates test cases.

o These two are combined together to reduce the test case when there is

a situation of state explosions.

40

o The test case reduction approach is evaluated by experiment on

effectiveness criteria.

In another study authors have considered Web application as the combination of

multiple interactive i.e. ”Logical Components” (LCs). The agent is created by

combing LCs to support automatic generation of test cases for testing Web

applications. With the help of From Pages-Flow-Diagram (PFD) they sequentially

divide Web applications into multiple LCs, at different levels of boundaries, so that

each one comes either composition of Web pages and/or other LCs. By the use of

mechanism to model each LC, they model interaction of LCs with the help of

compositions of automata in the approach the simultaneous access and

communication between LCs is also supported. By using agent as the coordinator it

enhance the reuse of component communication and actions between different LCs. It

also eliminated state explosion problem effectively.

7) Automatic Test Cases Generation Using Soft Computing

Techniques: During literature survey it has been found that many researchers have

used automatic test case generation for white box testing, performance testing, black

box testing and regression test for traditional software’s. These approaches

successfully include heuristic approaches as well as meta heuristic approaches too.

Related to this approach latest research papers are discussed below. Surinder et al

[191] proposed a novel search technique based on artificial bee colony for generation

of structural software tests in an automatic manner. Branch distance based objective

functions are the main criteria to generate the test case symbolically by measuring

fitness of individuals. By demonstrating on multiple real word applications the

performance of the test generator was evaluated. When the applications have very

large number of data inputs the results depict that the proposed technique has a

limitation of not performing as expected but it may be considered alternative for test

data generation.

Sofokleous et al. [192] proposes a framework which was based on the genetic

algorithm for the purpose of dynamic test data generation. For automatically

generation of test cases he proposed a combination of Program Analyzer and a Test

Case Generator. The first generate control flow graphs by choosing variables and

statements and isolating the code paths. Test Case Generator uses two optimization

41

algorithms”Batch- Optimistic” (BO) and the”Close-Up” (CU) to produce a near to

optimum set of test cases by considering edge/condition coverage criterion. The

results point out that its performance is appreciably better in comparison with on hand

dynamic test data generation model. There are two major contributions of Sofokleous

et al. [192]. The first one is automatic software testing with program analysis features

like creation of CFG, and on the basis of code coverage and visual interaction test

case evaluation. He uses a combination of a batch-optimistic algorithm and a close-up

algorithm for generating test case that is the second and novel concept contributed by

him. This framework proved more effective in terms of testing quality coverage rate

and better to produces test cases by covering edge/decision. The latter one is more

complex so it is not discussed in literature but the benefits are better testing coverage

in comparison with edge, statement and condition coverage.

Huang et al. [193] proposed a method of cost-cognizant test case prioritization which

depends on the use of historical records. Proposed method uses latest regression

testing to collects the historical records and then uses a genetic algorithm to determine

the most competent order. To evaluate the effectiveness of the method some

controlled experiment were performed. Results point out that this method has

enhanced the fault detection efficiency. Authors also conclude that high test

effectiveness during testing can be achieved by prioritizing test cases based on their

historical information. They proposed a Modified Cost-Cognizant Test Case

Prioritization (MCCTCP) which uses the records of historical information repository

(Figure 2.1).

42

Figure. 2.1. Procedure of MCCTCP

Procedure of proposed MCCTCP test case execution for regression testing of

software. Authors collected the cost of test, the severities of fault and used latest

regression testing to detected faults of each test case. There after Genetic Algorithm is

used with the objective of searching a directive with the highest rate of ”units of fault

severity detected per unit test cost”. The experiments depicts that the method, even

without analysis the source code can efficiently improve the efficacy of cost-

cognizant test case prioritization, without the issue of uniformity in test case costs and

fault severities. The main purpose of this problem is to calculate the order that show

the foundation for future regression testing as well as the proved path of past. The

objective is the searching for an order of the existing test suite that has the greatest

efficiency with respect to cost-cognizant test case prioritization in regression testing.

Mentioned search problem is NP-hard in nature and can be solved by using Genetic

Algorithm (GA).The input to the GA is past execution data of the test cases and the

output of the GA is the order of the current test suite. Figure 2 shows the process of

proposed MCCTCP method. The repository is used to store cost of each test case such

as the faults spotted by the test case and the fault severity of spotted faults generated

in each test case during regression testing in history.

Acquiring Historical Information from Historical
Information Repository .

 Using Genetic Algorithm to produce an order.

Applying Regression Testing.

Storing Execution Results of each test case in
historical information repository.

43

During prioritization, the MCCTCP method first gathers the stored historical

information of each test case. This collected information acts as an input to GA and

the output is of the form of order of the existing test suite that has the maximum

efficiency in terms of the earlier regression testing. After the application of regression

testing, historical information repository is used to hold the performance results of

each test case. Using the heuristic search for finding optimal test order, GA uses

various factors such as severities of faults and costs of test case. This test order will be

more suitable for the regression testing. As MCCTCP method uses the repository of

historical data to plan the test cases, so there is no requirement of code of tested

program for the purpose of analysis.

8. Potential Problems

The blending of conventional testing techniques and user session data appears to hold

a potential which is still unexploited. Novel methods must be established to

effectively incorporate user sessions and white box testing methods. Other complex

techniques which incorporate factors like concurrent user requests and web

application states must also be explored. During the study of user-session techniques

it has been found that increase in the number of sessions may help in providing

additional fault detection power. But as the number of session increases it entail more

test preparation as well as increased execution time. Therefore using a huge number

of stored used sessions comprises tradeoffs and gives rise to a new Multi objective

problem. Till now test suite reduction and prioritization are two different methods to

achieve test suites during regression testing. During the literature review it has been

found that most of the researchers have handled the two test selection methods

(reduction and prioritization) separately. Sreedevi Sampath et al. [187] have proposed

some techniques to concatenate them. We think that there is a scope and potential that

novel approaches will be devised for Test suite reduction followed by prioritization

and vice versa, as very less work has been done. More over till now most of the

researchers have used heuristics only in their proposals so there is lot of scope of

applying meta heuristics techniques also in this joint. To the best of our knowledge

(gained from literature review of latest and relevant papers) almost no

work/tool/framework has been found for Automatic test cases generation followed by

Test suite reduction followed by its prioritization, which gives rise to a new potential

44

area and problem. The problem can be solved using traditional approaches (or

creating novel approach) of Automatic test cases generation for Test suite reduction in

web applications, followed by traditional approaches (or creating novel approach) of

Test suite reduction in web applications, followed by traditional approaches (or

creating novel approach) of prioritization of test cases in web applications. There may

be a scope of applying heuristics as well as meta heuristic techniques. The issues of

compatibility on these 3 may also be addressed, if arises. Other issue which may be

addressed includes the cost of generating resultant reduced test cases and the cost of

execution of these reduced test cases. Almost no research work has been done with

respect to Multi Objective Regression Test Optimization (MORTO)[19] by taking

more than one objective from listed below with reference to web based systems;

hence a potential problem arises and produces a scope for the solution/research. Multi

Objective Regression Test Optimization (MORTO) can include various Cost Based

Objectives which are:

 Execution Time

 Data Access Costs

 Third party Costs

 Technical Resource Costs

 Set Up Costs and

 Simulation Costs

And various Value Based Objectives which are

 Code base coverage

 Non-Code-Based Coverage

 Fault Model Sensitivity

 Fault History Sensitivity

 Human Sensitivity

 Business Sensitivity

2.3.2 Discussion on Various Studies Published In the Area of Test Case

Prioritization

Formally Test Case Prioritization (TCP) [183] is formulated to find new permutation

of test cases, T belonging to a set of permutations SP such that the value for f(T)

45

would be greater than or equal to any other permutation T belonging to SP i.e., to

find such that (∀)(SP)(≠) | where f is a function

when applied to any such permutation would yield an award value for that

permutation. This prioritized permutation of test cases should execute in such a

fashion that the test case having the highest award value as per the given testing

criteria would be executing earliest, followed by test cases having lesser award value.

During TCP there can be various objectives which need to be satisfied for example

maximum fault detection [230] or maximum code coverage or maximum branch

coverage with least execution of the test cases [229]. TCP supports in arranging the

test cases in such a manner that the test case which satisfies objective the most, it

should be executed earliest.

Diverse techniques have been proposed by the researcher’s community for test case

prioritization problem during last two decades ([233] , [234], [235],[236] ,[237] and

[238]) . In the same context Catal et al. [229] has also presented a thorough survey

paper on the same (TCP).

Thomas et al. [231] proposed static black box test case prioritization technique in

which the prioritization is implemented without considering source code. In the next

study,[239] , authors uses activity diagram to propose a model based test case

prioritization technique for web application. They differentiate between modified

model and previous original model and use this information to plot activity diagram

so as to identify the most promising path for test case.

Jiang et al. [232] proposed adaptive random technique (ART) for test case

prioritization. This technique not only helps in prioritization of test cases, but also

expose fault faster for test case generation.

Sampath et al. [38] proposed the prioritization of reduced test cases for efficient

testing of any web application and supports tester a lot especially in time constraint

environment. They experimented user sessions to create test cases and after reducing

46

these test cases they order them in particular order with the help of heuristics so that

these prioritized reduced test cases could detect fault in less amount of time.

Do et al. [40] anticipated time constrain based test case prioritization technique to

depict the effects of time constraints on the costs and benefits of prioritization

techniques. (Bryce et al. [240]) presents a projected work by modifying the

combinatorial interaction coverage metric to incorporate cost of test cases.

In an experimental study for observing test case prioritization ,[234], 16 different

techniques were illustrated for test cases sequencing including, random sequence,

optimal sequence, probability based sequencing while considering function coverage,

fault exposure and fault existence.

Scholars have proposed different sound performing heuristic algorithms for test case

prioritization so as to achieve predefined objectives such as Average Percentage of

Block coverage (APBC), Decision Coverage (APDC) and Statement coverage

(APSC). Other objectives includes: minimization of total switching cost in highly

configurable software systems ([241]),degree of risk exposure ([242]), combination

weights and test costs([243]) , increasing cost per additional coverage([244]),or test

case prioritization in time constrainted environment ([40] and [238]). Some scholars

have implemented prioritization for maximum code coverage, maximum fault

coverage or to achieve high bug detection rate ([245]). In the survey paper on the

broad domain regression testing, authors (Rosero et al. [246]) focus light on fault

detection, historical data, modeling and change-sensitivity as parameters used by

researchers for prioritization. In the next study authors (Yoo et al. [130]) made the

performance comparison between pareto optimal GA and additional greedy algorithm

during TCP where the many objectives that needs to be satisfied were fault detection

history, execution cost and code coverage.

In the next investigational study, the authors (Li et al. [198]) made performance

assessment between Greedy algorithms, Heuristic and meta heuristic algorithm during

TCP. They conclude that performance of GA and Additional Greedy algorithm was

superior to that of Greedy algorithm.

47

During study of recently published literature, it has been drawn that new range of

objectives, of TCP, is under focus by the academician’s fraternity has focused on a

range of new objectives. In an experimental study ([247]), the authors focused on

TCP based on fault detection rate of program, execution time and requirement

coverage using fuzzy logic. Researchers (Joseph et al. [248]) in a study make use of

modified PSO for improvement in fault detection capability. In another empirical

study, the authors of [249] implemented TCP through clustering of test cases on the

basis of the multidimensional features of test cases. In a different experimental study,

[250], make use of state chart graph, priority set by the end-user of different functions

and browsing history of the end-user to prioritize test cases. Author’s of another

study, [251], present TCP on the basis of relevant inputs obtained from a software

development environment, in the next study, on the basis of requirement correlations

([252]) and finally, authors uses Natural Language Processing (Yang et al. [253]) .In a

recently published study authors (Bhuyan et al. [254]) propose a new prioritization

approach using UML use case diagram and UML activity diagram.

2.3.3 Discussion on Various Studies Published in the Area of Test Suite

Reduction.

We have already discussed that the test case selection, test case prioritization and test

case reduction are three basic techniques followed for efficient implementation of

regression testing [98]. Specifically in case of test set minimization, we have to

abolish outdated and redundant test cases from the original test set for the generation

of effective representative test set that meets all the test requirements, without loss of

coverage criteria. Prior published study has proved and revealed that constructing

representative set is equivalent to solving classical set-cover problem, and hence

belongs to the class of NP problems, [99]. Finding the optimal solution will generally

take exponential time hence researchers have made several attempts to compute

optimally-minimized test suites. In several presented attempts based on Greedy based

approaches, heuristic based approaches or meta-heuristic based approaches

researchers were able to compute near optimal solutions [99-109].There may be

various coverage criteria’s[99,104-115] for the construction of representative set of

original test set which includes code coverage, statement coverage, branch coverage,

48

mutation score coverage and data-flow based coverage. Meanwhile one published

study [116] concludes that guaranteed computation of optimal results is not possible

always. Specifically in case code coverage how much portion has been covered in the

initial version decided whether the test case will be the part of test set for subsequent

version.

Khan et al. [117] focuses on need for solving multi objective test suite reduction

problem and at the same time they present a relative study of code coverage based

greedy test suite reduction algorithms. Ma et al.[109] focuses on combination of

block-based coverage and test case execution cost while solving test set minimization

problem. Smith and Kapfhammer [118] attempt with the help of greedy approach to

minimize original test set, while satisfying test requirements, and at the same time to

produce a representative set with low execution cost. Other prominent published

studies that have gained attention while solving the suggested problem are

[105],[108],[112],[114],[116],[119],[120] and [121].

Now we will present the brief summary of the work published recently while solving

similar type of problem(s).In recently published studies [122-123] authors applied

fuzzy clustering genetic algorithm for the removal of redundant test cases to create

representative set of test cases that fulfil the testing criteria.

August et al. [124] attempted to combined test-suite reduction and test case selection

process for the speed up of testing process and the results of which there will be more

savings in terms of number of test cases with compromise on fault detection

capability. Authors of the study [125] investigated the novel combination of two

ideas to propose the concept of non-adequate reduction of test cases, for a trade-off

between test case size and fault detection. Zhang et al. [126] make use of test case

reduction and prioritization to improve symbolic execution. Vidacs et al. [127]

focuses on test case minimization approach for fault detection as well as fault

localization. They investigated the influence of various test minimization methods on

the performance of fault localization and detection techniques. In another study,

[128], authors analyzed the influence of test case reduction and prioritization on

software testing efficacy. Extensive review of automated support for test suite

reduction has been presented in just available study [129] where focus was mainly on

shortlisted parameters such as approach type, customizability, testing paradigm,

49

evaluation, optimization type, license type, computation mode, coverage source and

execution platform. Famous researchers of the same area, Yoo and Harman [130],

explore test set multi-objective reduction problem using NSGA-II in two versions,

first version consists of two parameters, execution costs of test cases and statement

coverage, while the next one focuses on three parameters, past fault-detection history

and the remaining two similar to the previous one. Later on authors proposed two

revised versions of NSGA-II which are called vNSGA-II [131] and HNSGA-II [132],

a hybrid variant of NSGA-II. Bozkurt et al. [133], try to explore addressing multi-

objective test suite reduction problem using HNSGA-II where the objectives are code

coverage, execution cost and test suite reliability.

2.3.4 Discussion on Various Studies Published in the Area of Software

Engineering and Software Testing Where Different Soft Computing Techniques

Have Been Applied.

This section is divided into three subsections where first three subsections present

the application of ACO, ABCO and IGA in software testing, and specifically web

testing if any, while last part of this section depicts published literature that resembles

our(one or more) work.

2.3.4.1 Contribution from ACO

Sharma et al. [134] proposed an algorithm which makes use of ACO for state based

testing and optimal path generation for structural testing. They also focused on

covering maximum software coverage at the cost of minimum redundancy.

Srivastava et al. [135] proposed a model for structural testing in a directed graph

where optimal/effective path(s) were identified using ACO. Each and every decision

node should be traversed and the number of generated paths was equivalent to

cyclomatic complexity of the code and the algorithm automatically selected the path

sequence which will cover the maximum coverage criteria, at least once.

Srivastava et al.[136] in their anticipated study do the performance assessment of

Genetic Algorithm with ACO for state transition based software testing and its

coverage level . The foremost aim was the generation of optimal and minimal test

sequences automatically for the complete software coverage.

50

Srivastava et al. [137] in their proposed work attempted to generate optimal set of test

sequences with the support of markov chain based usage model using ACO. Model

takes care of factors like cost, average number of visits, criticality of the various states

and trade-off between cost and optimality of the test coverage.

Suri et al. [138] seeks the usage of ACO in reordering of the test suite in time

constraint environment and analyze the behavior on eight programs under test.

Singh et al. [139] presented the usability of ACO to prioritize the test cases where the

objective is to identify maximum number of faults within given minimum time period.

They confirm that the APFD achieved in both the cases i.e, optimal fault coverage and

in ACO were equivalent.

Srivastava et al. [140] proposed the improved version of their previous published

work[2], where they explore to remove the shortcoming of generating redundant paths.

The new algorithm, with complexity O(n
2
), was proposed that intelligently selected

those nodes for traversal which gives rise to new independent path surely.

Bharti et al. [141] acknowledge the improved version of ACO for solving time

constraint test suite selection and prioritization problem using fault exposing potential.

Yang et al. [142] compared the performance of random algorithm, genetic algorithm

with their proposed comprehensive improved ant colony optimization(ACIACO)

algorithm on the basis of efficiency and coverage as criteria. Results depict that the

proposed algorithm improved the search efficiency, restrain precocity, promote case

coverage, and at the same time reduces the number of iterations.

2.3.4.2 Contribution using ABC

The ABC algorithm was first proposed by in 2005 by Dervis Karaboga of Turkey and

since from inception it has been widely accepted by the community of researchers and

academicians. To date various improvements in the basic algorithm of the ABC have

been proposed by the researchers which include Continuous ABC,

Combinatorial/Discrete ABC, Hybrid ABC, Chaotic ABC, Binary ABC, Parallel and

cooperative ABC and Multi-objective ABC.

Karaboga et al. [143] presented a widespread survey of the Applications of ABC in

solving various engineering problems of related fields like Industrial Engineering,

51

Mechanical Engineering, Electrical Engineering, Electronics Engineering, Control

Engineering, Civil Engineering, Software Engineering Image Processing, data mining,

Sensor networks, Protein structure and many more.

Karaboga et al. [144] proposed the Combinatorial ABC for solving Travelling

salesman problem which falls under the category of NP-Hard combinatorial

optimization problem.

Lam et al.[145] try to find out the methodology for automatic generation of feasible

independent paths and further test suite optimization with the help of ABC. They

further compare the performances of ABC with ACO and GA too.

Chong et al. [146] try to find the solution , with the support of ABC, for job shop

scheduling problem which also falls under the category of test case prioritization and

the performance comparison was made with ACO and tabu search.

Kaur et al. [147] applied ABC algorithm for TCP where the prioritization criteria was

average percentage of conditions covered.

Srikanth et al. [148] applied ABC for the generation of optimized test suite for full

path coverage.

Joseph et al. [149] blended two algorithms PSO and ACO and called as Particle

Swarm Artificial Bee Colony algorithm (PSABC) for the purpose of test case

optimization and prioritization so as to reduce time and cost of regression testing.

Within minimum execution time maximum statements and faults should be covered

was the another objective of the proposed work.

Mala et al. [150] proposed a framework for software test suite optimization using

ABC approach. They perform various type of testing with the help of GA, Sequential

ABC and parallel ABC, out of these three parallel ABC comes out as the best

performer by computing global or near-global optimal results for test suite

optimization and that too within less iterations.

Dahiya et al. [151] in their study, on ten benchmark real world programs, applied

ABC for structural testing. Results were not satisfactory in the programs where there

is a large input domains and many equality based path constraints.

52

Konsaard et al. [152] applied GA and ABC algorithms for prioritization of test sets on

the basis of code coverage. Authors finding includes that the results were promising

and the coverage by ABC is as good as GA and optimal orders.

2.3.4.3 Contribution using IGA

Authors (Jiao et al. [222]) introduced the concept of IGA which constructs an immune

operator accomplished by vaccination and immune selection. Acceleration of

convergence speed and improvement of quality of the solution is achieved through

inoculating genes and convergence speed. The computing overhead in IGA increases

due to addition of two operations (vaccination and immunization). It was concluded

that IGA increases searching efficiency and restrains degradation in the later stage,

thus increasing convergent speed to some extent with respect to GA.

Azimipour et al. [223] in their work apply IGA for solving Automatic Test Generation

Problem (ATGP) on some benchmark programs. It was validated that IGA performs

better than other non-immune algorithms and presents results that shows an average

25% reduction in test size and up to four times less test time.

In another effort done by Bouchachia [224] to solve test data generation problem IGA

has been applied on some benchmark programs. It was concluded that average testing

coverage in IGA was larger (98.95%) than that of the GA (94.58%).

In another published literature study it was found that Genetic Algorithm has been

effectively applied in various verticals of software testing field also. One of the

verticals is test cases generation/test data generation for code coverage testing in one

form or other with certain objectives. This generated test data is useful in functional

and structural testing.

Academicians (Krishnamoorthi et al. [225]) applied GA for test case prioritization

during regression testing while considering code coverage as a parameter. Authors (

Sabharwal et al. [226]) generate test paths using UML activity diagram and state chart

diagram. GA was applied to find the paths which should be tested earlier. Researchers

(Raju et al. [227]) proposed requirement based system level test case prioritization

scheme using GA. Various parameters of two software applications were taken into

consideration during the experimentation process. Researchers, Kaur et al. [29],

53

applied GA for test case prioritization while considering amount of code coverage and

total fault coverage within time constrained environment as a parameter.GA performs

better than all other competitor algorithms. Authors of another study (Jun et al.[224])

proposed two versions of GA for prioritization of test cases to maximize block

coverage.

2.3.4.4 Resembling Studies

After going through many prior published reputed studies released during last decade

it has been concluded that academicians are making use of user session data for many

purposes which includes creation of test cases for testing of web applications.

In the benchmark study of this area authors, Elbaum et al. [153], proposed five

approaches for test case generation and functional testing of web application using

user sessions. As the major finding of the proposed work authors proved that the

fault detection capability of test cases generated from the user session data is

comparable to white box testing of same web application.

Sampath et al. [154] applied the methodology of clustering of user sessions with the

help of concept analysis so that the selection of subset of user sessions takes place by

applying three heuristic approaches. One user session is randomly selected from each

cluster to become a test case and to represent that cluster which resultant into

reduction of the user sessions. This minimized set has the fault detection capability as

that of the original one.

In another benchmark study by the same authors, Sampath et al. [155], tried to

prioritize the reduced test suite, using several heuristics, to enhance its rate of fault

detection capability in the area of web applications.

Peng et al. [156] proposed a technique in which test cases are generated automatically

using user session data and request dependency graph of the web application.

Realistic test set is created using Genetic Algorithm in which mixing of different user

session takes place so as to cover fault susceptible transition relations. Authors

presented that with small size test set, presented technique achieve higher path

coverage, request coverage and fault detection rate than that of conventional user

session based testing.

54

Qian et al. [157] also make use of genetic algorithm to present an approach for

generation and optimization of test cases for web applications based on distinct user

sessions. These distinct user sessions are divided into groups and on the basis of

decided threshold prioritize the groups and test cases within the group. GA was used

to optimize the results of grouping and optimization.

Elbaum et al.[158] in their presented empirical study proved that the efficiency of test

set generated using user session data is equivalent to white box testing during testing

of web applications .

A novel method on user session based hierarchical clustering algorithm for test case

optimization was proposed by authors, Liu et al. [159].One representative test case is

selected from each cluster for functionality testing of the web applications. The

subject web application was traditional small size online book store website.

Muang et al. [160] uses concept of entropy in the user sessions which has been

retrieved from the log files of the server for the purpose of test set reduction.

Efficiency of the algorithm is computed on the basis of URLs coverage, Reduction

time and the Test case reduction rates. Two software’s (one website and one digital

library system) were shortlisted as subject, on which authors have shown the

efficiency of their proposed algorithm by 90% reduction of the original test suite.

Li et al. [161] et al. in their empirical work uses user session data for the generation of

test cases and K-meteoroid algorithm was suggested by the authors for the cluster

the test cases. It was also verified that as the number of cluster increases the more

code will be covered and that results into the enhancement of the fault detecting

capability.

Sprenkle et al. [162] proposed an approach “concept” which analyze the user sessions

and convert these user sessions into test cases. The projected approach cluster user

sessions that represents alike use cases. There after heuristic is applied for the

selection of user sessions such that reduced test suite explore all the unique URL’s of

the original test suite. Three requirement based reduction techniques were compared

with three variants of the proposed technique on two web applications. The

parameters considered in this study were time and space cost, fault detection

effectiveness, program coverage and reduced test suite size.

55

 2.3.5 Discussion on Various Studies Published in the Area of Software

Engineering and Software Testing where NSGA-II Have Been Applied.

Numerous diverse engineering problems, software engineering and specifically

software testing problem can be formulated as multi objective optimization problems

and that has been attempted by the researchers using various classes of algorithms like

multi objective evolutionary algorithm (MOEA), its different variants and other

MOEAs ,NSGA-II and its variant.

Zhang et al. [163] attempted to solve multi objective next released problem, problem

belonging to the category of requirement engineering, using NSGA-II. In another

anticipated study [164] authors provides solution, with the support of NSGA-II, for

software project managers while taking decisions in multi objective perspective where

they have to keep in mind development time, cost and productivity.

In the next study [165] authors, Wang et al., try to solve and compare the performance

of NSGA-II with Harmonic Distance Based Multi-objective Evolutionary Algorithm

(HaD-MOEA) while solving multi objective optimal test resource allocation problem

where the objectives were reliability of the system, testing cost and total testing

resources.

Kavita et al. [166], explored multi objective automatic test data generation where the

conflicting objectives were uniform distribution of test cases over the given range and

the other one is maximization of code coverage. In the recently published study by

Mondal et al. [167], authors focuses on solving of multi objective test case selection

problem where the conflicting objectives were code coverage, diversity among the

selected test cases and test execution time , with the help of NSGA-II.

Yoo et al. [168] applied additional greedy algorithm, NSGA-II and its variant

vNSGA-II for performance assessment while solving multi objective test case

selection problem where the objectives were fault coverage, code coverage and cost.

Test set reduction problem can be visualize under single objective optimization

problem and multi objective optimization problem, without missing the coverage

criteria. In the next study [169], authors applied NSGA-II on three subject java

56

programs to solve MORE (Multi objective test case reduction) problem where the

conflicting objectives were code coverage, requirement coverage and execution time.

While solving the same type of problem, another study by Zheng et al. [170], authors

attempted to solve test set minimization problem having conflicting objectives, code

coverage vs execution time using four algorithms , classical greedy, NSGA-II,

MOEA/D and MOEA/D, with a fixed value of parameter c.

In a recently published empirical study[171], authors formulated defect prediction

model as a multi objective logistic regression problem and multi objective decision

trees problem where the objectives which needs to be optimized were maximum

effectiveness and minimum cost.

In a just released study [172], authors have shortlisted twenty-one java applications as

a subject in which source code coverage, requirements and test case execution time

were the objectives that needs to be optimized. NSGA-II and Additional Greedy

algorithms were implemented for performance assessment of these two algorithms

while solving the multi objective test cases prioritization problem on the basis of

generated APFD. Overall summary of literature survey is depicted in Table 2.1.

Hence it can be observed that we have considered the published work up to July 2017

where NSGA-II plays the crucial role while solving the presented problem. Moreover

it can also be realized that no major significant work has been presented in the area of

test case prioritization in the multi objective scenario. More specifically none of the

previous study has considered APFDC either as parameter or measurement of

efficiency

57

Table2.1. Summary of Literature Review

2.3.6 Discussion on Various Studies Published in the Area of Software

Engineering and Software Testing where Bayesian Network Have Been Applied

A Bayesian network (BN) is a probabilistic graphical model used to represent cause

and effect relationship between several random variables. It is represented in the form

of a directed acyclic graph with a conditional probability distribution table associated

with each node. The components of the graph i.e, arcs of the graph represent the

causal relation between the random variables and nodes represent the random

variables (Pearl [213]).

After broad literature survey it has been realized that a lot of studies were presented

on software testing using Bayesian Network but majority of them were in the domain

of fault detection or software quality and at the same time very less experimentation

was conducted on TCP using BN. Broadly we have met across only two studies

Serial

Number

Paper

Reference

Area in Software

Engineering/Testing
Parameters Used

1.
Zhang et al.

[163]
Next Release Problem Customers and requirements

2. Ruiz et al.[164] Software Project Management Development time, cost and productivity

3. Wang et al.[165] Test resource allocation problem
Reliability of the system, testing cost and

total testing resources consumed

4.
Kavita et al.

[166]
Test data generation

Uniform distribution of test cases and

maximization of the code coverage

5.
Mondal et

al.[167]
Test case selection

Code Coverage, diversity among

selected test cases and test execution

time

6 Yoo et al. [168] Test case selection Fault coverage, code coverage and cost

7
Marchetto et al.

[169]
Test case reduction

Code coverage, requirement coverage

and execution time

8
Zheng at al.

[170]
Test case minimization Code coverage and execution time

9
Marchetto et

al.[172]
Test case prioritization

Code coverage, requirements and

execution cost.

10
Canfora et al.

[171]
Defect Prediction

Lines of codes and various software

components

58

([27]and[28]) where BN was used for TCP and the considered parameters were

source code changes, software fault-proneness, and test coverage.,moreover almost no

standard study was published where testing of web application was the subject.

Fenton et al. [215] proposed their work on predicting software defect in development

life cycle using BN with Agena risk tool set.Software fault prediction using various

parameters was the objective of the study proposed by (Fenton et al.[214]). Authors

experimented to locate the defects through analysis of the defects (fault) inserted

during testing time and real defects (faults) found during operation time.

Minana et al.[218] presented novel refined BN algorithm for embedded system

development process as deployed in Motorola Toulose. The validation and refinement

takes place by collected data from software development and testing team. This data

acts as an input to BN and the output of BN is compared with output computed from

Motorola Toulouse. They used various parameters in BN and the relevant information

was collected from development team.

Pai et al. [217] proposed a BN model which relate different object oriented software

matrix to software fault content and fault proneness. The anticipated model estimate

fault content per class in system and conditional probability of that class containing

fault. Various parameters considered by the authors in their model were weighted

methods per class, Depth of inheritance tree, Response for class, Number of children,

coupling between object classes, Lack of cohesion in methods and source lines of

code.

Zhou et al.[211] presented a model on prediction of change coupling in source code

using BN. Researchers inspect software changes including change significance or

source code dependency level, and extract feature from them to implement BN.

59

2.4 CONCLUSION

Regression testing is needed when a change is made in the software. It is not possible

to rerun all the test cases when some change is made. Therefore it is important to

select some test cases out of all the test cases so that the testing time can be reduced

and at the same time the fault finding capacity of the test case suite remains the same.

There are mainly two ways of implementing this testing that are prioritization and

minimization. These have been discussed in the chapter. Moreover how various soft

computing techniques have been applied in case of Single objective test case

prioritization/selection optimization has also been discussed. Apart from this literature

survey on multiobjective test case prioritization/selection optimization problem has

also been discussed in this chapter.

60

61

Chapter III

A NOVEL APPROACH FOR REGRESSION TESTING OF

WEB APPLICATIONS: PROPOSED APPROACH

3.1 INTRODUCTION

The two classical testing techniques which are accepted worldwide are white box

testing and black box testing. White-box testing (or structural testing) typically

focused on the internal structure of the program. In white box testing, structure means

the logic of the program which has been implemented in the language code. Similarly

black box testing is implemented for the functional testing of the software. Another

type of testing is the grey box testing which is the hybrid one that incorporates the

features of these two. Meanwhile web application testing is executed with the

objective of finding fault(s) at various levels (page, module or functionality) of the

web application. Various web application testing strategies have been evolved but

testing all of the web pages with every possible request (test data) i.e. thorough testing

without interrupting the services is an exigent assignment For white box testing of

software like dynamic website, independent paths needs to be explored and should be

tested. For detecting and testing the independent paths in a dynamic website where

there are numerous paths emerging from home page (index.jsp) that needs to be

tested. A dynamic website can be transformed into the directed graph where nodes

represent the pages and the edges denote link or data dependency between the pages.

This directed graph can be converted into the directed weighted graph by assigning

the weights on the edges and nodes, these weights can be assigned using parameter

related to websites structure and surfing pattern. In this proposed approach assignment

of weights on the edges of the directed graph takes place on the basis of the

organization of the website, changes in the structure of the website at page level,

experience of the coder and the behaviour of the users who have visited the website

earlier. In the resource constrained environment like limited time , hard deadlines,

hardware, software and human resources it is very much impractical to practical to

62

test each and every paths emerging from the home page. Instead of this if certain

number of highest weighted paths are tested then the tester community can be assured

that thorough testing was not able to be performed due to mentioned various

constraints but whatever best was possible in perspective of testing has been

performed by testing those paths which are having most important weight ages.

The most fault prone paths are identified using random, greedy, Ant Colony

Optimization (ACO) and Artificial Bee Colony Optimization (ABCO) algorithms.

The proposed technique is applied on multiple dynamic websites for finding the

efficiency of the technique .Two small size websites and one company’s website, and

their two versions, were considered for experimentation. Results obtained through

ACO and ABCO are promising in nature. To show the effectiveness of the proposed

approach it is compared with various classical algorithms on a range of parameters.

This approach will support testing process to be completed in time and delivery of the

updated version within given hard deadlines.

3.2 PROPOSED TECHNIQUE

As already mentioned the structure of the dynamic websites (web applications) is

complex and changeable in nature, however it resembles like directed graph where

each and every path begins from one node (home page of the website).When a path is

traversed , in the background, it means that all the test cases related to the path will be

executed. Being numerous paths from home page, traversing each and every path with

the intention of thorough testing leads to a troublesome assignment. Hence there is a

requirement for proposing a technique that can reduce the number of path to be tested

without compromising the quality standards as far as possible. In order to select these

paths, these paths should satisfy the characteristics of maximum possibility of

existence of faults due to the organization of the website or changes made in the

website and/or moreover these paths have high importance due to the broad interest of

the users. Structure of the website, user navigation behaviour, time spent on each page,

activities performed on each page and bandwidth transferred on each page changes in

the form of addition, deletion and updation(terms of number of changed lines of code

in the page) of pages made in the website, coder experience, distance of the page from

the root(home page of the website) are required for the proposed system. Here equal

63

importance is given to structure as well as behaviour for implementing hybrid testing,

which is implemented in the proposed approach. Behaviour of the user is recorded in

the form of user sessions and these recorded user sessions are considered as an

execution of a particular path/sub path. Thus user behaviour along with the structural

property of the website acts as input to the system to build weighted directed graph

thereafter four algorithms Random, Greedy, ACO and ABCO are applied to find set

of minimal number of maximal fault prone paths from these inputs to meet out certain

predefined objectives.

Request dependency graph (RDG) of dynamic website resembles directed graph in

which web pages represent nodes and linking between the pages represents edges

between the nodes. Previous published studies [49] reported that components of the

system which have high execution probability or providing more services will

inclined more towards failures and should be given priority during testing . Therefore

higher weighted links and their connected nodes must be evaluated during testing

phase.

Being not possible to test each and every path, we have to identify paths, and test

them, having highest weights with no repetition of cycle allowed. We will generate

only those test cases which will trace these paths. The proposed approach will also

explore highest weighted nodes (also called as significant nodes or important nodes).

In limited time resources if these paths and significant nodes can be tested it can be

assumed that major possible testing in constraint environment is accomplished.

The user sessions are refined, and relevant information is retrieved, by eliminating

unnecessary information to finally find out pages visited during these sessions along

with interacted name-value pairs. Sessions are used to identify the entropy(

information stored within the page) of the node (page in our case), higher the

information important is the node. As per the interest of the user on the particular

page, the weights are calculated and assigned accordingly. This retrieved information

is added with other relevant information to convert it into the weight. Moreover user

sessions also play the role of initial solution to the metaheuristcs. Two dimensional

matrix (user session vs page numbers) is used to store user sessions in the form of 1

and 0 in which 1 represents page pi visited during that session si otherwise 0.Being

weighted directed graph in which each path begins from home page ,any fault that

64

exists in the page nearer to home page may hamper all of the remaining path which

hampers more than that of faults that exists in the pages ,which are the part of the

path, far away from the home page and this effect will get start deteriorating as we

move away from the root and becomes almost nullify when the end of the path is

reached. Hence severity of the fault is considered to be inversely proportional to its

distance from the root (home page).Distance of the node from the root (home page)

,dfr, is calculated using formula 1/(height from the root). During the calculation it is

assumed that root is at height 1.Nodes at height 2 will have distance 1/2 , nodes at

height 3 will have distance 1/3 and so on.

The next preferred parameter is the coupling at page level, of the website, which can

be computed as summation of indegree and outdegree of the page. In case of dynamic

website ,which is an example of coupled system ,where the fault on an on a particular

page pi may affect the expected output of those pages which are calling pi, moreover

it may also hamper the results when faulty page pi calls other non faulty pages. Hence

it may highly prone to fault and may affect called and calling pages both.

The subsequent considered parameter is the tracking of user behaviour, being the

dynamic website is user oriented software. In this proposed work we have tried to

analyse the user behaviour on the basis of time spend on each page, bandwidth

utilized on each page, keyboard hits and mouse hits during each page as these

parameters are directly proportional to the interest of the user on the particular page.

Various third party readymade tools like Google Analytics, Stat Counter, Deep Log

analyzer and Web log expert Lite , are available which supports various types of

features but they are unable to provide, the required parameter, time spend on each

page. Hence a server side script has been created to calculate the time spend on each

page for PHP based website. However in case of JSP based website third party

Inspectlet tool and control panel of the website is used. The other issues which needs

to be addressed here is the finding the time zone of the user ,because the user can

interact with the system from across the world, the problem is resolved by

Inspectlet/control panel. Another important issue within this one is the time

permissibility for idleness of the user. This means that how much time is permissible

for not interacting the system either through mouse or keyboard. If the user is not

65

interacting with the system for fixed amount of time the session will be logged out

and the time interval will be noted. There are various readymade third party tools

available for the notifications of key and mouse movements like clicktale, crazyegg,

mouseflow, mousestat, clickheat, clickmeter ,Inspectlet and many more. With the help

of one of these tools the movement of the input devices has been noticed on the server

side. For finding the bandwidth utilization weblog expert and web log explorer tool

have been applied. Normalized interaction summation on an i
th

 page with both of

these devices is represented as iwpi.

Next subjected parameter is coder experience,ce, who have worked during the coding

of the website either in the initial construction or during append phase. This coder

experience is further categorized into two parts, i.e. total experience, te, and

experience in the similar type of project, pe. Coder having experience upto five years

have been assigned equal weight age equal to five and larger than this one will

assigned weight equals to ten. It is expected that larger the experience less will be the

coding bug. ce is calculated as (te+pe)/2. In case of number of coders then average of

ce of each programmer is considered. This corresponding data was collected from the

development team of the software company.

Final parameter selected for assigning weights to edges and nodes is the changes in

the deliverable lines of code for the construction of next version. Change is count as

addition, deletion or modifications made in the current code of the page, excluding

comments. System utility tool is used for computation of this parameter.

The value of the parameter is computed using the formula

CLOC= (Number of lines added + number of lines deleted +number of lines

modified) / (Number of lines before alterations) *100

To calculate the weight of the link, average of adjacent node values are taken. Weight

wij of the existing link between any two nodes i and j is calculated using 3.1 as

 --- (3.1)

Weight of each node is calculated as shown in equation 3.2 which assigns equal

significance to structure, di, as well as user behaviour, ei.

 --- (3.2)

66

Here defines the summation of four factors, on i
th

 page, which are dependency

(summation of in degree and out degree while considering data and link dependency)

of the node dopi, its distance from the root (home page) dfri, changes made in the page

CLOCi and coder experience cei.

di= dopi + dfri+ CLOCi+ cei. --- (3.2a)

 defines user’s behaviour which is the summation of four factors entropy of the

node, time spent on the node(page) tsi , bandwidth spend on that page bandsi and

interaction with peripherals iwpi during i
th

 page

 + iwpi --- (3.3)

where is probability of node/page selection and b is total number of pages.

The objective behind equation (3.2) is to give, also discussed previously; equal

importance should be given to structure and user navigation behavior.

In order to validate the proposed methodology two websites and their versions have

been considered as subject. One is similar to classical 10 pages online book store

website and another one is 40 pages website. Last one is the professionally created

Company Information Tracking System website (CITS) which is handing company

internal management. Next version of this subject website was also released by

addition/deletion/modification of code.

Before discussing all four algorithms in detail, it is worth to mention about stopping

criteria. Following are the four common stopping criteria, which ever encounter first

the algorithm stops.

1. Either the dead end encounters.

2. Either all the pages are visited

3. Repetition of cycle begins.

4. Either all the significant nodes (pages) are visited.

3.2.1 Artificial Bee Colony Algorithm (ABC)

ABC algorithm is inspired from the natural behavior of the bees and lies under the

category of population based swarm intelligence approach. There are three types of

bees (or agents) in the bee colony named as employer bee, onlooker bee and the scout

bee. The roles of these types of bees are as follows .The employee bee acts as a search

agent, the onlooker bee acts as a selector agent and scout bee plays the role of

67

replacing agent. The general algorithm structure of the ABC optimization approach is

given below

Initialization phase

Repeat

 Working of Employee Bees

 Working of Onlooker Bees

 Working of Scout Bees

 Memorize the best solution achieved so far.

Till(Stopping criteria not reached)

Applying ABC in Web Application Testing

In order to reduce the number of test paths, identification of most fault prone paths

and to find minimal number of fault prone test paths which substitutes thorough

testing and enhance the confidence of the tester (by testing all significant nodes),

ABC technique has been applied. Different phases of the proposed ABC are

implemented as follows

Input to Algorithm::

 Two dimensional Adjacency matrix of size n by n (for “n” pages website)

having value 1 if there exists link dependency or data dependency between

page a and page b otherwise 0 .

 Two dimensional session matrix containing all the user sessions retrieved from

the log file of the web server.

 Two dimensional weight matrix depicting the positive weights on each of the

edges if connectivity exists otherwise assigned weight will be 0

Output from the Algorithm

Minimum number of test paths that would traverse through almost all significant

nodes, almost all remaining nodes and eventually highest weighted paths.

Step 0: Preprocessing phase

The algorithm has been iterated twice the number of pages of the graph. Number of

user sessions selected from the session matrix will be twice the number of pages in

the website and these user sessions plays the role of initial food source for employee

bees during first iteration. As already discussed, the user sessions vary in sizes which

depends upon the number of pages accessed by the user during that session, so initial

68

solutions vary in their sizes. As the user session consists of the web pages visited by

the particular user during that session, so encoding technique used is discrete values in

decimal numbers.

Some small size solutions are intentionally added in the initial solution pool so that if

some of the nodes (pages) are not the part of any session they may become the part of

testing. These solutions are generated with the help of roulette wheel, for the selection

of next node, and the adjacency matrix of the website, for path verification.

Remember the best solution found so far.

Step 1: Employee Bee Phase

The ultimate purpose of the Employee bee is the local search for a better solution in

nearby areas. The solutions (initial sessions) are given to the employee bees. Now the

employee bees start searching a neighbor source, named as X(k), of the particular

session X(i) and gives rise to the new solution Y(i). Now evaluate the fitness of the

original one and the new one Y(i) where X(i) ≠X(k). Apply the greedy approach

between these two. The new solution Y(i) from X(i) is calculated using equation (3.4)

Y(i)=X(i)+∅*(X(k)-X(i)) --- (3.4)

where∅ is the random number between 0 and 1. For example suppose

X(i)=0,2,32,12,11,12, now employee bee found the neighbor of the X(i) as X(k)

where X(k)=0,2,32,12,11,12,22. Now set theory difference is applied to find out the

difference between X(k) and X(i) which gives rise to 22 in this case .Now if there

exists a path from 12 to 22 only then X(k) will be accepted otherwise find another

neighbor X(k). Compare X(i)and Y(i). The solution having higher fitness will be

chosen by the employer bee. Considering another example if X(k)=

0,2,32,12,11,12,22 ,27 and X(i)=0,2,32,12,17 , then the X(k) minus X(i) will be 22

and 27 , then we will start building the tour by

1. placing first 22 and then 27 after 17 in X(i) and verify if path exists using

adjacency matrix.

