Roll No.

Total Pages : 5

239302

December, 2019 M.Sc. Chemistry - III SEMESTER Spectroscopy - II (CH-302 A)

Time : 3 Hours]

]Max. Marks: 75

[P.T.O. 12/12

Instructions :

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

1.	(a)	Calculate the degrees of freedom of acetylene and					
		water molecule.	(1.5)				
•	(b)	What is Born-oppenheimer approximation?	(1.5)				
211	(c)	What are the factors which affect the intensity	of the				
-1-11-1		spectral line?	(1.5)				
	(d)	State the selection rule for Raman scattering.	(1.5)				

239302/80/111/131

- (e) Which valence state of Cu⁺ ion and Cu²⁺ ion will show an ESR spectrum and why? (1.5)
- (f) Which of the following molecules show pure rotational Raman spectrum?

	H_2 , HBr, CH_3Br .	(1.5)
(g)	What do you understand by multiplicity of state?	(1.5)
(h)	Express McConnell relationship.	(1.5)
(i)	What is Patterson method?	(1.5)
(j)	Define stereographic projections.	(1.5)

PART - B

2.	(a)	(i)	Discuss	the	rotational	spectra	of	linear	and
			symmetr	ic to	p molecules				(7)

(ii) Draw potential energy curve when force constantK is (a) large and (b) small. (3)

(b) The vibration frequency of ${}^{1}H^{35}Cl$ is 2990.6 cm⁻¹; estimate the frequency for (5)

¹H³⁷Cl, ²D³⁵Cl and ¹D³⁷Cl.

(a) Explain on the basis of nuclear spin-spin interactions the different peaks observed in the NMR spectrum of an acidified solution of ethanol. What types of absorption peaks are obtained for pure ethanol? (5)

239302/80/111/131

- (b) (i) Calculate the NQR energy levels for ⁵⁵Mn with I = 5/2 as a function of e^2 Qq. Give the expressions for the transition frequencies. (7)
 - (ii) What are the various factors affecting chemical shift? (3)
 - (a) In the pure rotational Raman spectrum of a diatomic molecule, the separation from Rayleigh line of the first Stokes and anti-Stokes line is different from the subsequent line spacings. Find the ratio of these spacings when
 - (i) all the rotational levels are populated,
 - (ii) only the odd levels are populated, and

(iii) only the even levels are populated. (5)

- (b) Predict the number of ESR lines in the spectrum of
 (a) CH₃CH₂-radical (b) C₆H₆- (benzene radical anion).
 (6)
- (c) Why the ESR peak of a sample observed at liquid nitrogen temperature is nearly four times as intense as the same peak at 300 K?
- (a) Differentiate X-ray, electron and neutron diffraction techniques. (5)

239302/80/111/131

4.

[P.T.O.

(b) Determine the Miller indices (hkl) of the shaded planesbelow : (10)

- Q6 (a) Write short note on (i) spin lattice relaxation and (ii) nuclear overhauser effect. (5)
 - (b) (i) In an ESR spectrometer, the ESR frequency of the free electron is 9.5 GHz. Calculate the magnetic field at which the spectrometer is operating, $g_e = 2$ and $\mu_B = 9.273 \times 10^{-24} \text{ JT}^{-1}$
 - (ii) What type of vibration-rotation spectrum is obtained if the resolving power of the spectrometer is not so high?
 (5)

(3)

239302/80/111/131

- (iii) Why are the anti-Stokes lines less intense than Stokes lines in Raman spectrum? (2)
- 7. (i) What are O, P, Q, R, and S branches of the vibrationrotation raman spectrum? (8)
 - (ii) Which parameter differentiates the axially symmetric and axially non-symmetric molecules in NQR? (4)
 - (iii) How many PMR signals would you get from each of the following compounds?

 CH_3OCH_3 , $CH_3CH_2CH_2CH_3$,

and C₆H₅CH₂CH₂CH₃.

(3)