24/12/19(M)

Roll No.

Total Pages: 4

239303

December, 2019 M.Sc. (CHEMISTRY) - III SEMESTER Analytical Techniques (CH-303A)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

- 1. (a) Define photo electric effect. (1.5)
 - (b) What is the significance of Koopman's theorem? (1.5)
 - (c) Define Zero field splitting. (1.5)
 - (d) How the values of 'g' vary in case of Frozen solution of CuSO₄.5H₂O (aq.)? (1.5)
 - (e) What do you understand by term Berry psuedorotation? (1.5)

239303/80/111/473

[P.T.O. **24/12**

- (f) What is the reason for satellite peaks in case of NMR spectroscopy? (1.5)
- (g) How colorimetry differs from spectrophotometry? (1.5)
- (h) Draw the ${}^{19}\text{F-NMR}$ splitting stick diagram for BF₄-ion. (I ${}^{10}_{\text{B}} = 3$, I ${}^{11}_{\text{B}} = 3/2$, I ${}^{19}_{\text{F}} = 1/2$). (1.5)
- (i) How MB spectra varies with change in oxidation state for Sn(II) and Sn(IV) complexes? (1.5)
- (j) What do you understand by term mutual exclusion principle? (1.5)

PART - B

- 2. (a) Derive the fundamental modes of vibration for NH₃ molecule using group theoretical approach and assign the IR and Raman modes (character table is given at the end of the question paper). (10)
 - (b) Discuss the application of Raman spectroscopy for the study of active sites of metalloprotiens. (5)
- 3. (a) Discuss the principle of Hollow cathode lamp used in AAS. Explain in detail how a solution of alkali metal halide can be detected using this technique? (8)

- (b) Give a detailed account of various interferences involved in different types of absorption spectroscopy.
 (7)
- 4. (a) How Double resonance techniques can be used to decouple the spectra in case of NMR spectroscopy and in reduction of hyperfine splitting in case of EPR spectroscopy? (10)
 - (b) Explain the usage of beta-diketone complexes of lanthanides in Inorganic NMR spectroscopy. (5)
- 5. (a) How does the isomer shift of a series of related compounds changes when electronegativity of ligands is varied? Is the trend same for all Mossbauer isotopes? (7)
 - (b) Discuss how the MB spectra of SnX₄ halides differ from each other where X is F, Cl, Br & I. (8)
- 6. (a) How 19F NMR can be used to conclude that SF_4 has a $C_{2\nu}$ point group? (5)
 - (b) Compare the fine splitting and Hyperfine splitting in case of CH₃ radical in ESR spectroscopy. Explain the cause of each type of splitting. (5)

- (c) Explain the number of lines obtained in case of $Ti(H_2O)_4(NH_3)_2]^{2+}$ according to Drago's rule in ESR spectroscopy. (5)
- 7. (a) Discuss the factors affecting the core chemical shift of an atom in XPS. How and why the XPS spectra shows shift in case of CH₄, CO₂ and CF₄? (8)
 - (b) Explain the Jahn-Teller effect in copper (II) octahedrace complexes is described in EPR spectroscopy. (7)

Character Table of C_{3v} point group.

C.	E	2C,	30,			
A ₁ A ₂ E	1 1 2	-1 -1	1 -1 0	Z R _y (x, y), (R _x , R _y) (x ²	+ y ⁸ , z ⁸ - y ⁸ , xy)(xz, yz)	$z^{a}, x(x^{a} - 3y^{a})$ $y(3x^{a} - y^{a})$ $(xz^{a}, yz^{a}), [xyz, z(x^{a} - y^{a})]$