2. placing first 27 and then 22 after 17 in X(i) and verify if path exists using

adjacency matrix (if both 1 and 2 options are possible then higher weighted path

will be selected)

3. placing 22 after 17 in X(i) and verify whether path exists using adjacency matrix

69

4. placing 27 after 17 in X(i) and verify whether path exists using adjacency matrix

(if both 3
rd

 and 4
th

 options are possible then higher weighted path will be selected)

Step 2: Onlooker Bee Phase

Calculate the probability of each of the solutions received from the employee bee by

the formula

Probability pi=weight of the solution i/weight of the best solution x --- (3.4a)

Then generate a random number (between 0 and 1) and compare the probability with

this random number. If the solution (session) probability will be larger than that of the

random number the session will be selected and stored. 40 solutions will be generated

during this step. Then onlooker bee will again select the neighbor randomly from

these selected solutions and try to generate a new solution Y(i), using equation (3.4)

Step 3: Scout Bee Phase

The threshold value is selected to discard the less profitable solutions. In this work the

solutions which are having weight less than some threshold value are discarded and

the solutions having weight larger than that of threshold will be selected by scout bee.

Memorize the 5 best solutions found so far. Find the new solutions using roulette

wheel equal to number of solutions discarded. Select best solutions among these and

these will become food source for the employee bee and process move toward step

number 1. The process will be repetitive equal to number of pages in the website.

Best five results during each iteration will be stored in a file, best ones will be

selected, which will become output of complete ABC process.

3.2.1.1 Applying ABC in Regression testing of Web Application in deletion case

All the changes will be made in step 0 i.e, preprocessing phase while remaining all

Employee bee phase, onlooker bee phase and scout bee phase remains as same as that

of mentioned previously. The rationalization of what extra has been done in the

preprocessing phase is as follows. 03 nodes have been selected for the deletion

numbered as 8, 22 and 34. Delete all the corresponding entries from the adjacency

70

matrix and weight matrix with respect to these 03 nodes. There after certain

constraints have to be satisfied in the initial user sessions which are as follows.

If the deleted node comes as the last visited node , in this case that node will be

directly removed from the user session .For example if 0,12,17,19,21,22 is the initial

user session, then this user session will be refined to 0,12,17,19 and added into pool

of the food sources for employee bee.

If the deleted nodes come as succession in the end, in this case these nodes will be

directly removed from the user session .For example if 0,12,17,19,21,22,8,34,22 is the

initial user session, then this user session will be refined to 0,12,17,19 and added into

pool of the food sources for employee bee.

If the deleted nodes comes in between other nodes, then delete these nodes and put the

node prior to the first deleted one in “pre” named variable and the node next to last

deleted one in ”next” variable. Now it will be verified whether there exists any direct

path between pre and next. If yes then pre and next will become adjacent nodes,

otherwise roulette wheel will be used to find the path between pre and next as pre

acting as source station and next acting as destination station. Subsequently the user

session will be updated. For example if the initial user session retrieved from web log

file is 0,12,13,17,22,8,34,33,27,9 . Delete the node number 22,8,34 and assign 17 to

pre and 33 to next. Now verify whether 17 and 33 are adjacent nodes or not, with the

help of adjacency matrix. If yes update the user session otherwise use roulette wheel

for the finding the path.

3.2.1.2 Applying ABC in Regression testing of Web Application in addition case

Similarly in this case also all the changes will be made in step 0 i.e, pre-processing

phase while remaining all Employee bee phase, onlooker bee phase and scout bee

phase remains as same as that of mentioned previously . The explanation of what

extra has been done in the pre-processing phase is explained with the help of scenario.

03 nodes have been added in the website (graph) and numbered as 41, 42 and 43. Add

all the corresponding entries in the adjacency matrix with respect to these 03 nodes.

There after certain constraints have to be satisfied in the initial user sessions which are

as follows. As these are the new nodes and therefore they will not be the part of any

71

initial user session. It must be also ensured that these nodes should be tested and

cannot be left out. For this assign the weight equal to the highest weight of the node of

the previous graph. Apply the roulette wheel for generating some initial solutions

(food sources for employee bee) in which at least one of the newly added node must

exist. After the completion of this step all the user sessions, adjacency matrix, weight

matrix, entropy matrix are updated and ready for first step of the ABC algorithm

which is “Employee Bee phase” .

3.2.2 Applying Ant Colony Optimization (ACO)

In ACO the behavior of ants are analyzed, to understand, as how they find their food

while wandering with the help of other ants. Real life ants are capable of finding the

shortest path from their nest to food source by exploiting pheromone information.

When ants start foraging to find their food they drop pheromone on the way and

follow, in probability, previously deposited pheromone by preceding ants.

Whenever ants start foraging they choose path based on pheromone value by given

equation

 --- (3.5)

Here p denotes the probability to choose the path and τ denotes the pheromone value.

Equation (3.5) is the combination of static value which is inversely proportional to the

distance and dynamic value i.e, pheromone and its value changes during different

time periods. The density of pheromone is evaporated according to time. So

evaporation takes place as-

 --- (3.6)

As said earlier ant selects high density pheromone path and updates the value of

pheromone. So pheromone updation takes place as-

 ---(3.7)

72

Here Q denote constant and is pheromone value.

 = 1/ . dij is the distance

between the nodes i and j. is the probability of selecting a path from node i to node

j. , are parameters controls of and

.

ACO is applied to reduce the number of test paths and are enough capable to meet out

predefined objectives, discussed earlier. During this work ACO is used to find the

highly weighted paths (or tours) which start from source (index.jsp/home page). For

the implementation of ACO fixed number of ants has been selected and the movement

of these ants will be supported with some initial solutions in hand which are user

sessions retrieved from session log file and that will guide the movement of the ants

during initial phase.

In classical ACO technique is inversely proportional to because smaller the

length (or weight) of link is, the higher is the pheromone value will be. In the

proposed approach is inversely proportional to .

 --- (3.8)

So Equation-3.7 becomes:

 --- (3.7a)

While implementing the algorithm initial pheromone value for each link is considered

to be same. The values of various parameters are tuned and final values are as

follows.

 and ,

Equation (3.7a) shows that pheromone deposition on the edges traversed by the ant

during that path coverage depends upon total weight of the tour. Pheromone

deposition on the edges of the tour will be dynamic in nature i.e, higher the total

weight of the tour traversed higher the pheromone deposition will be.

After encoding of problem, ACO is applied on the website under test, using following

steps.

Input to Algorithm::

 Same input as that of ABCO algorithm.

73

Output from the Algorithm

High weighted test paths traversing through significant nodes.

Step 1:

During this step initial pheromone, equals to 0.5, is laid down on the edges of the

nodes of the website (graph) which are directly connected to each other. This step is

executed before the ant’s starts building their tour. During this phase different

sessions retrieved from log file are analyzed and 3 best tours (user sessions) are

selected on the basis of fitness. Pheromones are added on the edges which are

traversed during these tours as well as evaporated from the edges which are not

traversed. After first and subsequent iterations value of pheromone will get changed

according to equations 3.6 and 3.7(a).

Step2:

Actual tour begins during this step and number of iterations will be equal to number

of pages (nodes) in the website (graph) under test. Number of ants per iteration will be

equal to number of pages in the website. Go to step 3.

Step 3:

The third step is to find the tour of the ants (here ant tour define as unique solution to

the problem). During this step, travelling of the tour begins during the starting of the

iteration. All the ants during each iteration start building their tour from the home

page of the website. The path selection is done using roulette wheel technique in

probabilistic fashion. At every node a roulette wheel selection function is called and

this function checks the all adjacent nodes of that node and finds the probability of

selecting each path using equation(5) and returns next node to be selected for path

generation. In this fashion paths of all the ants will be generated. It must be ensured

that repetition of cycle is not allowed.

Step 4:

During this step, pheromone updation takes place as per the equations6 and 7(a). Here

updation means pheromone evaporation or its deposition on the edges of the weighted

74

graph. Pheromone evaporation is done at all of the edges while deposition is done at

edges which are the part of tour traversed by ant and have highest fitness value.

Step 5:

Check for the count of iterations. If count<predefined_value then go to step 2

otherwise go to step 6.

Step 6:

This step will construct final generated solution or ants which define best solution for

the problem. Among these n ants, top k ants are selected as final solution which can

cover almost all the nodes of the website (graph) including all significant nodes.

3.2.2.1 Applying ACO in Regression testing of Web Application in deletion case

and addition case

The rationalization of what extra has been done when some pages are selected to be

deleted is as follows. For example, in 40 pages graph 03 nodes have been selected for

the deletion numbered as 8, 22 and 34. Delete all the corresponding entries from the

adjacency matrix, weight matrix and pheromone matrix with respect to these 03 nodes

and then apply all the six steps, mentioned above, of the algorithm.

Similarly if some pages are to be added to the existing website, in order to incorporate

updated user requirements, update all the corresponding entries in the adjacency

matrix. As new pages are not tested earlier hence there are very large chances that the

fault(s) may occur in these added pages. Therefore they must be tested with highest

priority and to implement highest priority, corresponding pheromone value is

assigned with the highest available value in the pheromone matrix. On the similar

lines, corresponding weight value is assigned with the highest available value in the

weight matrix. After these updations, execute all the steps of the algorithm,

mentioned above.

3.2.3 Random Approach and Greedy Approach

While executing random approach, the test path starts from the home page (or index

page) till the stopping criterion is not achieved. To implement the randomness the

following approach is followed, suppose if from page ‘a’, there exist four paths to

75

reach different nodes, then random number is generated between one and four, next

page will be visited on the basis of generated number and in this way the path will be

traversed till the end.

In case of greedy approach next highest weighted available choice is considered till

the stopping criterion is reached.

Here one important feature about both of these algorithms that should be mentioned

here is that ABCO is implemented in such a way so that the longest paths should be

identified while ACO works to find out most weighted paths.

3.3 RESULTS AND DISCUSSION

For the experimentation purpose we have shortlisted three website as subject. First

website consists of 10 pages which is most classical example generally selected by

most of the practitioners to validate their proposed testing technique. Second one is

the website consists of 40 pages created by the postgraduate student as the part of

curriculum. Finally the third website selected for the experimentation is Company

Information Tracking System (CITS) which is professionally created by IT Company.

The overall layout of the proposed model is shown below using Figure

3.1.Dependency graphs of 10 pages website (Figure 3.2), Company Information

Tracking System (CITS) website (Figure 3.3) and 40 pages website after updations

(Figure 3.4) are shown below. In Figure 3.4 purple coloured small circles represent

modified (insertion/deletion/updation) pages. Below presented Table 3.1 represents

the results generated, on various parameters, by suggested algorithms for measuring

performance efficiency.

Another parameter of algorithm efficiency is to check whether the algorithm is able to

traverse significant nodes. Here significant nodes are those nodes which are having

the highest weights. In the weighted directed graph of the website, highest weighted

30%-40% of the total nodes are considered to be significant, depending upon the

pages of the website.

76

 Figure 3.1: Block Diagram of Test Cases Creation and Path Testing using various Approaches.

F

i

g

u

r

e

3

.

2

D

e

p

e

F

Figure 3.2: Dependency Graph of Online Book Store.

Reduced Test Paths

Directed weighted graph, on the basis of

structure of the website and user

behavior

Dynamic Website

Web Site

User Behaviour

User Behavior

ACO/ABCO/Random/Greedy

Implementation

Log Files

77

Figure 3.3: Dependency Graph of CITS website

Figure 3.4 : Dependency Graph of 40 pages Website with representation of Updations.

78

An important concern that needs to be reported here is regarding the test paths

generation and the test data generation required for these test cases. Actually the test

cases generated from these recorded user sessions are abstract in nature and that may

be converted into executables ones after assigning the values retrieved from user

sessions name-value pair during each request .The value of these parameter plays the

role of test data for test cases. Being highly realistic data, as fetched from

interactions, and less human effort required for this generation of test data are the

reasons behind success story of this process. More over tester need not bother about

structure of the code, related hardware and underlying heterogeneous technologies.

Table3.1: Results of the Experimentation Process

Characteristics

Values for

10 pages

Website

Values for 40

Pages Website

Values for

CITS

website

Total Number of User Sessions

Considered
20 60 105

Total Number of Significant Nodes 4 16 33

Total number of nodes

10 40 65

Total number of edges

37 104 74

Total % of significant nodes covered

by Greedy Approach
90% 87.5% 87.87%

Total % of significant nodes covered

by ACO
100% 93.75% 93.93%

Total % of significant nodes covered

by ABC
100% 87.5% 93.93%

Total % of significant nodes covered

by Random Approach
80% 75.00% 72.27%

Total % of nodes covered by Greedy

Approach
80% 75% 66.15%

Total % of nodes covered by ACO 100% 89.23% 84.61%

79

Total % of nodes covered by ABC 100% 90.00% 86.15%

Total % of nodes covered by Random

Approach
70% 62.50% 53.84%

Total % of edges covered by Greedy

Approach
81.08% 57.69% 60.81%

Total % of edges covered by ACO 89.18% 75% 81.08%

Total % of edges covered by ABC 91.89% 76.90% 82.43%

Total % of edges covered by Random

Approach
70.00% 62.5% 64.86%

Total % of seeded faults exposed by

Greedy Approach
80% 80% 85%

Total % of seeded faults exposed by

ACO
100% 85% 88%

Total % of seeded faults exposed by

ABC
100% 87% 89%

Total % of seeded faults exposed by

Random Approach
80% 80% 84%

Total test cases required to cover

>90% of significant nodes, in case of

Greedy Approach

Less than

90%

detected

Less than 90%

detected

Less than 90%

detected

Total test cases to cover >90%

significant nodes, in case of ACO
1 5 6

Total test cases required to cover

>90% significant nodes, in case of

ABC

1 5 6

Total test cases required to cover

>90% significant nodes , in case of

Random Approach

3 8 15

Number of test cases required to cover

>90% nodes ,in case of Greedy

Approach

Less than

90%

detected

Less than 90%

detected

Less than 90%

detected

80

Number of test cases required to cover

>90% nodes, in case of ACO
2 7 9

Number of test cases required to cover

>90% nodes ,in case of ABC
2 6-7 8-9

Number of test cases required to cover

>90% nodes, in case of Random

Approach

4 10 12

How many numbers of paths (test

cases) generated, using Greedy

Approach, lies in the top 10 weighted

(manually verified) paths.

1 1 1

How many numbers of paths (test

cases) generated, using ACO, lies in

the top 10 weighted (manually

verified) paths.

4 3 3

How many numbers of paths (test

cases) generated, using ABC, lies in

the top 10 weighted (manually

verified) paths.

3 2 2

How many numbers of paths (test

cases) generated, using Random

approach, lies in the top 10 weighted

(manually verified) paths.

3 1 1

How many numbers of paths (test

cases) generated, using Greedy

Approach, lies in the top 5 weighted

(manually verified) paths.

2 1 1

How many numbers of paths (test

cases) generated, using ACO, lies in

the top 5 weighted paths.

3 2 2

How many numbers of paths (test

cases) generated, using ABC, lies in

the top 5 weighted paths.

2 2 1

How many numbers of paths (test

cases) generated, using Random, lies

in the top 5 weighted paths.

1 1 None

In case of large size websites, if some of the pages are not navigated then

corresponding data can be manually generated.

81

During conduct of literature survey it was concluded that there are six prior published

studies (Table 3.2) doing the similar work of reduction of test cases using clustering

in different manner.

Table 3.2: Tabular Comparison of Prior published studies with Proposed Approach.

In previous published reputed work by Elbaum et al.[158] , authors combined the

partially navigated or navigated several user sessions in one way or other to justify

that the testing performed in this manner is equivalent to white box testing. However

their work is different from this one as they have not considered the reduction of

Reference Parameters Considered Publication Remarks

Data and Link

Dependency

(In Degree and

Out Degree)

Distance

from the

root, coder

experience

and

changes in

LOC

User

Sessions

Time Spend on each

page , interaction with

peripherals on the

page and Bandwidth

utilized during each

page

Elbaum et

al.[158]
 X X

IEEE

Transaction

2005

Adding/

merging of the

user sessions

Sprenkle et

al.[162]
 X X

IEEE

Conference

Clustering

approach

Liu et

al.[159]
 X X

IEEE

Conference

2011

Clustering

approach

Li et

al.[161]
 X X

Springer

Verlag

Heidelberg

2011.

Clustering

approach

Maung et

al.[160]
 X X

Springer

Verlag

Switzerland

2016

Clustering

approach

Sampath et

al.[155]
 X X

Elsevier

Journal

2012

Heuristic

approach

Proposed

Approach

“Finding paths

in the graph”

based

approach

82

testing paths and resultant of this which is reduction of test suite size using ACO and

ABCO. Moreover either this study or discussed six prior studies none of them has

given any importance to the structure of the website, only URL’s are considered.

However there may be a scenario that some URL’s are not considered by any of the

user and hence they will not be the part of any user session so they will never be

tested meanwhile in the proposed work these types of additional URL’s are also given

consideration. Prior published studies have not focussed on website navigation

behaviour of the user which is an important parameter being website user intrinsic

software, hence we have given importance to this parameter as a part of work.

3.4 CONCLUSION

Through this work we have proposed a novel and quantified approach for testing of

dynamic website where path testing along with reduction in test cases is the criteria

for success. Testing each and every path beginning from the home page is not a wise

step. The model presents the approach for testing finite number of paths which

satisfies various criteria for the purpose of testing and tester can presumes that if these

paths are tested major portion of testing is performed. In the presented work we have

taken care of many significant verticals like structure of the website, changes made in

the structure of the website, behaviour of the end user with many parameters for the

construction of weighted directed graph for most significant paths and significant

nodes. Hence usage, frequency, traffic and internal structure all are taken into

consideration while reducing the number of test paths.

Soft computing techniques smartly find out the most weighted paths which only need

to be tested. As per Literature survey and as per authors’ knowledge proposed

approach is the first one of its kind which makes use of user sessions not only for

recoding user behaviour and calculating entropy but also for the initialization of

ABCO algorithm and initial pheromone deposition and updation in ACO. In the

proposed study equal importance is given to classical approaches of white box and

black box testing because path testing directly correlates white box testing and user’s

navigation behaviour and the associated parameters of the website correlates with

black box testing.

83

The results of the proposed work will help tester’s a lot during testing of the websites

.Reduced number of test paths , automated and real data acquired from the user

sessions using very less efforts makes the life of testers easier. Moreover the data

being real as input by the users during interacting with the website without

manipulations. In the constrained environment the support for maximum possible

testing is performed using proposed approach. With the execution of these few paths,

tester will be assured of at least those paths which are mostly navigated by the users

and/or covering the complex parameters of the website thus the paths which should be

given highest priority, during testing, are tested. There will be many paths which will

not be traversed by the proposed approach, the errors may exist in these paths, but

being less weighted they can be ignored due to limited time constraint to test all the

paths. Thus the proposed work does not guarantee 100% fault coverage capability

(one of the limitation). Moreover, faults are manually seeded in the websites

considered for experimentation. One of the major limitations of the proposed work is

that the websites under test are not as large as that of websites like Alibaba, Amazon

or Flipkart. In this work link dependency and data dependency, at page level, have

been considered but functionality dependency is not considered

84

85

Chapter IV

SEARCH FOR PRIORITIZED TESTCASES DURING

WEB APPLICATION TESTING: PROPOSED

APPROACH

4.1 INTRODUCTION

TCP is a discrete combinatorial optimization problem which falls under the class of

NP-Hard problems whose time complexity is exponential in nature. Researcher’s

fraternity are attempting for generating the optimal sequence for large size test suite

however they have succeeded in finding the near optimal solution using various

nature inspired techniques such as Hill Climbing, Genetic Algorithm and Tabu

search.

As mentioned in the chapter 2 the efficiency of the prioritized test cases is measured

in terms of Average Percentage of Fault Detection (APFD) with the support of test

cases vs fault matrix where severity of the faults and test cases execution time is not

taken under consideration. Later on the improved version of APFD was proposed,

called as cost-cognizant Average Percentage of Fault Detection (APFDc), where the

two neglected parameters were also given importance.

4.2 PROPOSED WORK

In the initial phase of this section the discussion on heuristic algorithm is

presented, later on the discussion on greedy approach based algorithm is made and

finally Meta heuristic based algorithms are discussed.

We have selected ten heuristic permutations (Refer Table 4.1) of all the test cases

belonging to test suite,T1 to Ti, for evaluation. These permutations with their name

and sequence of test cases followed are given below. Last one that is eleventh

permutation is produced on purely random basis.

86

Table 4.1: Table Depicting Various Heuristics and Generated Sequence

Serial

Number

Algorithm Full Name Sequence

T1, T2…Ti

Ti,Ti-1,,…T3,T2,T1

T2,T4,T6,..,Ti ,T1,T3,…,Ti-

T1,T3,…,Ti-1 ,T2,T4,T6,..,Ti

T1,T3,…,Ti-1 ,Ti,Ti-2,Ti-4,..,T2.

Ti-1,Ti-3,…,T1 ,Ti,Ti-2,Ti-

4,..,T2

T2,T4,…,Ti ,Ti-1,Ti-3,Ti-5,..,T1

T2,T4,…,Ti ,Ti-1,Ti-3,Ti-5,..,T1

Ti,Ti-2,…,T2 ,Ti-1,Ti-3,Ti-

5,..,T1

Ti,Ti-2,…,T2 ,T1,T3,T5,..,Ti-1

1 H_IO (Increasing Order Heuristic)

2 H_DO (Decreasing Order Heuristic)

3 H_EO (Even-Odd Heuristic)

4 H_OE (Odd-Even Heuristic)

5 H_OER (Odd-Even-Reverse Heuristic)

6 H_ORER (Odd-Reverse-Even-Reverse

Heuristic)

7 H_EOR (Even-Odd-Reverse Heuristic)

8 H_ORE (Odd-Reverse-Even Heuristic)

9 H_EROR (Even-Reverse-Odd-Reverse

Heuristic)

10 H_ERO (Even-Reverse-Odd Heuristic)

11 Random Sequence

During comparison of performances of diverse algorithms, all the permutations are

shown under one umbrella as

H_max(=max(H_IO,H_DO,H_OE,H_EO,H_OER,H_ORER,H_EOR,H_ORE,H_ER

OR,H_ERO,Rand))and the best APFD value generated from all are presented.

Next considered algorithm is named as 2OIA(2-opt inspired algorithm).The best

sequence generated from 2OIA, on the basis of resultant APFD value, will be selected

when comparing the results with other methodologies.

The next methodology applied for solving the presented problem is the greedy

approach in which the problem is solved by choosing best local optimal choice at each

stage with the hope of finding a global optimal solution.

During simple greedy approach sort the test cases in the decreasing order of

number of fault detection capability and execute them in the decreasing order.

87

However the approach is not promising because it does not take care of overlapping

faults.

Table 4.2: Test cases Versus Fault matrix

Test Cases Vs

Faults

F1 F2 F3 F4 F5 F6

T1 X X X X

T2 X X X

T3 X X

T4 X X

T5 X

The outcome of this approach, for Table 4.2, will be the execution of test cases in

the order T1-T2-T3-T4-T5 or T1-T2-T4-T3-T5 which is not the best execution

sequence, however the best choice would be T1-T4 followed by any sequence of the

remaining T2, T3 and T5 test cases.

To overcome the above mentioned weakness, another greedy based approach has

been designed, called as smart_greedy (named as additional greedy in study [198])

prioritization of test cases which is applicable for both APFD and APFDC matrices.

During the calculation of APFD and APFDC, weights are assigned to each test case

which is in accordance of their bug detection capability. The test case having highest

weight should execute first followed by test cases having less weight. If some test

cases remain unexecuted meanwhile all the faults are detected in this case all the

unexecuted test cases run in any random fashion. Smart_greedy approach takes care

of overlapping faults. On the similar grounds, in case of APFDC, the weight assigned

to each test case is equal to sum of severity of all the faults which a test case can

detect divided by execution cost of a test case however the execution process is

exactly same as just discussed.

4.2.1Novel greedy algorithm for APFD

While execution of test sequence if a situation arises that there is more than one test

case and each having equal fault detecting capability then which test case to execute

out of these ones is known as the tie situation?

88

This scenario may arises in front of tester’s many times and how to manage it is the

issue. If this scenario is smartly managed by any novel approach and there is a

possibility that it may be able to generate better results than that of smart_greedy

algorithm. It has been concluded after reviewing prior studies that the either of three

cases are executed in case of tie, either lowest number test case is executed or highest

number is executed or any random choice is picked up. A novel tie-breaking

algorithm, smarter_greedy, is proposed whose pseudo code is presented below. The

proposed algorithm is validated with the help of an example which is depicted after

the pseudo code. The APFD generated from the proposed algorithm is better than that

of smart_greedy algorithm, most of the time. Moreover, in case of tie situation the

algorithm may find a better prioritized sequence and ultimately results in improved

APFD percentage.

Figure 4.1: Proposed Algorithm for improving APFD in case of tie.

The output of the smarter_greedy algorithm will be max (smart_greedy (), algor1

()).

algor1()
{
Input to the algorithm:: Test cases versus fault matrix.
Output from the algorithm: Prioritized Test cases sequence.
1. Initialize the weight for all the test cases, where weight= No. of faults exposed by the test case.

2. Sort the test cases in decreasing order of their weight.

3. Check if there is more than one test case which has the highest (and equal) weight, if yes then
goto step 3.a, otherwise select the test case at the first position (having highest weight) , append it
in the prioritized order and goto step 4.

3.a. For each test case tci participating in tie, find the total number of test cases which could
also expose all the faults exposed by tci . Execute that test case, which has least value of this
summation. If tie exists even here then execute the highest numbered test case participating in
tie. Similarly update weight of all remaining unexecuted test cases.

4. Update the test fault matrix by removing all the faults exposed by the test case selected in step 3.

5. Go to step 3 till all the faults are exposed.

6. If few test cases remain unselected and all the faults are exposed, then append the prioritized list
by adding all remaining test cases at the end in any fashion.
}

89

The greedy purpose behind step 3 is justified as, those faults which are exposed by the

least number of test cases should be exposed prior, because the later they are exposed,

the more will be the deterioration of APFD value.

For the validation of the algorithm considers Table 4.3 given below, test cases

versus fault matrix.

Table 4.3: Test cases Versus Fault matrix

The test sequence S1,generated from smarter_greedy algorithm for the above

Table is T4, T7, T1, T5, T2, T3, T6, T8, and T9 while smart_greedy will generate test

sequence S2 which is T2, T3, T6, T4, T5, T9, T1, T7, and T8 or test sequence S3

,which is T8,T9,T1,T4,T3,T2,T5,T6 and T4 depending upon the decision taken during

tie situation .It has been noticed that there is improvement in APFD from

smart_greedy to smarter_greedy and the corresponding values are 78.70% (S2), 80.55

%(S3) and 81.4814 %(S1) respectively. Hence, this example clearly indicates that

there is scope of improvement in results if tie situation is managed smartly.

 T1 T2 T3 T4 T5 T6 T7 T8 T9

F1 X X X

F2 X X X X

F3 X X X X

F4 X X X

F5 X X X

F6 X

F7 X X

F8 X X

F9 X X X

F10 X

F11 X X X X

F12 X X X

90

Figure 4.2(a):APFD Graph for smarter_greedy Figure 4.2(b): APFD Graph for smart_greedy

In the above two figures x-axis represents the number of test cases executed while the

y-axis represents the number of faults exposed. Figure 4.2(a) represents APFD for

smarter_greedy while Figure 4.2(b) represents the same for smart_greedy.

4.2.2 Novel greedy algorithm for APFDc

On the similar foundation, a novel tie-breaking proposed algorithm

(smarter_greedy) for the improvement of APFDC is presented below. The

performance is validated with the help of a running example representing the

improvement in results as compared with traditional greedy approach. It has been

noticed that most of the time the performance of the proposed one is better than

conventional greedy algorithm .However, the efficiency of the algorithm is further

enhanced by incorporating the results of both approaches i.e, smart_greedy(traditional

greedy approach) and smarter_greedy(proposed smarter_greedy), and is represented

as smarter_greedy (=max (smart_greedy(), algor2())).The pseudo code of algor2() is

as follows.

91

Figure 4.3: Proposed Algorithm for improving APFDC in case of tie.

For the validation of the algorithm consider Tables given below, test cases versus

fault matrix(M1-Table 4.6), test case execution time matrix(M2-Table 4.5) and fault

severity matrix(M3-Table 4.4).

Table 4.4: Matrix M3# Fault Severity Matrix.

 Faults F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Severity 10 14 16 18 12 10 14 16 10 14 18 18

algor2()

{

Input to the algorithm:: Test cases versus fault matrix, fault severity matrix and test case

execution time matrix.

Output from the algorithm:: Prioritized Test cases sequence.

 1.Initialize the weight for all the test cases, where weight= sum of severity of all the faults

which a test case can detect /cost of a test case.

 2.Sort the test cases in decreasing order of their weight.

 3.Check if there is more than one test case which has highest (and equal) weight, if yes then

goto step 3.a ,otherwise select the test case at the first position (having highest weight) and

append it in the prioritized order and goto step 4.

 3.a Execute test which has maximum value of factor F1 where F1 is the multiplication of

test case execution time(ET) and summation of severity of all the faults exposed by the test case.

If tie even exists goto step 3b.

 3.b For each test case tci participating in the tie, find the total number of test cases which

can also expose all the faults exposed by tci . Select that test case for execution, which has the

highest value of this summation. If tie exists even here then execute the highest numbered test

case participating in tie.

 4. Update the test fault matrix by removing all the faults covered by the test case selected in

step 3.

 5. Go to step 3 until all the faults are covered.

If few test cases remain unexecuted and all the faults are exposed, then append the prioritized list

by adding remaining all test cases at the end in any fashion.

}

92

Table 4.5: Matrix M2 # Test Case Execution Time Matrix.

 Test Cases T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Execution Time 6 4 13 9 4 5 10 8 7 10

Table 4.6: Matrix M1# Test Cases Versus Fault Matrix.

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

T1 X X X

T2 X X

T3 X X

T4 X X X

T5 X X

T6 X

T7 X X

T8 X X X X

T9 X X X

10 X X X

The test sequence generated from smarter_greedy algorithm is T8, T2, T9, T5, T7,

T1, T3, T4, T6, and T10 while smart_greedy generates T1, T2, T9, T8, T7, T3, T4,

T5, T6, and T10. Results depict that there is a scope of improvement in APFDC which

can be proved with the results generated, in case of smart_greedy it is 81.38% while

in case of smarter_greedy it is 82.28%. Figure 4.4(a) and 4.4(b) represents the graph

for the test sequence generated by smarter_ greedy and smart_greedy respectively.

Figure 4.4.(a) :APFDC Graph for smarter_greedy Figure 4.4(b): APFDC Graph for smart_greedy

93

4.2.3 IGA and GA Algorithm

In this subsection, the explanation on implementation of IGA and GA is presented

simultaneously. Two functions, vaccination and immunization, are added in GA

process so as to get the implementation of IGA. The purpose of vaccination, which is

implemented after mutation phase, is to enhance the fitness of the chromosomes. The

vaccination process implemented in this work is under mentioned. Suppose, the test

sequence achieved after mutation phase are stored in the array named T as

T[1],T[2],....,T[n]. Here T[i] stores the number of the test case executed at i
th

 position,

where i=1 to n. The novel pseudo code of the vaccination process is given below,

which is the author’s contribution.

Figure 4.5: Proposed Pseudo Code for Vaccination Process in IGA Algorithm.

The intention of doing this exercise is to manage the sequence of test cases in such

a manner that test cases which are capable of exposing fault should be executed as

earliest and the test cases that do not have the capability of exposing any fault out of

the remaining ones should be exercised at the last.

During immunization function, two sub functions, immune test followed by

probability calculation, are called. During immune test to avoid degradation it must be

ensured that offspring have better fitness than the parents. If the answer is yes, it

would be considered however if the answer is no, it is interpreted as some serious

for i2 to n

{

1. Check whether T[i] is capable of finding at least one unexposed fault, out of the

set of the remaining faults after execution of T[i-1] test cases.

 a. If yes, do nothing.

b. If no, then left shift all the test cases by one position from T[i+1] to T[n] and

place T[i] on n
th

position.

}

94

flaw has been occurred during previous phases, crossover or mutation, hence the

offspring will be left out and will not be considered further to become parent

After that, probability calculation function is implemented using roulette wheel

methodology for selecting parents for the next iteration on the basis of their respective

fitness.The IGA algorithm implemented in the proposed work is mentioned below

Figure 4.6: Proposed IGA Algorithm.

IGA_algorithm ()

{

Input to Algorithm: Test cases versus Fault Matrix

Output from the Algorithm: One Prioritized Test cases sequence determined through

algorithm having highest APFD value

1. Generate initial population randomly which would be different possible permutations of

test cases.

2. Compute the fitness of each solution using Equation (1). Fitness of the individual

solution is directly proportional to the value of APFD. Sort all the solutions (sequences) in

the decreasing order of their fitness.

3. Select the parents using linear ranking approach.

4. Perform crossover on the selected parents.

5. Execute mutation process on the solutions generated after completion of crossover.

6. Apply the vaccination process on each of the chromosome

7.Implement immunization in two steps:

 a. Ensure that the fitness of offspring is better than that of its parent. If answer is

positive then offspring would be considered for next step (7.b), otherwise discarded.

 b. Select 50% of the solutions, using probabilistic approach, for the next generation.

Remaining 50% solutions will be generated randomly.

8. Compare and store the best solution in an output file, which is already storing 03 best

solutions from all previous iterations.

9. Go to step 2 if (iterations<maximum number of generations) otherwise print the best

solution stored in file.

}

95

Here it should be noted that the same algorithm has been implemented for GA, except

for Step 6 and Step 7(step7.a and 7.b)

The values of parameters used in GA and IGA -

Chromosome encoding technique: Discrete Encoding

Size of initial population: Twice the number of test cases.

Parent Selection procedure: Linear Ranking

Crossover type: Inspired from previous published study [201].

Number of offspring generated: Twice the number of test cases

Mutation Type: Inspired from previous published study[201].

Mutation probability (per individual solution): 0.1

Maximum number of generations (Stopping Criteria): Number of test cases.

4.2.4 Discussion on Implemented ABC Algorithm

Artificial Bee Colony Algorithm (ABC) is inspired from the natural behavior of bees

and the technique falls under the class of population based swarm intelligence

approach. Employer bee, onlooker bee and scout bee are the three categories of bees

(or agents) in the bee colony .The employee bee plays the role of local search agent

for a better solution in nearby areas; the onlooker bee acts as a selector agent and the

scout bee acts as an replacing agent. ABC algorithm implemented during this work is

explained below. It consists of four phases, first phase is initialization; second, third

and the final fourth phase represents the role of employee bees, onlooker bees and

scout bees respectively.

As per the literature assessment, and discussed in chapter two, regarding various

applications of ABC in solving diverse problems inspires the authors to solve the

considered problem using this technique. Moreover, already published comprehensive

survey ([143] and [219]) presents the application of ABC in solving a range of

engineering field optimization problems and also discusses the superiority of ABC

over other well-known nature inspired algorithms. This motivates the authors to solve

the formulated problem with ABC.As already mentioned; the problem in hand

belongs to the category of discrete optimization problem, which resembles the

traditional computer science problem of travelling salesman problem (TSP). The

96

success of solving TSP with ABC is mentioned in published literature. This was

another motivation for its application.

ABC_algorithm ()

{

Input to Algorithm: Test cases versus Fault Matrix

Output from the Algorithm: One Prioritized test cases sequence determine through

algorithm having highest APFD value

1) Generate the initial solutions randomly, equals to twice that of number of test

cases, such that each test case appears only once in the solution. One restriction

that has been imposed on initial solutions implies that first position of each of the

solution is fixed all the remaining can be filled in random fashion by the

remaining n-1 test cases, out of n cases. It means the first and second solution

contains the first test case at first position; third and fourth solution contains

second test case at first position and finally 2n-1 and 2n
th

solution contain n
th

 test

case at first position.

2) Role of Employee Bees

a) The solutions, generated in step 1, are given to the employee bees.

b) The employee bees starts searching a neighbour source, named as X(k), of the

particular solution X(i) and this gives rise to the new solution Y(i) as per equation

(4.1) where ∅ is a random number between 0 and 1.

Y(i)=X(i)+∅*(X(i)-X(k)) --- (4.1)

Every initial solution plays the role of X(i) once; meanwhile X(k) is randomly

selected out of the remaining solutions such that X(k) and X(i) must be different.

For implementing equation (1), call pool function (pool function is the author’s

contribution, which is explained after this algorithm).

c) Now, evaluate the fitness of the original one and the new one Y(i). Apply the

greedy approach between these two.

3) Role of onlooker Bees

a) Find the fitness value, APFD, of all the test sequences generated in the above

phase, (Step 2).Sort all the sequences on the basis of their fitness value.

b) Calculate allowed fitness, which is equals to ((fitness of the top most sequence

and fitness of the bottom most sequence)/2)

97

c) Discard all those sequences which have fitness lower than the allowed fitness.

d) Now onlooker bee will again select the neighbour randomly from these

selected solutions and try to generate a new solution Y(i), using Equation (3),

mentioned above.

4) Role of Scout bees.

a) Sort all the sequences on the basis of their fitness value. The threshold value,

equals to 50%, is selected to discard the less profitable solutions that is

bottom 50 % is discarded and the solutions in top 50% will be selected by the

scout bee. Memorize the best solution of this iteration and found so far.

b) Generate new solutions, equal to number of solutions discarded, on purely

random basis; restriction mentioned in Step 1 is not applicable on these

random solutions.

c) These solutions will become food source for the employee bees and process

switches towards Step 2 a).

5) Termination Criteria

a) This process will be repeated maximum up to twice the number of test cases.

}

Function pool ()

1. Suppose solution Y is selected randomly, as neighbour of X, where X ≠ Y. Let X1

and Y1 be the first test cases of the sequences X and Y respectively. Create empty

pool and add X1 and Y1to it.

2. Select X2 and Y2 ,of X and Y respectively, and start comparison on the basis of fault

detection capability (fdc) among these two and all the test cases which were the part

of the pool earlier. Select one, out of these, which can expose the highest number of

faults, out of remaining unexposed faults at this point of time.

3. If two of more candidate test cases have equal and highest fdc, apply algor1() of

smarter_greedy algorithm for APFD to break the tie. This selected test case which has

having the highest fdc value will be removed from the pool and gets appended to the

new solution. Update test case versus fault matrix on the basis of this selection.

4. Suppose, all the pool members have equal fdc, then add next Xi and corresponding

Yi into the pool and repeat this step till the tie condition breaks down.

98

5. If all the test cases become part of the pool and tie condition still exists, apply

algor1() of smarter_greedy algorithm for APFD to break the tie and update the test

case versus fault matrix accordingly.

6. If all the faults are exposed, and some test cases are still left in pool or have yet not

become part of the pool, select all these remaining test cases and append these into the

solution in a random fashion.

For the testing purpose three dynamic websites which were based on jsp technology,

and their respective versions were selected as subject. These website were consists of

65 to 100 pages and roughly 5000 to 7000 lines of code. The maximum faults

introduced were up to 125. All the matrices of size more than 125 faults are randomly

generated to evaluate the performance of various algorithms in hand. However they

are capable enough to represent real-life faulty website scenario. Overall layout of this

presented work is shown below using block diagram.

Figure 4.7: Overall Layout of the Proposed Model for Single Objective TCP optimization problem.

Dynamic Website

(.jsp)

Fault Seeding

Generate test

cases

Extracting

relevant data
Test cases V/S fault

matrix

Performance

comparison of

algorithms

Test sequence

generation

Implementation of

algorithm

1. Test Case generation

2. Parameter Extraction

4. Finding best prioritization technique

3. Test cases

prioritization

99

The overall framework of the anticipated model, which is implemented in four phases,

is represented in Figure 4.7 whose narration in short is as follows. During the first

phase, an error free dynamic website(s) was selected for testing in which various

faults were seeded. In the next phase, different relevant matrices were generated on

the basis of observations of the previous phases and third party readymade software

tools. Finally various test sequences were generated using all the algorithms in hand

and the performances of these algorithms were measured on various parameters. Just

like procedure mentioned in previous chapter, different faults for which test cases can

be created through selenium testing tool were manually injected at random positions

in different pages of the website.

In order to implement fault coverage, as in our case, an accurate system (dynamic

website) is considered initially and then faults are seeded manually across the system

randomly [158] to make the system faulty. Three post graduate students have gone

through the fault free system and then introduced the faults anywhere in the system

.This faulty system now acts as system under test which needs to be tested by tester(s)

to identify the faults. Thus the tester(s) have a faulty system which needs to be

corrected by identifying the faults. The testers now have multiple options: to execute

the test cases randomly and calculate the performance of testing or follow the various

algorithms proposed in this work. This work helps in prioritizing test cases for

exposing all the faults, to make the system behaves accurately again and hence

successfully complete the testing process, rather than running test cases blindly, for

achieving maximum value of APFD.

All the experiments were executed on Windows platform, Intel (R) Core(TM) i3-4150

CPU @ 3.5 GHz. Python 3.5.2 [MSC v.1900 32(Intel)] on win32 programming

language was used for coding the implementation of algorithms.

4.3 RESULTS

 Evaluation of the performance of various algorithms, discussed above, takes place

using experiments on 03 websites under test. During this experimental study along

with APFD, the other parameters, also taken into consideration to measure the

efficacy of the algorithm are execution time and number of iterations required so as to

100

achieve best output. It is important to point out here that all the heuristics are executed

only once as their performance is independent of iterations.

In totality, the performance of 12 matrices ranging from 10*10 (test cases *faults) to

500*500 on various parameters are shown below. The results are depicted and

compared in two spectrums. In one spectrum, the performance of the proposed ABC

is compared with all considered heuristics, while in another one it is compared with

all considered metaheuristic based search algorithms.

We have also attempted to compute the optimal value so that it can be identified what

is the difference between optimal value and generated results. It has been concluded

that on mentioned hardware configuration and programming language used for 10 *10

problem size it takes around 39 seconds to print all the permutations along with

corresponding APFD values, in the similar way for 12*12 and 13*13 problem sizes it

takes around 110 minutes and 1500 minutes respectively. The interesting fact that

comes from this process is that the proposed ABC algorithm was also able to achieve

the optimal value in all these cases. Figure(s) 4.8, shown below, presents the results of

all the experiments in graphical and tabular format.

101

102

103

 12x12 20x12 55x27 60x30 62x33 100x100 125x125 150x150 250x250 300x300 400x400 500x500

Smarter

-Greedy
0.00115 -0.0027 -0.0007 -0.0004 0.00024 0.00025 0.00033 0.00017 9.3E-05 -1.8889E-06 0.000137 1.3E-05

Smart

Greedy
-0.0057 -0.0027 -0.0021 -0.0010 -0.00024 -0.0006 -0.0005 -9.6E-05 -3E-06 -7.9667E-05 6.2E-05 1.3E-05

2-OPT 0.00115 -0.0111 -0.0048 -0.0004 -0.00073 -0.0003 -0.00018 0.00017 0.000109 4.25556E-05 -0.00013 -3.9E-05

ABC 0.00115 0.00555 0.00258 0.00064 0.000244 0.00055 0.000651 0.000793 0.000301 0.000220333 0.000162 1.7E-05

GA 0.00115 0.00555 0.00258 0.00064 0.000244 -0.0002 0.000203 -0.00054 -0.00042 -0.00015744 -0.00017 -7E-06

IGA 0.00115 0.00555 0.00258 0.00064 0.000244 0.00035 -0.0005 -0.0005 -8.3E-05 -2.4111E-01 -6.9E-05 5E-06

Average 0.81134 0.90694 0.95937 0.96713 0.970186 0.97895 0.98382 0.98587 0.99129 0.992912963 0.99451 0.99808

Table 4.7: Deviation Table of APFD

Table 4.8: Deviation Table of Minimum Required Test Cases.

12x12 20x12 55x27 60x30 62x33 100x100 125x125 150x150 250x250 300x300 400x400 500x500

Smarter-

Greedy
-0.33333 0.333333 0.166667 0 0

-

0.33333
-1

-

0.33333
-0.3333 -0.5 -0.16667 -0.16667

Smart

Greedy
0.666667 0.333333 1.166667 0 0 0.66666 1 0.66666 0.66666 -0.5 -0.16667 -0.16667

2-OPT -0.33333 1.333333 1.166667 0 0 0.66666 0
-

0.33333
-0.3333 0.5 0.833333 -0.16667

ABC 0.666667 -0.66667 -0.83333 0 0
-

0.33333
-1

-

1.33333
-1.3333 -0.5 -1.16667 -0.16667

GA -0.33333 -0.66667 -0.83333 0 0
-

0.33333
0 0.66666 0.66666 1.5 1.833333 0.833333

IGA -0.33333 -0.66667 -0.83333 0 0
-

0.33333
1 0.66666 0.66666 -0.5 -1.16667 -0.16667

Average 5.33333 4.6666 6.83333 6 6 7.33333 7 7.33333 8.33333 8.5 3.1667 4.1667

104

Figure 4.9.1: Graph representing the behavior of meta heuristic algorithms while reaching towards best

solution for 100*100matrix.

Figure 4.9.2: Graph representing the behavior of meta heuristic algorithms while reaching towards best

solution for 125*125matrix.

Figure 4.9.3: Graph representing the behavior of meta heuristic algorithms while reaching towards best

solution for 150*150matrix.

105

Figure 4.9.4: Graph representing the behavior of meta heuristic algorithms while reaching towards best

solution for 250*250matrix.

Figure 4.9.5: Graph representing the behavior of meta heuristic algorithms while reaching towards best

solution for 300*300matrix.

Figure 4.9.6: Graph representing the behavior of meta heuristic algorithms while reaching towards best

solution for 400*400matrix.

106

Table 4.7 depicts the deviation table of APFD generated from all the considered

algorithms which are applied on all twelve experimental matrices. Similarly Table 4.8

depicts deviation table regarding minimum number of test case required to explore all

the faults. For analysis purpose, a log file is created with the help of coding which is

represented graphically using Figure 4.9.1 to 4.9.6 to characterize the behaviour of the

considered meta heuristic algorithms in reaching towards best result for large size

problem instances. Y-axis represents APFD achieved by prioritized test sequence and

X-axis represents the number of changes that have been made by an algorithm to

achieve the best result. Only such changes are shown where computed APFD value,

by prioritized test sequence, is better than all previous ones.

It has been observed that the results generated by greedy approach is never superior to

that of Additional Greedy(smart_greedy), 2-opt and GA hence we have neglected to

show their performance in the results section. The same was already concluded in the

prior published study(Li,Harman. & Hierons, 2007 ; Maia,Carmo, Freitas, Campos &

Souza, 2010)

As already discussed in the chapter, H_max is used to represent the highest APFD

generated from all the heuristic based approach, and random approach, as

max(H_IO,H_DO,H_OE,H_EO,H_OER,H_ORER,H_EOR,H_ORE,H_EROR,H_ER

O,Rand). It has been observed that for almost all the matrices, the results generated by

these heuristics have a significant difference with the results generated by other

suggested algorithms. Hence, the comparison graphs are shown between

smart_greedy, smarter_greedy, 2OIA (2-opt inspired algorithm), GA, IGA and ABC,

H_max is left out.

 It has also been find out that there is no direct effect of the lines of code on the

performance of the suggested algorithms; its performance depends upon the size of

test case matrix. The larger the numbers of test cases the complex will be the problem

being the larger the total search space, the algorithms have to search in bigger search

space for finding the optimal solution. Hence for small size test suites, performance of

all the algorithms replicates each other and there is no significant difference observed

between the considered algorithms in perspective of improvement in APFD and the

remaining parameters, in general.

107

One may be interested in percentage of test cases of the prioritized test suite executed

for exposing all the faults. This parameter is shown in the graph, as the minimum

number of test cases to reveal all the faults.

During this work, the results generated by smart_greedy algorithm confirms what has

been mentioned in previously published studies[198] and [221] .It is also noticed that

results generated by smart_greedy algorithm was not significantly inferior when

compared to that of smarter_greedy algorithm. Same was observed in case of 2-opt

algorithm with respect to previous study [198]. In few matrices 2-opt outperforms

smart_greedy algorithm and the produces the result equivalent to that of

smarter_greedy or ABC. However due to difference of execution time and minute

improvement in results smart_algorithm comes out to be better choice than that of 2-

opt algorithm.

When comparing the execution time of heuristic algorithms with respect to

metaheuristic algorithms, the later algorithm adds an overhead to the process. We

have attempted to analyze the impact of the population size on the results generated in

case of GA and IGA algorithms. The size varies from n to 5n where n is the number

of test cases. However, no significant difference has been observed due to variation

in size of population. Hence, in all the experiments and results, the size of the

population followed is 2*n.

Next parameter selected for performance assessment of metaheuristic algorithm is

execution time in which it was analyzed that up to 125*125 matrices GA takes less

time than that of IGA however the reverse pattern was observed for larger size

matrices. Meanwhile the time taken by ABC was larger among all these three

algorithms especially for large size matrices due to complex code to implement.

However , we still stay in support of ABC due to convergence rate of the ABC

algorithm. The ABC algorithm has to be executed 1-2 times for up to 100 size

matrices, 2-3 times for size upto 300 and 4-5 times for more than 300 size matrices, to

achieve the best value of APFD. In case of IGA the process has to be repeated twice

the number for ABC and in GA the process has to be executed twice the number of

108

times of IGA, in general. Hence, if total time is calculated, which is number of times

the algorithm is executed, to achieve the best output, multiplied by execution time;

ABC performs best in comparison to GA and IGA.

4.4 COMPARING WITH PRIOR STUDIES

We have compared the performance of our work with prior published three reputed

studies([198],[220] and [221])which correlates with our work directly or indirectly.

These studies have worked on maximum branch coverage, decision coverage and

statement coverage however we have presented on work on maximum fault coverage.

As per our knowledge and experience fault coverage is proxy play to these three

coverage’s and correlates to previous published works. As per our knowledge and

literature survey conducted this experimental work is first of its kind with the said

objective and considered algorithms.

In the first comparative study published by academicians, (Maia et al. [221]),proposed

a new Reactive GRASP metaheuristic technique to attain maximum APBC, APDC

and APSC metric. Five algorithms were selected for performance assessment which

are named as Greedy algorithm, Additional Greedy algorithm (called as smart_greedy

in this work), Genetic algorithm, simulated annealing and reactive GRASP. It was

observed that majority of time additional greedy presents promising performance over

all the remaining compared algorithms; however, performance of the proposed

reactive GRASP was better than that of the Genetic Algorithm. Only in case of

Decision coverage, Reactive GRASP (99.9368%) outperforms Additional Greedy

(99.9276%) with very minute difference percentage-wise. In this presented study,

convergence of the GRASP metaheuristic to produce best result is not discussed in

comparison to GA moreover the results shown are average cases. Authors have not

presented the performance of two parameters, number of iterations required and

execution time of the algorithm, on the suggested algorithms.

In the presented study our proposed smarter_greedy was found better than that of

additional greedy in many cases and at the same time ABC generates more promising

results than that of smarter_greedy. Hence it can be concluded that the approaches of

this work outperforms the approaches of the empirical study.

109

In the next comparative study researchers ,Gladston et al.[220], select one software

for performance evaluation of GA and IGA on maximization of branch coverage,

statement coverage and decision coverage. They show the superiority of IGA over

GA on the above parameters. The study does not consider other algorithms like

additional greedy algorithm, greedy algorithm, 2-opt algorithm and ABC algorithm

which are implemented in this work. Another interesting finding of this work was the

consistency of ABC over IGA and GA where consistency refers to less variation in

the results.IGA has to be executed twice the number of times of ABC execution to

obtain best results , similarly GA has to executed twice that of IGA for obtaining best

results. On the other side Smarter_greedy and smart_greedy have to be executed only

once which is irrespective of size of the matrix. During this work we have also

concluded that for smaller size matrices (upto 125*125) GA was taking less execution

time in comparison to AGA but for larger size matrices the trend reversal has been

observed.

In the last comparative study authors, [198], emphasizes on blocks, statements and

decision coverage. Five algorithms, two based on soft computing and three based on

greedy approach, were shortlisted for performance assessment while solving the

optimization problem in hand. Greedy algorithm was not able to present imperative

show when compared with other greedy based approaches, authors also justified that

the performance of 2-optimal and Additional greedy algorithm has no noteworthy

difference and suggested the best algorithm being additional greedy algorithm due to

“cheaper-to-implement and execute” algorithm.

While, comparing the present work with published report, the performance of

smarter_greedy was superior most of the time than that of additional greedy and

comes out to be better choice than that of additional greedy. The published study GA

as the best choice however our presented works demonstrates and justify that the

performance of IGA is superior to that of GA, in terms of stability, convergence

(number of times the algorithm is executed to get the best result), consistency

(variation in results) and achieving at least higher or equivalent APFD value, and at

the same time the performance of ABC is better than that of IGA on the above

mentioned parameter and comes out to be a better choice.

110

4.5 CONCLUSION

In this effort, we have worked out on improving TCP process, which belongs to

regression testing, so as to achieve better APFD while detecting all the faults within

stipulated time, effort and cost, thus reducing the expenditure of testing. This will

facilitates testers in identifying severe faults during early stage of testing which

enhances the system by making it more software quality assured and ultimately

increasing the confidence of coder, tester and the client.

In this work we have proposed two new greedy based algorithms for improving TCP

process during tie situation and it has been proved that majority of time the proposed

algorithm may generate better results than the classically followed additional greedy

approach. It has also been proved that ABC and smarter_greedy comes out to be

better options and at the same time the APFD generated by ABC plays the role of

upper bound for all the suggested algorithms therefore ABC proves itself as a better

choice while solving the suggested optimization problem. When comparing proposed

smarter_greedy with ABC factors like stable behaviour, some improvement in results,

not significant addition in implementation overhead, supports the candidature of ABC

over smart_greedy algorithm. It has also been proved that time taken by the ABC

algorithm for generating the best results is least among all nature encouraged

approaches applied in this study, which paves way for arriving at a better prioritized

test suite. Algorithm helps in considering higher weighted, fault detecting capability,

test cases earlier. Finally, we want to correspond that if quality is the only criteria for

measurement then ABC is the best option for solving the problem in hand. In

scenarios where time is more important than quality, max (smart_greedy,

smarter_greedy) will be the best move. In case of tradeoff we would suggest that

testers exercise ABC algorithm.

111

Chapter V

SEARCH FOR PRIORITIZED TEST CASES IN MULTI-

OBJECTIVE ENVIRONMENT DURING WEB

APPLICATION TESTING: PROPOSED WORK

5.1 INTRODUCTION

Just like previous chapter this chapter is also concerned with prioritizing the test cases

for regression testing. As previous chapter focuses on the prioritization of test cases so

as to maximize the value of APFD, being considering all the faults of same severity and

similarly considering all the test cases having their execution time as unity, but in real

this is not the scenario because the severity of all the faults cannot be same and

similarly the execution time of all the test cases may not be the same. Hence in this

chapter we have considered these two and for which APFD metric is revised by

Elbaum et al.[204] and presented a new cost cognizant Average Percentage of Fault

Detection Metric (APFDC).

Moreover in the previous chapter we have focussed on the single objective i.e,

maximizing APFD only, however in this chapter we have worked in multi objective

environment where we have considered three objectives which are maximizing APFDC,

maximizing severity detection rate per execution of test case(for which we have

devised the equation) and minimizing the execution time of test cases so as to detect all

the faults.

As previously discussed that the efficiency of the prioritized test sequence is

calculated in terms of Cost Cognizant Average percentage of fault detection (APFDC)

,when severity and test case execution time is also considered, where APFDC is the

measure of unit-of-fault-severity-detected-per-unit-of-test-cost[9]

 (5.1)

112

where ti is the execution time of i
th

 test case,fi is the fault severity of i
th

 fault , is

the execution time of TFi-th test case in the test sequence which detects the i
th

 fault

first, m is the total number of faults and n is the total number of test cases.

While keeping three suggested objectives in mind , a prioritized test case sequence is

required which takes care of all the these in parallel i.e., severity detection per unit

test cost, severity detection rate with intention of early detection of severe faults and

minimum execution time of test cases. Thus, the state of affairs results into a multi

objective optimization problem, which generates a prioritized test sequence as its

solution which satisfies three conflicting objectives (two maximizations and one

minimization). Therefore just like other software engineering problems, suggested

TCP can be formulated as a single objective optimization problem or a multi objective

optimization problem. Through this work we have made an attempt to unravel the

suggested discrete combinatorial multi objective optimization problem containing

conflicting objectives.

Like work mentioned in the previous chapter(s), in this work also, faults that belong

to different categories were manually seeded at random locations of the dynamic

website (software in hand) to make the system faulty and ready for testing. Test cases

with the relevant fault exposing capability, corresponding to these manually injected

faults, were generated using Selenium testing tool.

In this anticipated work, we have applied seven states-of-the-art algorithms (2

incremental and 5 non-incremental) for solving the above mentioned multi objective

optimization problem. Our main contributions are parameters along with their

justifications and their equations (wherever applicable), modifications proposed in the

existing two classical algorithms and performance assessment of various aforesaid

algorithms in the context of the suggested problem while solving various size

instances obtained from different versions of the dynamic websites as subject.

5.2 PROPOSED APPROACH

In this section comprehensive discussion on the entire suggested seven algorithms,

selected for performance evaluation while solving the problem, is presented. In the

113

later part of this section a similar kind of thorough discussion on suggested three

objectives is reported.

Two incremental algorithms (weighted genetic algorithm and NSGA-II algorithm)

and five (random algorithm, 2-opt algorithm, improved 2-opt algorithm, greedy

algorithm, additional greedy algorithm) non-incremental algorithms in nature are

shortlisted for performance assessment.

To implement random approach, a random sequence of all the test cases which are the

part of test suite is generated which is called as rseq whose effectiveness is computed

using Equation (5.1).

While implementing greedy approach first we compute the severity exposed by each

of the test case which is the summation of severity of all the faults exposed by that

test case and called as sumsev. Next, we compute factor fac for each test case which is

equivalent to (sumsev)/ (test case execution time of the test case). After this

computation for this factor execute all the test cases in the decreasing order of fac and

calculate the efficiency using equation (5.1).

During next algorithm, named as additional greedy algorithm, first execute the test

case having highest value of fac, after execution of this test case update the test case

vs fault metrics. Compute the fac again for all the test cases still unexecuted and select

the next test case for execution which is having highest fac from remaining

unexecuted test cases. After its execution update the metrics and process goes on. If

all the faults are exposed and some of the test cases are still unexecuted, then the

remaining ones are executed in any random fashion.

Subsequent implemented algorithm is the 2-opt [20] inspired algorithm in which the

best sequence generated from the algorithm, on the basis of APFDC, are considered

when compared with other competitive techniques.

This algorithm compares each possible permutation (valid combination) using a

swapping mechanism. This algorithm can be applied to problems that require finding

an optimal permutation .

114

Figure 5.1: 2-opt Algorithm.

The succeeding implemented algorithm is the proposed improved version of classical

2-opt algorithm. This traditional algorithm works in the direction of improving one

objective (parameter)i.e. it plays the role of single objective heuristic Search however

we have proposed the modification in this algorithm by converting it into multi

objective heuristic search where we have to sketch improvements made in terms of

all parameters, and can be easily done if "Dominance" relation is used to consider

improvement. In terms of change to better front, this approach could perform better,

same or even worse than single objective heuristic, based upon the relation between

various parameters of the multi-objective problem. On the basis of the above

principle, a novel improved multi-objective version of 2-opt algorithm has been

proposed and implemented.

The algorithm for the proposed work has been depicted in Figure 5.2.

Given below is the complete improved 2-opt algorithm using the above procedure

to maximize an objective:

Swap_2-opt(sequence, i, j)

{ /*

1. take sequence[1] to sequence[i-1] and add them in same order to new_sequence

2. take sequence[i] to sequence[j] and add them in reverse order to new_sequence

 3. take sequence[j+1] to end and add them in same order to new_sequence

 4. return new_sequence;

 */

 n = sequence.length()

 //new_sequence is obtained by concatenating given sequence, in which a sub-sequence is

reversed

 new_sequence = sequence[0...i-1] + reversed(sequence[i...j]) +sequence[j+1...n-1]

 return new_sequence;

}

115

Figure 5.2: Proposed updated 2-opt Algorithm.

Figure 5.2 : Improved 2-opt Algorithm

NSGA-II is used to solve multi objective optimization problems where care should be

taken for all the objectives simultaneously and it becomes a challenging task, in case

of multi objective optimization, to optimize all of the objectives simultaneously as

they could be conflicting each other in many instances.

A solution is said to be non dominated (or pareto optimal) if no other solution is

dominating it. For any particular problem, there exist many pareto optimal solutions,

which lies on the first front .So, in case of pareto optimal front, all solutions are

equally important and non dominated to each other. NSGA-II is basically a GA

technique which uses a special fast non dominated sorting technique to find and sort

pareto optimal front by setting rank to them. Crowding distance is used to estimate the

Initialize existing_sequence in increasing order

 n = existing_sequence.length()

 do

 {

restart:

 best_value = ObjectiveFunction(existing_sequence) ;

 for (i = 0 ; i< (n - 1) ; ++i)

 {

 for (j = i + 1 ; j < n ; ++j)

 {

 new_sequence = Swap_2-opt(existing_sequence, i, j) ;

 new_value = ObjectiveFunction(new_sequence) ;

 if (new_value>best_value)

 {

 existing_sequence = new_sequence ;

 goto restart ;

 }

 }

 }

 }(while(an improvement is made));

116

density of solutions surrounding any particular solution. NSGA-II has been widely

used by the researcher community, not only in the computer science field but also in

other branches of engineering too . In the presented experimental work, NSGA-II is

implemented exactly as proposed in the prior studies [199, 200]; however, the GA

part accomplishment is revealed underneath. Our contribution towards finding the

solution of the suggested problem can be interpreted as follows: after the last iteration,

the elements (solutions) of the first front, which are non-dominated among themselves

and moreover dominating all the elements of remaining fronts, are sorted in the

decreasing order of the value of APFDC and the first element (solution in the form of

test cases sequence) of the sorted order will be represented as the generated solution,

the same process is applied for other two parameters.

The Genetic Algorithm for implementing NSGA-II is shown in figure :

Figure 5.3: Proposed GA Algorithm for implementing NSGA-2 Algorithm.

The last referred algorithm, weighted genetic algorithm, which is incremental in

nature, is implemented just as above where, in step number 5, best 50% are selected

on the basis of fitness function instead of dominance.

1. Generate random initial solutions, randomly, whose count is equal to twice the

number of test cases. Each test case is given opportunity to execute at first place in two

sequences. Remaining positions can be filled in any random fashion. i.e., at first position, in

the first and second solutions, first test case appears while the remaining n-1 positions can

be filled by any test case randomly. Similarly, in third and fourth solutions, second test case

appears at first position and finally n
th

 test case will occupy first position in 2n-1 and 2n
th

test case.

2. Select the parents randomly.

3. Apply crossover operation on the chosen parents.

4. In this phase, execute mutation process on the solutions generated after crossover

operation.

5. Select the best 50% of the solutions on the basis of dominance nature, for the next

generation. Remaining 50% solutions will be generated randomly.

6. Go to step 2 if iteration<hundred times of the problem size.

117

The fitness function of i
th

 solution, fi, is calculated as follows

 (5.2)

where

x=execution time of truncated sequence of test cases which exposes all the faults;

y= execution time of all the test cases of the test suite;

z= value of APFDC;

a=rate of severity of faults detected of the truncated sequence of test cases which

exposes all the faults;

b=maximum possible severity rate=(

In the Equation (2), we have specified equal significance to all the suggested

parameters; however the tester’s can alter it or ignore one or more parameters by

changing the corresponding weights, on the basis of their requirements. However in

this work we have set the values of these weights as 1. Values of x/y, z and a/b are

normalized between 0 and 1, where x/y is to be minimized while z and a/b are to be

maximized.

When the execution of the algorithm gets completed i.e, all the iterations are

executed; we sort the solutions thrice so as to achieve the best value of these three

suggested parameters. Consequently we are able to get three solutions from WGA;

one with highest value of APFDC , other one with highest severity detection rate and

the last one has least test cases execution time required to expose all the faults.

Crossover operation is implemented as follows (Figure 5.4): suppose we have two

parents P1 and P2, consisting of five test cases. Solid line cut on parents show the

number of test cases required to detect all the faults. Hence, for parent P1 test cases

 and for P2 test cases are sufficient to detect all the faults.

Dashed line represents the crossover point corresponding to which we have done the

crossover. This crossover point is selected randomly in both of the parents. Left hand

side of P1(T1,T2)is merged with left hand side of P2(T5) C of T1,T2,T5. If C of test

cases T1,T2,T5 is sufficient to detect all the faults, then our crossover is complete;

otherwise, we merge property of parent P1 from the right side to make our child

118

detect all the faults. In this particular example, if child C of test cases T1,T2,T5 is not

able to detect all the faults, then we have to add to make child C as T1,T2,T5,T3 to

detect all the faults and the complete solution (child) will be T1,T2,T5,T3,T4.

 Figure5.4: Diagrammatic representation of crossover operation

5.3 DISCUSSION ON PARAMETERS

We have shortlisted three well-liked parameters (test case execution time, rate of

severity detection per execution of test case and the APFDC) for creation of multi

objective problem in which two are to be maximized (rate of fault detection per

execution of test cases and APFDC) and remaining one to be minimized (test case

execution time to detect all the faults). The intention behind assigning an equal

importance to severity as parameter is explained with the help of example. Let there

be two test cases T2 and T6 where T2 can expose four faults of two severities each

whereas T6 can detect two faults with five severities each and both of these test cases

can be selected as a next option. To maximize fault detection per execution of test

case, T1 should be executed prior to T5, while for maximizing severity detection per

execution of test case; T5 should be executed earlier followed by T1.

Equation 5.3 is designed to check the efficiency of the sequence of test cases, in terms

of severity detection.

where, US= undetected severity;

119

SDT=severity detected (out of not yet detected) by i
th

 test case;

PT= position of the test case i in test suite.

 The importance of this parameter is also explained below with the complete scenario.

Suppose test case vs fault matrix (Table 5.2(a)), test case execution time matrix

(Table 5.2(c)), severity matrix of fault (Table 5.2(b)) and actually calculated

performance matrix (Table 5.2(d)), on the basis of Table 5.2((a),(b) and (c)) are as

follows:

Table 5.2(a).Test cases Vs fault matrix.

0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

Table 5.2(b).Fault severity matrix.

5 10 3 4 7 7 1 9

 Table 5.2(c). Test case execution time matrix.

3547.14 3547.14 3542.85 3171.42 3547.14 3200.00 1542.85 1628.57

120

Table 5.2(d):Performance matrix of test sequences.

Test sequences

(TSi)

Execution

time of test

cases

Severity

observed

APFDC

observed

0, 2, 3, 6, 1, 5,7,4 18371.428571 23.503623 0.759916

0, 2, 3, 5, 1,4,7,6 16828.571428 23.526087 0.756103

0, 1, 3, 4, 5,2,6,7 16742.857142 23.042391 0.738389

3, 4, 1, 5,0,2,6,7 13285.714285 22.978261 0.789334

3, 4, 1, 6, 5,0,2,7 14828.571428 22.960870 0.790208

Severity detection rate of test sequence TS1 (SDRTS1) is given by -

Computation depicts that the test sequence TS2 is the best sequence with respect to

severity detection rate; however, its APFDC is 0.756103 while, the best sequence with

respect to APFDC is TS5 with 0.790208and its severity detection rate is 22.960870,

which is lower than that of TS2. Hence, this example clearly indicates that these two

factors are different, important and independent.

Value of b (required in weighted genetic algorithm) =maximum possible severity rate

which is achieved when first test case exposes all the faults, and in the above case it is

equivalent to46*46=2116.

Value of a (required in weighted genetic algorithm) for TS1 will be –

Hence normalized value of a/b for weighted genetic algorithm will be

1081.166/2116=0.5109.

121

For the performance evaluation of referred algorithms, especially on smaller size

problem, we have shortlisted and analysed four small problem instances, 5*5, 7*8,

8*8 and 10*10 test cases vs fault matrices sizes. Let us take the case of 8*8 metrics,

initially we have generated all the permutations of 8 test cases and placed them in one

or more fronts depending upon the dominance nature of these solutions. After the

execution of this phase, NSGA-II has been implemented and the solutions are

compared, on various characteristics, with the solutions generated from permutations.

We have highlighted various characteristics which includes number of fronts

generated through both of the techniques, how many elements were the part of first

front through both the techniques, how many of these were matching, in which front

did the solution generated from random, greedy, additional greedy and weighted GA

lie . We also tried to verify that whether the best solution of the first front obtained

from NSGA-II was the same as that of best solution obtained from first front of

permutation. Overall layout of this presented work is shown below using block

diagram.

Figure 5.5: Overall Layout of the Multi Objective TCP optimization Proposed Model.

Dynamic Website

(.jsp)

Fault Seeding

Generate test

cases

Extracting

relevant data

Test cases V/S fault

matrix, LOC, Severity

of each fault, Cost of

each test case

Performance

comparison of

algorithms

Test sequence

generation

Implementation of

algorithm

1. Test Case generation

2. Parameter Extraction

4. Finding best prioritization technique

3. Test cases

prioritization

122

5.4 EXPERIMENTAL SETUP

We have shortlisted five jsp, based dynamic websites for performance assessment,

which is composed of approximately 60 to 110 pages and 5000 to 12500 lines of

code. The three shortlisted websites were created by post graduate students as their

project. One was downloaded from internet and the last one was crafted by IT

Company and consists of 65 pages, 44 modules and approximately 10000 lines of

code .It is used for managing internal functioning (management system) of the

company.

For the performance evaluation of suggested algorithms, we have shortlisted five jsp

based dynamic websites which consists of 60 to 100 pages and lines of code ranging

from 5000 to 12500. Out of these five, three are composed by post graduate students,

one downloaded from internet and the last one is professionally build which consists

of 65 pages, 44 modules and approximately 10000 lines of code. During

experimentation we have formed 16 versions of these websites by

addition/deletion/modification of code. Up to 125 faults, belonging to various

categories, were manually injected at random locations in different pages, in these 16

versions of subject websites.

Selenium testing tool was used to generate test cases which are capable of

exposing the manually seeded faults at random locations. The type of faults included

is arithmetic calculation error, 404 error, cosmetic error, cascading style sheet error,

missing information, authentication, session, database error, hyperlink error, link error

and function error.

For the generation of these test cases Selenium IDE was used which is the

Integrated Development Environment for selenium test. To compute the execution

time execution time of each test case Emma and selenium tools were used. Severity of

the faults was computed on the basis of survey which was conducted among the

twenty five IT professionals having at least five years relevant experience and on the

basis of their response, severity of the faults was decided. Initially a faultlessly

system (dynamic website) was selected; then, faults were manually seeded randomly

across the system, to make it flawed [158].Three post graduate were shortlisted who

123

go through these fault less systems (websites under test), after that they introduce

faults anywhere in the system. Now these faulty systems now acted as the system

under test, which are to be tested. Thus the tester(s) had a faulty system which needed

to be corrected by identifying the faults. The testers had multiple options, either to

execute the test cases randomly and calculate the performance of testing, or follow the

various algorithms proposed in this work.

Largely, the framework of the proposed model, Figure 5.5, is divided into four

phases whose narration in short is as follows. In the first phase flawlessly working

website is selected as subject in whom various faults were injected. In the next phase

different applicable matrices were generated on the basis of observations and third

party readymade software tools. Thereafter various test sequences were generated

using all the algorithms in hand and the thereafter performances of these algorithms

were assessed on various suggested parameters. Given below table 5.3 presents the

lines of code, faults introduced and corresponding test cases in all the versions of all

the websites under test.

124

K
L

O
C

5
.8

2
1

7
.6

5
3

9
.1

9
6

8
.5

5
9

8
.2

0
4

9
.9

4
2

1
2
.1

8
6

1
0
.7

3
3

6
.8

7
9

8
.5

4
7

8
.2

1

9
.0

8
1

8
.7

5
2

1
2
.4

1
4

1
3
.8

2
7

1
2
.5

1

T
es

tc
a
se

s

6
7

9
4

1
0
5

9
8

7
9

8
8

9
2

9
0

8
1

9
3

9
6

1
0
2

9
8

1
0
9

1
1
7

1
1
2

F
a
u

lt
s

5
3

7
1

7
8

7
8

5
7

6
2

6
4

6
4

5
4

6
5

5
6

6
4

6
4

5
9

6
6

6
6

W
eb

si
te

s
&

 t
h

ei
r

v
er

si
o

n
s

w
1

w
2

w
3

w
4

w
5

v
1

v
2

v
3

v
4

v
1

v
2

v
3

v
4

v
1

v
2

v
1

v
2

v
3

v
1

v
2

v
3

T
ab

le
 5

.3
 :

 R
ep

re
se

n
ta

ti
o
n
 o

f
V

er
si

o
n
 d

at
a

o
f

th
e

fi
v

e
w

eb
si

te
s

u
se

d
 i

n
 t

es
t

ca
se

p
ri

o
ri

ti
za

ti
o
n

125

Figure 5.6 (a to g): Various APFDC Graphs Representing the Performances of Different Algorithms

While Solving the Problem Represented byTable5.2 (a,b and c)

If the performance of NSGA-II is compared with all the possible permutations, the

above results clearly indicate that NSGA-II is able to achieve the best possible

solutions for the 8*8 problem in hand, while weighted GA is somewhat laggard in one

parameter and remaining algorithms are behind both in race of performance.

During the experimentation process, five websites were considered for testing. In

totality, sixteen versions of each of these five websites were created by

addition/deletion/updation of some modules/LOC (lines of code) details of which are

already shown (Table 5.3).

Tables 5.7, 5.8 and 5.9 depict the values achieved, on all the parameters, by every

considered algorithm on all the versions of every tested website . In these

corresponding Tables std represents the standard deviation and website and their

corresponding versions are represented using notation wivj where i means website

number and j represents j
th

 version of i
th

 website.

126

All the algorithms were implemented using Python 3.5.2 [MSC v.1900 32(Intel)] on

Win32 and Dev C++ programming language while the underlying hardware was

Windows platform, Intel (R) Core(TM) i3-4150 CPU @ 3.5 GHz.

5.5 RESULTS AND DISCUSSION

As already shown in Table 2.1, there is only one comparable empirical study [19]

published in a reputed journal where test case prioritization problem is solved in a

multiobjective environment where the referred parameters were code coverage,

requirements and execution cost, whereas in the present study, the referred parameters

are different. Moreover, authors represented [19] efficiency in terms of APFD,

considering execution time and severity of the faults as unity. However, in this study,

the authors move one step forward by considering the efficiency of the prioritized test

case sequence in terms of APFDC where execution time and severity are not uniform.

Figure 5.7 depicts the top three fronts of permutation of the above mentioned

example(Table 5.2(a) test case vs fault matrix).The first front has five distinct

solutions shown in black color while the second front consists of ten distinct solutions

shown using red color; the third front has seventeen distinct solutions represented

using blue color. In actuality, there are many solutions that exist in the first front, but

are not shown, being treated as same. Here same means, all the same partial

permutations of test cases that can detect all the faults are considered as one solution

(in terms of APFDC) and remaining test cases in these partial permutations can be

appended in any fashion as the order does not matter after deduction of all the faults.

For example, if T1, T3, T5 and T7 are the test cases which can expose all the faults,

all the permutations such as given below are considered as the same solution and

plotted as one point on the pareto front.

P1= T1,T3,T5,T7,T2,T4,T6 P2=T1,T3,T5,T7,T2,T6,T4

P3=T1,T3,T5,T7,T6,T2,T6

P4=T1,T3,T5,T7,T4,T2,T6 P5=T1,T3,T5,T7,T4,T6,T2 P6=T1,T3,T5,T7,T6,T4,T2

127

It has been noticed that out of eleven considered algorithms, nine algorithms were

able to reach First front of NSGA-II. Four solutions of the First front are represented

using circle, square, diamond and pentagon in Figure 5.7.

Considering the same example, with the following required matrices, all the

permutations of 8 test cases, 40320 sequences, are evaluated for assessment of the

performances of various algorithms and comparison with the permutations of all the

test cases during the first phase. On the basis of that, the following observations have

been noted. Most of the sequences shown below are truncated sequences i.e,

minimum test cases required to expose all the faults are shown.

Best APFDC found = 0.790208 [3, 4, 1, 6, 5]

Minimum execution time required = 13285.714285 [1, 3, 4, 5]

Maximum Severity observed = 23.526087 [0, 2, 3, 1, 5](Refer equation 5.3)

Combined rate of Severity detection of truncated sequence/ sum of execution time of

truncated sequence. = 0.00173 [3, 4, 1, 5]

Figure5. 7: NSGA-II Front diagram of Table 5.2(a).

128

Table 5.4: Performance Matrix of Various Algorithms While Solving the Problem Shown using Table

5.2(a, b and c) .

In the next phase, performances of all the algorithms in hand on various parameters,

except NSGA-II, are compared (Refer table 5.4).

Table 5.4 presents performance matrix of various algorithms while solving the

problem shown using Table 5.2(a, b and c).The performance of NSGA-II noted

during experimentation is depicted in detail in Table 5.5.

 Table 5.5: Performance Matrix of NSGA-II while Solving the Problem Shown Using Table 5.2 (a, b

and c).

Algorithm

Name

Truncated test

sequence

Execution time of

test cases

Severity

observed

APFDC

observed

Figure

Number for

APFDC Graph

NSGA-II

(Sorted for

APFDC)

3, 4, 1, 6, 5 14828.571428 22.960870 0.790208 Figure 5.6 (e)

NSGA-II

(Sorted for

Execution

time)

3, 4, 1, 5, 13285.714285 22.978261 0.789334 Figure 5.6 (f)

NSGA-II

(Sorted for

Severity)

0, 2, 3, 5, 1 16828.571428 23.526087 0.756103 Figure 5.6(c)

Analyzing the behavior of NSGA –II in more in detail, it was observed that there were

44 solutions in the first front, out of which 05 were unique (truncated sequence to

expose all the faults) and the remaining were the same. Similarly, in the second front,

there were 10 distinct solutions (out of 79); in the third front there were 17 distinct

Algorithm

Name

Truncated test

sequence

Execution time of test

cases
Severity observed

APFDC observed

Figure Number for

APFDC Graph

Random 5, 3, 6, 1, 4 14828.571428 14.096739 0.643992 Figure 5.6(a)

Simple Greedy 0, 3, 4, 2, 7, 1, 6, 5 23457.142857 22.578028 0.690290 Figure 5.6(b)

2-opt algorithm 3, 4, 1, 5 13285.714285 22.978261 0.789334 Figure 5.6(f)

Improved 2-opt

algorithm
0, 2, 3, 5, 1 16828.571428 23.526087 0.756103 Figure 5.6(c)

Additional

Greedy
0, 2, 3, 6, 1, 5 18371.428571 23.503623 0.759916 Figure 5.6(d)

Weighted GA-

(Sorted for

APFDC)

3, 4, 1, 6, 5 14828.571428 22.960870 0.790208 Figure 5.6(e)

Weighted GA-

(Sorted for

Execution

time)

3, 4, 1, 5 13285.714285 22.978261 0.789334 Fig 5.6(f)

Weighted GA-

(Sorted for

Severity)

3, 4, 1, 5 13285.714285 22.978261 0.789334 Fig 5.6(f)

129

solutions out of total 81 solutions. Detailed description of the first front in tabular

format is shown in Table 5.6

Table 5.6: Table Presenting Solutions that Exist in the First Front along with Details and Performance.

If the performance of NSGA-II is compared with all the possible permutations, the

above results clearly indicate that NSGA-II is able to achieve the best possible

solutions for the 8*8 problem in hand, while weighted GA is somewhat laggard in one

parameter and remaining algorithms are behind both in race of performance.

During the experimentation process, five websites were considered for testing. In

totality, sixteen versions of each of these five websites were created by

addition/deletion/updation of some modules/LOC (lines of code) details of which are

already shown (Table 3).

Tables 5.7, 5.8 and 5.9 depict the values achieved, on all the parameters, by every

considered algorithm on all the versions of every tested website . In these

corresponding Tables std represents the standard deviation and website and their

corresponding versions are represented using notation wivj where i means website

number and j represents j
th

 version of i
th

 website.

Truncated test

sequence

Execution time

of test cases

Severity

observed

APFDC observed

Figure Number

for APFDC

Graph

Other algorithms repeating the same

performance

0, 2, 3, 6, 1, 5 18371.428571 23.503623 0.759916 Figure 5.6(d) Additional Greedy

(Figure3 (diamond))

0, 2, 3, 5, 1 16828.571428 23.526087 0.756103 Figure 5.6(c) NSGA II-Severity, Improved 2-opt

algorithm
(Figure 3 (square))

0, 1, 3, 4, 5 16742.857142 23.042391 0.738389 Figure 5.6(g)

3, 4, 1, 5 13285.714285 22.978261 0.789334 Figure 5.6(f) 2-opt algorithm, WGA-Cost,
,WGA- Severity, NSGA II-Cost

(Figure3 (pentagon))

3, 4, 1, 6, 5 14828.571428 22.960870 0.790208 Figure 5.6(e) NSGA II-APFDc,WGA-APFDc(Figure3 (
(circle))

130

T
ab

le
5

.7
:R

es
u

lt
 m

at
ri

x
 d

ep
ic

ti
n

g
 p

er
fo

rm
an

ce
 i

n
 t

er
m

s
o

f
A

P
F

D
C
 o

f
al

l
th

e
al

g
o

ri
th

m
s

w
h
en

 a
p

p
li

ed
 o

n
 a

ll
 v

er
si

o
n

s
o

f
al

l
th

e
w

eb
si

te
s

u
n

d
er

 t
es

t

W
1

V
1

A
P

F
D

c

9
7
.1

7
0

9
6
.3

0
0

9
7
.1

4
1

9
4
.4

2
9

9
5
.3

9
6

9
7
.0

3
9

9
7
.0

1
9

9
6
.8

5
7

9
6
.5

1
4

9
4
.9

9
5

9
5
.9

4
6

S
T

D

0
.9

1
5

0
.0

4
5

0
.8

8
6

-1
.8

2
6

-0
.8

5
9

0
.7

8
4

0
.7

6
4

0
.6

0
2

0
.2

5
9

-1
.2

6
0

-0
.3

0
9

W
1

V
2

A
P

F
D

c

9
9
.3

0
0

9
8
.2

9
2

9
9
.1

9
5

9
5
.9

0
0

9
9
.0

1
4

9
9
.1

9
1

9
9
.2

9
2

9
9
.2

0
3

9
9
.2

6
0

9
9
.2

5
5

9
9
.2

4
0

S
T

D

0
.4

6
9

-0
.5

3
9

0
.3

6
4

-2
.9

3
1

0
.1

8
3

0
.3

6
0

0
.4

6
1

0
.3

7
2

0
.4

2
8

0
.4

2
4

0
.4

0
9

W
1

V
3

A
P

F
D

c

9
9
.7

6
8

9
8
.9

0
8

9
9
.7

6
8

9
7
.8

4
0

9
9
.6

8
1

9
9
.7

6
8

9
9
.7

6
2

9
9
.4

1
9

9
9
.4

3
8

9
9
.3

9
3

9
9
.4

3
7

S
T

D

0
.3

8
8

-0
.4

7
2

0
.3

8
8

-1
.5

4
0

0
.3

0
1

0
.3

8
8

0
.3

8
2

0
.0

3
9

0
.0

5
7

0
.0

1
2

0
.0

5
7

W
1

V
4

A
P

F
D

c

1
0
0

.0
0

0

1
0
0

.0
0

0

1
0
0

.0
0

0

9
8
.7

3
0

1
0
0

.0
0

0

1
0
0

.0
0

0

1
0
0

.0
0

0

1
0
0

.0
0

0

1
0
0

.0
0

0

9
9
.9

9
9

1
0
0

.0
0

0

S
T

D

0
.1

1
6

0
.1

1
5

0
.1

1
6

-1
.1

5
4

0
.1

1
6

0
.1

1
6

0
.1

1
6

0
.1

1
6

0
.1

1
5

0
.1

1
5

0
.1

1
5

W
2

V
1

A
P

F
D

c

9
7
.5

8
8

9
7
.2

4
1

9
7
.5

8
8

9
5
.7

4
9

9
6
.5

5
9

9
7
.5

4
7

9
7
.4

6
0

9
7
.4

7
0

9
7
.3

3
7

9
7
.2

8
5

9
7
.2

8
9

S
T

D

0
.3

9
6

0
.0

4
9

0
.3

9
6

-1
.4

4
3

-0
.6

3
3

0
.3

5
5

0
.2

6
8

0
.2

7
8

0
.1

4
5

0
.0

9
3

0
.0

9
7

W
2

V
2

A
P

F
D

c

9
9
.7

2
9

9
7
.4

2
1

9
9
.1

9
4

9
5
.8

1
9

9
9
.6

9
3

9
9
.7

2
8

9
9
.6

9
0

9
9
.1

7
1

9
7
.9

8
7

9
7
.9

2
7

9
7
.9

7
9

S
T

D

1
.1

5
2

-1
.1

5
5

0
.6

1
7

-2
.7

5
7

1
.1

1
7

1
.1

5
2

1
.1

1
4

0
.5

9
5

-0
.5

8
9

-0
.6

4
9

-0
.5

9
7

W
2

V
3

A
P

F
D

c

9
9
.8

1
1

9
7
.4

2
6

9
9
.8

0
4

9
6
.1

9
1

9
9
.7

3
2

9
9
.8

1
1

9
9
.8

1
1

9
9
.5

4
5

9
9
.7

8
1

9
9
.4

4
5

9
9
.7

3
8

S
T

D

0
.6

2
1

-1
.7

6
5

0
.6

1
4

-3
.0

0
0

0
.5

4
2

0
.6

2
1

0
.6

2
1

0
.3

5
4

0
.5

9
0

0
.2

5
4

0
.5

4
8

W
2

V
4

A
P

F
D

c

9
9

.8
0

7

9
7

.3
6

4

9
9

.7
9

9

9
6

.4
1

9

9
9

.7
2

6

9
9

.8
0

7

9
9

.8
0

3

9
9

.5
3

4

9
8

.5
7

0

9
8

.5
6

4

9
8

.5
6

7

S
T

D

0
.9

0
1

-1
.5

4
1

0
.8

9
3

-2
.4

8
6

0
.8

2
1

0
.9

0
1

0
.8

9
8

0
.6

2
9

-0
.3

3
6

-0
.3

4
1

-0
.3

3
8

N
S

G
A

-A

N
S

G
A

-S

N
S

G
A

-E

R
A

N

S
G

A
D

G

S
O

H

M
O

H

W
G

A
-A

W
G

A
-S

W
G

A
-E

131

T
ab

le
5

.7
:R

es
u

lt
 m

at
ri

x
 d

ep
ic

ti
n

g
 p

er
fo

rm
an

ce
 i

n
 t

er
m

s
o

f
A

P
F

D
C
 o

f
al

l
th

e
al

g
o

ri
th

m
s

w
h
en

 a
p

p
li

ed
 o

n
 a

ll
 v

er
si

o
n

s
o

f
al

l
th

e
w

eb
si

te
s

u
n

d
er

 t
es

t

W
3

V
1

A
P

F
D

c

9
7
.6

0
4

9
7
.5

1
0

9
7
.5

5
6

9
5
.6

1
2

9
5
.6

1
4

9
7
.4

9
7

9
7
.2

5
0

9
7
.5

0
8

9
7
.5

6
7

9
7
.5

0
6

9
7
.5

5
6

S
T

D

0
.4

4
2

0
.3

4
8

0
.3

9
4

-1
.5

5
0

-1
.5

4
8

0
.3

3
5

0
.0

8
8

0
.3

4
7

0
.4

0
6

0
.3

4
4

0
.3

9
4

W
3

V
2

A
P

F
D

c

9
9
.4

9
5

9
7
.6

2
4

9
9
.4

9
3

9
6
.1

7
2

9
9
.3

0
2

9
9
.4

8
1

9
9
.4

5
7

9
7
.3

4
8

9
7
.8

4
0

9
7
.8

4
0

9
7
.8

4
0

S
T

D

1
.1

4
1

-0
.7

2
9

1
.1

3
9

-2
.1

8
2

0
.9

4
8

1
.1

2
7

1
.1

0
3

-1
.0

0
6

-0
.5

1
4

-0
.5

1
4

-0
.5

1
4

W
4

V
1

A
P

F
D

c

9
7
.9

8
5

9
7
.6

7
4

9
7
.8

7
9

9
6
.5

9
9

9
6
.5

1
0

9
7
.9

4
0

9
7
.7

3
6

9
7
.5

2
3

9
7
.7

0
1

9
7
.6

8
0

9
7
.6

8
4

S
T

D

0
.4

4
7

0
.1

3
6

0
.3

4
2

-0
.9

3
8

-1
.0

2
7

0
.4

0
3

0
.1

9
8

-0
.0

1
4

0
.1

6
4

0
.1

4
2

0
.1

4
6

W
4

V
2

A
P

F
D

c

9
9
.5

5
0

9
7
.4

7
6

9
9
.5

2
3

9
6
.3

8
2

9
9
.0

8
3

9
9
.5

4
0

9
9
.5

4
3

9
7
.3

5
4

9
8
.0

1
5

9
7
.6

5
6

9
7
.6

7
9

S
T

D

1
.2

0
4

-0
.8

7
0

1
.1

7
8

-1
.9

6
3

0
.7

3
7

1
.1

9
5

1
.1

9
8

-0
.9

9
1

-0
.3

3
1

-0
.6

9
0

-0
.6

6
6

W
4

V
3

A
P

F
D

c

9
9
.5

2
7

9
7
.3

4
7

9
9
.4

5
3

9
6
.6

9
4

9
9
.0

3
6

9
9
.5

1
7

9
9
.3

8
5

9
7
.3

1
9

9
7
.5

6
1

9
7
.5

3
7

9
7
.5

6
1

S
T

D

1
.2

6
0

-0
.9

2
0

1
.1

8
6

-1
.5

7
3

0
.7

6
9

1
.2

5
0

1
.1

1
8

-0
.9

4
8

-0
.7

0
6

-0
.7

3
0

-0
.7

0
6

W
5

V
1

A
P

F
D

c

9
8
.2

5
6

9
8
.0

5
2

9
8
.2

4
4

9
6
.9

3
1

9
7
.3

2
9

9
8
.2

1
3

9
8
.1

2
0

9
7
.8

3
4

9
8
.0

5
2

9
8
.0

5
2

9
8
.0

5
0

S
T

D

0
.3

3
5

0
.1

3
1

0
.3

2
2

-0
.9

9
0

-0
.5

9
2

0
.2

9
2

0
.1

9
9

-0
.0

8
7

0
.1

3
1

0
.1

3
1

0
.1

2
9

W
5

V
2

A
P

F
D

c

9
9
.8

3
0

9
7
.8

6
1

9
9
.7

5
6

9
6
.5

6
4

9
9
.6

9
9

9
9
.8

2
5

9
9
.8

2
6

9
8
.9

8
0

9
8
.7

6
1

9
8
.7

6
1

9
8
.7

6
1

S
T

D

0
.8

6
4

-1
.1

0
5

0
.7

9
0

-2
.4

0
2

0
.7

3
3

0
.8

5
9

0
.8

6
0

0
.0

1
4

-0
.2

0
5

-0
.2

0
5

-0
.2

0
5

W
5

V
3

A
P

F
D

c

9
9
.8

2
1

9
8
.0

8
3

9
9
.7

1
6

9
7
.8

4
7

9
9
.6

4
6

9
9
.8

1
6

9
9
.8

0
9

9
8
.9

2
5

9
8
.2

5
1

9
8
.0

6
7

9
7
.6

0
1

S
T

D

0
.9

5
0

-0
.7

8
8

0
.8

4
5

-1
.0

2
4

0
.7

7
5

0
.9

4
5

0
.9

3
8

0
.0

5
4

-0
.6

2
0

-0
.8

0
4

-1
.2

7
0

N
S

G
A

-A

N
S

G
A

-S

N
S

G
A

-E

R
A

N

S
G

A
D

G

S
O

H

M
O

H

W
G

A
-A

W
G

A
-S

W
G

A
-E

132

T
ab

le
 5

.8
.R

es
u

lt
 m

at
ri

x
 d

ep
ic

ti
n

g
 t

h
e

p
er

fo
rm

an
ce

 i
n

 t
er

m
s

o
f

se
v

er
it

y
 o

f
al

l
th

e
al

g
o

ri
th

m
s

w
h

en
 a

p
p

li
ed

 o
n

 a
ll

 v
er

si
o

n
s

o
f

th
e

w
eb

si
te

s
o

n
 t

es
t.

W
1

V
1

S
ev

er
it

y

1
2
7
.4

7
7

1
3
0
.5

9
1

1
2
8
.0

0
1

1
2
2
.9

9
8

1
0
6
.9

6
9

1
1
0
.2

1
9

1
2
4
.4

8
1

1
2
7
.4

9
6

1
2
9
.9

8
0

1
2
9
.9

8
0

1
2
9
.9

8
0

S
td

3
.0

9
8

6
.2

1
2

3
.6

2
2

-1
.3

8
1

-1
7
.4

1
0

-1
4
.1

6
0

0
.1

0
2

3
.1

1
7

5
.6

0
1

5
.6

0
1

5
.6

0
1

W
1

V
2

S
ev

er
it

y

1
5
2
.3

6
1

1
7
2
.5

4
0

1
5
9
.9

3
2

1
3
2
.9

2
7

1
5
0
.5

1
7

1
5
2
.0

4
3

1
5
2
.4

0
5

1
7
0
.4

9
2

1
7
1
.4

2
9

1
7
1
.4

7
4

1
7
1
.3

1
9

S
td

-7
.4

0
6

1
2
.7

7
3

0
.1

6
4

-2
6
.8

4
0

-9
.2

5
0

-7
.7

2
4

-7
.3

6
2

1
0
.7

2
5

1
1
.6

6
1

1
1
.7

0
7

1
1
.5

5
2

W
1

V
3

S
ev

er
it

y

1
7
0
.5

6
7

1
8
2
.7

8
4

1
7
0
.5

6
7

1
4
2
.2

3
5

1
6
6
.0

0
0

1
7
0
.5

5
2

1
7
0
.5

3
9

1
7
7
.2

8
0

1
8
1
.2

7
0

1
8
1
.4

8
5

1
8
1
.2

7
1

S
td

-1
.6

6
5

1
0
.5

5
2

-1
.6

6
5

-2
9
.9

9
7

-6
.2

3
2

-1
.6

7
9

-1
.6

9
3

5
.0

4
8

9
.0

3
8

9
.2

5
3

9
.0

4
0

W
1

V
4

S
ev

er
it

y

1
7
0
.5

6
7

1
8
2
.7

8
4

1
7
0
.5

6
7

1
2
4
.4

0
6

1
6
6
.0

0
0

1
7
0
.5

5
2

1
7
0
.4

3
3

1
7
7
.4

1
6

1
8
2
.7

8
2

1
8
2
.7

8
4

1
8
2
.7

8
2

S
td

-0
.4

4
0

1
1

.7
7
7

-0
.4

4
0

-4
6

.6
0
1

-5
.0

0
6

-0
.4

5
4

-0
.5

7
3

6
.4

1
0

1
1

.7
7
5

1
1

.7
7
7

1
1

.7
7
5

W
2

V
1

S
ev

er
it

y

1
4

6
.7

8
8

1
5

2
.4

3
5

1
4

6
.7

8
8

1
2

1
.6

3
8

1
4

3
.0

6
0

1
4

5
.5

6
2

1
4

7
.4

4
9

1
4

9
.1

4
8

1
5

1
.6

5
7

1
5

1
.9

3
8

1
5

1
.6

1
5

S
td

0
.5

9
9

6
.2

4
6

0
.5

9
9

-2
4

.5
5

1

-3
.1

2
9

-0
.6

2
7

-1
.2

5
0

2
.9

5
9

5
.4

6
8

5
.7

4
9

5
.4

2
6

W
2

V
2

S
ev

er
it

y

1
5

5
.0

0
9

1
6

5
.2

1
7

1
5

0
.0

0
4

1
3

0
.8

1
3

1
5

4
.6

9
3

1
5

5
.0

0
2

1
5

5
.1

0
6

1
5

7
.5

6
3

1
6

2
.9

6
7

1
6

3
.0

6
2

1
6

3
.0

0
0

S
td

-0
.6

6
7

9
.5

4
1

-5
.6

7
2

-2
4

.8
6

3

-0
.9

8
3

-0
.6

7
4

-0
.5

7
0

1
.8

8
7

7
.2

9
1

7
.3

8
6

7
.3

2
4

W
2

V
3

S
ev

er
it

y

1
5

2
.6

6
6

1
6

7
.4

4
0

1
6

0
.0

8
2

1
5

4
.2

4
9

1
4

6
.9

5
9

1
5

2
.6

6
6

1
5

2
.6

6
6

1
6

0
.2

6
6

1
6

0
.4

4
5

1
6

1
.0

3
1

1
6

0
.4

3
5

S
td

-4
.5

0
7

1
0

.2
6

7

2
.9

0
9

-2
.9

2
4

-1
0

.2
1

4

-4
.5

0
7

-4
.5

0
7

3
.0

9
2

3
.2

7
2

3
.8

5
7

3
.2

6
2

W
2

V
4

S
ev

er
it

y

1
5
2
.6

6
6

1
6
7
.4

4
0

1
5
2
.9

9
9

1
2
5
.2

4
0

1
4
6
.9

5
9

1
5
2
.6

6
6

1
5
3
.3

2
5

1
6
0
.2

6
6

1
6
4
.8

7
9

1
6
4
.8

8
3

1
6
4
.8

2
9

S
td

-2
.4

3
8

-2
.4

3
8

-2
.1

0
6

-2
9
.8

6
5

-8
.1

4
6

-2
.4

3
8

-1
.7

8
0

5
.1

6
1

9
.7

7
5

9
.7

7
8

9
.7

2
5

N
S

G
A

-A

N
S

G
A

-S

N
S

G
A

-E

R
A

N

S
G

A
D

G

S
O

H

M
O

H

W
G

A
-A

W
G

A
-S

W
G

A
-E

133

T
ab

le
 5

.8
 :

R
es

u
lt

 m
at

ri
x

 d
ep

ic
ti

n
g

 t
h

e
p

er
fo

rm
an

ce
 i

n
 t

er
m

s
o

f
se

v
er

it
y

 o
f

al
l

th
e

al
g
o

ri
th

m
s

w
h

en
 a

p
p

li
ed

 o
n

 a
ll

 v
er

si
o

n
s

o
f

th
e

w
eb

si
te

s
o

n
 t

es
t.

W
3

V
1

S
ev

er
it

y

1
3
8
.6

3
6

1
3
9
.6

5
2

1
3
8
.7

7
4

9
9
.6

4
8

1
2
2
.5

9
8

1
2
7
.9

4
0

1
1
1
.2

2
6

1
3
9
.5

9
5

1
3
9
.0

2
7

1
3
9
.6

0
3

1
3
8
.7

7
4

S
td

8
.1

3
8

9
.1

5
4

8
.2

7
7

-3
0
.8

4
9

-3
0
.8

4
9

-7
.8

9
9

-1
9
.2

7
1

9
.0

9
7

8
.5

2
9

9
.1

0
6

8
.2

7
7

W
3

V
2

S
ev

er
it

y

1
4
1
.1

4
4

1
5
8
.8

5
6

1
4
1
.1

6
5

1
2
5
.3

1
7

1
3
5
.8

4
5

1
4
0
.8

4
9

1
4
1
.1

8
5

1
5
3
.3

4
2

1
5
6
.1

8
4

1
5
6
.3

3
1

1
5
6
.3

3
1

S
td

-4
.9

0
6

1
2
.8

0
6

-4
.8

8
5

-2
0
.7

3
3

-1
0
.2

0
5

-5
.2

0
1

-4
.8

6
5

7
.2

9
2

1
0
.1

3
4

1
0
.2

8
1

1
0
.2

8
1

W
4

V
1

S
ev

er
it

y

1
2
5
.1

3
5

1
6
2
.3

6
4

1
5
6
.0

4
9

1
4
8
.3

2
3

1
4
0
.6

2
1

1
5
0
.1

4
3

1
3
1
.6

2
7

1
5
8
.1

2
7

1
6
2
.2

5
0

1
6
2
.3

0
7

1
6
2
.1

8
8

S
td

-2
5
.6

9
6

1
1
.5

3
4

5
.2

1
9

-2
.5

0
8

-1
0
.2

1
0

-0
.6

8
7

-1
9
.2

0
3

7
.2

9
7

1
1
.4

1
9

1
1
.4

7
6

1
1
.3

5
8

W
4

V
2

S
ev

er
it

y

1
4
8
.7

8
9

1
8
3
.0

1
9

1
5
0
.5

9
5

1
2
3
.6

7
1

1
5
0
.0

5
0

1
4
8
.6

7
6

1
4
8
.7

8
1

1
8
1
.9

2
6

1
3
7
.9

7
9

1
8
2
.8

0
8

1
8
2
.7

8
7

S
td

-9
.3

0
9

2
4

.9
2
1

-7
.5

0
3

-3
4

.4
2
7

-8
.0

4
8

-9
.4

2
2

-9
.3

1
7

2
3

.8
2
8

-2
0

.1
1
9

2
4

.7
1
0

2
4

.6
8
8

W
4

V
3

S
ev

er
it

y

1
4

8
.7

8
9

1
8

3
.0

1
9

1
4

8
.9

5
7

1
4

1
.0

3
7

1
5

0
.0

5
0

1
4

8
.6

7
6

1
4

8
.8

5
9

1
8

1
.7

1
3

1
8

2
.7

8
7

1
8

2
.8

0
8

1
8

2
.7

8
7

S
td

-1
4

.8
0

0

1
9

.4
3

0

-1
4

.6
3

2

-2
2

.5
5

2

-1
3

.5
3

9

-1
4

.9
1

3

-1
4

.7
3

0

1
8

.1
2

4

1
9

.1
9

7

1
9

.2
1

9

1
9

.1
9

7

W
5

V
1

S
ev

er
it

y

1
3

9
.3

9
3

1
4

3
.7

3
1

1
3

9
.4

6
4

9
4

.2
2

3

1
0

5
.5

4
0

1
0

8
.6

3
8

1
1

8
.6

9
0

1
3

9
.2

5
7

1
4

3
.7

3
1

1
4

3
.7

3
1

1
4

3
.6

1
4

S
td

1
0

.3
0

1

1
4

.6
3

9

1
0

.3
7

2

-3
4

.8
6

9

-2
3

.5
5

2

-2
0

.4
5

4

-1
0

.4
0

2

1
0

.1
6

5

1
4

.6
3

9

1
4

.6
3

9

1
4

.5
2

2

W
5

V
2

S
ev

er
it

y

1
3

8
.3

3
4

1
5

0
.8

7
2

1
3

8
.1

2
0

1
2

0
.0

7
7

1
3

7
.1

1
5

1
4

0
.3

5
2

1
3

8
.3

4
1

1
4

7
.8

4
7

1
4

8
.3

1
4

1
4

8
.3

1
4

1
4

8
.3

1
4

S
td

-3
.1

2
1

9
.4

1
7

-3
.3

3
4

-2
1

.3
7

7

-4
.3

4
0

-1
.1

0
2

-3
.1

1
3

6
.3

9
3

6
.8

5
9

6
.8

5
9

6
.8

5
9

W
5

V
3

S
ev

er
it

y

1
3

8
.3

3
4

1
5

0
.8

7
2

1
3

7
.9

9
5

1
2

0
.5

9
5

1
3

7
.1

1
3

1
4

0
.3

5
2

1
3

8
.3

3
5

1
4

7
.8

4
7

1
4

8
.3

1
4

1
4

8
.3

1
4

1
4

8
.3

1
4

S
td

-3
.1

5
6

9
.3

8
2

-3
.4

9
5

-2
0
.8

9
5

-4
.3

7
7

-1
.1

3
7

-3
.1

5
4

6
.3

5
8

6
.8

2
4

6
.8

2
4

6
.8

2
4

N
S

G
A

-A

N
S

G
A

-S

N
S

G
A

-E

R
A

N

S
G

A
D

G

S
O

H

M
O

H

W
G

A
-A

W
G

A
-S

W
G

A
-E

134

T
ab

le
 5

.9
:

R
es

u
lt

 m
at

ri
x

 d
ep

ic
ti

n
g

 t
h
e

p
er

fo
rm

an
ce

 i
n
 t

er
m

s
o
f

co
st

 o
f

al
l

th
e

al
g
o
ri

th
m

s
w

h
en

 a
p

p
li

ed
 o

n
 a

ll
 v

er
si

o
n

s
o

f
al

l
co

n
si

d
er

ed
 w

eb
si

te
s.

W

1
V

1
 C
o

st

1
3
1

.3
4

3

1
6
1

.5
5

7

1
2
1

.3
7

1

5
6
3

.4
2

9

4
8
9

.1
7

1

1
4
7

.3
4

3

1
5
5

.0
7

1

1
5
9

.4
2

9

1
3
3

.0
1

4

1
3
3

.0
1

4

1
3
3

.0
1

4

S
td

-8
0

.2
7

1

-5
0

.0
5

7

-9
0

.2
4

3

3
5
1

.8
1

4

2
7
7

.5
5

7

-6
4

.2
7

1

-5
6

.5
4

3

-5
2

.1
8

6

-7
8

.6
0

0

-7
8

.6
0

0

-7
8

.6
0

0

W
1

V
2
 C
o

st

4
8
.0

8
6

1
2
0

.5
7

1

4
5
.1

8
6

3
1
0

.2
1

4

8
9
.9

7
1

4
9
.2

8
6

5
0
.7

5
7

4
5
.3

1
4

4
8
.1

1
4

4
8
.1

1
4

4
7
.1

5
7

S
td

-3
3

.9
8

4

3
8
.5

0
1

-3
6

.8
8

4

2
2
8

.1
4

4

7
.9

0
1

-3
2

.7
8

4

-3
1

.3
1

3

-3
6

.7
5

6

-3
3

.9
5

6

-3
3

.9
5

6

-3
4

.9
1

3

W
1

V
3
 C
o

st

1
8
.3

0
0

7
9
.5

8
6

1
8
.3

0
0

2
9
6

.1
7

1

6
0
.1

0
0

2
4
.3

8
6

2
0
.1

5
7

3
0
.1

7
1

2
4
.0

4
3

2
4
.0

4
3

2
4
.0

4
3

S
td

-3
8

.0
0

0

2
3
.2

8
6

2
3
9

.8
7

1

3
.8

0
0

3
.8

0
0

-3
1

.9
1

4

-3
6

.1
4

3

-2
6

.1
2

9

-3
2

.2
5

7

-3
2

.2
5

7

-3
2

.2
5

7

W
1

V
4
 C
o

st

1
8
.3

0
0

7
9
.5

8
6

1
8
.3

0
0

7
0
8

.5
3

0

6
0
.1

0
0

2
4
.3

8
6

2
3
.8

1
4

2
7
.5

0
0

7
5
.3

4
3

7
9
.5

8
6

7
5
.3

4
3

S
td

-8
9

.9
5

3

-2
8

.6
6

8

-8
9

.9
5

3

6
0
0

.2
7

7

-4
8

.1
5

3

-8
3

.8
6

8

-8
4

.4
3

9

-8
0

.7
5

3

-3
2

.9
1

1

-2
8

.6
6

8

-3
2

.9
1

1

W
2

V
1
 C
o

st

1
3
0

.0
2

9

1
5
5

.2
8

6

1
3
0

.0
2

9

3
0
5

.3
2

9

7
8
8

.1
8

6

1
6
1

.8
4

3

1
4
7

.8
2

9

1
5
1

.1
5

7

1
4
7

.5
7

1

1
4
9

.9
0

0

1
4
5

.6
0

0

S
td

-8
9

.3
1

3

-6
4

.0
5

6

-8
9

.3
1

3

8
5
.9

8
7

-8
5
6

.8
4
4

-5
7

.4
9

9

-7
1

.5
1

3

-6
8

.1
8

4

-7
1

.7
7

0

-6
9

.4
4

2

-7
3

.7
4

2

W
2

V
2
 C
o

st

4
6
.9

4
3

1
4
2

.4
0

0

4
6
.9

4
3

3
5
2

.7
4

3

5
8
.5

7
1

4
9
.2

5
7

5
1
.7

7
1

9
3
.6

8
6

5
2
.9

6
6

5
2
.9

6
6

5
2
.9

5
2

S
td

-4
4

.0
7

5

5
1
.3

8
2

-4
4

.0
7

5

2
6
1

.7
2

5

-3
2

.4
4

7

-4
1

.7
6

1

-3
9

.2
4

7

2
.6

6
8

-3
8

.0
5

2

-3
8

.0
5

2

-3
8

.0
6

6

W
2

V
3
 C
o

st

3
1
.6

3
2

1
2
6

.1
3

3

3
1
.2

7
9

4
0
1

.6
4

7

6
3
.2

4
1

3
1
.6

3
2

3
1
.6

3
2

8
1
.0

1
3

3
3
.3

2
7

3
2
.5

3
8

3
2
.5

3
8

S
td

-4
9

.8
7

8

4
4
.6

2
2

-5
0

.2
3

2

3
2
0

.1
3

7

-1
8

.2
6

9

-4
9

.8
7

8

-4
9

.8
7

8

-0
.4

9
7

-4
8

.1
8

3

-4
8

.9
7

2

-4
8

.9
7

2

W
2

V
4

C
o

st

3
1

.6
3

2

1
2

6
.1

3
3

3
1

.2
7

9

3
8

5
.2

8
6

6
3

.2
4

1

3
1

.6
3

2

3
2

.0
0

7

8
1

.0
1

3

5
2

.9
6

6

5
2

.9
6

6

5
2

.9
5

2

S
td

-1
8
.3

6
8

4
0
.5

7
8

-5
4
.2

7
6

2
9
9
.7

3
1

-2
2
.3

1
4

-5
3
.9

2
3

-5
3
.5

4
8

-4
.5

4
2

-3
2
.5

8
9

-3
2
.5

8
9

-3
2
.6

0
3

N
S

G
A

-A

N
S

G
A

-S

N
S

G
A

-E

R
A

N

S
G

A
D

G

S
O

H

M
O

H

W
G

A
-A

W
G

A
-S

W
G

A
-E

135

T
ab

le
 5

.9
:

R
es

u
lt

 m
at

ri
x

 d
ep

ic
ti

n
g

 t
h

e
p

er
fo

rm
an

ce
 i

n
 t

er
m

s
o

f
co

st
 o

f
al

l
th

e
al

g
o

ri
th

m
s

w
h

en
 a

p
p

li
ed

 o
n
 a

ll
 v

er
si

o
n

s
o

f
al

l
co

n
si

d
er

ed
 w

eb
si

te
s.

W
3

V
1
 C
o

st

1
5
0
.9

7
1

1
4
9
.4

2
9

1
3
2
.9

8
6

4
0
4
.0

4
3

5
7
1
.7

8
6

1
4
3
.6

8
6

1
4
5
.8

8
6

1
5
1
.4

2
9

1
3
9
.9

0
0

1
4
0
.4

0
0

1
3
2
.9

8
6

S
td

-5
4
.8

0
1

-5
6
.3

4
4

-7
2
.7

8
7

1
9
8
.2

7
0

3
6
6
.0

1
3

-6
2
.0

8
7

-5
9
.8

8
7

-5
4
.3

4
4

-6
5
.8

7
3

-6
5
.3

7
3

-7
2
.7

8
7

W
3

V
2
 C
o

st

5
5
.8

5
7

1
3
6
.5

4
3

5
4
.1

7
1

6
8
0
.6

0
0

1
4
2
.2

2
9

5
8
.7

1
4

6
7
.6

8
6

1
2
1
.7

5
7

8
3
.8

0
0

8
3
.8

0
0

8
3
.8

0
0

S
td

-8
6
.7

7
5

-6
.0

9
0

-8
8
.4

6
1

5
3
7
.9

6
8

-0
.4

0
4

-8
3
.9

1
8

-7
4
.9

4
7

-2
0
.8

7
5

-5
8
.8

3
3

-5
8
.8

3
3

-5
8
.8

3
3

W
4

V
1
 C
o

st

1
4
0
.4

4
3

1
5
0
.0

7
1

1
3
1
.1

1
4

2
9
5
.2

8
6

7
1
0
.9

5
7

1
3
7
.2

0
0

1
5
8
.1

2
9

1
6
2
.6

7
1

1
4
2
.0

7
1

1
4
6
.6

2
9

1
3
9
.3

4
3

S
td

-6
9
.9

1
3

-6
0
.2

8
4

-7
9
.2

4
2

8
4
.9

3
0

5
0
0
.6

0
1

-7
3
.1

5
6

-5
2
.2

2
7

-4
7
.6

8
4

-6
8
.2

8
4

-6
3
.7

2
7

-7
1
.0

1
3

W
4

V
2
 C
o

st

7
9
.2

1
4

1
5
8
.9

8
6

6
9
.2

1
4

2
6
3
.1

1
4

4
7
4
.7

1
4

8
6
.7

1
4

8
6
.2

2
9

1
9
7
.7

1
4

2
2
4
.6

1
4

1
2
0
.2

1
4

1
2
0
.2

1
4

S
td

-9
1

.7
8
1

-1
2

.0
0
9

-1
0

1
.7

8
1

9
2

.1
1
9

3
0

3
.7

2
0

-8
4

.2
8
1

-8
4

.7
6
6

2
6

.7
1
9

5
3

.6
1
9

-5
0

.7
8
1

-5
0

.7
8
1

W
4

V
3
 C
o

st

7
9

.2
1

4

1
5

8
.9

8
6

7
7

.3
5

7

2
8

2
.7

2
9

4
7

4
.7

1
4

8
6

.7
1

4

1
0

2
.5

1
4

1
8

3
.3

8
6

1
2

0
.2

1
4

1
2

0
.2

1
4

1
2

0
.2

1
4

S
td

-8
4

.9
9

1

-5
.2

1
9

-8
6

.8
4

8

1
1

8
.5

2
3

3
1

0
.5

0
9

-7
7

.4
9

1

-6
1

.6
9

1

1
9

.1
8

1

-4
3

.9
9

1

-4
3

.9
9

1

-4
3

.9
9

1

W
5

V
1
 C
o

st

1
4

7
.6

2
9

1
5

2
.7

1
4

1
4

5
.2

8
6

4
0

9
.7

4
3

6
5

6
.7

8
6

1
6

6
.8

7
1

1
5

3
.7

0
0

1
9

2
.8

5
7

1
5

2
.7

1
4

1
5

2
.7

1
4

1
4

7
.3

1
4

S
td

-7
7

.6
7

4

-7
2

.5
8

8

-8
0

.0
1

7

1
8

4
.4

4
0

4
3

1
.4

8
3

-5
8

.4
3

1

-7
1

.6
0

3

-3
2

.4
4

6

-7
2

.5
8

8

-7
2

.5
8

8

-7
7

.9
8

8

W
5

V
2
 C
o

st

5
0

.9
4

3

1
6

4
.5

5
7

4
6

.2
8

6

4
9

9
.0

4
3

1
7

4
.6

2
9

5
0

.9
4

3

4
9

.3
7

1

6
1

.5
0

0

6
1

.5
0

0

6
1

.5
0

0

6
1

.5
0

0

S
td

-6
5

.5
8

2

4
8

.0
3

2

-7
0

.2
3

9

3
8

2
.5

1
8

5
8

.1
0

4

-6
5

.5
8

2

-6
7

.1
5

3

-5
5

.0
2

5

-5
5

.0
2

5

-5
5

.0
2

5

-5
5

.0
2

5

W
5

V
3
 C
o

st

5
0
.9

4
3

1
5

4
.5

0
0

4
6

.2
8

6

7
5

5
.1

7
1

1
9

7
.4

8
6

5
0
.9

4
3

5
3
.9

4
3

6
1
.5

0
0

6
1
.5

0
0

6
1
.5

0
0

6
1
.5

0
0

S
td

-9
0

.4
4

6

1
3
.1

1
2

-9
5

.1
0

3

6
1
3
.7

8
3

5
6
.0

9
7

-9
0

.4
4

6

-8
7

.4
4

6

-7
9

.8
8

8

-7
9

.8
8

8

-7
9

.8
8

8

-7
9

.8
8

8

N
S

G
A

-A

N
S

G
A

-S

N
S

G
A

-E

R
A

N

S
G

A
D

G

S
O

H

M
O

H

W
G

A
-A

W
G

A
-S

W
G

A
-E

136

It is possible that the testers may have interest in prioritizing the test cases which

takes least execution time to expose all the faults, due to hard deadline of product

delivery during maintenance phase, rather than considering best APFDC always in

mind. It may also be possible that they might consider the sequence which executes

those test cases which have high severity detection capability.

As the part of analysis of the results achieved, stored in the table, we first analyse the

behaviour of NSGA-II. As shown previous (example presented using Table 5.2(a,b

and c)) NSGA-II is comes out as the option which has the potential to find best

solution. We know that the solutions present in the optimal front (first front) are the

best solutions among remaining all solutions lying on other fronts and at the same

time these solutions at the first solutions are non dominated to each other and it is also

possible that one solution is dominating all others in any one parameter, at least. If the

solutions available in first front are sorted with respect to any given parameter then

that solution becomes the best option being the highest contributor and at the same

time lying in the first front. Same logic has been applied in the presented work in

which for APFDC and Severity the solutions are sorted in decreasing order of these

parameter for finding the best solution and at the same time solutions are sorted in

increasing order for execution time (cost).

Table 5.7 can be consulted for detailed performance review, on value based

comparison, where assessment can be made among various algorithms on the basis of

APFDC as parameter. In this Table the larger the deviation, better the solution, and the

same also implies vice versa.

During calculation of severity as parameter, it has concluded that NSGA-S

outperforms all other algorithms and at the same time WGA-S stood at second

position. Interestingly in some instances the results computed by WGA-S and NSGA-

S were same. WGA-E and WGA-A secures third or fourth position. In few cases it

has been noticed that all WGA’s generates the same result. Table number 5.8 can be

readily referred for detailed values and corresponding deviations, if any.

Considering execution time as parameter, the results generated by NSGA-E were the

most promising followed by WGA and additional greedy secures third position. It has

also been observed that in few instance WGA was able to yield the same results as

that NSGA-E

137

Table 5.9(a) has been derived to highlight the overall average performance of all the

algorithms during all problem instances so that one can evaluate how well the

algorithms performed. While considering severity as parameter NSGA-G

outperforms WGA-S by 0.877% average wise; similarly it outperforms Random

approach by 21.831% average wise. In the similar way, while considering test case

execution cost, NSGA-E outperforms average wise 5.770% with respect to NSGA-A

and performs extremely better when comparison is made with random approach.

Finally while considering APFDC as parameter of evaluation, the average wise

competition among algorithms was very close however the significant difference was

found between NSGA-A and random approach where earlier one outperforms later

one by 2.609% average wise.

Other noteworthy conclusion derived from the Table is: average wise performance of

our anticipated improved 2-opt heuristic algorithm is almost the same as that of

traditional 2-opt algorithm during APFDC while our algorithm presents 9% improved

results than traditional ones while computing severity.

 Figures 5.5(a and b) depicts the graphical appearance of log files for all the

websites and their corresponding versions. These log files represents the behaviour of

NSGA-II while solving the problem and can be used to analyze the behaviour of

suggested parameter, iteration wise. The figures represent the behaviour of suggested

parameters to converge towards either maximization or minimization, depending upon

the objective, along with number of fronts and size of first front.

138

A
P

F
D

c

9
9

.0
7

7
4

4
8
8

1

9
7

.7
8

6
1

4

9
9

.0
0

6
8

9
6

.4
9

2
3

5

9
8

.5
0

1
2

9

9
9

.0
4

4
9

1

9
8

.9
9

7
6

9
8

.3
7

4
5

1

9
8

.2
8

9
5

9

9
8

.1
2

2
5

2

9
8

.1
8

3
0

1

S
ev

er
it

y

1
4

6
.6

6
5

8

1
6

2
.1

0
0

8

1
4

9
.3

7
8

5

1
2

6
.7

1
2

3

1
4

1
.2

5
5

4

1
4

4
.6

8
0

6

1
4

3
.9

6
5

6

1
5

8
.0

9
8

7

1
5

7
.7

4
9

5

1
6

0
.6

7
8

1

1
6

0
.5

2
1

2

E
x
ec

u
ti

o
n

 C
o
st

7
5
.7

1
7
4
3
7
5

1
3
8
.5

6
4
9

7
1
.5

8
6
6
9

4
3
2
.0

6
7
4

3
1
7
.2

4
2
6

8
1
.3

4
6
8
8

8
3
.1

5
6

1
1
2
.6

3
1
1

9
7
.1

0
3
5
6

9
1
.2

5
6
1
3

8
9
.4

0
4
3
8

N
S

G
A

-A

N
S

G
A

-S

N
S

G
A

-E

R
A

N

S
G

A
D

G

S
O

H

M
O

H

W
G

A
-A

W
G

A
-S

 W
G

A
-E

T
ab

le
 5

.9
(a

):
 R

es
u
lt

 m
at

ri
x
 d

ep
ic

ti
n
g
 t

h
e

av
er

ag
e

p
er

fo
rm

an
ce

s
o
f

al
l

th
e

al
g
o
ri

th
m

s
o
v
er

 a
ll

 p
ar

am
et

er
s

w
h
en

ap
p
li

ed
 o

n
 a

ll
 v

er
si

o
n
s

o
f

al
l

co
n
si

d
er

ed
 w

eb
si

te
s.

139

 Figure 5.8(a): Graphical Representation of Log Files of Website1 and its Four Versions.

 Figure 5.8(b) :Graphical Representation of Log Files of Website 2 and its Four versions.

140

 Figure5.8(c): Graphical Representation of Log Files of Website 3 and its Two Versions.

 Figure 5.8(d): Graphical Representation of Log Files of Website4 and its three versions.

Figures 5.8(a to d) represents the manner in which NSGA –II computes APFDc,

severity, execution cost, number of front and size of first front (number of solutions in

first front) during each iteration. The algorithm was executed maximum up to twenty

times for recording the best value. X-axis of the graph represents percentage wise

iterations and Y axis represents outputs which are shown in normalized form (value

between 0 to 1) because there is a large variation in the achieved results of the

objectives. The range of APFDC lies between 1 to 100 (if calculated percentage wise)

141

and can be normalized between 0 and 1; at the same time severity lies between 0 and

10 and finally execution time is measured in seconds and could reach up to four

digits. Similarly number of front and size of first front could also range between two

to three digits. It can be observed that few objectives converge, towards maximization

or minimization, very fast (within 500 iterations out of 12500 i.e, with 4% of the total

iterations) hence variations are less visible for this (or these) parameter(s).In case of

numbers of fronts and first front size parameters variations are always visible during

each iterations. Hence it can be said that these graphs are very useful for visual

representation and analysis of the behaviour of NSGA-II working during every

iteration and to illustrate how parameters converge iteration wise.

The presented work conclude that TCP practices supports in saving costly resources

like human resource, time, effort, hardware and software and results in high quality

software and raises the assurance of all stake holders like client, coder, tester and

enhances the brand image too. It also helps in planned manner to satisfy all the

conflicting objectives within the resource constrained environment. As already

mentioned the objective of our work is fault coverage, test case prioritization helps in

exposing severe faults in earlier phase of testing practice and at the same time it helps

in reducing total execution cost(time) required to detect all the faults.

The presented work helps in prioritizing test cases so that accurate and effective

testing can be implemented ,rather than running all the test cases blindly, to satisfy all

the objectives, the most, while detecting all the faults. Overall it can be concluded that

the presented work investigate the performance assessment of seven algorithms, in

multi objective environment, while solving test case prioritization for regression

testing.

 While evaluating the performance evaluation of various algorithms it is concluded

that random approach performs worst in almost all the instances. Results depict that

Greedy algorithm performs better than that of random approach but not superior that

additional greedy and NSGA-II. While considering the APFDC as parameter of

evaluation, it was concluded that the average performances of additional greedy

algorithm, 2-opt algorithm and weighted GA were not considerably worse than that of

NSGA-II algorithm. In case of average performance of severity detection NSGA-II

142

again performs best followed by weighted GA and finally during calculation of

average performance of test case execution cost NSGA-II comes out to be most

promising algorithm followed by 2-opt algorithm. For smaller size instances the

results of NSGA-II was compared with all the permutations and it was concluded that

the algorithm was able to achieve the result equivalent to best result generated by all

the permutations. While considering all the parameters, overall, weighted GA was the

closest contender to NSGA-II majority of time. Hence NSGA-II plays an imperative

role and plays the role of upper bound almost all the time, for all the competitive

algorithms.

From results, it is proved that the NSGA-II obtained the maximum efficiency, in

terms of all the suggested parameters, which is higher than the existing methods taken

for comparison. The present study infers that in a resource constrained environment

for conducting regression testing, these algorithms play an imperative role and

NSGA-II may be a better choice.

It has already been revealed that NSGA-II comes out to be best choice against all

competitive algorithms hence it can be concluded the algorithm is an enhanced option

for solving the suggested multi objective optimization problem. The algorithm

supports in prioritizing the test cases in such a manner that those who have low

execution time and high fault detecting capability should execute as earliest. The

algorithm recommends three solutions to the tester’s fraternity who can make use of

them according to their requirement, needs and priority. Each of these three solutions

satisfies one objective the most while retaining dominance property.

It can be observed that during this work different approaches (random, greedy,

heuristic and meta heuristic) based various algorithms were applied for performance

evaluation while satisfying multiple objectives in which some of the objectives were

minimized and remaining were maximized.

143

5.6 CONCLUSION

In this chapter three techniques for regression test case prioritization has been

discussed. The first technique is based on module coupling information among the

modules. The proposed technique helps in finding the badly affected module due to

change in a module. The second technique prioritizes the test cases while performing

regression testing using data flow testing concepts. The third approach is control

structure weighted test case prioritization technique which is the extension of the

second approach. The proposed approaches have been applied on certain case studies

and the results have been validated.

144

145

Chapter VI

A MULTI-OBJECTIVE APPROACH FOR TEST SUITE

REDUCTION DURING TESTING OF WEB

APPLICATIONS: A SEARCH BASED APPROACH

PROPOSED WORK

6.1 INTRODUCTION

In the previous chapter we have extended the work presented in chapter four,

prioritization of test cases in single objective environment , where we have considered

three objectives in which one objective was to minimize while the remaining two to be

maximized.

During the regression testing of any software, web application in our case, another

strategy traditionally followed is test suite reduction in which representative test set of

original test suite is created which consists of few test cases which are capable to

achieving the objective without compromising on the aspect of coverage. In this chapter

focus is on reduction of test suite size and comparison is also made with some prior

reputed studies.

Earlier the test case prioritization problem and test case reduction problem were

considered to problems belonging to separate entity and the researchers who were

working on prioritization were not taking care of reduction and vice versa. However

since last four-five years due to very less time in hands of testers to execute even

reduced test cases new problem arises in which the prioritization of reduced test cases

should be made and researcher’s fraternity have start thinking in this area also as a

new problem of research. Hence we have been also inspired from this new area of

research in software testing field and contributed by moving one step forward by

proposing new ideas in multi-objective environment.

146

During traditional practices of developing software the system under goes repeated

restructuring so as include recurrently varying user requirements. Due to this new test

cases would be needed, to validate the updates, and consequently added in the test

suite, as a result of this the procedure leads to enlargement in the size of the test suite.

However running all the test cases, due to customization, is not an intelligent step due

to firm deadlines of product delivery and resource constraints. Hence the alternate

which comes in the mind of the tester community is the reduction of the test suite and

creating the representative set of the original one. It is always expected that the

objective(s) which was satisfied by the original suite should also be satisfied by the

representative set. The objectives may be conflicting in nature i.e, some of them are to

be minimized and remaining ones maximized, which results into the multi-objective

test suite reduction optimization problem. In this presented work we have explored

the problem where two objectives are to be maximized and the remaining one to be

minimized.

In this experimental study, we have shortlisted four web applications on which

different experiments have been performed. Regarding finalization of algorithm for

performance assessment while solving the suggested problem, we have shortlisted

seven state-of-the-art algorithms, and their updated versions, which are based on

different techniques to satisfy all the objectives without compromising on the aspect

of coverage.

The test suite reduction problem can be defined as follows:

 Consider a set of test cases T= {t1, t2,…, tn} ,consisting of n elements,

known as original test suite(or universal test suite).

 There are a set of testing requirements R = {r1,r2,…,rm} ,consisting of m

elements, such that each of the test requirements must be covered by at

least one of the test cases belonging to T .

 There is a binary relationship between T and R: S= { (t,r)|t satisfies r, t∈ T

and r ∈ R} .

 There are subsets {T1,T2,…Tm} of T named test sets where each test set is

associated with ri such that any one test case(s) belonging to Ti satisfies ri.

147

The intention behind this process is the creation of representative set TRS, which is the

subset of original test suite T, which meets all the requirements that were originally

satisfied by T. To validate the new functionalities we have to add up new test cases

and which may eventually generate redundant test cases may also generate and we

have to remove these in TRS and minimization of the test suite without compromising

coverage capability (fault coverage capability in this study). Since this work focuses

on multi objective test suite minimization optimization problem, the brief description

on it is as follows

Problem: A universal test suite T is provided along with a vector of N objective

functions, fi=1, 2, 3… N .The problem is to find a subset of T, Tsubset such that Tsubset

is a Pareto optimal set of objective functions fi=1, 2, 3… N. In other words, in this

problem the objective is to select a Pareto efficient subset of the test suite, based on

multiple test criteria.

The present empirical work is an attempt to solve the multi-objective (or multi-

criterion) test suite reduction problem. The three objectives considered in this work

are: minimization of execution time of test cases to detect all the faults, severity

detection per test case execution (to be maximized) and fault severity detected per

unit of test cost (also to be maximized).

Some prior studies have also pay attention to execution cost of test cases as one of the

parameter which we have also done. Meanwhile the other two parameters considered

in our work are not previously considered in any prior published study for solving

multi objective test set minimization problem. We will try to compare the

performance of NSGA-II with other published algorithms also [36 and 194] .Authors

of previous studies [36 and 194] solely focuses on compilation of representative

reduced test set so as to decrease execution cost while maintaining the same level of

code coverage. The current study not only focuses on reducing execution time to

expose all the faults but also focuses on other parameters which are the measurement

of efficacy of prioritized test suite, as objectives. Hence the proposed study directly

solves the test suite reduction problem and also indirectly focuses on the test case

prioritization problem.

148

In this proposed work, eleven algorithms based on different approaches (8 non-

incremental and 3 incremental), are addressed for solving the above problem. Hence,

the main contribution of the work includes:

 Identifying simple representative test sets and Pareto efficient representative

test sets comprising of the test cases which satisfies the concerned testing

objectives.

 Modification in three accessible algorithms (authors’ contribution) while

solving the proposed problem and verifying that these modifications upgrade

performance.

 Justification of a novel considered parameter (authors’ contribution), which is

incorporated to solve the problem.

 Assessment and analysis of the performance of the aforesaid algorithms, while

solving the problem, on instances of different sizes representing dissimilar

versions of the dynamic websites as the subject.

Moreover, this experiential study suggests three solutions, based on objectives, to the

tester society for use according to requirements.

6.2 DESCRIPTION ON THE SELECTED OBJECTIVES AND

IMPLEMENTED ALGORITHMS

6.2.1 Detailed Explanation on Selected Algorithms

During the first half of this Section a discussion on the selected algorithms is

presented. In the second half, similar discussion is presented on the considered

parameters.

As already mentioned, there are various approaches applied by researchers to find the

near optimal solution of a suggested problem; greedy approach is one of them.

The three classical greedy algorithms that have drawn a lot of attention for addressing

this problem are GE algorithm, GRE algorithm(proposed by Chen and Lau et al.)

[113] and HGS algorithm[195], where G,R and E stand for “Greedy”,” Redundant”

and “Essential” and HGS is named after their creators ,Harold, Gupta and Soffa.

149

A brief explanation about GE and GRE algorithms follows

To consider a specific test case as essential for requirement coverage, the requirement

must be fulfilled only by this test case. For example if a requirement ri is only

satisfied by tj, then tj becomes essential test case. Essential test cases should become

the earliest part of the representative set ; otherwise, there is a high likelihood that

some of the chosen test cases become redundant. Greedy algorithm and Additional

greedy algorithm, explained in the next section, do not take care of essential test cases

specifically. In the GE algorithm, first of all, every essential test case is selected,

followed by the greedy approach based selection procedure which is applied on the

remaining test cases of the test suite.

The outlines of these algorithms are as follows.

GE (Greedy and Essential) Heuristic

The algorithm is implemented in two steps

1. First identify essential test cases that would become part of the reduced

solution.

2. Second, apply the greedy approach till all the requirements are exposed. The

greedy criteria for selecting the next test case, not previously selected, depends

upon maximum requirement coverage capability.

GRE (Greedy, Redundant and Essential) Heuristic

The algorithm is implemented in three steps

1. Identify redundant test cases and discard them.

2. Steps 1and 2of the above mentioned GE algorithm run on the remaining test

cases.

However the question still remains as to which one is better out of these two.

In case of HGS algorithm, the concept of cardinality is used for test suite reduction,

where cardinality signifies the number of times the test case has occurred in each test

set. The algorithm begins by selecting test case with cardinality one (singleton test

cases) followed by test cases of the next higher cardinality. Chen and Lau. [196] and

Zhong et al.[197] reported success of HGS and GRE algorithm in reducing the size of

test suite.

150

In this work we have compared the performance of eleven algorithms in which three

are incremental and remaining eight are non-incremental algorithms; these algorithms

are based on different approaches like Greedy, Heuristic and meta-heuristic. As

already discussed there can be various objectives of minimization meanwhile we have

considered fault coverage, with assigned severity values.

The first algorithm selected for presentation is simple greedy based approach (SGS-

1). The algorithm is implemented in the following steps,

1. Create an empty representative set TRS .Mark all the faults as undetected.

2. Sort all the test cases of test suite T, in decreasing order, on the basis of

value of fi where,

fi =

3. Select test cases one by one from original test suite T and add to TRS till all

the faults are detected. Return TRS.

The second algorithm which is implemented is additional greedy algorithm (AGS-1)

whose detailed description is as follows.

1. Create an empty representative set TRS. Mark all the faults as unexposed.

2. Sort all the remaining test cases of test suite T, in decreasing order, on the

basis of value of fi which is computed using equation (6.1).

3. Move the selected test case from T to TRS. Mark the exposed fault(s) as

“exposed”.

4. Repeat steps 2-3 till all the faults are exposed. Return TRS.

During the third and fourth algorithms, which are authors’ contribution, first (greedy)

and second (additional greedy) algorithms are modified by replacing fi by parameter

TC whose equation is given below.

 (6.2)

A concise narration of the terms used in parameter (TC) is as follows

Undetected_Faults= Faults yet not detected

151

TC[k]_Faults=Total faults detected by k
th

 test case. (No consideration to still

undetected faults, consider all the faults whether detected yet or not).

Severity[i]=Severity of i
th

 fault.

Remaining_TC=Set of test cases not yet executed.

“k”=Test case for which , current parameter is to be evaluated.

 } =if (i
th

 fault is detected by j
th

 test case) then (add

cost of j
th

 test case to summation)

Justification of parameter (TC) used with enhanced greedy algorithm, and enhanced

additional greedy algorithm, is as follows:

 Selection of a test case to be executed is inversely proportional to its cost;

hence cost is placed as denominator.

 Each test case has capacity to detect several faults, but the faults that are

already detected by test cases executed earlier do not contribute to the testing

process, hence only undetected faults are taken into account

 Each fault also has a numerical value which denotes its severity. Severity of

undetected test cases can be summed up as numerator, with the basic idea to

judge each test case

 The approach described up to here, is already implemented in the previous

parameter

 A advanced idea from probability theory is picked up to provide much better

analysis of the remaining test cases

 While adding severity of each undetected fault, a variable is multiplied to

severity value.

 This variable denotes complement of fraction of “cost of other remaining test

cases detecting current fault” to “total cost of other remaining test cases in the

system”.

 So, if current fault is detected by all the remaining test cases, no matter which

test case we select, that fault will be executed and this variable will come out

to be 0, which makes no contribution of severity to any of the remaining test

cases

 In the reverse case, if a fault is detected by only the current test case, variable

comes out to be 1, which provides direct contribution of severity to numerator.

152

Brief description of the third algorithm, hereafter called enhanced greedy algorithm

(SGS-2), is as follows-

1. Create an empty representative set TRS .Mark all the faults as undetected.

2. Sort all the test cases of test suite T, in decreasing order, on the basis of

value of Parameter (TC)

3. Select test cases one by one from T and add to TRS till all the faults are

detected. Return TRS

On similar lines, a brief description of the fourth algorithm, hereafter called enhanced

additional greedy algorithm (AGS-2), is as follows-

1. Create an empty representative set TRS. Mark all the faults as undetected.

2. Sort all the remaining test cases of test suite T, in decreasing order, on the

basis of value of Parameter (TC)

3. Move the selected test case from T to TRS. Mark the exposed fault(s) as

“detected”.

4. Repeat steps 2-3 till all the faults are exposed. Return TRS.

Lin et al. [36] in their experimental study proposed GreedyIrreplacable, GreedyEIrreplacable,

GRERatio, GREIrreplacable, GREEIrreplacable ,HGSRatio, HGSIrreplacable and HGSEIrreplacable.

The authors proved that performance of GreedyEIrreplacable was superior among all the

competitors; this gave us the motivation for selecting this algorithm in the current

study.

Before narrating the above selected algorithm, initially the significance of Equations

(6.3)and (6.4) is explained. If requirement set R={r1,r2,…,rm}consists of m testing

requirements and rs is the s
th

 testing requirement, then the contribution (t,rs) of t
th

 test

case towards satisfying s
th

 testing requirement is calculated using Equation (6.4). In

case of Equation (6.3), first essential test cases are found out- they are test cases

whose EIrreplacibility value is infinity which means specific testing requirement is

satisfied by this test case “t” only. These essential test cases should be added to the

representative set as earliest. If the test case is not essential, then its contribution

towards the test suite is calculated which is then divided by its execution time to

decide its candidature for becoming a part of the representative set.

153

The GreedyEIrreplacable algorithm is illustrated using the following steps:

1. Find out test case “t” which has the maximum value of Equation (6.3).

(Essential test cases will have a value equal to infinity; hence they will be

added initially to TRS.)

2. Remove the test case “t” from test suite T and add it into TRS (representative

set).

3. Remove the faults that are exposed by “t”.

4. Repeat steps 1-3 until all the faults are exposed.

Analyzing the above two algorithms, it can be concluded that GreedyEIrreplacable first

identifies essential test cases and adds it to the representative set. Remaining steps of

both the algorithms are the same and follow the procedure which is implemented in

additional greedy algorithm. During this work the GreedyEIrreplacable algorithm is called

as ELin algorithms .The complexity of ELin and enhanced additional greedy

algorithm comes out to be similar which is O(m,n.min(m,n).k) ,where n is the number

of test cases m is the number of test requirements (faults in our case) and k is the

maximum number of requirements(faults in this study) that can be satisfied by a

single test case.

The subsequent chosen greedy approach based algorithm is selected from a recently

published study in reputed journal [194] which suggests few improvements in ELin

algorithm and proposed the novel algorithm which makes use of equations 6.5,6.6 and

6.7 .

 C (t, rs)

 --- (6.5)

154

where MC is the moving contribution, Ta is number of test cases that can satisfy

requirement rs, Ts is the count of test cases that have already satisfied requirement rs

,Fd is a fixed decrement factor, k is the number of test requirement availed where as l

is the number of test requirements that are already satisfied. The overall steps of the

algorithm are explained as follows

Input to the algorithm: Test Pool (T),Cost Vector(C) and Test Requirement vector(TR)

Output from the algorithm: Selected Test Cases (Sr)

1. Create empty set Sr.

2. Repeat steps 3 to 8 while TR !=NULL

3. Repeat steps 4 to 5 for each test case t

4. Repeat step 5 for each requirement r

5. If (t does not satisfy the requirement r)

Set TAP0

Else if (r is only satisfied by t)

Set TAP∞

Else find TAP using equation (6.7)

6. Select the test case (tMAX)having maximum value for TAP measure

7. Append tMAX to Sr

8. Remove requirement(s) from TR.

We have called this algorithm hereafter as GTAP algorithm (Test cases which are

Already included in Pool-based Measure) in this work. This algorithm is proposed in

prior published study where it has been shown that the algorithm performance is

heavily dependent on constant Fd ; in the study author have neither discussed the

range of this constant nor the particular value. However in this work we have taken

155

nine values of this constant in the range from 1 to9 and the value at which the result

comes out to be best is conserved as generated output. The next algorithm is heuristic

based algorithm, non-iterative in nature, is inspired from 2-opt classical algorithms,

generally used for solving combinatorial problems (like the travelling salesman

problem). We have modified the above mentioned algorithm, our contribution, which

is based on dominance nature and is hereafter called enhanced 2-opt algorithm (or

MOH-Multi Objective Heuristic).

Subsequent selected algorithm is the 2-opt [198] inspired algorithm in which multiple

ordered sequences of test cases are generated; however the sequence is awarded as

best sequence in terms of severity detected per unit of test cost. The same has been

discussed thoroughly presented in the previous chapter and hence not been presented

here again.

The next implemented algorithms are weight based genetic algorithm (WGA) and

random weight based genetic algorithm (RWGA); the required fitness function

required in both of these function is defined as follows:

 8)

 where

a= completing time required by the truncated tests sequence to expose every single

fault;

b= finishing time of all the tests belonging to test suite;

c= fault severity detected per unit of test cost which is represented in terms of value of

APFDC (explained later);

d=rate of severity of faults detected by the truncated tests that exposes all the faults;

e=highest achievable severity rate= (.

Here “truncated sequence of test cases” means that only such test cases will be

considered, out of all test cases of the test suite, which are capable of exposing all the

faults and test cases present in truncated sequence will automatically constitute TRS. .

Values of a/b, c and d/e are normalized in the range between 0 and 1, where a/b is to

be minimized while c and d/e are to be maximized.

156

In case of WGA, weights assigned to W1, W2 and W3 will be one and in case of

RWGA the random assigned weights to W1, W2 and W3 will be in the range of 0.1 to

0.9. The remaining steps of WGA and RWGA are as follows;

1. Create the initial solutions randomly whose count is twice the number of test cases;

moreover, every test case will appear only once in these solutions. One constraint that

has been compulsory implied on the solutions is that every test case will be given an

opportunity to occupy first position in the solution; remaining positions can be filled

randomly by the remaining n-1 test cases. This implies that in the first and second

solutions, the first position is occupied by the first test case, T1. Similarly in third and

fourth solution first position is occupied by second test case T2 and so on. Thus,

finally we have 2n number of solutions where in 2n-1 and 2n
th

 solutions first position

is occupied by Tn
th

 test case.

2. Selection of parents takes place using tournament selection.

3. Crossover operation is applied on the selected parents. Cross over is explained,

after the algorithm, with the help of example and Figure 1.

4. After cross over, execute mutation process in this step, on the solutions generated

from crossover process.

5. Select the most excellent fifty percent of solutions for subsequent generation. Left

over fifty percent solutions are created randomly.

6. Switch to step 2 for repetition if count of iteration<twenty five times the problem

size, otherwise exit.

A brief discussion on implemented crossover is also presented in the previous chapter

and therefore not discussed here again.

After the execution of all the steps of the algorithm, we applied the linear search

thrice to find the largest value or the smallest value of the parameter (depending upon

the objective which is either to be maximized or minimize). Finally these three best

solutions are taken into consideration for performance assessment in case of WGA

and RWGA.

A brief discussion on the last considered incremental algorithm, NSGA-II, is as

follows.

157

Optimization problems can be broadly categorized into two categories that is single

objective optimization problem or multi (many) objective optimization problem. In

case of first category there will be only one objective in the problem which is either to

be either globally maximized (global optimal solution) or globally minimized and that

too as earliest. In case of second category, there can be multiple(or many) objectives,

that are to be either globally maximized or globally minimized, which may be

conflicting with each other at multiple instances. We have to consider all the

objectives in parallel and none of them can be put sideways hence equal importance to

all the objectives. Generally in class of single objective problem there will be only

one solution however in multi objective optimization problem there will be two

categories of solutions non-dominated solutions and dominated solutions. Generally

we are interested only in non-dominated solution(s) being superior to the rest of the

solutions, in search space and are uniformly acceptable to various users/researchers.

Pareto-optimality is a concept, introduced by Italian Engineer Philosopher,

Sociologist and Economist Vilfredo Pareto, selected from economics and has been

widely acknowledged worldwide.

Suppose there are i=1,2,…,M objectives which are to be maximized in case of multi-

objective problem . Decision vector a is said to dominate decision vector b (also

written as a ≺ b) if and only if their objective vector satisfies fi(a) and fi(b) satisfies :

∀i∈{1,2,…,M}. fi(a) ≥ fi(b) and э i∈{1,2,…,M}, fi(a) > fi(b)

In case of test suite reduction problem, suppose there are two subsets X and Y of the

original test suite T, then it can be said that X dominates Y if the decision vector for X

({f1(X),f2(X),…,fN(X)}) dominates Y.

All decision vectors that are not dominated by any other decision vectors constitute a

Pareto optimal set, while the corresponding objective vector constitutes the Pareto-

frontier. The formal definition of multi-objective optimization problem [6] can be

written as:

Given: A vector of decision variables, V, and a set of objective functions fi(V) where

i=1,2,…,M.

158

Definition : Maximize {f1(V),f2(V),…,fm(V)} by finding Pareto optimal set over the

feasible set of solutions.

A front is a collection of solutions in which each solution is of equal importance in

other words these solutions are non-dominated to each other. First front is also known

as Pareto-front which is the most important front and the members of it (also called as

Pareto optimal solutions) are not dominated by any other member of any front and are

equally important. In other words solutions placed in the first front dominate solutions

placed in other front(s).

Another important concept that has been implemented is crowding distance method

which is needed for measuring diversity among the solutions. Entire search space d
n

can be divided into subspaces, Here d is the depth parameter and n is the number of

decision variables, subspaces are updated dynamically. Generally before calculating

the crowding distance, each objective function is normalized. It is computed as the

sum of individual distance values corresponding to each objective.

NSGA-II has been broadly acknowledged by academicians of different engineering

branches, not restricted to computer science area but also in exploring and solving

various classical problems of systems, civil, mechanical, electrical engineering and

game theory .NSGA-II, which is implemented by means of Genetic Algorithm, makes

use of a special fast non-dominated sorting technique to find and sort Pareto optimal

front by assigning rank to them. Crowding distance is used to estimate the density of

solutions surrounding any particular solution. NSGA-II is implemented in this work

as just described in prior published studies [199] and [200]. As in case of WGA and

RWGA (earlier explained), after the completion of the last iteration, we have to

applied linear search on the first front thrice (authors’ contribution), having three

objectives in hand, on the basis of objectives to attain the best solution which satisfies

the objective at most.

A brief description of Genetic Algorithm implemented in NSGA-II is mentioned

below:

1. Initially, random solutions are generated in this step. The implementation of this

step is exactly the same as in WGA or RWGA. Total number of solutions will be

2n in number, where n is the problem size.

159

2. Select parents on the basis of tournament selection.

3. Crossover operation is applied on the selected parents to generate 4n number of

children.

4. During this phase, apply swap mutation method on the solutions generated from

previous procedure i.e. crossover process.

5. Generate and introduce “n” number of random solutions, to maintain diversity.

6. Select the top performing 2n number of the solutions for the selection of next

generation. These solutions will play the role of initial solutions during next

generation.

7. Switch to step 2 for repetition if count of iteration<twenty five times the

problem size, otherwise exit.

The values of parameters used in GA implemented for WGA, RWGA and NSGA-II is

as follows -

Chromosome encoding technique: Discrete Encoding

Size of initial population: Twice the number of test cases.

Parent Selection procedure: Tournament Selection

Crossover type: Already explained with the help of example and diagram

Number of offspring generated: Twice the number of test cases

Mutation Type: Inspired from previous published study [201].

Mutation probability (per individual solution): 0.1

Maximum number of generations (Stopping Criteria): Twenty five times the problem

size

Yo and Harman [203] reported usability of greedy and additional greedy approaches

while solving single objective test suite reduction problem. They also focused on the

inability of these approaches to obtain optimal solutions in multi- objective scenario.

They emphasized that better trade-off between objectives and superior solution can be

achieved through Pareto-optimality.

6.2.2 Discussion on Selected Objectives

 The first shortlisted objective is the minimization of execution time of test cases

which is required to expose all the faults. We have to create representative set TRS

160

smartly, which is initially empty, by appending test cases one by one into the TRS such

that the execution time of all these selected test cases would be minimum while

detecting all the faults. Lin et al. [36] have discussed thoroughly on parameter

minimization of test case execution time such that all the requirements are fulfilled.

The two similar studies [202] and [194] also worked on same objective” generation of

low execution cost representative set”. Hence these three studies support the selection

of our objective.

The next shortlisted objective is maximization of severity detection per test case

execution. Reason behind selection of this objective is explained with the help of

running example. Suppose there are two test cases in hands of tester, T4 and T6, where

T4 have fault detection competence of three faults of three severities each meanwhile

T6 can expose two faults of seven severities each. This gives rise to the question that

which test cases should be added first in the representative set. If our objective would

have been maximum fault detection per execution of test case then T4 will be selected

first followed by T6 however if the objective is maximizing severity detection per

execution of test case in that case T6 will be selected first followed by T4. This

scenario presents the importance of the parameter. According to the literature survey

and the author’s information none of the previous published studies have discussed

this objective in such a fashion especially in case of solving test suite reduction

problem. Severity detection rate of the test sequence is calculated using Equation 6.9,

given below

 Sev=
Undetected Severity severity detected by ith test case (out of not yet detected)

Position of ith test case in test suite

n
i=1 --- .

The third and the last considered objective, which is to be maximized, is fault severity

detected per unit of test cost which is defined as cost-cognizant average percentage of

fault detection (APFDC). This is proposed in [204] and is actually the measurement of

efficiency of prioritized test cases when exposing faults is the criteria of priority.

161

where ti is the execution time of i
th

 test case,fi is the fault severity of i
th

 fault , is

the execution time of TFi-th test case in the test sequence which detects the i
th

 fault

first, m is the total number of faults and n is the total number of test cases.

Earlier test case selection and test case prioritization was distinct domain of research.

Of late focus has shifted to prioritization of reduced test cases [38]. When the tester

have shortage of time to execute all the reduced test cases then prioritizing reduced

test suite will become an option. We have also focused on it in this work as a

secondary objective.

6.3. EXPERIMENTAL SETUP

The setup is exactly same as mentioned in the previous chapter; here only those issues

are discussed in this section which is different from previous chapter or not

implemented/discussed in the previous chapter.

As implementing second major part of this work we focus on prioritizing test cases

which are the part of representative set. Prior published study [38] has pointed out the

same issue which we want to highlight and that is the finding of APFDC of uneven

representative sets which is generated after completion of various suggested

algorithms. As per prior studies there are two approaches to get the solution to this

problem. In the first approach proposed by Qu et al. [205] authors solve this issue by

limiting the size of the test suite to the smallest generated test suite. In the second

approach presented by Sreedevi et al[38] , all the test cases belonging to original test

suite were considered while calculating APFDC however they have modified the

formula ; however we have considered this approach in our work but we have used

the original formula of APFDC. Because we think that test generation time depends

not only upon complexity of requirement but also on the underlying hardware,

algorithms and data structures used and this may influence both calculations and

results.

162

Table 6.1: Representing various Artifacts of subject websites .

ARTIFACTS OF

WEBSITE(S) WEBSITE1 WEBSITE2 WEBSITE3 WEBSITE4

AVERAGE

FAULTS 64 146.25 96.75 95.75

AVERAGE TEST

CASES 28.5 83.5 55 74

AVERAGE

(FAULTS/TEST

CASES) 2.2602 1.76895 1.80787 1.3634

AVERAGE KILO

LINES OF CODE 7.452 13.861 11.314 11.086

Above presented table 6.1 represents average count of faults injected in the entire

subject websites, average number of test cases required to detect all the faults.

Approximately average wise we have changed/altered/added/deleted 10% of the code

of subject websites. We have also computed faults per test cases for all the websites

and their respective versions. There after average of these values are taken, per

website, and presented in the Table.

6.4 EXPERIMENTATION PERFORMED, GENERATED RESULTS AND

DISCUSSION

It is well understood that the recommended problem belongs to the set of NP class of

problem whose complexity is generally exponential in nature; therefore it is possible

to find the solution for smaller size problem easily with limited hardware resources

and difficulty for finding the solution increases with the increase in problem size.

Hence three small size running examples (Table 6.2(a), 6.3(a) and 6.4(a)

respectively), of size 8*8, 9*9 and 10*10 (test cases vs fault) have been discussed

along with thorough analysis (Tables 6.2(d), 6.3(d) and 6.4(d)).We have also

presented the value of the factor “Fd” at which result generated is the best, required in

GTAP algorithm. We have also validated that solutions generated various algorithms

lies in which front, on the basis of dominance, of the NSGA-II. If the solution does

not exist in the top ten fronts it is represented by “###” in the Table. Python program

is created by the authors to find all the possible permutations of the problem for

performance verification i.e., how far solutions generated by suggested algorithms are

from the optimal one. There after we have various types of analysis which include; in

which front the solutions generated from other algorithms lies, which of the

algorithms and on which parameter it reaches the optimal value. We have executed all

163

the incremental algorithms thrice and the best generated result shown in the relevant

section. Due to hardware (computing) constraint at our end this thorough investigation

was not extended for instances greater than 10*10 matrices.

Table 6.2(a):Test cases Vs Fault matrix.

1 0 0 0 0 1 0 1

0 0 1 1 0 0 0 0

0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0

Table 6.2(b):Fault Severity matrix.

8 6 2 7 8 3 2 7

 Table 6.2(c): Test case Execution Time matrix.

4971.4285
71

3228.5714
29

3028.5714
29

1500.0
0

1471.4285
71

5571.4285
71

1528.5714
29

2914.28
5

 Table 6.2(d): Table presenting the performance of all the algorithms on each suggested objectives.

Name of the

Algorithm

Representative

Set TRS

Test cases

execution time

Severity

observed

APFDC

observed

Front

number in

which the

solution

stands

Pictorial

representation

of solution

(Fig6.2)

NSGA-A [7, 2, 0, 4, 3] 13885.7143 20.7085 0.790903 1 Circle

NSGA-S [5, 0, 2, 4, 3] 16542.8571 24.3674 0.715977 1 Down

triangle

NSGA-E [2, 0, 1, 3] 12728.5714 20.8605 0.778199 1 Square

SGS1 [7,2,6,5,0,1, 4,

3]

24214.2857 20.2519 0.687549 ###

SGS2 [2, 0, 7, 5, 6, 1,

3]

22742.8571 20.7110 0.740783 ###

AGS1 [7, 2, 0, 4, 3] 13885.7143 20.7085 0.790903 1 Circle

AGS2 [2, 0, 3, 1] 12728.5714 20.7112 0.771434 2 Up triangle

SOH [2, 0, 1, 3] 12728.5714 20.8605 0.778199 1 Square

MOH [0, 2, 1, 3] 12728.5714 22.8605 0.763710 1

WGA-A [0, 2, 1, 3] 12728.5714 22.8605 0.763710 1

WGA-S [5, 0, 4, 7, 1, 3,

2]

22685.7143 24.0343 0.645784 ###

WGA-E [0, 2, 1, 3] 12728.5714 22.8605 0.763710 1

RWGA-A [2, 0, 4, 7, 3] 13885.7143 20.6252 0.768828 4 Right

triangle

RWGA-S [5, 2, 0, 3, 6, 4] 18071.4286 24.1938 0.722096 4 Left triangle

RWGA-E [0, 1, 2, 3] 12728.5714 22.3760 0.746477 3 Hexagon

GTAP [0, 2, 3, 4, 7] 13885.7143(1) 22.5729 0.749798 7

ELIN [0, 2, 3, 4, 7] 13885.7143 22.5729 0.749798 7

164

Table6.3(a):Test cases Vs Fault matrix

0 0 0 0 0 0 1 1 0

0 0 0 1 1 0 1 1 0

0 0 0 0 1 0 1 1 0

0 0 1 1 1 0 0 1 0

0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 1 0 1

0 0 1 0 1 0 0 0 0

0 1 0 0 0 0 1 1 0

1 0 1 0 0 1 0 0 0

Table 6.3(b):Fault Severity matrix

9 4 8 9 5 2 2 6 7

 Table 6.3(c): Test case execution time matrix

2857.142 7314.285 4457.142 7428.571 4371.428 5314.285 2942.857 5057.142 4500.00

 Table 6.3(d): Table presenting the performance of all the algorithms on each suggested objectives.

Name of the

Algorithm
Representative Set TRS

Test cases

execution time

Severity

observed

APFDC

observed

Front number

in which the

solution stands

Pictorial

representation of

solution(Fig6.3)

NSGA-A [8, 5, 2, 7] 19328.5714 25.8462 0.838631 1 Diamond

NSGA-S [3, 8, 5, 7] 22300.0000 31.3654 0.817084 1 Circle

NSGA-E [8, 5, 6, 7] 17814.2857 25.6731 0.834452 2

SGS1 [4, 6, 8, 3, 5, 1, 2, 0,

7]

44242.8571 23.8512 0.742459 ###

SGS2 [8, 4, 5, 6, 3, 1, 7] 36928.5714 24.5632 0.777257 ###

AGS1 [4, 0, 8, 5, 7] 22100.0000 24.7779 0.825206 7 Right triangle

AGS2 [8, 5, 7, 6] 17814.2857 25.7933 0.836253 1 Square

SOH [4, 8, 7, 5] 19242.8571 25.3894 0.824995 4 Hexagon

MOH [3, 8, 4, 7] 21357.1429 31.2949 0.816469 1 Down triangle

WGA-A [3, 8, 5, 7] 22300.0000 31.3654 0.817084 1 Circle

WGA-S [3, 8, 5, 7] 22300.0000 31.3654 0.817084 1 Circle

WGA-E [3, 8, 4, 7] 21357.1429 31.2949 0.816469 1 Down triangle

RWGA-A [3, 8, 5, 7] 22300.0000 31.3654 0.817084 1 Circle

RWGA-S [3, 8, 5, 7] 22300.0000 31.3654 0.817084 1 Circle

RWGA-E [3, 8, 7, 4] 21357.1429 31.2740 0.812483 2 Up triangle

GTAP [8, 7, 5, 6] 17814.2857(1) 25.0817 0.824293 5

ELIN [8, 7, 4, 5] 19242.8571 24.8125 0.818624 8 Left triangle

Table6.4(a).Test cases Vs Fault matrix

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 1

0 1 0 0 0 1 1 0 0 0

0 0 0 1 0 0 1 1 0 0

1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 1

1 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

165

Table 6.4(b).Fault Severity matrix

5 10 6 4 6 7 3 5 3 6

 Table 6.4(c). Test case Execution Time matrix

3228.57 4928.57 1771.42 4928.57 5571.42 4328.57 3457.14 4885.71 5057.14 1528.57

Table 6.4(d). Table presenting the performance of all the algorithms on each suggested objectives.

Name of

the

Algorithm

Representative

Set TRS

Test cases

execution time

Severity

observed

APFDC observed

Front

number

in

which

the

solution

stands

Pictorial

representation

of solution

(Fig 6.4)

NSGA-A [4, 8, 3, 5] 19885.7143 26.8909 0.792647(Fig

6.1(d))

1 Circle

NSGA-S [4, 8, 3, 5] 19885.7143 26.8909 0.792647(Fig

6.1(d))

1 Circle

NSGA-E [4, 3, 6, 5] 18285.7143 26.4742 0.791151(Fig6.1(e)) 1 Square

SGS1 [7, 4, 1, 6, 8,

3, 2, 0, 5]

38157.1429 24.0732 0.691724(Fig

6.1(i))

SGS2 [4, 6, 8, 7, 3,

1, 5]

33157.1429 25.2125 0.720594(Fig

6.1(j))

AGS1 [7, 6, 0, 4, 5] 21471.4286 24.1809 0.784574(Fig 6.1(a

))

6 Right

triangle

AGS2 [4, 6, 3, 5] 18285.7143 26.0500 0.792231(Fig 6.1(b

))

1 Diamond

SOH [4, 6, 3, 5] 18285.7143 26.0500 0.792231(Fig6.1(b)) 1 Diamond

MOH [4, 8, 3, 5] 19885.7143 26.8909 0.792647(Fig

6.1(d))

1

WGA-A [4, 8, 3, 5] 19885.7143 26.8909 0.792647(Fig 6.1(d

))

1 Circle

WGA-S [4, 8, 3, 5] 19885.7143 26.8909 0.792647(Fig

6.1(d))

1 Circle

WGA-E [4, 3, 6, 5] 18285.7143 26.4742 0.791151(Fig

6.1(e))

1 Square

RWGA-

A

[4, 3, 6, 2, 5] 20057.1429 26.3688

0.790834(Fig 6.1(f

))

3 Up triangle

RWGA-

S

[4, 8, 3, 2, 5] 21657.1429 26.8764 0.789400(Fig

6.1(g))

3 Hexagon

RWGA-

E

[4, 3, 5, 6] 18285.7143 26.4136 0.783592(Fig 6.1(h) 2 Down

triangle

GTAP [4, 5, 6, 0, 7] 21471.4286(2) 25.3415 0.769936(Fig 6.1(

(c)

9 left triangle

ELIN [4, 5, 6, 0, 7] 21471.4286 25.3415 0.769936(Fig 6.1(

(c)

9 left triangle

166

Figure 6.1(a to j): Presenting the Diagrammatic Representation of the APFDC achieved by all the

Algorithms while Solving Instance of size 10*10(Table 6.4(a)-6.4(c)).

167

Figure 6.2: Pictorial Representations of solutions, in Three Dimensions, generated by various

Algorithms while solving above Running Example (Table 6.2).

Figure 6.3: Pictorial Representations of solutions, in Three Dimensions, generated by various

Algorithms while solving above Running Example (Table 6.3).

168

Figure 6.4: Pictorial Representations of Solutions, in Three Dimensions, generated by various

Algorithms while Solving above Running Example (Table 6.4).

The above computation clarifies that NSGA-II is the best performing algorithm for

small size instances.

Going through the results generated by various algorithms, on the above examples, it

is observed that a few algorithms are able to generate the best results in one or two

objectives but not in all. However NSGA-II presents best performance in all the three

objectives. Moreover, after this, comparison between NSGA-II and the optimal value

generated from permutations is drawn. It was concluded that the said algorithm was

able to achieve optimal value for all the objectives in all the above mentioned

examples.

We have drawn three figures, shown below, which represents first(best)five fronts in

case of each of the examples mentioned above. If the solution computed by the

suggested algorithm is not efficient to lie in these fronts, we have not shown that

solution. Magenta, Red, Green, Blue and Orange represent first, second, third, fourth

and fifth fronts respectively.

169

As already mentioned we have selected four subject websites and their respective

versions for performance assessment, the modifications made in these websites at

various levels are shown in able 6.1.

 Tables 6.5, 6.6 and 6.7 portray the results achieved, on all the objectives, by every

selected algorithm on each version of all subject websites.

Figure 6.1(a to j) presents the diagrammatic representation of the APFDC achieved by

all the algorithms while solving instance of size 10*10(Table 6.4(a) to(d)).

We have created a program to create the iteration wise log files of every version of

subject websites for understanding the behaviour of NSGA-II how the algorithm

generates the results up to optimal values in case of all the suggested parameters. We

have normalized the values stored in these log files and represents them using Figure

5. The figure clearly presents the convergence, iteration wise, towards either

maximization or minimization along with count of fronts and first front size (number

of solutions constituting front). In these figures X-axis is used to show percentagewise

iterations and Y-axis represents corresponding outputs in the normalized form

(normalized in the range of 0 and 1) as the range of results for each objective, number

of front and size of first front varies significantly because they are on different scales.

It can be observed from few graphs that few parameter(s) converges very fast, within

10% of the total iterations, therefore very less variations have been observed in these.

However in case of size of first front and number of fronts, variations can be

visualized during each iteration.

170

Figure 6.5(a to d): Visual Representation of the Performance of NSGA-II while achieving the

Objectives during website 3 and their Respective Versions.

Figure 6.6(a to d): Visual representation of the Performance of NSGA-II while achieving the

Objectives during website 4 and their Respective Versions.

171

Figure 6.7(a to d): Visual representation of the performance of NSGA-II while achieving the

Objectives during website 1 and their Respective Versions.

Figure 6.8(a to d): Visual Representation of the Performance of NSGA-II while Achieving the

Objectives during website 2 and their Respective Versions.

172

T
ab

le
 6

.5
:

R
es

u
lt

 m
at

ri
x

 d
ep

ic
ti

n
g

 p
er

fo
rm

an
ce

 i
n

 t
er

m
s

o
f

co
st

 o
f

al
l

th
e

al
g

o
ri

th
m

s
w

h
en

 a
p

p
li

ed
 o

n
 a

ll

v
er

si
o

n
s

o
f

al
l

th
e

su
b

je
ct

 w
eb

si
te

s
u

n
d

er
 t

es
t.

W

1
V

1

C
o

st

4
5

.5
9

5
1

.4
1

4
2

.0
4

3
0

1
.3

4

2
8

8
.0

3

5
1

.4
9

4
5

.3
4

4
9

.6
3

5
2

.8
3

5
1

.4
1

5
1

.4
1

5
1

.4
1

6
4

.8
1

7
3

.5
4

5
3

.6
7

4
5

.6
1

4
8

.3
0

(5
2

*2
3

)

St
d

-3
5

.0
4

-2
9

.2
1

-3
8

.5
8

2
2

0
.7

2

2
0

7
.4

1

-2
9

.1
4

-3
5

.2
8

-3
0

.9
9

-2
7

.7
9

-2
9

.2
1

-2
9

.2
1

-2
9

.2
1

-1
5

.8
1

-7
.0

8

-2
6

.9
5

-3
5

.0
1

-3
2

.3
2

W
1

V
2

C
o

st

5
3

.6
7

5
8

.4
7

5
2

.0
1

4
6

9
.5

1

4
5

5
.0

3

5
6

.9
7

5
3

.3
6

6
0

.2
0

6
2

.6
3

5
8

.2
9

5
8

.2
9

5
8

.2
9

1
0

2
.0

4

9
5

.5
1

8
0

.6
9

5
4

.2
4

5
4

.2
4

(6
1

*2
5

)

St
d

-5
7

.1
2

-5
2

.3
2

-5
8

.7
8

3
5

8
.7

2

3
4

4
.2

4

-5
3

.8
2

-5
7

.4
3

-5
0

.5
9

-4
8

.1
6

-5
2

.5
1

-5
2

.5
1

-5
2

.5
1

-8
.7

5

-1
5

.2
8

-3
0

.1
1

-5
6

.5
5

-5
6

.5
5

W
1

V
3

C
o

st

6
8

.4
1

6
7

.7
1

5
9

.0
3

4
7

1
.3

3

4
5

1
.0

1

7
3

.9
6

6
3

.5
6

6
9

.6
9

7
3

.4
3

6
7

.7
1

6
7

.7
1

6
6

.5
1

9
3

.8
1

7
7

.6
6

7
7

.6
6

6
5

.9
1

6
5

.9
1

(6
9

*3
1

)

St
d

-4
8

.1
2

-4
8

.8
2

-5
7

.5
0

3
5

4
.8

0

3
3

4
.4

8

-4
2

.5
7

-5
2

.9
7

-4
6

.8
5

-4
3

.1
0

-4
8

.8
2

-4
8

.8
2

-5
0

.0
2

-2
2

.7
2

-3
8

.8
7

-3
8

.8
7

-5
0

.6
2

-5
0

.6
2

W
1

V
4

C
o

st

7
3

.1
0

9
2

.8
6

7
0

.5
9

3
2

2
.9

0

2
9

7
.8

6

8
0

.1
4

7
3

.1
0

9
9

.2
6

9
9

.1
0

7
9

.2
9

7
9

.2
9

7
9

.2
9

1
1

1
.3

6

1
1

5
.5

6

9
9

.0
7

7
4

.6
4

7
6

.2
4

(7
4

*3
5

)

St
d

-4
0

.0
6

-2
0

.3
0

-4
2

.5
7

2
0

9
.7

5

1
8

4
.7

0

-3
3

.0
1

-4
0

.0
6

-1
3

.9
0

-1
4

.0
6

-3
3

.8
7

-3
3

.8
7

-3
3

.8
7

-1
.8

0

2
.4

0

-1
4

.0
8

-3
8

.5
1

-3
6

.9
1

W
2

V
1

C
o

st

1
5

4
.2

1

1
6

9
.8

0

1
4

5
.3

1

4
9

7
.6

6

4
9

5
.0

9

1
6

4
.2

3

1
4

9
.8

3

1
7

7
.9

9

1
8

4
.5

3

1
7

3
.2

0

1
7

3
.2

0

1
7

3
.0

4

2
4

8
.9

0

2
4

4
.8

9

1
9

7
.6

9

1
4

9
.5

9

1
5

2
.7

3

(1
0

4
*6

2
)

St
d

-6
0

.6
0

-4
5

.0
2

-6
9

.5
0

2
8

2
.8

4

2
8

0
.2

7

-5
0

.5
9

-6
4

.9
9

-3
6

.8
3

-3
0

.2
9

-4
1

.6
2

-4
1

.6
2

-4
1

.7
7

3
4

.0
8

3
0

.0
7

-1
7

.1
3

-6
5

.2
3

-6
2

.0
9

W
2

V
2

C
o

st

1
4

8
.8

6

1
5

7
.6

0

1
4

2
.7

1

9
7

8
.4

7

8
9

3
.1

1

1
6

2
.4

4

1
4

7
.3

6

1
8

2
.8

7

1
5

2
.8

1

1
5

8
.3

1

1
5

8
.3

1

1
5

8
.3

1

3
7

7
.4

4

4
3

2
.2

6

3
3

1
.9

0

1
4

4
.4

1

1
4

7
.7

6

(1
3

9
*7

0
)

St
d

-1
3

7
.9

1

-1
2

9
.1

6

-1
4

4
.0

5

6
9

1
.7

1

6
0

6
.3

5

-1
2

4
.3

2

-1
3

9
.4

1

-1
0

3
.8

9

-1
3

3
.9

5

-1
2

8
.4

5

-1
2

8
.4

5

-1
2

8
.4

5

9
0

.6
8

1
4

5
.5

0

4
5

.1
4

-1
4

2
.3

5

-1
3

9
.0

1

(1
3

1
*1

0
4)

 W
2V

3

C
o

st

1
9

9
.7

3

2
1

1
.4

7

1
9

4
.0

7

6
8

1
.2

6

6
8

1
.2

6

2
0

6
.5

7

2
0

3
.3

1

2
1

2
.5

1

2
1

2
.9

1

2
1

2
.3

3

2
1

2
.3

3

2
1

2
.3

3

4
4

1
.2

3

4
2

6
.1

3

3
9

2
.4

4

2
0

8
.8

6

2
0

7
.1

3

St
d

-1
0

1
.2

1

-8
9

.4
6

-1
0

6
.8

6

3
8

0
.3

2

3
8

0
.3

2

-9
4

.3
6

-9
7

.6
2

-8
8

.4
2

-8
8

.0
2

-8
8

.6
1

-8
8

.6
1

-8
8

.6
1

1
4

0
.3

0

1
2

5
.2

0

9
1

.5
1

-9
2

.0
8

-9
3

.8
1

(2
1

1
*9

8
)

 W

2
V

4

C
o

st

1
9

9
.5

1

2
0

2
.5

4

1
9

3
.6

1

9
6

2
.0

3

9
4

8
.1

0

2
0

6
.0

3

1
9

3
.5

4

2
1

2
.3

7

2
4

9
.7

4

1
9

9
.2

4

1
9

9
.2

4

1
9

9
.2

4

4
8

6
.2

4

5
0

6
.5

4

4
5

3
.3

7

1
9

3
.7

7

1
9

7
.1

0

St
d

-1
4

1
.7

9

-1
3

8
.7

7

-1
4

7
.6

9

6
2

0
.7

2

6
0

6
.7

9

-1
3

5
.2

8

-1
4

7
.7

7

-1
2

8
.9

4

-9
1

.5
7

-1
4

2
.0

7

-1
4

2
.0

7

-1
4

2
.0

7

1
4

4
.9

3

1
6

5
.2

3

1
1

2
.0

6

-1
4

7
.5

4

-1
4

4
.2

1

N

SG
A

-A

N
SG

A

-S

N
SG

A

-E

SG
S

-1
.0

0

SG
S

-2
.0

0

A
G

S

-1
.0

0

A
G

S
-2

.0
0

SO
H

M
O

H

W
G

A

-A

W
G

A

-S

W
G

A

-E

R
W

G
A

-A

R
W

G
A

-S

R
W

G
A

-E

G
TA

P

E-
LI

N

[T
yp

e
a

q
u

o
te

 f
ro

m
 t

h
e

d
o

cu
m

en
t

o
r

th
e

su
m

m
ar

y
o

f
an

 in
te

re
st

in
g

p
o

in
t.

 Y
o

u
 c

an
 p

o
si

ti
o

n
 t

h
e

te
xt

 b
o

x
an

yw
h

er
e

in
 t

h
e

d
o

cu
m

en
t.

 U
se

 t
h

e
Te

xt
 B

o
x

To
o

ls
 t

ab
 t

o
 c

h
an

ge
 t

h
e

fo
rm

at
ti

n
g

o
f

th
e

p
u

ll

q
u

o
te

 t
e

xt
 b

o
x.

]

173

T
ab

le
 6

.5
:

R
es

u
lt

 m
at

ri
x

 d
ep

ic
ti

n
g

 p
er

fo
rm

an
ce

 i
n

 t
er

m
s

o
f

co
st

 o
f

al
l

th
e

al
g
o

ri
th

m
s

w
h

en
 a

p
p

li
ed

 o
n
 a

ll

v
er

si
o
n

s
o

f
al

l
th

e
su

b
je

ct
 w

eb
si

te
s

u
n

d
er

 t
es

t.

W

3
V

1

C
o

st

6
9

.1
6

8
3

.8
6

6
9

.1
6

4
8

7
.8

4

4
3

5
.9

3

8
0

.8
1

7
7

.4
6

8
6

.7
0

8
8

.5
4

8
1

.0
6

8
1

.0
6

8
1

.0
6

1
0

3
.0

6

1
3

8
.8

4

1
0

3
.0

6

7
7

.8
6

7
7

.8
1

(7
8

*3
6

)

St
d

-6
1

.6
2

-4
6

.9
2

-6
1

.6
2

3
5

7
.0

6

3
0

5
.1

5

-4
9

.9
7

-5
3

.3
2

-4
4

.0
8

-4
2

.2
4

-4
9

.7
2

-4
9

.7
2

-4
9

.7
2

-2
7

.7
2

8
.0

6

-2
7

.7
2

-5
2

.9
2

-5
2

.9
7

W
3

V
2

C
o

st

1
2

5
.5

0

1
3

4
.1

9

1
1

4
.8

4

3
9

9
.1

1

3
9

4
.5

3

1
3

0
.2

3

1
2

5
.2

1

1
2

8
.5

6

1
4

9
.0

3

1
2

9
.9

3

1
2

9
.9

3

1
2

9
.9

3

1
8

8
.1

9

1
9

8
.7

6

1
7

3
.6

7

1
2

1
.2

9

1
2

5
.8

3

(8
9

*6
4

)

St
d

-4
5

.0
1

-3
6

.3
3

-5
5

.6
7

2
2

8
.6

0

2
2

4
.0

2

-4
0

.2
8

-4
5

.3
0

-4
1

.9
6

-2
1

.4
8

-4
0

.5
8

-4
0

.5
8

-4
0

.5
8

1
7

.6
7

2
8

.2
5

3
.1

6

-4
9

.2
3

-4
4

.6
8

w
3

v3

C
o

st

1
0

6
.1

6

1
0

9
.5

3

1
0

5
.2

1

6
4

3
.1

9

6
3

5
.8

1

1
2

3
.2

9

1
0

3
.7

0

1
3

1
.7

7

1
3

7
.8

6

1
0

4
.1

6

1
0

4
.1

6

1
0

4
.1

6

2
0

5
.0

0

2
0

8
.7

9

1
9

7
.8

1

1
0

7
.6

1

1
0

9
.0

4

(9
7

*5
2

)

St
d

-8
4

.2
7

-8
0

.9
0

-8
5

.2
1

4
5

2
.7

6

4
4

5
.3

9

-6
7

.1
4

-8
6

.7
3

-5
8

.6
6

-5
2

.5
7

-8
6

.2
7

-8
6

.2
7

-8
6

.2
7

1
4

.5
7

1
8

.3
6

7
.3

9

-8
2

.8
1

-8
1

.3
8

w
3

v4

C
o

st

1
2

5
.6

0

1
3

5
.2

0

1
2

0
.2

3

6
8

1
.6

7

6
7

5
.0

4

1
3

0
.6

6

1
2

5
.6

7

1
4

8
.6

9

1
5

1
.9

1

1
4

3
.2

9

1
4

3
.2

9

1
4

3
.2

9

3
1

8
.0

9

3
1

7
.1

3

2
9

8
.1

7

1
2

6
.4

6

1
2

6
.4

6

(1
2

3
*6

8
)

St
d

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

-2
3

0
.0

5

w
4

v1

C
o

st

1
0

1
.5

6

1
0

3
.4

3

9
9

.6
3

3
2

3
.6

0

3
0

9
.8

4

1
1

2
.9

0

1
0

1
.5

6

1
1

0
.9

3

1
2

0
.7

3

1
1

2
.1

4

1
1

2
.1

4

1
1

2
.1

4

1
5

8
.3

6

1
5

8
.3

6

1
3

3
.9

3

1
0

6
.7

7

1
0

6
.7

7

(5
8

*4
9

)

St
d

-3
8

.7
2

-3
6

.8
5

-4
0

.6
5

1
8

3
.3

2

1
6

9
.5

6

-2
7

.3
8

-3
8

.7
2

-2
9

.3
5

-1
9

.5
5

-2
8

.1
4

-2
8

.1
4

-2
8

.1
4

1
8

.0
8

1
8

.0
8

-6
.3

5

-3
3

.5
1

-3
3

.5
1

w
4

v2

C
o

st

9
4

.8
4

1
0

9
.7

3

8
7

.0
0

4
1

8
.2

0

4
1

3
.9

1

9
8

.5
0

9
0

.5
0

1
0

5
.0

6

1
1

3
.8

4

9
5

.8
1

9
5

.8
1

9
5

.8
1

1
1

6
.1

9

1
4

7
.0

4

1
1

1
.9

0

9
3

.3
6

9
3

.3
6

(8
4

*4
5

)

St
d

-4
5

.2
1

-3
0

.3
2

-5
3

.0
5

2
7

8
.1

5

2
7

3
.8

6

-4
1

.5
5

-4
9

.5
5

-3
4

.9
9

-2
6

.2
1

-4
4

.2
4

-4
4

.2
4

-4
4

.2
4

-2
3

.8
7

6
.9

9

-2
8

.1
5

-4
6

.6
9

-4
6

.6
9

w
4

v3

C
o

st

1
7

4
.2

7

2
0

0
.7

3

1
6

4
.4

7

6
9

0
.9

0

6
8

3
.3

3

1
8

8
.3

0

1
6

9
.9

4

1
8

1
.4

1

1
7

5
.2

9

1
9

3
.6

6

1
9

3
.6

6

1
9

3
.6

6

2
9

3
.1

0

2
9

5
.8

4

2
8

7
.6

4

1
6

7
.4

0

1
7

1
.2

4

(9
0

*7
3

)

St
d

-8
6

.0
1

-5
9

.5
6

-9
5

.8
1

4
3

0
.6

2

4
2

3
.0

4

-7
1

.9
9

-9
0

.3
4

-7
8

.8
7

-8
5

.0
0

-6
6

.6
3

-6
6

.6
3

-6
6

.6
3

3
2

.8
2

3
5

.5
6

2
7

.3
6

-9
2

.8
9

-8
9

.0
4

 w
4

v4

C
o

st

2
8

4
.3

1

3
4

5
.4

0

2
8

0
.4

0

1
1

8
5

.5
1

1
1

6
5

.5
1

3
4

3
.2

4

3
0

7
.1

4

3
6

6
.4

6

3
6

4
.1

7

3
2

3
.1

4

3
2

3
.1

4

3
2

3
.1

4

5
9

3
.6

3

6
2

4
.0

3

5
4

4
.9

7

3
0

2
.4

9

3
1

3
.6

9

(1
5

1
*1

2
9)

St
d

-1
8

5
.7

1

-1
2

4
.6

2

-1
8

9
.6

2

7
1

5
.4

9

6
9

5
.4

9

-1
2

6
.7

8

-1
6

2
.8

8

-1
0

3
.5

7

-1
0

5
.8

5

-1
4

6
.8

8

-1
4

6
.8

8

-1
4

6
.8

8

1
2

3
.6

1

1
5

4
.0

1

7
4

.9
5

-1
6

7
.5

4

-1
5

6
.3

4

N

SG
A

-A

N
SG

A

-S

N
SG

A

-E

SG
S

-1
.0

0

SG
S

-2
.0

0

A
G

S

-1
.0

0

A
G

S
-2

.0
0

SO
H

M
O

H

W
G

A

-A

W
G

A

-S

W
G

A

-E

R
W

G
A

-A

R
W

G
A

-S

R
W

G
A

-E

G
TA

P

E-
LI

N

174

T
ab

le
 6

.6
:

R
es

u
lt

 m
at

ri
x

 d
ep

ic
ti

n
g

 p
er

fo
rm

an
ce

 i
n

 t
er

m
s

o
f

se
v

er
it

y
 d

et
ec

te
d

 b
y

 a
ll

 t
h

e
al

g
o

ri
th

m
s

w
h

en
 a

p
p

li
ed

 o
n

 a
ll

 v
er

si
o

n
s

o
f

al
l

th
e

su
b

je
ct

 w
eb

si
te

s
u

n
d

er
 t

es
t.

W

1
V

1
(5

2
*2

3
)

Se

v

5
3

.7
8

5
5

.9
2

4
6

.1
8

3
4

.0
7

3
4

.4
0

3
3

.7
3

3
3

.9
4

5
4

.0
1

5
5

.9
2

5
5

.9
2

5
5

.9
2

5
5

.9
2

5
5

.1
3

5
5

.5
3

5
5

.1
0

3
1

.4
6

3
1

.4
7

St
d

6
.8

1

8
.9

5

-0
.7

9

-1
2

.8
9

-1
2

.5
6

-1
3

.2
3

-1
3

.0
2

7
.0

5

8
.9

5

8
.9

5

8
.9

5

8
.9

5

8
.1

6

8
.5

7

8
.1

4

-1
5

.5
1

-1
5

.5
0

W
1

V
2

(6
1

*2
5

) Se
v

5
3

.1
6

6
6

.7
8

4
7

.5
7

4
8

.4
7

4
8

.4
1

5
3

.6
4

5
4

.6
0

5
8

.9
5

6
3

.6
2

6
4

.4
3

6
4

.9
5

6
4

.9
3

6
6

.3
9

6
6

.4
0

6
5

.7
4

3
3

.0
1

3
3

.0
1

St
d

-2
.9

6

1
0

.6
6

-8
.5

5

-7
.6

5

-7
.7

1

-2
.4

8

-1
.5

2

2
.8

3

7
.5

1

8
.3

1

8
.8

3

8
.8

1

1
0

.2
7

1
0

.2
8

9
.6

2

-2
3

.1
1

-2
3

.1
1

W
1

V
3

(6
9

*3
1

) Se
v

6
5

.2
2

6
5

.4
5

5
9

.9
9

5
6

.4
1

5
6

.9
1

6
1

.9
7

6
4

.0
4

5
5

.0
5

6
1

.9
3

6
5

.4
2

6
5

.4
5

6
5

.4
1

6
5

.2
3

6
5

.3
5

6
4

.9
7

3
7

.8
7

4
2

.3
7

St
d

5
.2

8

5
.5

1

0
.0

5

-3
.5

4

-3
.0

3

2
.0

3

4
.1

0

-4
.9

0

1
.9

8

5
.4

7

5
.5

1

5
.4

7

5
.2

9

5
.4

0

5
.0

2

-2
2

.0
7

-1
7

.5
7

W
1

V
4

(7
4

*3
5

) Se
v

4
7

.6
8

6
0

.6
0

5
4

.5
9

4
5

.0
0

4
5

.1
4

4
7

.1
5

4
7

.6
8

5
1

.7
8

5
8

.8
8

5
7

.9
5

5
8

.2
2

5
8

.2
1

5
8

.4
9

5
8

.9
3

5
7

.8
0

4
2

.5
9

4
2

.5
4

St
d

-4
.8

6

8
.0

6

2
.0

5

-7
.5

4

-7
.4

0

-5
.3

9

-4
.8

6

-0
.7

7

6
.3

4

5
.4

1

5
.6

7

5
.6

7

5
.9

5

6
.3

9

5
.2

6

-9
.9

5

-1
0

.0
0

W
2

V
1

(1
0

4
*6

2
) Se

v

84
.0

0

10
2.

8
6

85
.2

1

75
.7

1

77
.0

0

83
.8

9

83
.6

9

89
.7

1

10
0.

5
8

10
1.

7
8

10
1.

7
9

10
1.

7
9

10
0.

1
2

10
0.

3
5

99
.3

7

86
.7

7

80
.1

3

St
d

-7
.4

5

1
1

.4
1

-6
.2

5

-1
5

.7
4

-1
4

.4
5

-7
.5

6

-7
.7

7

-1
.7

4

9
.1

2

1
0

.3
3

1
0

.3
3

1
0

.3
3

8
.6

7

8
.8

9

7
.9

1

-4
.6

8

-1
1

.3
3

W
2

V
2

(1
3

9
*7

0
) Se

v

10
6.

7
8

11
3.

31

10
7.

9
2

80
.6

5

95
.2

2

87
.8

7

10
6.

0
7

10
5.

1
7

10
9.

6
5

11
1.

9
8

11
1.

9
9

11
1.

9
9

11
0.

0
4

11
0.

8
0

11
0.

1
6

70
.7

5

68
.8

7

St
d

5
.6

5

1
2

.1
8

6
.7

9

-2
0

.4
8

-5
.9

1

-1
3

.2
6

4
.9

4

4
.0

4

8
.5

2

1
0

.8
5

1
0

.8
6

1
0

.8
6

8
.9

1

9
.6

7

9
.0

3

-3
0

.3
8

-3
2

.2
6

W
2

V
3

(1
3

1
*1

0
4)

Se
v

7
5

.5
9

8
9

.0
3

8
5

.4
2

6
2

.2
5

6
2

.0
9

7
0

.3
0

7
0

.0
1

6
4

.4
3

8
7

.6
2

8
8

.8
2

8
8

.8
2

8
8

.8
2

8
6

.0
3

8
6

.1
7

8
5

.4
8

5
5

.6
9

5
5

.4
6

St
d

-1
.0

0

1
2

.4
4

8
.8

3

-1
4

.3
4

-1
4

.5
0

-6
.2

9

-6
.5

8

-1
2

.1
6

1
1

.0
3

1
2

.2
3

1
2

.2
3

1
2

.2
3

9
.4

4

9
.5

8

8
.8

9

-2
0

.9
0

-2
1

.1
3

W
2

V
4

(2
1

1
*9

8
)

Se
v

9
5

.7
3

10
9.

1
0

10
6.

2
0

65
.8

9

66
.7

5

71
.5

3

71
.5

5

88
.3

8

10
6.

0
3

10
7.

8
6

10
7.

8
6

10
7.

8
6

10
4.

9
5

10
5.

6
5

10
5.

0
1

69
.8

0

72
.6

5

St
d

3
.8

0

1
7

.1
7

1
4

.2
8

-2
6

.0
4

-2
5

.1
8

-2
0

.4
0

-2
0

.3
8

-3
.5

5

1
4

.1
0

1
5

.9
3

1
5

.9
3

1
5

.9
3

1
3

.0
2

1
3

.7
2

1
3

.0
8

-2
2

.1
3

-1
9

.2
8

N

SG
A

-A

N
SG

A

-S

N
SG

A

-E

SG
S

-1
.0

0

SG
S

-2
.0

0

A
G

S
-1

.0
0

A
G

S
-2

.0
0

SO
H

M
O

H

W
G

A

-A

W
G

A

-S

W
G

A

-E

R
W

G
A

-A

R
W

G
A

-S

R
W

G
A

-E

G
TA

P

E-
LI

N

175

T
ab

le
 6

.6
:

R
es

u
lt

 m
at

ri
x

 d
ep

ic
ti

n
g

 p
er

fo
rm

an
ce

 i
n

 t
er

m
s

o
f

se
v

er
it

y
 d

et
ec

te
d

 b
y

 a
ll

 t
h

e
al

g
o

ri
th

m
s

w
h

en
 a

p
p

li
ed

 o
n

 a
ll

 v
er

si
o

n
s

o
f

al
l

th
e

su
b

je
ct

 w
eb

si
te

s
u

n
d

er
 t

es
t.

W

3
V

1

(7
8

*3
6

) Se
v

5
8

.3
0

7
1

.9
6

5
7

.3
8

4
9

.0
0

4
8

.7
5

5
7

.3
7

5
8

.2
2

5
9

.8
9

7
0

.4
4

7
0

.4
1

7
0

.4
7

7
0

.4
1

7
0

.3
6

7
1

.3
2

7
0

.3
6

4
2

.6
2

4
2

.5
5

St
d

-2
.8

6

1
0

.8
0

-3
.7

9

-1
2

.1
6

-1
2

.4
1

-3
.7

9

-2
.9

5

-1
.2

7

9
.2

7

9
.2

5

9
.3

1

9
.2

5

9
.1

9

1
0

.1
6

9
.1

9

-1
8

.5
5

-1
8

.6
2

W
3

V
2

(8
9

*6
4

) Se
v

5
0

.0
1

5
8

.6
9

5
3

.4
7

4
1

.5
7

4
1

.2
6

4
8

.2
5

4
8

.9
7

5
1

.3
1

5
8

.4
4

5
8

.5
8

5
8

.5
9

5
8

.5
9

5
7

.6
1

5
7

.8
0

5
7

.5
8

4
9

.5
9

4
9

.5
3

St
d

-2
.9

2

5
.7

6

0
.5

4

-1
1

.3
6

-1
1

.6
7

-4
.6

8

-3
.9

6

-1
.6

2

5
.5

1

5
.6

5

5
.6

6

5
.6

6

4
.6

8

4
.8

7

4
.6

5

-3
.3

4

-3
.4

0

w
3

v3

(9
7

*5
2

) Se
v

7
0

.1
8

7
1

.3
1

6
8

.6
7

5
7

.9
1

6
0

.8
3

6
4

.7
5

6
9

.8
5

6
4

.5
1

6
5

.8
0

7
1

.2
6

7
1

.2
7

7
1

.2
7

6
9

.7
1

7
0

.1
7

6
8

.4
8

4
5

.9
3

4
7

.9
1

St
d

4
.9

0

6
.0

3

3
.3

9

-7
.3

7

-4
.4

5

-0
.5

4

4
.5

7

-0
.7

7

0
.5

2

5
.9

8

5
.9

8

5
.9

8

4
.4

3

4
.8

9

3
.2

0

-1
9

.3
5

-1
7

.3
8

w
3

v4

(1
2

3
*6

8
) Se

v

5
2

.9
9

7
8

.0
7

6
9

.0
1

4
5

.4
1

4
5

.0
2

4
9

.4
6

4
8

.5
4

5
6

.9
5

7
2

.8
7

7
8

.1
2

7
8

.1
3

7
8

.1
2

7
6

.8
0

7
7

.5
2

7
6

.3
2

3
5

.5
0

3
9

.6
9

St
d

-9
.2

8

1
5

.8
1

6
.7

4

-1
6

.8
6

-1
7

.2
4

-1
2

.8
0

-1
3

.7
3

-5
.3

2

1
0

.6
1

1
5

.8
6

1
5

.8
6

1
5

.8
6

1
4

.5
3

1
5

.2
6

1
4

.0
5

-2
6

.7
7

-2
2

.5
7

w
4

v1

(5
8

*4
9

) Se
v

6
1

.0
5

6
5

.9
9

5
8

.1
2

5
9

.7
1

5
7

.4
4

6
0

.5
5

5
9

.1
4

6
1

.9
1

6
5

.5
9

6
5

.8
9

6
5

.9
0

6
5

.9
0

6
5

.4
7

6
5

.4
7

6
5

.0
5

4
5

.5
3

4
5

.5
5

St
d

0
.2

1

5
.1

5

-2
.7

2

-1
.1

3

-3
.4

0

-0
.2

9

-1
.6

9

1
.0

7

4
.7

6

5
.0

5

5
.0

7

5
.0

6

4
.6

3

4
.6

3

4
.2

1

-1
5

.3
0

-1
5

.2
9

w
4

v2

(8
4

*4
5

) Se
v

7
7

.9
1

8
4

.2
7

6
2

.6
4

6
0

.6
0

6
2

.5
4

6
1

.7
9

6
2

.6
9

6
1

.9
6

8
0

.5
6

8
3

.2
8

8
3

.3
1

8
3

.3
0

8
3

.4
7

8
3

.5
9

8
3

.0
0

6
5

.8
5

6
5

.8
5

St
d

4
.5

8

1
0

.9
4

-1
0

.6
9

-1
2

.7
3

-1
0

.7
9

-1
1

.5
4

-1
0

.6
4

-1
1

.3
7

7
.2

3

9
.9

5

9
.9

8

9
.9

7

1
0

.1
4

1
0

.2
6

9
.6

7

-7
.4

8

-7
.4

8

w
4

v3

(9
0

*7
3

) Se
v

7
7

.8
2

9
3

.3
7

9
1

.3
4

6
4

.4
1

6
4

.5
3

6
8

.0
9

6
8

.2
6

6
8

.1
7

9
1

.2
6

9
2

.4
9

9
2

.5
1

9
2

.5
0

8
7

.4
1

9
0

.2
1

8
8

.1
3

5
8

.3
9

5
8

.4
5

St
d

-1
.4

4

1
4

.1
2

1
2

.0
9

-1
4

.8
4

-1
4

.7
3

-1
1

.1
6

-1
1

.0
0

-1
1

.0
9

1
2

.0
0

1
3

.2
4

1
3

.2
6

1
3

.2
4

8
.1

5

1
0

.9
6

8
.8

8

-2
0

.8
6

-2
0

.8
1

w
4

v4

(1
5

1
*1

2
9)

 Se
v

1
0

1
.2

6

1
3

2
.4

3

1
1

2
.3

3

9
3

.7
1

9
1

.7
3

1
0

2
.2

0

1
0

2
.5

0

1
1

6
.7

1

1
2

7
.3

8

1
3

2
.1

2

1
3

2
.1

2

1
3

2
.1

2

1
2

8
.0

5

1
2

9
.2

4

1
2

8
.7

2

9
8

.0
6

9
8

.0
3

St
d

-1
3

.9
6

1
7

.2
2

-2
.8

9

-2
1

.5
1

-2
3

.4
9

-1
3

.0
2

-1
2

.7
2

1
.5

0

1
2

.1
6

1
6

.9
0

1
6

.9
0

1
6

.9
0

1
2

.8
4

1
4

.0
3

1
3

.5
1

-1
7

.1
5

-1
7

.1
9

N

SG
A

-A

N
SG

A

-S

N
SG

A

-E

SG
S

-1
.0

0

SG
S

-2
.0

0

A
G

S
-1

.0
0

A
G

S
-2

.0
0

SO
H

M
O

H

W
G

A

-A

W
G

A

-S

W
G

A

-E

R
W

G
A

-A

R
W

G
A

-S

R
W

G
A

-E

G
TA

P

E-
LI

N

176

T
ab

le
 6

.7
:

R
es

u
lt

 m
at

ri
x

 d
ep

ic
ti

n
g

 p
er

fo
rm

an
ce

 i
n

 t
er

m
s

o
f

A
P

F
D

C
 a

ch
ie

v
ed

 b
y

 a
ll

 t
h

e
al

g
o

ri
th

m
s

w
h

en
 a

p
p

li
ed

 o
n

 a
ll

 v
er

si
o

n
s

o
f

al
l

th
e

su
b

je
ct

 w
eb

si
te

s.

W

1
V

1

(5
2

*2
3

) A
P

FD
c

9
5

.6
0

9
5

.2
5

9
4

.5
9

8
4

.7
5

8
7

.0
9

9
5

.2
0

9
5

.5
4

9
5

.4
3

9
5

.2
3

9
5

.2
5

9
5

.2
5

9
5

.2
5

9
4

.9
3

9
4

.6
1

9
4

.8
1

9
4

.2
0

9
4

.2
0

St
d

1
.6

5

1
.3

0

0
.6

4

-9
.2

0

-6
.8

6

1
.2

5

1
.5

9

1
.4

8

1
.2

8

1
.3

0

1
.3

0

1
.3

0

0
.9

8

0
.6

6

0
.8

6

0
.2

5

0
.2

5

W
1

V
2

(6
1

*2
5

)

A
P

FD
c

9
6

.1
2

9
5

.2
2

9
6

.0
0

8
5

.1
3

8
8

.3
7

9
6

.1
0

9
6

.1
1

9
5

.8
0

9
5

.2
2

9
5

.5
9

9
5

.5
7

9
5

.5
3

9
4

.5
7

9
4

.5
3

9
4

.4
0

9
4

.7
5

9
4

.7
5

St
d

1
.7

9

0
.8

9

1
.6

7

-9
.2

0

-5
.9

6

1
.7

7

1
.7

8

1
.4

7

0
.8

9

1
.2

6

1
.2

4

1
.2

0

0
.2

4

0
.2

0

0
.0

7

0
.4

2

0
.4

2

W
1

V
3

(6
9

*3
1

)

A
P

FD
c

9
5

.7
7

9
5

.5
6

9
5

.2
1

8
6

.4
3

8
7

.9
2

9
5

.6
3

9
5

.8
1

9
5

.4
0

9
5

.2
1

9
5

.6
2

9
5

.5
6

9
5

.5
2

9
5

.1
9

9
5

.1
8

9
4

.8
7

9
4

.2
4

9
4

.1
9

St
d

1
.4

6

1
.2

5

0
.9

0

-7
.8

8

-6
.3

9

1
.3

2

1
.5

0

1
.0

9

0
.9

0

1
.3

1

1
.2

5

1
.2

1

0
.8

8

0
.8

7

0
.5

6

-0
.0

7

-0
.1

2

W
1

V
4

(7
4

*3
5

) A
P

FD
c

9
6

.4
8

9
5

.5
7

9
6

.2
1

8
9

.4
3

9
0

.7
9

9
6

.3
3

9
6

.4
8

9
5

.1
4

9
5

.3
7

9
5

.5
9

9
5

.5
5

9
5

.5
9

9
5

.4
1

9
5

.2
1

9
5

.0
8

9
5

.1
6

9
5

.1
0

St
d

1
.5

1

0
.6

0

1
.2

4

-5
.5

4

-4
.1

8

1
.3

6

1
.5

1

0
.1

7

0
.4

0

0
.6

2

0
.5

8

0
.6

2

0
.4

4

0
.2

4

0
.1

1

0
.1

9

0
.1

3

W
2

V
1

(1
0

4
*6

2
)

A
P

FD
c

9
5

.4
9

9
5

.1
1

9
5

.1
2

9
1

.5
1

9
1

.9
2

9
5

.4
3

9
5

.4
8

9
5

.2
0

9
4

.8
3

9
4

.9
6

9
4

.9
4

9
4

.9
4

9
4

.0
0

9
3

.8
2

9
3

.8
9

9
4

.2
6

9
4

.2
9

St
d

1
.0

7

0
.6

9

0
.7

0

-2
.9

1

-2
.5

0

1
.0

1

1
.0

6

0
.7

8

0
.4

1

0
.5

4

0
.5

2

0
.5

2

-0
.4

2

-0
.6

0

-0
.5

3

-0
.1

6

-0
.1

3

W
2

V
2

(1
3

9
*7

0
)

A
P

FD
c

9
6

.0
2

9
5

.5
1

9
5

.8
2

8
9

.7
6

9
0

.2
5

9
5

.8
8

9
6

.0
6

9
5

.6
2

9
5

.7
1

9
5

.2
7

9
5

.2
5

9
5

.2
5

9
3

.6
9

9
2

.9
8

9
3

.5
6

9
5

.2
5

9
5

.2
9

St
d

1
.4

9

0
.9

8

1
.2

9

-4
.7

7

-4
.2

9

1
.3

5

1
.5

3

1
.0

9

1
.1

8

0
.7

4

0
.7

2

0
.7

2

-0
.8

4

-1
.5

5

-0
.9

8

0
.7

2

0
.7

6

W
2

V
3

(1
3

1
*1

0
4)

A
P

FD
c

9
0

.4
4

8
9

.7
2

9
0

.0
3

8
1

.2
6

8
1

.7
0

9
0

.7
8

9
0

.8
2

9
0

.4
8

8
9

.9
3

8
9

.7
1

8
9

.7
0

8
9

.7
0

8
5

.8
7

8
5

.0
5

8
5

.6
6

8
8

.0
4

8
8

.1
1

St
d

2
.3

9

1
.6

7

1
.9

8

-6
.7

9

-6
.3

6

2
.7

3

2
.7

7

2
.4

3

1
.8

8

1
.6

6

1
.6

5

1
.6

5

-2
.1

8

-3
.0

0

-2
.3

9

-0
.0

1

0
.0

6

W
2

V
4

(2
1

1
*9

8
)

A
P

FD
c

9
5

.0
9

9
4

.8
3

9
5

.0
1

8
7

.8
9

8
8

.3
1

9
5

.2
5

9
5

.3
2

9
5

.0
5

9
4

.2
8

9
4

.7
6

9
4

.7
5

9
4

.7
6

9
2

.0
0

9
1

.6
0

9
1

.8
9

9
4

.2
8

9
4

.2
6

St
d

1
.6

1

1
.3

5

1
.5

3

-5
.5

9

-5
.1

7

1
.7

7

1
.8

4

1
.5

7

0
.8

0

1
.2

8

1
.2

7

1
.2

8

-1
.4

8

-1
.8

8

-1
.6

0

0
.8

0

0
.7

8

N

SG
A

-A

N
SG

A

-S

N
SG

A

-E

SG
S

-1
.0

0

SG
S

-2
.0

0

A
G

S

-1
.0

0

A
G

S
-2

.0
0

SO
H

M
O

H

W
G

A

-A

W
G

A

-S

W
G

A

-E

R
W

G
A

-A

R
W

G
A

-S

R
W

G
A

-E

G
TA

P

E-
LI

N

177

T
ab

le
 6

.7
:

R
es

u
lt

 m
at

ri
x

 d
ep

ic
ti

n
g

 p
er

fo
rm

an
ce

 i
n

 t
er

m
s

o
f

A
P

F
D

C
 a

ch
ie

v
ed

 b
y

 a
ll

 t
h

e
al

g
o

ri
th

m
s

w
h

en
 a

p
p

li
ed

 o
n

 a
ll

 v
er

si
o

n
s

o
f

al
l

th
e

su
b

je
ct

 w
eb

si
te

s.

W

3
V

1

(7
8

*3
6

)

A
P

FD
c

9
5

.6
2

9
4

.8
5

9
5

.2
7

8
7

.1
5

8
7

.8
6

9
5

.3
9

9
5

.5
9

9
5

.0
6

9
4

.9
6

9
4

.6
1

9
4

.5
7

9
4

.6
1

9
4

.0
1

9
3

.4
5

9
4

.0
1

9
4

.1
8

9
4

.0
4

St
d

1
.7

9

1
.0

2

1
.4

4

-6
.6

8

-5
.9

7

1
.5

6

1
.7

6

1
.2

3

1
.1

3

0
.7

8

0
.7

4

0
.7

8

0
.1

8

-0
.3

8

0
.1

8

0
.3

5

0
.2

1

W
3

V
2

(8
9

*6
4

)

A
P

FD
c

8
9

.9
7

8
9

.3
0

8
9

.6
3

7
9

.0
7

7
9

.7
4

8
9

.4
6

8
9

.7
4

8
9

.6
6

8
8

.5
3

8
9

.3
7

8
9

.3
2

8
9

.3
5

8
7

.4
6

8
6

.8
3

8
7

.1
8

8
7

.9
5

8
7

.7
0

St
d

2
.3

1

1
.6

4

1
.9

7

-8
.5

9

-7
.9

2

1
.8

0

2
.0

8

2
.0

0

0
.8

7

1
.7

1

1
.6

6

1
.6

9

-0
.2

0

-0
.8

3

-0
.4

8

0
.2

9

0
.0

4

w
3

v3

(9
7

*5
2

)

A
P

FD
c

9
4

.5
2

9
4

.2
3

9
4

.1
1

8
5

.1
9

8
5

.5
5

9
4

.1
7

9
4

.5
7

9
3

.9
8

9
3

.5
9

9
4

.1
9

9
4

.1
9

9
4

.1
9

9
2

.2
3

9
1

.4
9

9
1

.4
2

9
2

.6
6

9
2

.7
9

St
d

1
.9

9

1
.7

0

1
.5

8

-7
.3

4

-6
.9

8

1
.6

4

2
.0

4

1
.4

5

1
.0

6

1
.6

6

1
.6

6

1
.6

6

-0
.3

0

-1
.0

4

-1
.1

1

0
.1

3

0
.2

6

w
3

v4

(1
2

3
*6

8
)

A
P

FD
c

9
3

.7
5

9
2

.9
8

9
3

.6
2

8
3

.9
2

8
4

.7
9

9
3

.5
9

9
3

.7
2

9
3

.2
3

9
2

.3
9

9
2

.3
5

9
2

.3
1

9
2

.3
2

8
9

.9
1

8
8

.9
6

8
8

.4
4

9
1

.8
1

9
1

.7
8

St
d

2
.5

9

1
.8

2

2
.4

6

-7
.2

4

-6
.3

7

2
.4

3

2
.5

6

2
.0

7

1
.2

3

1
.1

9

1
.1

5

1
.1

6

-1
.2

5

-2
.2

0

-2
.7

2

0
.6

5

0
.6

2

w
4

v1

(5
8

*4
9

) A
P

FD
c

9
0

.2
0

8
9

.2
2

8
8

.0
9

8
2

.7
9

8
3

.6
4

8
9

.8
0

9
0

.2
0

8
9

.6
2

8
8

.8
9

8
8

.1
7

8
8

.0
7

8
8

.1
3

8
7

.1
6

8
7

.1
6

8
7

.0
4

8
7

.9
8

8
8

.0
6

St
d

2
.3

1

1
.3

3

0
.2

0

-5
.1

0

-4
.2

5

1
.9

1

2
.3

1

1
.7

3

1
.0

0

0
.2

8

0
.1

8

0
.2

4

-0
.7

3

-0
.7

3

-0
.8

5

0
.0

9

0
.1

7

w
4

v2

(8
4

*4
5

)

A
P

FD
c

9
4

.9
6

9
3

.6
4

9
4

.8
5

8
7

.6
9

8
8

.5
9

9
4

.7
6

9
5

.1
5

9
4

.8
7

9
3

.4
5

9
4

.0
9

9
4

.0
0

9
4

.0
3

9
3

.2
9

9
3

.1
8

9
3

.0
3

9
3

.8
3

9
3

.8
3

St
d

1
.6

0

0
.2

8

1
.4

9

-5
.6

7

-4
.7

7

1
.4

0

1
.7

9

1
.5

1

0
.0

9

0
.7

3

0
.6

4

0
.6

7

-0
.0

7

-0
.1

8

-0
.3

3

0
.4

7

0
.4

7

w
4

v3

(9
0

*7
3

)

A
P

FD
c

9
3

.0
5

9
1

.0
9

9
2

.4
5

8
6

.0
6

8
6

.3
5

9
2

.6
0

9
2

.9
0

9
2

.6
8

9
1

.6
3

9
0

.8
0

9
0

.7
3

9
0

.7
9

8
8

.6
3

8
8

.3
0

8
7

.6
6

9
0

.6
6

9
0

.7
0

St
d

2
.6

4

0
.6

8

2
.0

4

-4
.3

5

-4
.0

6

2
.1

9

2
.4

9

2
.2

7

1
.2

2

0
.3

9

0
.3

2

0
.3

8

-1
.7

8

-2
.1

1

-2
.7

5

0
.2

5

0
.2

9

w
4

v4

(1
5

1
*1

2
9)

 A
P

FD
c

9
4

.5
2

9
3

.6
1

9
4

.4
6

9
0

.2
1

9
0

.2
8

9
4

.2
4

9
4

.3
4

9
4

.0
4

9
3

.7
3

9
3

.7
3

9
3

.7
2

9
3

.7
2

9
1

.6
0

9
0

.9
9

9
1

.5
8

9
3

.6
1

9
3

.5
6

St
d

1
.4

7

0
.5

6

1
.4

1

-2
.8

5

-2
.7

7

1
.1

9

1
.2

9

0
.9

9

0
.6

8

0
.6

8

0
.6

7

0
.6

7

-1
.4

5

-2
.0

6

-1
.4

7

0
.5

6

0
.5

1

N

SG
A

-A

N
SG

A

-S

N
SG

A

-E

SG
S

-1
.0

0

SG
S

-2
.0

0

A
G

S

-1
.0

0

A
G

S
-2

.0
0

SO
H

M
O

H

W
G

A

-A

W
G

A

-S

W
G

A

-E

R
W

G
A

-A

R
W

G
A

-S

R
W

G
A

-E

G
TA

P

E-
LI

N

178

6.5 DISCUSSION

Broadly it can be said that in this work we have evaluated the performance and

efficacy of ten algorithms in multi-objective environment, for test suite reduction and

prioritization for regression testing. Results generated by enhanced additional greedy

algorithm (authors’ contribution) were very promising and can be verified from table

8 and it was able to compete with NSGA-II in achieving the best value of APFDC

parameter. Our contributed algorithm performs better, almost always, than that of

ELin algorithm [36] on our data set in almost all the parameters. Our algorithm was

also able to perform promising in terms of saving time, which was the most

significant contribution of the ELin algorithm [36], this proves that there was scope of

improvement in the reported algorithm [36].

In case of severity, as parameter, multi-objective heuristic (improved 2-opt algorithm)

outperforms enhanced additional greedy algorithm however the best algorithm comes

out to be NSGA-II again. WGA presented outstanding performance; and engaged

second position most of the time. Authors of reputed previous study [36] have

focussed on reduction of test cases execution time while other objectives of this work

are not considered and at the same time they have not compared the performance of

their proposed approach with NSGA-II which we have done in this work. We want to

communicate that NSGA-II comes out to be better approach than that of their ones

because NSGA-II performs not only better in one objective only (which was the only

objective of that study [36]) but also manages other objectives smartly by generating

the best results, almost all the time, not only in one objective but also in all other

objectives too. Thus we can say that in a resource constrained environment NSGA-II

comes out as a best option for testers fraternity as the results generated from it play

the role of upper bound(in case of maximization of objective) and lower bound(in

case of minimization of objective) for other suggested algorithms. Figure 6.7

represents behaviour of NSGA-II algorithm to compute the values of all the

considered objectives in all subject websites and their respective versions.

Moreover it has been already proved in the earlier section that for smaller size

instances the algorithm was able to achieve optimal values for all the parameters.

179

We have not compared the performance of random approach with other algorithms as

it has been observed that the algorithm is not able to perform better than that of

proposed approaches. However we have given a place to random weighted genetic

algorithm (RWGA) in this work meanwhile the computed results disclose that RWGA

was not able to perform better when compared with other algorithm when the

considered objective was “reduction in test cases execution cost”. The algorithm was

not able to compete with even ELin and GTAP algorithm in the above objective;

moreover it has been observed that in few problem instances time consumed by

RWGA to highlight all the faults was double the time taken by ELin or GTAP.

Surprisingly the algorithm offered a reasonable performance in case of other two

objectives but not able to secured first or second spot in either of the objectives.

To represent the performance of various competitive algorithm in terms of percentage

reduction of the original test suite, Table 6.9 and 6.10 is compiled to depict the

performance of these algorithms. It can be easily visualized and concluded that

NSGA-II again presents the unsurpassed performance by reducing the test suite up to

88.52%.Most of the time second spot was occupied by weighted genetic algorithm

(WGA) which reduces the original test suite up to 88.40%. The other prominent

algorithms ELin and GTAP reduces the test suite up to 85.24% and 85.57%

respectively .Most of the time the last position was occupied by random weighted

genetic algorithm (RWGA) .

If each step of reduction process implemented by heuristic, greedy and additional

greedy algorithms is deeply analysed we notice that most entitled test case is

shortlisted and switches from test suite to representative set which is nothing but the

prioritization of test cases too and the order in which the test cases are added to the

representative set the same order is to be followed while executing this representative

set whose efficiency is calculated in terms of APFDC. The remaining two parameters

are computed using representative set which the sufficient number of test cases

required to expose all the faults. This empirical work helps in building the system

correct again by implementing and suggestions proposed by these algorithms rather

than executing the test cases in arbitrary fashion, to achieve the best value of

suggested objectives.

180

We have complied Table 6.8 for the purpose of representing and understanding

average wise generated values by each of the algorithms while testing subject

websites and their respective versions. When the results related to first objective is

observed, it is found that NSGA-II performs the best and surprisingly same was

repeated by our proposed algorithm which is greedy approach based enhanced

T
ab

le
 6

.8
:

M
at

ri
x
 d

ep
ic

ti
n
g
 t

h
e

av
er

ag
e

o
f

g
en

er
at

ed
 r

es
u
lt

s
b
y
 a

ll
 t

h
e

al
g

o
ri

th
m

s
o
v

er
 a

ll
 t

h
e

su
g

g
es

te
d

 o

b
je

ct
iv

es

 a
n

d

p
er

ce
n

ta
g

e
w

is
e

te
st

 s
u
it

e
re

d
u
ct

io
n
,

w
h
en

 a
p
p
li

ed
 o

n
 a

ll
 v

er
si

o
n
s

o
f

ea
ch

 o
f

th
e

su
b

je
ct

 w
eb

si
te

s.

A

P
FD

c

0
.9

4
2
2

0
.9

3
4

0
.9

3
7

0
.8

6
1

0
.8

7
0

0
.9

4
0

0
.9

4
2
2

0
.9

3
8

0
.9

3
3

0
.9

3
3

0
.9

3
3
4

0
.9

3
3
5

0
.9

1
8

0
.9

1
4

0
.9

1
5

0
.9

2
6

0
.9

2
6

Se
ve

ri
ty

7
0
.7

1

8
2
.4

4

7
2
.8

7

5
8
.7

9

5
9
.8

7

6
3
.9

0

6
5
.6

0

6
9
.3

0

7
9
.7

8

8
1
.6

4

8
1
.7

0

8
1
.6

9

8
0
.3

2

8
0
.9

0

8
0
.0

7

5
4
.3

3

5
4
.6

2

Ex
ec

u
ti

o
n

 C
o

st

1
2
6
.5

3

1
3
9
.6

2

1
2
1
.2

7

5
9
4
.6

5

5
7
6
.4

6

1
3
8
.1

0

1
2
6
.9

1

1
4
5
.2

5

1
4
9
.3

3

1
3
6
.4

3

1
3
6
.4

3

1
3
6
.3

5

2
4
3
.8

4

2
5
3
.8

0

2
2
1
.1

0

1
2
7
.5

1

1
2
9
.6

0

%
 w

is
e

Te
st

 s
u

it
e

re
d

u
ct

io
n

8
1
.4

4

8
1
.9

5

8
2
.3

0

5
4
.1

0

5
8
.9

7

7
7
.6

3

8
0
.0

1

7
9
.6

9

8
0
.0

0

8
1
.8

9

8
1
.8

9

8
0
.6

8

6
9
.6

0

6
8
.7

9

7
2
.8

1

7
9
.7

9

7
9
.0

6

N
SG

A

-A

N
SG

A

-S

N
SG

A

-E

SG
S

-1

SG
S

-2

A
G

S
-1

A

G
S

-2

SO
H

M
O

H

W
G

A

-A

W
G

A

-S

W
G

A

-E

R
W

G
A

-A

R
W

G
A

-S

R

W
G

A

-E

G
T

A
P

E-
LI

N

181

additional greedy algorithm (AGS-2). The poorest performance is shown by SGS-1

where it performs 8.59% less than the previous one.

During observation of second objective, severity detection rate, it can be concluded

that first slot was again taken by NSGA-II (specifically NSGA-S) while the last

position was occupied by GTAP algorithm with 34.09% poor performance in

comparison to best algorithm.

Our third objective was the minimization of execution cost (time) of the test cases for

detecting all the faults and for which the best average wise performance was shown

by NSGA-II(specifically NSGA-E) and the last position was occupied by SGS-1 with

extremely large gap between these two in terms of average performance.

For this parameter we would also like to point out the performance of algorithms

proposed in reputed prior studies which are GTAP and ELin on the third objective

which is minimization of execution cost (time) of the test cases. It was observed that

NSGA-II was able to achieve 4.9% better than both of these algorithms; thus NSGA-

II surpasses these two average wise also and becomes a better option for tester

community.

On this objective of our dataset, fortunately, our proposed algorithm AGS-2 also

presents a better show then these two reputed algorithms and comes out as a better

option too. It has also been validated which has been concluded, in [194], that GTAP

outperforms Elin algorithm.

Our fourth and last(indirect)objective which is measured is average of percentage

wise test suite reduction generated by each of the algorithms. Here in this too NSGA-

II outperforms all other algorithms by becoming most prominent algorithm. The

performance shown by WGA was also extremely well and was at par with NSGA-II

and better than that of ELin and GTAP. Thus NSGA-II and WGA comes out to be a

preeminent option, among the entire suggested algorithms, for minimization of test

suite without deteriorating coverage criteria. The poorest show was shown by AGS-1

(simple greedy) algorithm where the presentation was 33.5% worse than NSGA-II.

Table 6.9 given below shows the performance of the selected algorithms in terms of

percentage reduction of the original test suite while solving every version of all the

subject websites.

182

Table 6.9: Result matrix depicting performance in terms of percentagewise original test suite reduction

by the selected algorithms when applied on all versions of all the subject websites.

NSGA

-A
NSGA

-S
NSGA

-E
AGS
-1

AGS
-2

SOH MOH
WGA

-A
WGA

-S
WGA

-E
RWGA

-A
RWGA

-S
RWGA

-E
GTAP E-LIN

W1V1
(52*23)

84.61 84.61 86.53 78.84 82.69 84.61 84.61 84.61 84.61 84.61 80.76 80.76 84.61 82.69 80.76

1.283 1.283 3.203 -4.487 -0.637 1.283 1.283 1.283 1.283 1.283 -2.567 -2.567 1.283 -0.637 -2.567

W1V2
(61*25)

85.24 88.52 85.24 85.24 85.24 85.24 85.24 85.24 85.24 85.24 81.96 81.96 85.24 85.24 85.24

0.219 3.499 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 -3.061 0.219 0.219 0.219 0.219

W1V3
(69*31)

86.95 88.4 88.4 82.6 86.95 86.95 86.95 88.4 88.4 86.95 82.6 85.5 85.5 84.05 84.05

0.774 2.224 2.224 -3.576 0.774 0.774 0.774 2.224 2.224 0.774 -3.576 -0.676 -0.676 -2.126 -2.126

W1V4
(74*35)

85.13 85.13 86.48 83.78 85.13 83.78 83.78 86.48 86.48 86.48 79.72 78.37 82.43 85.13 83.78

0.992 0.992 2.342 -0.358 0.992 -0.358 -0.358 2.342 2.342 2.342 -4.418 -5.768 -1.708 0.992 -0.358

W2V1
(104*62)

84.61 84.61 85.57 83.65 84.61 82.69 82.69 83.65 83.65 83.65 75.96 76.92 81.73 85.57 84.61

1.666 1.666 2.626 0.706 1.666 -0.254 -0.254 0.706 0.706 0.706 -6.984 -6.024 -1.214 2.626 1.666

W2V2
(139*70)

85.61 87.05 87.05 84.17 84.17 82.73 87.05 87.05 87.05 87.05 71.22 66.18 74.82 84.89 84.17

2.926 4.366 4.366 1.486 1.486 0.046 4.366 4.366 4.366 4.366 -11.464 -16.504 -7.864 2.206 1.486

W2V3
(131*104

)

74.04 74.04 74.04 66.18 70.99 70.99 73.28 72.51 72.51 72.51 50.38 54.19 56.48 70.22 70.22

5.868 5.868 5.868 -1.992 2.818 2.818 5.108 4.338 4.338 4.338 -17.792 -13.982 -11.692 2.048 2.048

W2V4
(211*98)

84.83 87.2 85.78 81.51 82.46 84.36 82.46 85.78 85.78 85.78 67.29 66.35 67.29 82.46 81.51

4.108 6.478 5.058 0.788 1.738 3.638 1.738 5.058 5.058 5.058 -13.432 -14.372 -13.432 1.738 0.788

W3V1
(78*36)

85.89 85.89 85.89 82.05 84.61 84.61 84.61 85.89 85.89 85.89 80.76 76.92 80.76 82.05 82.05

2.306 2.306 2.306 -1.534 1.026 1.026 1.026 2.306 2.306 2.306 -2.824 -6.664 -2.824 -1.534 -1.534

W3V2
(89*64)

71.91 70.78 74.15 67.41 69.66 70.78 67.41 71.91 71.91 71.91 55.05 52.8 58.42 70.78 68.53

4.35
3.22 6.59 -0.15 2.1 3.22 -0.15 4.35 4.35 4.35 -12.51 -14.76 -9.14 3.22 0.97

w3v3
(97*52)

83.5 83.5 83.5 79.38 82.47 79.38 78.35 84.53 84.53 84.53 68.04 67.01 68.04 82.47 81.44

4.122 4.122 4.122 0.002 3.092 0.002 -1.028 5.152 5.152 5.152 -11.338 -12.368 -11.338 3.092 2.062

w3v4
(123*68)

79.67 80.48 79.67 73.98 75.6 77.23 78.04 79.67 79.67 79.67 55.28 56.91 59.34 77.23 77.23

5.692 6.502 5.692 0.002 1.622 3.252 4.062 5.692 5.692 5.692 -18.698 -17.068 -14.638 3.252 3.252

w4v1
(58*49)

68.96 70.68 68.96 63.79 68.96 68.96 65.51 70.68 70.68 70.68 55.17 55.17 62.06 67.24 67.24

2.644 4.364 2.644 -2.526 2.644 2.644 -0.806 4.364 4.364 4.364 -11.146 -11.146 -4.256 0.924 0.924

w4v2
(84*45)

83.33 83.33 85.71 80.95 82.14 82.14 82.14 84.52 84.52 84.52 82.14 76.19 83.33 80.95 80.95

0.873 0.873 3.253 -1.507 -0.317 -0.317 -0.317 2.063 2.063 2.063 -0.317 -6.267 0.873 -1.507 -1.507

w4v3
(90*73)

76.66 75.55 77.77 71.11 74.44 74.44 77.77 76.66 76.66 76.66 61.11 61.11 62.22 75.55 74.44

3.85 2.74 4.96 -1.7 1.63 1.63 4.96 3.85 3.85 3.85 -11.7 -11.7 -10.59 2.74 1.63

w4v4
(151*129

)

82.11 81.45 82.11 77.48 80.13 76.15 80.13 82.78 82.78 82.78 66.22 64.42 68,21 80.13 78.88

3.714 3.054 3.714 -0.916 1.734 -2.246 1.734 4.384 4.384 4.384 -12.176 -13.976 10.186 1.734 0.484

This empirical work is able to satisfy the following three research questions, as

academic contribution.

183

 [Q 6.1] Is there any scope of improvement in performance of various classical

algorithms which are followed since decades in the context of the said problem?

Answer: The two classical approaches followed are SGS-1 and AGS-1, it has been

proved with the help of this work that SGS-2(authors proposed algorithm)

outperforms classical SGS-1 in achieving all the objectives and similarly AGS-2

presents better show than that of AGS-1 in all the objectives. At the same time MOH

performs better than that of SOH in one objective and lags in the remaining two

objectives. Finally, during percentage wise test suite reduction MOH outperforms

SOH.

 [Q 6.2] Does there exist any algorithm(s) which can perform better than the

algorithms proposed by the researcher’s fraternity during the last few years while

solving the problem in hand?

Answer:

In response to this question, authors want to communicate that two greedy based

algorithms have been proposed during last five years for solving test suite reduction

problem. They both have the common objective to minimize original test suite

without compromising requirement coverage, and at the same time, execution time of

minimized test suite should be least. Our proposed AGS-2 works on the same

objective and performs better than these two, on present dataset, in terms of reduction

of test suite size as well as execution time of reduced test suite. Moreover existing

NSGA-II shows the best results than the entire comparative algorithm.

[Q 6.3] Which is the best option for the tester fraternity, in terms of performance

ranking, among the suggested algorithms, in terms of various considered parameters,

while solving the suggested problem?

Answer: For the above query, authors wants to confirm that NSGA-II comes out to be

the best promising option, among all the compared algorithms, while solving the

multi-objective Test Suite Reduction optimization problem. For smaller size instances

it has been proved that NSGA-II algorithm was able to generate the best possible

result and that was verified with permutation of test suite. For large size instances the

algorithm takes care of all the suggested parameters, in parallel, and presents the

184

upper/lower bound, depending upon the type of objective, of results for all the

objectives majority of the time.

Previously test suite reduction and test case prioritization were two different and

distinct problems of regression testing domain. However few years back the

researcher’s community have start thinking in direction of prioritization of reduced

test suite as some scenarios have been observed where the execution of reduced test

suite was not possible due to hard deadlines. This gives us the inspiration to work in

this direction where we want to reduce test suite while keeping three conflicting

objectives in mind and then prioritize it, which is the secondary objective of this

work. As per the literature survey conducted and best of our knowledge these three

suggested objectives were not considered previously in any of the previous published

study to date, while solving recommended test suite reduction problem.

In this work we have modified two classical algorithms, greedy algorithm and

classical additional greedy algorithm, and proves that our proposed updated versions

computes more promising results in many objectives and parameters, which are

presented in the current work. We have also compared the work proposed in the

reputed study [42 and 56] whose primary objective of test suite reduction matches

with ours. Form the innovation point of view we have proved that on current dataset

our proposed algorithms outperforms these two benchmark algorithms, ELin

algorithm and GTAP algorithm on test suite reduction objective with minimum test

case execution cost and without compromising coverage criteria . We have also

proved, what have been previously mentioned in the literature, that GTAP

outperforms ELin algorithm[36]. As per the conducted literature survey and best of

our information RWGA and WGA algorithm has been implemented first time to solve

this category of problem. As the resultant of conduction it has been originate that

RWGA performance is promising in satisfying two objectives.

In this work, we have also compiled a detailed comparative table which depicts

generated percentage wise test suite reduction by every considered algorithm on each

and every version of all the subject websites.

185

6.6 CONCLUSION

During this work, our attention was on two underlying objectives; the primary focus

was on generating representative set of the original test suite without compromising

coverage criteria and the secondary one is the prioritization of test cases that have

become the part of representative set. Various state-of-art algorithms and their

updated versions (proposed by authors), based on diverse techniques, have been

applied to evaluate and validate the results and performance on different subject

dynamic websites and their versions, for test suite reduction optimization problem in

many objective environment. We have also proved that our suggested certain

modifications in classical algorithms results in enhancement of performance.

This work also concludes that if test suite reduction practices are followed then

resources like hardware, software, human resources, labour and time can be

appreciably saved and moreover the quality of the software will also improve and that

ultimately enhance the confidence of the stake holders. NSGA-II comes out to the

best choice among all the suggested algorithms for all the parameters simultaneously.

NSGA-II comes out as superior alternative as it supports the mechanism of selecting

and executing test cases that have high fault exposing capability of large severity with

low execution cost. NSGA-II suggests three solutions to the tester community and

they can make use of it according to their requirement, priority and need.

Some of the algorithm tried their best to compete with NSGA-II, they succeed in one

or maximum two parameters but not in all for example WGA and AGS-2 performs

equivalent to NSGA-II in one parameter but lags in remaining two.

The minor intention of the on hand study is prioritization of the reduced test suite.

Therefore, the authors have considered finding the fastest unit-of-fault-severity-

detected-per-unit-of-test-cost as one of the objectives, which is the measure of

efficiency of TCP. Test case prioritization [58] supports revealing severe faults during

the initial phase of testing exercise; hence, test execution is designed in a mode to

intensify accomplishment of performance so that specified objectives would be

achieved within a resource constrained environment. Among all the suggested

algorithms, here also, NSGA-II secures first slot against all other algorithms.

186

187

Chapter VII

TEST CASE PRIORITIZATION DURING WEB

APPLICATION TESTING: PROPOSED WORK

7.1 INTRODUCTION

In this work we have proposed a novel approach towards prioritization of test cases

during regression testing of web application using Bayesian network. Initially, a

Bayesian Network (BN) is formed using various parameters which affect the success

of a test case as well as promote testing of more crucial sections of the web

application (dynamic website). Thereafter, the conditional probability table and

probabilistic inference algorithms are applied to evaluate the success probability and

ultimately priority (importance) of a test case. Execution of the test cases takes place

on the basis of their respective priority. For measuring the effectiveness of the

prioritized sequence APFD metric is computed. The performance of proposed

technique is also compared with existing work, 2-opt inspired heuristic and one Meta

heuristic algorithm (Genetic Algorithm).

Web applications (or dynamic websites) are widely accepted by the large community

across the world. During the talk delivered by top government officials, it was

notified that how E-commerce has been spreading their wings in developing country

like India. Indian Government and various state governments are using web

applications so that E-Governance and the related services should reach to each

citizen of the country despite of its geographical location, rural or urban. This

government owned web applications are updated to incorporate updated

functionalities or new features. On the other side many private players like Amazon,

Flipkart, makemytrip.com, bookmyshow.com, naukri.com, jeevansaathi.com and

redbus.in etc. have very huge customers base due to their trust worthy and eminence

188

services. Moreover the developers of these websites have to make changes weekly or

monthly to maintain their position in online market by providing new offers or

services to customers. In order to maintain these high standards of web applications

and to incorporate fault-free frequent updates, efficient testing is required. Due to

various alterations like addition/deletion/ modification at page/functionality level in

the already existing Web application there are chances that fault can occur in the

changed section or change may bring a new fault in the previous unchanged sections.

For exposing these faults, the sort of testing is done which falls under the category of

Regression testing. Regression testing is one of most expensive testing in software

maintenance to ensure known existing behaviour or functionality is not broken.

During regression testing selecting all test cases of the test suite for execution purpose

or for prioritizing purpose is an expensive exercise . Even some time it is not possible

to execute each and every test case due to constraints like monetary issues, short span

of time and availability of skilled human resources.

It gives rise to the inspiration of prioritizing (and executing) test cases on the basis of

their success rate (fault detection capability) or to derive a selection technique (which

can pick few significant test cases among all), so that effort and cost on testing could

be reduced. During test selection technique, dropping some of the test cases may

results in deterioration of fault exposing capability of a test suite. Unlike, in case of

test case prioritization strategy, all the test cases are executed according to their

contribution to achieve predefined testing goals and ultimately reducing the testing

cost and effort. Hence the proposed work is inclined towards test case prioritization

and a novel method is proposed for prioritizing test cases. The proposed model is

based on Bayesian Belief Network which falls under the category of probabilistic

graphical models . The model can be divided into two sections. Upper section of the

model concentrates on functionality (module) level while lower one takes care on

page level. Various parameters are identified at functionality level as well as on page

level, while keeping the general architecture of the dynamic website in mind, which

directly or indirectly correlates the occurrence of fault. Diverse third party tools,

system utilities and visualization of structure of website are applied for finding the

values of these parameters. Five versions of the dynamic website were released.

During each version modifications were done at code level, page level and

189

functionality level. Various fault categories were identified and the faults belonging to

these categories were manually seeded in the website under test during all the

versions. Test cases which were capable of detecting these manually injected faults

were generated using selenium testing and replay tool . The probability of fault

detection capability of each test case is calculated on the basis of values of the

parameters, applying logistic regression technique and application of chain rule . On

the basis of these values of probability the test cases are sorted and executed in the

decreasing order of their values, thus implementing the prioritization of the test cases.

The efficiency of the prioritized test sequence is measured in terms of APFD

percentage , where APFD is used as a measure of fault exposing capability of any

permutation of test execution sequence of all the test cases belonging to test suite. The

APFD of the proposed model is compared with relevant existing work, some

traditional techniques, 2-opt heuristic algorithm and Genetic Algorithm.

 The main contributions of the work are as follows.

 Defining and calculating parameters related to the test cases and

structure of the website .

 Building proposed Bayesian Network which uses parameters defined

in step 1.

 Finding the success probability of each test case using probabilistic

inference algorithm. Prioritizing test cases on the basis of their success

probability.

 Comparing the performance, in terms of APFD, of the proposed

approach with various other existing approaches.

7.1.1 Bayesian Network

A Bayesian network is a probabilistic graphical model used to represent cause and

effect relationship between several random variables. It is represented in the form of a

directed acyclic graph with a conditional probability distribution table associated with

each node. The components of the graph i.e, arcs of the graph represent the causal

relation between the random variables and nodes represent the random variables

[213].

190

During extensive literature survey through scholar.google.com and navigation of

many other reputed journals website it has been observed that a lot of studies were

presented on software testing using Bayesian Network but most of them were limited

to fault detection or software quality and very less experimentation was conducted on

test case prioritization using BN [27][28]. Moreover no study is published especially

for testing web application in this perspective.

Fenton et al. [215] proposed their work on prediction software defect in development

life cycle using BN with Agena risk tool set.

Prediction of software defect and fault was experimented on using various parameters

in the study proposed by Fenton et al. [214]. Authors experimented to locate the

defects through analysis of the defects (fault) inserted during testing time and real

defects (faults) found during operation time.

Minana et al. [218] present new refined BN algorithm for embedded system

development process as deployed in Motorola Toulose. The validation and refinement

takes place by collected data from software development and testing team. This data

acts as an input to Bayesian Network. The output of BN is compared with output by

Motorola Toulouse. They used various parameters in BN and the relevant information

was collected from development team.

Pai et al. [217] proposed a BN model which relate different object oriented software

matrix to software fault content and fault proneness. The anticipated model estimate

fault content per class in system and conditional probability of that class containing

fault. Various parameters considered by the authors in their model were weighted

methods per class, Depth of inheritance tree, Response for class, Number of children,

coupling between object classes, Lack of cohesion in methods and source lines of

code.

191

Zhou et al. [211] presented a model on prediction of change coupling in source code

using BN. Researchers inspect software changes including change significance or

source code dependency level, and extract feature from them to implement BN.

Authors of two prior studies, [27] and [28], proposed studies implementing BN for

test case prioritization for testing of application software. The parameters which were

considered during their study were source code changes, software fault-proneness,

and test coverage. During both of the published literature, structure and testing of web

application were not taken into consideration at all.

According to literature survey which is presented in the chapter two and as per the

best of the author’s knowledge, this work is the first attempt for prioritization of test

cases, using Bayesian network for testing web applications using diverse key

parameters (for web application testing) inspired from above studied literature. Only

two studies, [27] and [28], somewhat resemble the proposed work where the objective

was TCP, as ours, but the software, under test, and its structure was entirely different

and moreover some of the considered parameters are dissimilar.

7.2 PROPOSED MODEL

7.2.1 Overview

In this proposed model of Bayesian network, Binary Logistic Regression technique is

applied, [216], which were also referred by Pai et al. [217] in their experimental

study. To calculate parameters of regression (β0, β1, β2…. so on depending upon the

number of independent variables) Logistic Regression Calculator page was used

[208].

The proposed approach addresses the problem of prioritization by

 Gathering different evidences information from the web site.

 Integrating all parameters to a single Bayesian Network.

192

 Using probabilistic inference to compute success and importance probability

of test case.

The initial step to prioritization is to gather all the parameters that are to be

incorporated in the model.

Five kind of information which are crucial for finding the success probability and

importance of a test case were gathered. These include:

 Dependency of the system on a module.

 User Behaviour.

 Efficiency of a test case.

 Code change information.

 Coupling information of pages.

7.2.2 Acronym and Terminology

 A list of the terminology and acronyms used in the paper is as below

 DSF: Functional dependency of system

 UB: User Behavior

 ET: Efficiency of test Cases

 CC: Code Change

 CP: Coupling among Pages

 IMPF: Importance of function

 IMPT: Importance of test cases

 FP: Fault Proneness

 ST: Success of test cases

193

Figure 7.1: Proposed Bayesian Network model for TCP

7.3 BAYESIAN NETWORK WITH CONDITIONAL PROBABILITY

7.3.1 Dependency of System on Module

`

The structure of the website resembles directed graph in which pages (or forms)

represents the nodes of the graph and the data or link connectivity represents edges

between the nodes. Every path which has to be tested starts from root node (home

page) and ends at destination node. Any fault on a particular page, which is the part of

the path, can interrupt the subsequent remaining path and ultimately one or more

functionalities of the website. Hence if one or more modules (or functionality) are

dependent on any module then this module is very important for testing because in

case of any fault in this module the other modules which are dependent on this

module would be affected. Modules which are nearest to root node are more

significant, in terms of dependency, and modules which are far from root node are

less significant like leaf node which has no dependency.

Thus severity of the fault is considered to be inversely proportional to its distance

from the root (home page) and directly proportional to out degree of the node. This

parameter can also be named as “dependency of the website on the page”.

194

Out Degree of each page and the distance of the page from the root are measured from

the functional dependency graph of the website, which represents the functional

dependency (structure) among modules of the website.

Its probability is given as:

 --- (7.1)

DSF= Dependency of the system on a i
th

 functional module.

7.3.2 User Behavior

Web applications are heavy user intrinsic software. These applications are accessed

from anywhere across the world by any category of user right from novice to expert.

The experience of surfing clearly indicates the navigation behaviour of the user.

Moreover during literature survey it has been noticed that researcher’s fraternity

specially working on testing web applications have proposed many studies during last

decade considering user session and user behaviour as the base of study. The above

discussion gives the inspiration for considering “user behaviour” as parameter in the

proposed model. Here in this experiential work we try to capture and incorporate

parameters related to user sessions and user behaviour, belonging to any category,

into the proposed model.

User’s behaviour is used as one of the evidence because user behaviour has been

defined through a branch ‘analytics’. Here by analytics we mean to discover, interpret

and communicate some meaningful data to the proposed model. User behaviour

analytics plays a key role in enterprise management, marketing, risk and traffic

analysis.

In the proposed work, we use the aspect of data logging in which preference will be

on log analysis (system or may be network). In computer science the management of

log, intelligence and log analysis is an art and science that make sense of records

generated by computer (logs).

People perform log analysis:

 To compliance with security policy

195

 To compliance with regulation policy.

 To analyze errors.

 For security incident response.

A log analysis helps in mapping of varying terminologies into normalized

terminologies so that reports and statistics could be compiled together from

heterogeneous environment. Thus, log analysis has their existence right from retrieval

of text is to reverse engineering of software.User behavior for the proposed model

uses three parameters:

 Hits on each page.

 Number of visitors on each page

 Bandwidth transferred for each page

It is determined using the following heuristic:

 --- (7.2)

 =0 if Fi does not appear in any session.

To the best of authors knowledge none of the work has been done while considering

these three parameters during website testing. There was no standard previously

derived formula incorporating these three parameters. In the proposed model these

parameters are considered by taking inputs from the professionals who are building

web applications and having vast experience and converting it into a simple heuristic

equation (7.2).

7.3.3 Efficiency of Test Case

Testing of the software within given time frame is always challenging task and

therefore time has become important factor in testing of any system. An ideal test

case, say Ti, is a test case whose percentage code coverage is very high while its

execution time is very low.

Efficiency of a test case is modelled in the form of running time of the test case and

its percentage coverage. This information is determined by using Emma with eclipse

196

[209]. The procedure is discussed later in detail. The formula used for determining

efficiency is:

 --- (7.3)

7.3.4 Code Change

Another important factor which should be considered in test case prioritization is

change of code. Changes in the code is exercised to incorporate various factors which

include

 Changes in the user requirements

 Performance issues at page/ functionality system level.

 Release of the new versions with some addition/modifications/deletion.

In perspective of websites frequent changes at page level may introduce a fault and

should be detected as earliest. Code change refers to the changes made for the new

release of the website.

 --- (7.4)

7.3.5 Coupling Among Pages

Ideally, modules of the software should neither loosely coupled nor highly coupled.

Offutt et al. [212] in their study on presentation layers of web applications for testing

stated that there exists three types of coupling among modules which are “tight

coupling”, ”loose coupling” and “extremely loose coupling”. Authors strongly

emphasize on extremely loose coupling for the software like web applications. In case

of extremely loose coupled systems (like web applications) if there are two pages of

the website ,X and Y suppose, where X sends data to Y, and both are extremely

loosely coupled then a change in X may change the contents of the data that Y uses,

but the structure of the data will not be changed. Hence there will be minimal effect of

changes in X on Y. This study and the presented scenario give rise to the motivation

for incorporating this parameter (extremely loose coupling) in the proposed model. In

the proposed work coupling is defined as interdependency among web pages of

website. Many web pages can be part of single module and single web page can be

part of various modules. In the proposed model coupling is defined at page level

197

which depicts the interdependency between the pages of the website. It is calculated

as sum of in degree and out degree of the page. In a coupled system like dynamic

websites the fault on a particular page pi will affect the expected output of those pages

which are calling pi, moreover it may also temper the results when faulty page pi calls

other non faulty pages. Hence it may highly prone to fault and may affect called and

calling pages both.

The similar study has been done by other researchers (Zhou et al. [211]) where they

have included coupling among objects as an object oriented metric and same has been

transformed as coupling among pages in the proposed work.

 It is determined using the following formula:

 --- (7.5)

Here the coupling is determined using link dependency graph as shown in figures 7.2

and 7.3.

After calculating the probabilities of each evidence/ parameter, relative probability is

calculated according to given Bayesian belief network.

7.3.6 Importance of Function Given Dependency of the System on the Function

It represents the conditional probability of the importance of a module given the

dependency of the system on the module. It is determined using binary logistic

regression technique, discussed later.

Finally, the probability is determined using the formula:

 --- (7.6)

where dependency value = Out degree of fi /distance from the root*10(here 10 is the

normalization factor).

198

7.3.7 Importance of Function given User Behavior

It represents the conditional probability of the importance of a module given the user

behavior. It is determined using the following formula:

 --- (7.7)

where user behaviour = (No. of visitors)*0.5 +(hits)*0.3 + (bandwidth)*0.2 on the

page in which Fi appears. Hits, visitors and bandwidth are determined using Weblog

expert tool [210].

Figure 7.2:Data and Link dependency of website

199

Figure 7.3: Functional Dependency of website

7.3.8 Importance of Test Case Given the Importance of a Module

It represents the conditional probability of the importance of a test case given the

importance of a module. It is determined using the following formula:

 --- (7.8)

7.3.9 Importance of Test Case given the Efficiency of the Test Case

It represents the conditional probability of the importance of a test case given the

efficiency of the test case. It is determined using the following formula:

 --- (7.9)

7.3.10 Fault proneness given code change

It represents the conditional probability of fault proneness of a page given the lines of

code changed on the page. It is determined using the following formula:

200

 (7.10)

where code change is determined using the method discussed earlier.

7.3.11 Fault Proneness given Coupling

It represents the conditional probability of fault proneness of a page given the

coupling of the page with other pages. It is determined using the following formula:

 --- (7.11)

7.3.12 Success of Test Case given Fault Proneness

It represents the conditional probability of success of a test case given the fault

proneness of a page. It is determined using the following formula:

 --- (7.12)

7.3.13 Probabilistic Inference Algorithms

To find the inference of the model, chain rule has been used. This is an approximate

technique in which, the product rule is applied repeatedly to give expressions for the

joint probability involving more than two variables.

In the proposed work chain rule has been applied individually on the upper and lower

part of the network and then the probability is combined by adding probability for

each individual test case from both parts of the network.

In the similar fashion the final probability of each test case can be calculated. After

that test cases are sorted into decreasing order of their probabilities .Test case with

highest value indicates that it has the highest probability of detecting the fault (fault

exposing capability) and should be executed first. Remaining test cases will be

executed in the similar fashion in the decreasing order of their probability. In case of

tie any one of the test cases would be selected randomly.

201

7.4 EXPERIMENTAL SETUP

To implement the proposed BN approach, a model is generated which consists of

three sections as shown in Figure 7.4. During the first section of the model, different

evidences and their corresponding values are generated which are used in

implementing BN. Information related to test cases and website under test is required

for gathering evidences or parameters. Web site is used to gather information about

functional dependency of modules (as shown in Figure 7.4), multi value (link and

data) dependency between pages (as shown in Figure 7.2), user session and line of

codes. Test cases are used to gather information about code coverage of test case and

execution time of test cases. In second section of the model, all the generated

information is integrated to make Bayesian Network model (as shown in Figure 7.2).

Finally in third section, probabilistic inference is used to calculate the probability of

each test case. The calculated probability of the test case plays the role of its priority,

while executing all test case of the test suite, that is higher the probability higher

would be its priority. The information need to calculate evidence value is shown in

Table 7.1 with sample data value.

Ehhhherr

Figure 7.4: Block Diagram of Prioritization Model.

Extracting Evidences

Modules: Out degree

Distances from root node.

Visitor Hits band width

pages: Coupling Code

Changes, LOC

Test case: Code

coverage’s, Test

case running time

Building

Bayesian

Network

Probabilistic

Inference

Website

Test

Cases

Evidences

BN

Model

Prioritized

Test Cases

202

The proposed BN has been implemented on five versions of the same website

“company information tracking system” which is based on java servlet pages (jsp). It

has been made by the local IT professionals and presently implemented in small size

company for its internal usage. During every version certain modules and pages are

added/modified/removed from previous version which causing introduction of some

new test cases and some test cases to become obsolete. The addition of new test cases

and removal of obsolete test cases has been performed on the basis of mapping

between requirements versus test cases matrix. For testing purpose several types of

fault are manually seeded into the website including arithmetic calculation error, 404

error, cosmetic error, cascading style sheet error, missing information, authentication

etc. Detailed information regarding website, fault and test cases used are shown using

Table 2.

Table 7.1: Sample Data Table

This project (dynamic website under test) has been hosted on apache server; hence the

analysis has been done on apache server logs. For the tracking of user behaviour on

the website, log files are traditionally taken into consideration. These server logs are

in NCSA format. Several log analysis tools (like Google analytics tool, weblog expert

lite, weblog expert, deep log analyzer, log parser studio etc.) are available which can

perform diverse analysis on various parameters. In the proposed work, Weblog expert

[210] has been used for parsing the server log file of apache Tomcat server. The input

Modules Out degree
Distance from

root node
Visitor Hits Bandwidth

1 7 1 21 60 40

2 6 2 25 47 148

3 2 3 12 72 10

Pages Coupling Code changes LoC - -

1 2 8 193 - -

2 21 3 38 - -

3 4 10 50 - -

 - -

Test case
Code

coverage

Test case

running time
- - -

1 1.6% 0.5 - - -

203

to the tool will be log file of apache tomcat server and the output from the tool will be

the hits, visitors and bandwidth used.

Table 7.2: Various relevant information about subject websites

To calculate i.e, the efficiency of a test case, execution time of the test case is

required along with the percentage code coverage. This information is determined by

using Emma tool with eclipse [209].

For calculating , changes in the code is determined using fc (file compare)

utility of windows followed by a statement to count the number of lines.

To calculate Binary logistic Regression the parameter of logistic regression β0, β1, β2

are calculated using online tool [208].

As discussed earlier, various faults of different types are manually injected into the

different versions of the website. Test cases related to corresponding manually seeded

faults are created using selenium IDE, which also plays the role of replay tool [207].

Version V1 V2 V3 V4 V5

Total faults 27 27 30 34 33

Types of faults
10 10 10 10 10

Total test cases 56 55 60 65 62

Total web pages 65 69 72 81 79

Total modules 44 44 44 47 47

Total KLOC. 5.434 5.447 5.621 6.102 5.972

APFD(Approx.)

%

69.82 72.77 73.81 77.16 71.84

204

7.5 RESULT AND ANALYSIS

The major objective of the work was to propose an effective technique for test case

prioritization while considering those parameters which plays critical and important

role while testing of the web application. To validate the performance of the proposed

approach, the proposed model is experimented on five versions of the same web site

and then comparison is done with seven other prioritization techniques. The efficiency

of the resultant prioritized test sequence is measured in terms of APFD achieved .The

result summary of proposed work is shown in Table 7.3.

 Table7. 3: Result analysis of all techniques

.

Result comparison table (Table 7.3) depicts the performance of eight techniques

where technique numbered one to six could be applied on any software including web

application while seventh technique which uses BN is applied on software application

only (Mirarab et al. [28]) and not on any type of web applications. All the parameters

considered in the seventh technique are applied in eighth technique also (proposed

technique) during web application testing for performance evaluation purpose.

Once the test case vs fault matrix is available, the test cases can be prioritized for

maximizing the APFD value. Prioritization of test cases lies under the category of

Serial

Number

Technique

Applied
Parameter

Average

APFD (%)

1 GA --- 96.02

2 Random --- 67.36

3 Default --- 54.39

4 2opt --- 93.59

5
Coverage Based

prioritization
Code coverage 68.32

6
Cost Based

Prioritization
Test execution Time 65.93

7 BN

source code changes,

software fault-proneness,

and test coverage,

71.54

8 BN (proposed)

Dependency of

functional module,

User Behaviour,

Efficiency of test case,

Code change,

coupling

73.08

205

“hard” problems of the algorithms whose complexity is exponential in nature. The

near optimal solution can be achieved by applying any heuristic technique or meta

heuristic technique. This gives the motivation for applying one of the famous heuristic

techniques known as 2-opt technique which is also applied in various similar works

(Herman et al. [198]). 2-opt inspired algorithm is coded in Java language, the

performance of which is shown in Table 7.3 as technique number four.

Similarly one meta heuristic technique, Genetic Algorithm (GA), is also taken into

consideration during performance evaluation. Various operators (selection, crossover

and mutation) and the values of the different parameters are inspired from existing

GA (Huang et al. [206]), the coding part is implemented in Java Language.

During literature survey it has been noticed that during test case prioritization

mainly code coverage parameter is taken into consideration. There is no second

thought that this parameter plays a vital role but other factors cannot be ignored and

should be given equal importance as that of code coverage. Other software

applications consider parameters like weighted method per class, number of class

children, coupling and cohesion in methods, source line of code, fault proneness and

test case coverage. This clearly indicates that mostly all the considered parameters are

related to object oriented technology in software application. Some of the parameters

discussed above are also taken into consideration because now a day’s majority of

dynamic websites are based on php or jsp, which is object oriented technology.

Figure 7.5: Result analysis w.r.t Faults and APFD.

206

Figure 7.6: Result analysis w.r.t Test cases and APFD.

For correct analysis of generated results, average value of APFD (of all five versions

of website) is computed. As there may be a possibility that during few version(s) of

website(s) one parameter dominates other parameter, which can amplify the result of

technique belonging to that particular parameter. Hence by considering average value

of APFD we wish to present expected result of each technique in every aspect of

parameters.

Figures (Figure 7.5 and 7.6) and Table (Table-7.3) clearly indicate that proposed

approach performs better when compared with random, default, code coverage and

cost based prioritization during each version of website. It has been observed that in

one version of website proposed approach performs not better then seventh technique

(BN) when some of their parameters dominates parameters considered in the

proposed work. In one version the result of proposed approach is very close to fifth

technique (code coverage).So on an average proposed approach is better than other

techniques. Moreover the proposed approach never performs better than that of GA

and 2opt, during any of the version, as both of them generates near optimal result.

7.6 CONCLUSION

During this work a model, which can be thought as original attempt, for prioritization

of test cases during regression testing of the software like web application using

Bayesian network is proposed. The model considers various parameters, some of

them are not considered in previous studies, and the rationale behind them is

explained in previous sections. The values of these parameters are calculated using

standard tools (or utilities). Various versions of the website were released and

207

selenium tool has been applied to create test cases. The efficacy of the model is

compared, in terms of APFD, with other standard algorithms/techniques. This model

of test case prioritization has a practical utility for the tester community by helping

increase in fault detection rate and probability of exposing faults during earlier stage

of execution of test suite. This will eventually support in debugging process to

commence earlier and the resultant will be amplification in the reliability of the web

application, under test.

It can also be concluded that Bayesian Network plays the role of effective technique

for test case prioritization if the appropriate parameters are applied in suitable way.

During this study, those parameters are selected which may be responsible for fault

occurrence while considering test case prioritization as well.

208

209

Chapter VIII

CONCLUSIONS AND FUTURE SCOPE

8.1 CONCLUSIONS

This chapter presents the achievements of this research and lists the scope of future

work. The outcome of this research contributed in designing of various techniques in

the area of test case prioritization, test case reduction and development of various

tools for the proposed techniques have been designed. This research will help the

software testers in minimizing the efforts and cost incurred in software testing

process.

8.2 BENIFITS OF THE PROPOSED WORK

 Identification of the Affected Module

The work proposed in this thesis will help the testes in finding the affected

module of the web application due to change in one module which results in

reducing the efforts and time incurred in software testing process. Once the

affected module has been identified, the test cases for this particular module

can be prioritized.

 Managing Risks in Software Projects through Test Case Prioritization

The ultimate goal of the test case prioritization process is the early fault

detection. The identification of critical bugs at early stages of development

process helps in managing the risks associated with a software project

(dynamic website in our case).

 Tool(s) for Test Case Prioritization and Test Case Reduction

To help the software testers during the process of software testing, the given

code can be moulded into the tool for the proposed test case prioritization

techniques/algorithms and test case reduction techniques/algorithms. These

210

tool(s) will help the testers in prioritizing and reducing the count of test cases

for system testing and at regression test levels.

8.3 FUTURE SCOPE

The work presented in this thesis can be extended with the following list of possible

future research issues.

 Test Case Prioritization using various clustering techniques

The various clustering techniques have been applied for solving test case

reduction problem where clusters are created on the similarity basis of test

cases. The same can be applied in our study too where test cases can be

divided into clusters which helps in test case reduction and moreover inter

clustering or intra clustering can be implemented for test case prioritization as

well.

 Testing the Proposed Techniques for the large projects

The proposed test case prioritization techniques have been tested on small

projects. It would be better if these are applied on large scale industry projects.

 Acceptance Test Case Prioritization

In this thesis the test case prioritization process has been done at system and

regression testing levels. But there may be large number of tests cases while

performing acceptance testing. The future work may be related to analyze the

factors that must be considered for acceptance testing and thereby helps in

prioritizing the test cases in acceptance testing.

211

REFERENCES

[1] Aditya P. Mathur, “ Foundation of Software Testing, Pearson Education,” 2nd

Edition, 2008.

[2] M.Kalaiyarasan, Dr.H.Yasminroja , “Version Specific Test Suite Prioritization

using Dataflow Testing,” International Journal of Recent Engineering

Science(IJRES),Vol. 1, No. 4, 2014.

[3] Manika Tyagi & Sona Malhotra, “An Approach for Test Case Prioritization Based

on Three Factors”, I.J. Information Technology and Computer Science, Vol. 4, 2015,

pp. 79-86.

[4] Naresh Chauhan, Software Testing – Principle and Practice, Oxford University

Press, 1st Edition, 2010.

[5] Pankaj Jalote, “An Integrated Approach to Software Engineering,” Narosa

Publishing House, Second Edition, 2003.

[] Praveen Ranjan Srivastava, “Test Case Prioritization,” Journal of Theoretical and

Applied Information Technology, 2005-2008, pp. 178-181.

[7] R. Kavitha and N. Suresh Kumar, "Model Based Test Case Prioritization for

Testing Component Dependency in CBSD Using UML Sequence Diagram,"

International Journal of Advanced Computer Science and Applications, Vol. 1, No. 6,

2010, pp.108-113.

[8] Ricca, F. , Tonella,P. “Analysis and testing of web applications”, ICSE ’01 23rd

International Conference on Software Engineering, 2001 pp. 25–34.

[9] Arora A., Sinha M.,” Web Application Testing: A Review on Techniques, Tools

and State of Art”, International Journal of Scientific & Engineering Research,

Volume 3, Issue 2, February2012.

[10] Sangeeta Sabharwal , Ritu Sibal and Chayanika Sharma,”A Survey of Testing

Techniques for Testing Web based Applications” ,International Journal Web

Applications, Volume 7, Number 2, June 2015.

[11] Pressman, R.S, “What a tangled web we weave [web engineering]”,.IEEE

Software Engineering, Volume 17, No.1,2000, pp.18–21.

[12] Ricca, F., Tonella, P, “Testing processes of web applications”, Ann.Softw. Eng.

14(1–4), ,2002, pp. 93–114.

[13] Pertet, S., Narsimhan, P,”Causes of failures in web applications. Technical

Report” CMU-PDL-05-109, Carnegie Mellon University,December 2005.

[14] Sprenkle, S., Pollock, L., Esquivel, H., Hazelwood, B., Ecott, S,”Automated

oracle comparators for testing web applications”, International Symposium on

Reliability Engineering, 2007,pp. 117–126.

[15] Van Wyk, K.R., McGraw, G,”Bridging the gap between software development

and information security”, IEEE Security and Privacy,Volume 3, No.5, 2005, pp.75–

79.

[1] T. Bharat Kumar, N.H., “A catholic and enhanced study on basis path testing to

avoid infeasible paths in CFG,” Global trends in information systems and software

applications, 2012, pp. 386-395.

[17] Yogesh Kumar, Arvinder Kaur & Bharti Suri, “Empirical Validation of variable

based Test Case Prioritization/Selection Techniques,” International Journal of Digital

Content Technology and its applications, Vol.3, No. 3, 2009.

[18] Zhang Zhonglin, M.L., “An improved Method of acquiring basis path for

software testing,” ICCSE’,2010, pp.18 1- 1894.

212

[1] Mark Harman ,” Making the case for MORTO: Multi Objective Regression Test

Optimization”, 2011 Fourth International Conference of Software Testing,

Verification and Validation Workshops, 2011, pp. 111-114.

[20] Akihiro Hori , Shingo Takada , Haruto Tanno and Morihide Oinuma,”An Oracle

based on Image Comparison for Regression Testing of Web Applications”, Software

Innovation Centre ,SEKE ,Japan,2015.

[21] Shin-Jie Lee, Jie-Lin You and Sun-Yuan Hsieh,” Automatically locating

unnamed windows and inner frames for web application testing”,IEEE International

Conference on Applied System Innovation, Japan 2017,pp.184-187.

[22] Disha Garg, Abhishek Singhal and Abhay Bansal,” A framework for testing web

applications using action word based testing”, IEEE International Conference on

Next Generation Computing Technologies (NGCT),Dehradun,India,2015,pp.593-598.

[23] MounaHommaudi,”Regression testing of web applications using Record/Replay

tools”, 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering,2016,pp.1079-1081.

[24] Maral Azizi and Hyunsook Do ,”A Collaborative Filtering Recommender System

for Test Case Prioritization in Web Applications”, Association for Computing

Machinery, ,2018.

[25] Wenhua Wang, Sreedevi Sampath,Yu Lei ,Richard Kuhn, James Lawrence and

Raghu Kacker ,” Using Combinatorial Testing to build navigation graphs for

dynamic web applications” Volume 26, Issue 4, June 2016 , Wiley Journal of

Software,2016, pp. 318–346.

[26] Daniel Di Nardo,Nadia Alshahwan,Lionel Briand and Yvan Labiche ,” Coverage

based regression test case selection, minimization and prioritization: a case study on

an industrial system” Volume 25, Issue 4, June 2015, Wiley Journal of

Software,2015, pp.371–396.

[27] Mirarab, S. and Tahvildari, L. ,”An Empirical Study on Bayesian Network-based

Approach for Test Case Prioritization”, International Conference on Software

Testing, Verification, and Validation,2008,pp.278-287.

[28] Mirarab, S. and Tahvildari, L. ,”A Prioritization Approach for Software Test

Cases Based on Bayesian Networks” , M.B. Dwyer and A. Lopes (Eds.): FASE 2007,

LNCS 4422,Springer-Verlag Berlin Heidelberg,2007 pp. 276–290.

[2] Arvinder Kaur & Shubhra Goyal, “A Genetic Algorithm for Regression Test

Case Prioritization using Code Coverage,” International Journal on Computer

Science and Engineering (IJCSE),Vol. 3, No. 5, 2011, pp. 1839-1847.

[30] Arvinder Kaur and Shubhra Goyal, "A Genetic Algorithm for Fault based

Regression Test Case Prioritization," International Journal of Computer Applications,

Vol. 32, No.8, 2011 .

[31] H. Agarwal, J.R. Horgan, E.W. Krauser, S. London, “Incremental Regression

Testing,” IEEE International Conference on Software Maintenance, 1993, pp. 348-

357.

[32] Matthew J.Rummel, Gregory M.Kapfhammer and Andrew Thall “Towards the

prioritization of regression test suites with data flow information,” Proceedings of the

2005 ACM symposium on Applied Computing New York, NY, USA, 2005.

[33] Md. Imrul Kayes, “Test Case Prioritization for Regression Testing based on fault

dependency,” IEEE 3rd International Conference on Electronics Computer

Technology, India, 2011,pp.48-52.

[34] Nilam Kaushik, Mark Moore, “Dynamic Prioritization in Regression Testing,”

Fourth International Conference on Software Testing, Verification and Validation

Workshops, 2011, pp. 135-138.

213

[35] R. Kavitha and N. Suresh kumar, "Test Case Prioritization for Regression

Testing based on Severity of Fault," International Journal on Computer Science and

Engineering, Vol. 2, No. 5, 2010, pp.1462-1466.

[36] C-T. Lin, K-W. Tang, G.M. Kapfhammer, “Test Suite Reduction Methods that

Decrease Regression Testing Costs by Identifying Irreplaceable Tests”, Information

and Software Technology , Volume 56, Issue 10, October 2014, pp 1322-1344

[37] Shounak Rushikesh, Sugave,Suhas, Haribhau Patil and B.Eswara Reddy, “A

Cost-Aware Test Suite Minimization Approach using TAP Measure and Greedy

Search Algorithm”, International Journal of Intelligent Engineering and Systems.

INASS. Volume 10, No. 4, 2017 ,pp 60-69.

[38] Sreedevi Sampath , Renee C. Bryce,”Improving the effectiveness of test suite

reduction for user-session based testing of web applications”,Information and

Software Technology ,54,2012, pp.724-738.

[39] Pankaj Jalote, “An Integrated Approach to Software Engineering,” Narosa

Publishing House, Second Edition, 2003.

[40] H. Do, S. M. Mirarab, L. Tahvildari, and G. Rothermel, “An empirical study of

the effect of time constraints on the cost-benefits of regression testing,” In

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of

Software Engineering,2008, pp.71–82.

[41] Hartmann, J. and Robson, D.J. , “Approaches to regression testing,” Conference

on Software Maintenance - 1988 (IEEE Cat. No.88CH2615-3). IEEE Computer

Society Press, 1988, pp.368-72.

[42] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T., “Experiments on the

effectiveness of dataflow- and control-flow-based test adequacy criteria,” ICSE-16.

16th International Conference on Software Engineering IEEE Computer Society

Press, 1994 pp. 191-200.

[43] Engstro m., E. Runeson, “Improving Regression Testing transparency and

Efficiency with History based Prioritization,” An Industrial Case Study Software

testing Verification and Validation, IEEE fourth International Conference, IEEE,

2011, pp.376-379.

[44] Jos. J. M. Trienekens et. al., “Quality specifications and metrication results from

a case study in a mission critical software domain,” Software Quality Journal, 2010,

Vol. 18, No. 4, pp. 459- 490.

[45] Jedlitschka, A.and Pfahl, D., “Reporting Guidelines for Controlled Experiments

in Software Engineering,” Proceedings of ACM/ IEEE International Symposium on

Empirical Software Engineering, 2005,pp. 95-104.

[46] Juristo, N., Moreno, A.M., Vegas, S., and Solari, M., “In search of what we

experimentally know about unit testing [software testing],” IEEE Software, Vol. 23,

No. 6, 2006, pp.72-80.

[47] Kampenes Vigdis, B., Dybå, T., Hannay Jo, E., and Sjöberg Dag, I.K., “A

systematic review of effect size in software engineering experiments,” Information

and Software Technology ,Vol. 49, No. 11, 2007 ,pp. 1073-1073.

[48] Rothermel, G., Elbaum, S., Malishevsky, A.G., Kallakuri, P., and Xuemei, Q.

“On test suite composition and cost-effective regression testing”, ACM Transactions

on Software Engineering and Methodology, Vol. 13, No. 3, 2004, pp 227-331.

[4] Toshihiko, K., Shingo, T., and Norihisa, D., “Regression test selection based on

intermediate code for virtual machines,” International Conference on Software

Maintenance ICSM IEEE Computer Society, Vol. 420, No. 9, 2003.

214

[50] Sanjeev, A.S.M. and Wibowo, B., “Regression test selection based on version

changes of components” Tenth Asia-Pacific Software Engineering Conference, IEEE

Computer Society, 2003,pp. 78-85.

[51] Bertolino and E. Marchetti, “Software testing,” (chapt.5).In P. Bourque and R.

Dupuis: editors, Guide to Software Engineering, Body of Knowledge, IEEE Computer

Society, 2004.

[52] Yoo S., Harman M., “Regression testing minimization, selection and

prioritization: a survey,” Software Testing, Verification & Reliability, John Wiley and

Sons Ltd ,Vol. 22, No. 2, 2012, pp. 67-120.

[53] Avesani, P, Bazzanella, C, Perini, A & Susi, A 2005, ‘Facing scalability issues in

requirements prioritization with machine learning techniques’, 13th IEEE

International Conference on Requirements Engineering, 2005 pp. 297-305.

[54] Duggal, G & Suri, B, “Understanding regression testing techniques,” 2nd

National Conference on Challenges and Opportunities’, COIT,2008.

[55] Anna Börjesson, Lena Holmberg, Helena Holmström, Agneta Nilsson, “Use of

Appreciative Inquiry in Successful Process Improvement”, Organizational Dynamics

of Technology-Based Innovation: Diversifying the Research Agenda, Vol. 235 Series

IFIP International Federation for Information Processing, 2007, pp. 181-196.

[5] Changyu Dong, NarankerDulay, “Shinren: Non-monotonic Trust Management

for Distributed Systems,” Trust Management IV, Vol. 321, series IFIP Advances in

Information and Communication Technology, pp 125-140.

[57] Claudio Bartolini, Cesare Stefanelli, Mauro Tortonesi, “SYMIAN: A Simulation

Tool for the Optimization of the IT Incident Management Process,” Managing Large-

Scale Service Deployment, Vol. 5273, 2009,pp. 83-94.

[58] Claudio Bartolini, Mathias Sallé, “Business Driven Prioritization of Service

Incidents,” Utility Computing, Vol. 3278, 2004,pp. 64-75.

[5] David LB Schwappach, “The equivalence of numbers: The social value of

avoiding health decline: An experimental web-based study,” BMC Medical

Informatics and Decision Making, 2002, pp 1-12.

[0] Django Armstrong et. al., “Contextualization: dynamic configuration of virtual

machines,” Journal of Cloud Computing, First Online, 2015, pp 1-15.

[61] Dominique Mirandolle, Inge van de Weerd, SjaakBrinkkemper, “Incremental

Method Engineering for Process Improvement - A Case Study,” Engineering Methods

in the Service-Oriented Context, Volume 351 of the series IFIP Advances in

Information and Communication Technology,2011, pp 4-18.

[62] MuraleedharanNavarikuth, Subramanian Neelakantan, KalpanaSachan,

UdayPratap Singh, Rahul Kumar, AntashreeMallick, “A dynamic firewall architecture

based on multi-source analysis,” CSI Transactions on ICT, Vol. 1, No. 4, 2013, pp.

317-329

[3] Simone Barbagallo et. al., “Optimization and Planning of operating theatre

activities: an original definition of pathways and process modelling,” BMC Medical

Informatics and Decision Making, 2015, pp. 1-16.

[64] Simone Barbagallo, Luca Corradi, Jean de Ville de Goyet, Marina Iannucci, Ivan

Porro, Nicola Rosso , Elena Tanfani, Angela Testi, “Optimization and planning of

operating theatre activities: an original definition of pathways and process

modelling,” BMC Medical Informatics and Decision Making, 2015.

[5] Nancy E. Parks, “Testing & quantifying ERP usability,” In Proceedings of the

1st Annual conference on Research in information technology (RIIT '12), ACM, New

York, NY, USA, 2012, pp. 31-36.

215

[] Kakali Chatterjee, et. al., “A Framework for the development of secure

software,” CSI Transactions on ICT, Vol. 1, No. 2, 2013, pp. 143-157.

[7] Kitchenham, B.A et. al. , “Systematic literature reviews in software engineering

.A tertiary study,” Information & Software Technology .INFSOF , Vol. 52, No. 8,

2010,pp. 792-805.

[8] G.J. Myers, “The Art of Software Testing,” John Wiley & Sons, 1 7 .

[69] Louise Tamres, Introducing Software Testing, Pearson Education, 1st Edition,

2002.

[70] T. McCabe, “A Complexity Measure,” IEEE Trans. On Software Engineering,

Vol.2, No.4, 1976, pp. 308-320.

[71] Wesley K. G. Assuncao et. al., “A Mapping Study of Brazilian SBSE

community,” Journal of Software Engineering and Development, Online First, 2014,

pp. 1-16.

[72] Wesley KG Assunção, Márcio de O Barros, Thelma E Colanzi, Arilo C Dias-

Neto, Matheus HE Paixão, Jerffeson T de Souza, Silvia R Vergilio, “A mapping study

of the Brazilian SBSE community,” Journal of Software Engineering Research and

Development, Vol. 2,No. 3,2014.

[73] Rothermal, G. Elbaum, S., “Putting your best tests forward,” IEEE Software,

Vol. 20 No. 5, 2003, pp. 74-77.

[74] Hans Heerkens, “Designing and Accessing a Course on Prioritization and

Importance Assessment in Strategic non routine Requirements in Engineering

Processes,” Requirements Engineering, 2014, First Online, pp. 1-16.

[75] H. Agarwal, J.R. Horgan, E.W. Krauser, S. London, “Incremental Regression

Testing”, IEEE International Conference on Software Maintenance, 1993, pp. 348-

357.

[7] H.Lenng and L.White, “Insights into regression Testing”, Proceedings of the

International Conference on Software Maintenance, 1989, pp. 60-69.

[77] Kim, J.-M., Porter, A., and Rothermel, G., “An empirical study of regression test

application frequency”, Software Testing, Verification and Reliability, Vol. 15, No. 4,

2005,pp. 257-279.

[78] IEEE Standard 610 (1990) definition of test cases [online].

[7] Lijun Mei, Zhenyu Zhang, W. K. Chan, and T. H. Tse., “Test case prioritization

for regression testing of service-oriented business applications”, 18th International

Conference on World wide web (WWW '09). ACM, New York, NY, USA, 2009, pp.

901-910.

[80] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani,

“Effective Regression Test Case Selection: A Systematic Literature Review,” ACM

Comput. Surv. Vol. 50, No. 2, Article 29 May 2017, pp. 1-32.

[81] Rothermel and M.J. Harrold, “Empirical studies of a safe regression test selection

technique”, IEEE Transactions on Software Engineering, Vol. 24, No. 6, 1998, pp.

401-419.

[82] Siripong R., Jirapun D., “Test Case Prioritization Techniques,” Journal of

theoretical and applied information technology, Vol. 18, No.2,2010,pp. 45-60.

[83] Thangavel Prem Jacob & Thavasi Anandam Ravi, “A novel approach for test

suite prioritization,” Journal of Computer Science, Vol. 10, No. 1, 2014, pp.138-142.

[84] S. Biswas, M. S. Kaiser and S. A. Mamun, "Applying Ant Colony Optimization

in software testing to generate prioritized optimal path and test data," 2015

International Conference on Electrical Engineering and Information Communication

Technology (ICEEICT),Dhaka,2015,pp.1-6.

216

[85] Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria, “Test Case

Prioritization of Configurable Cyber-Physical Systems with Weight-Based Search

Algorithms,” In Proceedings of the Genetic and Evolutionary Computation

Conference 2016 (GECCO '16), Tobias Friedrich (Ed.). ACM, New York, NY, USA,

pp. 1053-1060.

[8] Huaizhong Li, C. Peng Lam, “Using Anti-Ant-like Agents to Generate Test

Threads from the UML Diagrams,” International Conference on Testing of

Communicating Systems, 2005,pp 69-80.

[87] Y. Bian, Z. Li, R. Zhao and D. Gong, "Epistasis Based ACO for Regression Test

Case Prioritization", IEEE Transactions on Emerging Topics in Computational

Intelligence, Vol. 1, No. 3, 2017, pp. 213-223.

[88] Rothermel and M.J. Harrold, “A Framework for evaluating regression test

selection techniques”, 16th International Conference on Software Engineering, 1994.

[8] Rothermel and M.J. Harrold, “Analyzing regression test selection techniques”,

IEEE Transactions on Software Engineering, Vol. 22 ,No. 8 ,1996, pp. 529-551.

[0] F.I. Vokolos, P.G. Frankl, “Pythia a regression test selection tool based on

textual differencing”, 3rd International Conference on Reliability, Quality and Safety

of Software-Intensive Systems, IFIP TC5 WG5.4, Chapman & Hall, 1997, pp. 3–21.

[1] Antonio Mauricio et. al., “A systematic Review of Software Requirements

Selection and Prioritization Using SBSE Approaches,” Search Based Software

Engineering: Lecture Notes in Computer Science, Vol. 8084, 2014, pp. 188-208.

[2] K. K. Aggrawal, Yogesh Singh, and A. Kaur, “Code coverage based technique

for prioritizing test cases for regression testing,” SIGSOFT Software Engg.

Notes, Vol. 29, No. 5, September 2004, pp. 1-4.

[93] D. Marijan, A. Gotlieb, S. Sen, "Test case prioritization for continuous regression

testing: An industrial case study", Proc. 29th IEEE Int. Conf. Softw. Maintenance,

2013, pp. 540-543.

[4] Yogesh Kumar, Arvinder Kaur & Bharti Suri, “Empirical Validation of variable

based Test Case Prioritization/Selection Techniques,” International Journal of Digital

Content Technology and its applications, Vol. 3, No. 3, 2009.

[95] Aitor Arrieta,Shuai Wang,Goiuria Sagardui and D. Marijan, A. Gotlieb, S. Sen,

"Test case prioritization for continuous regression testing: An industrial case

study", 29th IEEE Int. Conf. Softw. Maintenance,2013, pp. 540-543.

[] Dan Hao, Lingming Zhang, Lu Zhang, Gregg Rothermel, and Hong Mei, “A

Unified Test Case Prioritization Approach,” ACM Trans. Software Engg.

Methodol, Vol. 24, No. 2, Article 10, December 2014, pp. 1-31.

[7] Rothermel and M.J. Harrold, “A Framework for evaluating regression test

selection techniques,” Proceedings of 16th International Conference on Software

Engineering, 1994.

[8] Yoo S andHarman M,”Regression Testing Minimization, Selection and

Prioritization: a survey”, Software Testing ,Verification and Reliability, Vol 22,

No.2,2012,pp.67-120.

[] Harrold M ,Gupta R and Soffa M, “A methodology for controlling the size of a

test suite”, ACM Transactions in software engineering and methodology, Vol 2 ,No.

3, 1993,pp. 270-285.

[100] Agarwal H.,” Efficient Coverage testing using Global dominator graphs”, ACM

SIGPLAN-SIGSOFT workshop on Program analysis for software Tools and

Engineering, Toulouse Trance, 1999,pp.11-20.

217

[101] Black J,Melachrinoudis E and Kaeli D,” Bi-Criteria Models for All-Uses Test

suite Reduction”, 2
th

 International Conference on Software Engineering ,Edinburg

UK,2004, pp.106 -115 .

[102] Chen T. and Lau M,”Dividing strategies for the optimization of a test suite”,

Information process letters, Vol 60, No 3 ,1996,,pp. 135-141.

[103] Errol L and Brian M,” A study of test coverage adequacy in the presence of

stubs” . Journal of Object Technology ,Vol 4, No. 5,2005, pp.117-137 .

[104] Jeffery D and Gupta N,” Test suite reduction with selective redundancy”,21
st

IEEE conference on Software maintenance ,Budapest ,Hungary ,2005,pp. 549-558.

[105] Jones J and Harrold M:(2003) Test suite reduction and prioritization for

modified condition/decision coverage IEEE transactions on software engineering

Vol 29, No 3, pp. 195-209.

[10] Offutt A , Pan J and Vogas J,” Procedures for reducing the size of coverage

based test sets”,
st
 International conference on testing computer software ,Washington

USA,1995, pp. 111-123 .

[107] Saeed P and Alireza K,”On the optimization approach towards test suite

minimization”, International Journal of Software Engineering and its application,

Vol 4,No 1,2010, pp. 15-18.

[108] Tallam S and Gupta N,” A concept analysis inspired greedy algorithm for test

suite minimization”,
th

 ACM SIGPLAN-SIGSOFT workshop on program analysis

for software tools and engineering ,Lisbon Portugal,2005, pp 35-42.

[109] Xue-ying M Bin-kui S ,Cheng-qing Y,” A genetic algorithm for test suite

reduction”, IEEE international conference on systems, Man and Cybernatics ,Hawaii

USA ,2005,pp.133-139 .

[110] J von Ronne,”Test suite Minimization: An Empirical Investigation” ,University

Honors College Thesis, Oregon State University, Corvallis ,USA,1999 .

[111] S.U.R Khan , A Nadeem and A Awais TestFilter,” A statement based coverage

based test case reduction technique”, 10
th

 IEEE International Multitopic conference

(INMIC’0),200 ,pp 275-280 .

[112] J W Lin and C Y Huang,”Analysis of test suite reduction with enhanced tie

breaking techniques”, Journal of Information and software technology, Vol 51, Issue

4 ,2009,pp. 679-690 .

[113] T Y chen and MF Lau,”A new heuristic for test suite reduction”, Journal of

Information and software technology, Vol 40, Issue 5-6,,1998, pp 347-354 .

[114] D Jeffery and N Gupta,” Improving fault detection capability by selectively

retaining test cases during test suite Reduction”, IEEE Transactions on Software

Engineering, Vol 33, Issue 02 ,2007,pp 108-123 .

[115] M P Usaola PR Mateo and BP Lamancha: (2012),” Reduction of test suites

using Mutation”, 15
th

 International conference on Fundamental Approaches to

Software Engineering(FASE’12)LNCS 7212 Berlin Heidelberg Springer-

Verlag,2012, pp.425-438.

[11] J.G. Lee and C.G. Chung,” An optimal representative set selection method”,

Journal of Information and software technology, Vol 42 Issue 1,2000, pp 17-25 .

[117] SUR Khan,SP Lee,RM Parizi and M Elahi,” An analysis of the code coverage-

based greedy algorithms for test suite reduction”, SDIWC,2013.

[118] A.M. Simth and G.M. Kapfhammer,”An empirical study of incorporating cost

into test suite reduction and prioritization”, Proceedings of the 24
th

 ACM symposium

on Applied Computing ,Software Engineering Track ,2009,ACM,pp. 461-467 .

[11] G. Chung and J.G. Lee,” An Enhanced Zero–One Optimal Path Set Selection

Method”, Journal of Systems and Software Vol.3 ,No. 2 ,1 7,pp.145-164.

218

[120] G.V. Jourdan, P. Ritthiruangdech, and H. Ural,”Test Suite Reduction Based on

Dependence Analysis”, Lecture Notes in Computer Science 42 3, 200 , pp.1021-

1030

[121] S. McMaster and A. Memon,”Call-Stack Coverage for GUI Test Suite

Reduction”, IEEE Trans. on Software Engineering, Vol 34,No. 1,2008,pp. 99-115.

[122] Gaurav Kumar and Pradeep Kumar Bhatia,” Software testing optimization

through test suite reduction using fuzzy clustering”. CSIT Vol 1. September(13),2013,

pp253-260.

[123] Sudhir Kumar Mohapatra and Srinivas Prasad ,”Finding representative test case

for test case reduction in regression testing”, IJISA, MECS Press. Vol 11,2015, pp 60-

65.

[124] August Shi, Tifany Yung, Alex Gyori and Darko Marinov,” Comparing and

combining test-suite reduction and regression test selection”, ECEC/FSE,2015,ACM

Bermago Italy, pp. 237-247.

[125] Mohammad Amin Alipour,August Shi, Rahul Gopinath , Darko Marinov and

Alex Groce, ”Evaluating Non-adequate test case reduction”, 31
st
 IEEE/ACM

International Conference on Automated Software Engineering (ASE). Singapore 3-

7,2016.

[126] Chaoqiang Zhang, Alex Groce and Mohammad Amin Alipour,”Using test case

reduction and prioritization to improve symbolic execution”, ACM, ISSTA’14 July

21-25. San Jose CA, USA,2014, pp 160-170.

[127] Laszlo Vidacs,Arpad Baszedes,David Tengeri,Istvan Siket and Tibor

Gyimothy,” Test suite reduction for fault detection and localization: A combined

approach”, IEEE, CSMR-WCRE,Antwerp, Belgium,2014, pp. 204-213.

[128] Saif Ur rehman Khan ,Inayat Ur Rehman and Saif Ur Rehman Malik,” The

impact of test case reduction and prioritization on software testing effectiveness”,

IEEE International conference on Emerging Technologies,2009, pp. 416-421,

[129] Saif Ur rehman Khan, Sai Peck Lee, Raja Wasim Ahmad and Adnan

Akhunzada” survey on test suite reduction frameworks and tools”, International

journal of Information management 36,2016,pp. 963-975.

[130] S. Yoo and M. Harman,” Pareto Efficient Multi-objective Test Case Selection”,

16th ACM International Symposium on Software Testing and Analysis,2007, pp. 140-

150, ACM.

[131] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan,” A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II”, IEEE Trans. on Evolutionary

Computation Volume 6, No. 2 ,2002, pp.182-197.

[132] Yoo S and Harman M,” Using hybrid algorithm for pareto efficient multi-

objective test suite minimization”. Journal of Systems and Software.83, 2010,pp. 8 -

701.

[133] M. Bozkurt,”Cost-Aware Pareto Optimal Test Suite Minimization for Service-

Centric Systems”, 15th ACM International Conference on Genetic and Evolutionary

Computation, ACM,2013,pp. 1429-1436,

[134] Sharma, Girdhar, Taneja, Basia,Vadla and Srivastava ,”Software Coverage :A

Testing Approach Using Ant Colony Optimization”, Springer-Verlag

Heidelberg,2011, pp. 618-625.

[135] Srivastava,Baby and Raghurama,” An approach of Optimal Path Generation

using Ant Colony optimization”, TENCON-2009,pp.1-6.

[13] Srivastava and Baby ,“Automated Software Testing using Metaheuristic

Technique Based on An Ant Colony Optimization”, International Symposium on

Electronic system design, 2010,pp.235-240.

219

[137] Srivastava,Jose, Barade,Ghosh ,”Optimized Test Sequence generation from

Usage models using Ant Colony Optimization”, International Journal of Software

Engineering and Application, Vol.2,No.2,2010,pp.14-28.

[138] Bharti Suri and ShwetaSinghal ,”Analyzing Test Case Selection and

Prioritization using ACO”, ACM SIGSOFT, Vol.3 ,No. ,November 2011,pp.1-5.

[13] YogeshSingh,Arvinder Kaur and Bharti Suri ,”Test Case prioritization using

Ant Colony optimization”, ACM SIGSOFT ,Vol.35,No.4,July 2010,pp.1-7.

[140] Praveen Ranjan Srivastava “Structured Testing Using Ant Colony

optimization”,IITM December 2010 Allahabad.

[141] Bharti Suri, ShwetaSinghal,”Development and validation of an improved test

selection and prioritization algorithm based on ACO”,International Journal of

Relability,Quality and Safety Engineering Vol 1 No.6 World Scientific Publishing

Company ,Vol.21,No.6,2014.

[142] Shunkun Yang, Tianlong Man, and JiaqiXu, “Improved Ant Algorithms for

Software Testing Cases Generation,”The Scientific World Journal, Vol. 2014,

Article ID 392309, 9 pages, 2014. doi:10.1155/2014/392309

[143] Derviskaraboga, Beyzagoremli, celalOzturk and NurhanKaraboga ”A

Comprehensive Survey :Artificial Bee Colony(ABC) and applications” ,Springer

Vol 2,No.1,March 2012,pp.21-57.

[144] DervisKaraboga and Beyzagoremli “A Combinatorial Artificial Bee Colony

Algorithm for travelling salesman Problem“, INISTA IEEE2011,pp.50-53.

[145] Lam,Raju,Kiran,Swaraj and Srivastava, ”Automated Generations of

Independent paths and test suite optimization using artificial bee colony”,

ICCTSD2011 Elsevier,pp.191-200.

[14] Chong,Low,Sivakumar,Lay “A Bee Colony optimization for job shop

scheduling” , 38th conference on Winter simulation,pp. 1954-1961.

[147] A Bee Colony Optimization Algorithm for code coverage test suite

prioritization IJEST April 2011.

[148] Srikanth,Kulkarni,Naveen,Singh and Srivastava “Test Case optimization using

Artificial Bee Colony Algorithm” , ACC 2011 Part III CCIS 1 2 Springer,pp.570-

579.

[149] A hybrid Model of Particle Swarm optimization and Artificial Bee Colony

Algorithm for Test Case Optimization, Elsevier.

[150] Mala,Mohan and kamalapriya,”Automated Software Test optimization

framework-and artificial bee colony optimization-based approach” ,IET software,

Volume 4, Issue 5,2010, pp. 334-348

[151] Dahiya, Chhabra and Kumar “Application of Artificial Bee Colony Algorithm

to software Testing” , IEEE 21
st
 Australian Software Engineering Conference

,2010,pp.149-154.

[152] Konsaard and Ramingwong ,”Using Artificial Bee Colony for code coverage

based Test Suite Prioritization”, 2015 2nd International Conference on Information

Science and Security (ICISS), pp. 1-4.

[153] Elbaum, Karre and Rothermel “Improving web application testing with user

session data”, Proceedings of the 25th International Conference on Software

Engineering. IEEE Computer Society, 2003,pp. 49–59.

[154] Sampath, Sprenkle, Gibson, Pollock, and Greenwald “Applying concept

analysis to user-session-based testing of web applications”, IEEE Transactions on

Software Engineering, Vol. 33, No. 10,2007,pp. 643–658.

220

[155] Sampath and Bryce “Improving the effectiveness of test suite reduction for

user-session-based testing of web applications”,Information and Software

Technology, 54 ,2012, pp.724–738.

[15] Peng and Lu, “User-session-based automatic test case generation using GA”

International Journal of the Physical Science, July 2011.

[157] Qian “User Session-Based Test Case Generation and Optimization Using

Genetic Algorithm”, Journal of Software Engineering and

Applications,Vol.3,No.6, 2010.

[158] Elbaum S, Rothermal G Karre S and Fisher M ”Leveraging User-Session Data

to support Web application Testing” , IEEE Transactions on Software

Engineering, Vol.31,No.3,2005,pp. 187-202.

[15] Liu Y, Wang K, Wei W, Zhang B and Zhong H, “User session based test cases

optimization method based on Agglutinate Hierarchical Clustering”, IEEE

International Conference on and 4th International Conference on Cyber, Physical

and Social Computing, pp. 413-418.

[1 0] Maung Mon H and Win ThiK, ”Entropy based Test cases reduction algorithm

for user session based testing” , International Conference on Genetic and

Evolutionary Computing, Springer 2016, pp. 365-373.

[1 1] Li J and Xing D ,“User session data based web applications test with cluster

analysis”, CSIE 2011 Advanced Research on Computer Science and Information

Engineering, Springer-Verlag Berlin Heidelberg 2011,pp.415-421.

[1 2] Sprenkle S, Sampath S and Souter A” An empirical Comparison of test suite

reduction techniques for user session based testing of web applications”, 21st

IEEE International Conference on Software Maintenance, 2005, pp. 587-596.

[1 3] Zhang , Y.; Harman, M; Mansouri , S.,” The Multi-Objective Next Release

Problem”,GECCO’07,ACM ,London (2007), pp. 1129-1137.

[164] Ruiz,M.; Roderiguez,D.;Riquelme,J.; Harrison, R.,” Multiobjective Simulation

optimization in software project management,” Oxford Brookes University.

[1 5] Wang, Z.;Tang, K.;Yao, X.,”Multi-objective approaches to optimal testing

resource allocation in modular software systems”, IEEE Transactions on Reliability,

l59, 3 (2000).

[1] Kavita,C.; and Purohit,G.,” A multiobjective optimization algorithm for

uniformly distributed generation of test cases”, IEEE International conference on

Computing for Sustainable global development ,2014, pp. 455-457.

[1 7] Mondal, D.; Hemmati, H.; Durocher, S.,” Exploring Test suite diversification

and code coverage in multi-objective test case selection”, 2015 IEEE 8th

International Conference on Software Testing, Verification and Validation (ICST),pp.

1-10.

[1 8] Yoo, S.; Harman, M.,”Pareto efficient Multi-objective test case selection”,

ISSTA 2007, ACM, London U.K. (2007),pp.140-150.

[1] Marchetto, A.; Islam, M.; Scanniello, G.; Susi, A.” A multi-objective technique

for test suite reduction”, The Eighth International Conference on software

Engineering Advances. IARIA ,2013.

[170] Zheng, W.; Hierons, R.; Li,M.; Liu, X.; Vinciotti, V.,”Multi-objective

optimization for regression testing”, Information Sciences Journal, Elsevier,334,

2015,pp.1-16.

[171] Canfora, G.; Lucia, A.D.; Penta, M.D.; Oliveto, R.; Panichella, A.; Panichella,

S.,” Defect prediction as a multiobjective optimization problem”, Software testing,

verification and reliability ,2015,pp.426-459 .

221

[172] Marchetto, A.; Islam, M.; Scanniello, G.; Asghar, W.; Susi, A.,” A multi-

objective technique to prioritize test cases”, IEEE Transactions on software

Engineering,,Vol 42, No.10, 2015.

 [173] A. Arora and M. Sinha, “Web application testing: A review on techniques,

tools and state of art,” International Journal of Scientific & Engineering Research,

Vol. 3, No. 2, 2012.

[174] F. Ricca and P. Tonella, “Building a tool for the analysis and testing of Web

applications: Problems and solutions,” , International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, 2001,pp.373-388.

[175] S. Elbaum, S. Karre, and G. Rothermel, “Improving web application testing

with user session data,” in Proceedings of the 25th International Conference on

Software Engineering, IEEE Computer Society, 2003,pp. 49–59.

[17] A. A. Andrews, J. Offutt, and R. T. Alexander, “Testing web applications by

modeling with fsms,” Software & Systems Modeling,Vol. 4, No. 3,2005, pp. 326–345.

[177] L. Xu, B. Xu, and J. Jiang, “Testing web applications focusing on their

specialties,” ACM SIGSOFT Software Engineering Notes, Vol. 30, No. 1, 2005,pp.

10.

[178] L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen, “Regression testing for web

applications based on slicing,” IEEE 27
th

 Annual International Computer Software

and Applications Conference, 2003. COMPSAC 2003., 2003, pp. 652–656.

[17] M. Shams, D. Krishnamurthy, and B. Far, “A model-based approach for testing

the performance of web applications,” 3
rd

 international workshop on Software quality

assurance. ACM, 2006, pp. 54–61.

[180] A. Tarhini, Z. Ismail, and N. Mansour, “Regression testing web applications,”

International Conference on Advanced Computer Theory and Engineering, 2008.

ICACTE’08.. IEEE, 2008, pp. 902–906.

[181] A. Kumar and R. Goel, “Event driven test case selection for regression testing

web applications,” IEEE International Conference on Advances in Engineering,

Science and Management (ICAESM), 2012, 2012, pp. 121–127.

[182] W. Wang, S. Sampath, Y. Lei, and R. Kacker, “An interaction-based test

sequence generation approach for testing web applications,” 11
th

 IEEE High

Assurance Systems Engineering Symposium, 2008. HASE 2008.. , 2008, pp. 209–218.

[183] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases

for regression testing,” IEEE Transactions on Software Engineering,, Vol. 27, No. 10,

pp. 929–948, 2001.

[184] Y. Qi, D. Kung, and E. Wong, “An agent-based testing approach for web

applications,” 29th IEEE Annual International Computer Software and Applications

Conference, 2005. COMPSAC 2005., Vol. 2., 2005, pp. 45–50.

[185] L. Brim, I. Cˇ erna´, P. Varˇekova´, and B. Zimmerova, “Component interaction

automata as a verification-oriented component-based system specification,” ACM

SIGSOFT Software Engineering Notes, Vol. 31, No. 2,2006, p. 4.

[186] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A. S. Greenwald,

“Applying concept analysis to user-session-based testing of web applications,”, IEEE

Transactions on Software Engineering, Vol. 33, No. 10, 2007,pp. 643–658..

[187] S. Sampath, R. C. Bryce, G. Viswanath, V. Kandimalla, and A. G. Koru,

“Prioritizing user-session-based test cases for web applications testing,” 1
st
 IEEE

International Conference on Software Testing, Verification, and Validation, 2008, pp.

141–150.

222

[188] A. Bertolino, E. Cartaxo, P. Machado, E. Marchetti, and J. Ouriques, “Test suite

reduction in good order: comparing heuristics from a new viewpoint,” on Testing

Software and Systems: Short Papers, 2010,p. 13.

 [18] Z. Qian, H. Miao, and H. Zeng, “A practical web testing model for web

application testing,” Third International IEEE Conference on Signal-Image

Technologies and Internet-Based System, 2007. SITIS’07.. IEEE, 2007, pp. 434–441.

[190] Y.-H. Tung, S.-S. Tseng, T.-J. Lee, and J.-F. Weng, “A novel approach to

automatic test case generation for web applications,” 10th IEEE International

Conference on Quality Software (QSIC), 2010 , pp. 399– 404.

[1 1] S. S. Dahiya, J. K. Chhabra, and S. Kumar, “Application of artificial bee colony

algorithm to software testing,” 21st IEEE Australian Software Engineering

Conference (ASWEC), 2010 21st Australian, 2010, pp. 149– 154.

[1 2] A. A. Sofokleous and A. S. Andreou, “Automatic, evolutionary test data

generation for dynamic software testing,” Journal of Systems and Software, Vol. 81,

No. 11, 2008, pp. 1883–1898.

[193] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based cost cognizant

test case prioritization technique in regression testing,” Journal of Systems and

Software, Vol. 85, No. 3, 2012, pp. 626–637.

[1 4] Shounak Rushikesh Sugave,Suhas Haribhau Patil and B.Eswara Reddy,” A

Cost-Aware Test Suite Minimization Approach using TAP Measure and Greedy

Search Algorithm”, International Journal of Intelligent Engineering and

Systems,INASS.,2017, Volume 10, No. 4, pp. 60-69.

[1 5] Harrold M ,Gupta R and Soffa M,” A methodology for controlling the size of a

test suite”. ACM transactions in software engineering and methodology, Vol 2 ,No.

3,1993,pp. 270-285 .

[196] T.Y. Chen and M.F. Lau,” A Simulation Study on Some Heuristics for Test

Suite Reduction”, Information and Software Technology, Volume 40 ,No.13,1 8,

pp. 777-787.

[1 7]H. Zhong, L. Zhang, and H. Mei: (200),” An Experimental Comparison of Four

Test Suite Reduction Techniques”, 28th ACM/IEEE International Conference on

Software Engineering,ACM,2006, pp. 636-640.

[1 8] Harman, Z.Li.M, Hierons, R,” Search Algorithms for Regression Test Case

Prioritization”, IEEE Transactions on Software Engineering. Volume 33, Issue

4,2007.

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan,” A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II”, IEEE Trans. on Evolutionary

Computation Volume 6 No.2,2002, pp.182-197.

[200] Deb, K., Multiobjective optimization using evolutionary algorithms. Wiley

India Pvt Ltd, First Edition,2010.

[201] Huang ,Y., Peng.K, & Huang,C, “A history-based cost cognizant test case

prioritization technique in regression testing”, The Journal of Systems and Software,

Elsevier, 2012,85,pp. 626-637.

[202] A.M. Simth and G.M. Kapfhammer,” An empirical study of incorporating cost

into test suite reduction and prioritization”, 24
th

 ACM symposium on Applied

Computing ,Software Engineering Track ,2009,pp 461-467 .

[203] Yoo S and Harman M, “Using hybrid algorithm for pareto efficient multi-

objective test suite minimization”, Journal of Systems and Software.83,2010,. 8 -

701.

[204] Malishevsky, A.G.; Ruthruff, J.R.; Rothermel, G.; Elbaum, S.,” Cost-cognizant

Test Case Prioritization”. Technical Report TR-UNL-CSE-2006-0004. Department of

223

Computer Science and Engineering, University of Nebraska–Lincoln, Lincoln,

Nebraska, U.S.A.,2006 .

[205] Xiao Qu ,MB Cohen,KM Woolf, “Combinatorial interaction regression testing:

a study of test case generation and prioritization”, International conference on

software maintenance,2007, pp. 255-264.

[206] Huang, Y.C., Peng, K.L. and Huang C.Y. ,”A history-based cost-cognizant test

case prioritization technique in regression testing, The Journal of Systems and

Software ,2012, 85, pp.626-637.

[207]http://www.softwaretestingclass.com/how-to-create-selenium-webdriver-test-

using-selenium-ide-selenium-tutorial/ (Accessed August 9, 2016).

[208] http://statpages.info/logistic.html (Accessed August 9, 2016).

[209] http://emma.sourceforge.net/ (Accessed August 9, 2016).

[210] https://www.weblogexpert.com/ (Accessed 9 August 9, 2016).

[211] Zhou, Y., Wursch, M., Giger, E., Gall, H. and Lu, J., A Bayesian Network

Based Approach for Change Coupling Prediction.

[212] Offutt, J. and Wu Y. ,“Modeling presentation layers of web applications for

testing”, Software System Model Springer,2010, pp.257-280.

[213] Pearl, J. “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference” Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,1998.

[214] Fenton, N., Neil, M. and Marquez, D. ,” Using Bayesian networks to predict

software defects and reliability”, JRR1 1, IMechE 2008, Proc. IMechE Vol. 222 Part

O: J. Risk and Reliability,2008.

[215] Fenton, N., Neil, M., Marsh, W., Krause, P. and Mishra, R.,” Predicting

Software Defects in Varying Development Lifecycles using Bayesian Nets”,

Conference’04, Month 1–2, 2004, ACM 1-58113-000-0/00/0004,2004.

[216] Hosmer, D.W. and Lemeshow, S., Applied Logistic Regression, Second

Edition.

[217] Pai, G. and Dugan, J.B. (2007) Empirical Analysis of Software Fault Content

and Fault Proneness Using Bayesian Methods, IEEE Transactions on Software

Engineering, VOL. 33, NO. 10, October 2007.

[218] Minana, E.P. and Gras, J.J. ,”Improving fault prediction using Bayesian

Networks for the development of embedded software applications”, UKTest : UK

Software Testing Research III,2005.

[219] Mishra,B.S.P., Dehuri,S. and WangG.N.,”.A State-of-the-Art Review of

Artificial Bee Colony in the Optimization of Single and Multiple Criteria”.

International Journal of Applied Metaheuristic Computing(IJAMC),Volume 4 No. 4,

2013.

[220] Gladston,A.,Nehamiah,K., Narayanasamy, P. & Kannan,,”A. Test Case

Prioritization For Regression Testing Using Immune Operator”, International Arab

Journal Of Information Technology, Volume 13, No. 6, November 2016.

[221] Maia,C. ,Carmo,R., Freitas,F., Campos,G. & Souza,J.,” Automated Test Case

Prioritization with Reactive GRASP”, Advances in Software Engineering, Hindawi

Publishing Corporation ,Volume 2010,Article ID 428521,18 Pages.

http://www.softwaretestingclass.com/how-to-create-selenium-webdriver-test-using-selenium-ide-selenium-tutorial/
http://www.softwaretestingclass.com/how-to-create-selenium-webdriver-test-using-selenium-ide-selenium-tutorial/
http://emma.sourceforge.net/
https://www.weblogexpert.com/

224

[222] Jiao,L. & Wang,L. ,”A novel Genetic Algorithm based on immunity”, IEEE

Transaction on systems, man and cybernetics, Volume 30,Number 5 September 2000.

[223] Azimipour,M., Mohammad, R. B. & Mohammad E.,” Using Immune Genetic

Algorithm in ATPG” , Australian Journal of Basic and Applied Sciences, 2(4): 920-

928, 2008 ISSN 1991-8178, 2008, INSInet Publication.

[224] Bouchachia ,A., “An immune Genetic Algorithm for software test data

generation” , IEEE Seventh International Conference on Hybrid Intelligent Systems

,2007, pp 84-89 .

[225] Krishnamoorthi,R. & Mary,S.,”Regression Test suite prioritization Using

Genetic Algorithm”, International Journal of Hybrid Information Technology, July

2009.

[22] Sabharwal,S. Sibal,R. & Sharma,C. ,” Applying genetic algorithms for

Prioritization of test case scenarios Derived from UML diagrams, IJCSI, May Volume

8 Issue 3 No. 2,2011 .

[227] Raju,S. & Uma,G. ,”Factors oriented Test case prioritization technique in

regression testing using genetic algorithm”, European Journal of Scientific research

,Vol 74 Num 03,2012.

[228] Jun ,W., Yan,W. and Chen,J., “Test case prioritization based on Genetic

Algorithm”, IEEE International Conference on Internet Computing and Information

Services, pp 173-175 ,2011.

225

APPENDIX-A

A research survey was done while working on this thesis. The Questionnaire was

prepared and distributed to a group of stakeholders of IT Company which includes

coders, testers, designers and end-users. In total, we received 120 responses. The

details regarding the Questionnaire prepared and its result analysis are given here.

 Survey for Ph.D. work

While doing Regression Testing severity of the faults also plays an important role

programming. There are various types of faults, listed below, which we come across

generally. You are kindly requested to spare your valuable time for providing the

grading to these faults on a scale from 1 to 10.

1. Please Grade the following faults, in terms of severity, as per your perception

and /or experience. Higher the Severity, higher the grade.

2. Your profile is Coder/Tester/Designer/End-User.(Please Select the correct

one)

3. Your Grading should be in the scale of 1-10 (Maximum severity =10)

S.No Fault Type Grading

1 Authentication Error

2 404 Error (4xx) Error

3 Cosmetic Error

4 Cascade Style Sheet Error

5 Data Base related Errors

6 HTML error(For example) Hyperlink

errors

7 JSP tag errors

8 Missing Information

9 Session Related error

10 Function missing(User

Defined/Inbuilt)

11 Form Error(Component Missing)

12 Any other error you want to suggest

 Your Name(Optional): ..

 Your Company Name(Optional):...

 Your Experience in relevant area: ...

Thanks for your Support

226

Results:

S.No Fault Type Grading

1 Authentication Error 2-3

2 404 Error (4xx) Error 3

3 Cosmetic Error 1

4 Cascade Style Sheet Error 2

5 Data Base related Errors 8-9

6 HTML error(For example) Hyperlink

errors

1-2

7 JSP tag errors 4-5

8 Missing Information 3-4

9 Session Related error 4-5

10 Function missing(User

Defined/Inbuilt)

3-4

11 Form Error(Component Missing) 5-6

12 Any other error you want to suggest

227

BRIEF PROFILE OF RESEARCH SCHOLAR

Munish Khanna is pursuing his Ph.D. in Computer Engineering from J.C.BOSE

University of Science & Technology, YMCA,Faridabad. He has done his M.Tech.

from DEI, Deemed University Agra and B.Tech. from R.G.P.V. Bhopal. He has 16

years experience in teaching various computer subjects. Presently he is working as

Assistant Professor in Department of Computer Science and Engineering in Hindustan

College of Science and Technology, Mathura, U.P. His interests include Computer

Programming, Automata Theory, Design and Analysis of Algorithms, Operating

Systems, Software Engineering and Software Testing. He has published 5 research

papers in International Journals and 1 paper in International Conference.

228

LIST OF PUBLICATIONS OUT OF THESIS

List of Published Papers in International Journals

S.

No

Title of the paper Name of the Journal

where Published

No. Volume &

Issue

Year Pages

1. Test Case Prioritisation

during Web Application

Testing.

International Journal of

Computer Applications

in Technology, Inder

Science Publishing

House

 Volume 56

Issue 03

2017 230-243

2. A Novel Approach for

Regression Testing of

Web Applications.

International Journal of

Intelligent Systems and

Applications, MECS

Press , HongKong

 Volume 10

Number

02,

2018 55-71

3. Search For Prioritized

Test Cases in Multi-

objective Environment

during Web Application

Testing.

Arabian Journal for

Science and

Engineering, Springer

Press.

 Volume 43

Issue 8

2018 4179-

4201

4. Search for Prioritized

Test Cases for Web

Application Testing .

International Journal of

Applied Meta-heuristic

Computing, IGI-

GLOBAL Press , USA

 Volume 10

Issue 2

Article 1

2019 1-26

List of Communicated papers in International Journals

S.

No

Title of the paper Name of the Journal

where Published

No. Volume &

Issue

Year Pages

1. A Multi-Objective

Approach for Test Suite

Reduction during

Testing of Web-

Applications. A Search

Based Approach.

International Journal of

Applied Meta-heuristic

Computing, IGI-

GLOBAL Press , USA

