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ABSTRACT 

Health monitoring involves taking measurements on an Induction Motor (IM) while it is 

operating in order to detect faults. For this purpose normally a single sensor type, for 

example current is used to detect the broken rotor bar using fault frequency components 

only under the full load condition or a limited number of load cases.  The correlations 

among the different types of sensors and their ability to diagnose single and combined 

faults over a wide range of loads or dynamic change in the load have not been the 

focused part in the previous research work. Furthermore, to detect fault in Squirrel Cage 

Induction Motor (SCIM) using any fault frequency components, it is important to 

investigate the variability in its amplitude to other effects apart from fault severity and 

load this area of research has also been neglected in the literature of IM condition 

monitoring. 

The main emphasizes of this research work is to find a methodology which effectively 

detects  faults in induction machine under different constant and time varying loading 

conditions at an early stage in order to avoid its catastrophic failure which may further 

lead to system failure. In this research work, the stator current with vibration signals is 

used for feature selection and deep learning methods are used for classification of faults 

with its type and severity.  

Deep learning methods are advance algorithms of artificial intelligence domain. Since 

after the introduction of deep learning algorithms it over shadows the other machine 

learning algorithms and are being extensively used in various applications due to its 

higher accuracy and adaptability to handle data.  

This research work aims to improvise SCIM machine fault diagnosis and proposed the 

reliable methods to detect single and combined faults (other fault in presence of one 

fault) over a wide range of load conditions i.e. no load, 25%, 50% , 100% and under 

time varying load condition.  The behavioral analysis of SCIM is analyzed using 

ANSYS software tools. By using RMxprt, a 5kW three-phase SCIM is designed. 

Consequently, the designed motor is transferred from ANSYS RMxprt to Maxwell 2D 

software tool to apply accurate Finite Element Method (FEM) for analysis purpose. 

The SCIM model further put under 2D different failure’s modes like (broken rotor bars, 
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stator fault, eccentricity faults) which are examined under different loading conditions. 

Fault generation and its effects are successfully investigated in ANSYS RMxprt & 

Maxwell 2D software tools. To achieve the Fault Detection ( FD) and examined effects 

of load under time varying loading conditions, MATLAB software tool is used. The 

mathematical model of SCIM is designed and extensively executed under wide range of 

constant load variations and time varying loading scenarios and results are obtained 

after applying soft computing techniques like Support Vector Machine (SVM), Random 

Forest (RF) and Deep Belief Neural Networks (DBNN) under various type of rotor 

broken bar faults, stator winding faults, eccentricity faults and combined faults. 

SVM and RF are applied for the comparative analysis of new age deep learning 

classifier with conventional SVM and RF classifier. All the techniques are applied to 

detect the faults in IM using DWT. This technique relies on the instantaneous reactive 

power signal decomposition, from which detail coefficients and wavelet approximations 

are extracted which is termed as features. In order to obtain a robust diagnosis, feature 

vectors are extracted from DWT analysis of power signals using DBNN to distinguish 

the motor state. Subsequently, in order to validate the proposed approach, a three phase 

SCIM is designed under MATLAB software.  

To check the effectiveness of the proposed method in fault diagnosis, the motor is run 

under various operations of healthy and faulty conditions for different constant loads 

and time varying load. Promising results are obtained and proposed framework of 

DBNN is performed well with achieved detection accuracy 99.83%. The accuracy is 

calculated in terms of number of times the fault detected and classified correctly. So, in 

case of DBNN the accuracy achieved is higher than other algorithms like SVM and RF 

which are also used for FD in this research work. Finally, comparison with SVM, RF 

and other previous research work existing algorithms proves the efficacy of proposed 

deep learning algorithm which is more robust in diagnosing the faults in motor. 

In future the work can be carried in the area of real-time intelligent system which would 

process the condition of the IM and issue the suitable command accordingly. 
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CHAPTER 1 

  INTRODUCTION 

 

1.1    OVERVIEW  

The electric motor is an electromechanical device that converts electrical energy into 

mechanical energy. As a very important part of modern industry, Induction Motors 

play an important role in important applications such as pump systems, fans, lifting 

systems, electric vehicles, crushers, cement plants, and many other industrial 

segments. An asynchronous motor, which is actually an AC motor in which the 

current required to generate torque, is induced by electromagnetic induction of the 

magnetic field of the stator winding [1]. Therefore, induction machines generally do 

not require external mechanical switching, individual excitation, or even self-

excitation for part of the energy transferred from the stator to the rotor. The rotors of 

numerous electrical components in operating induction machines are highly prone to 

system failure [2].  

With a squirrel cage rotor [3], its bars can be damaged by mechanical stresses on the 

machine. Meanwhile, the bearings in the IM can be affected by extreme wear and 

fragmentation caused by improper lubrication, unbalanced load on the motor, 

misalignment of the bearing components with the rotor, etc. Traditionally, most 

manufacturers and users trust it in a very traditional way approaches to IM protection 

such as overcurrent or overvoltage estimation to ensure reliable system operation. Fast 

and immensely complex IM applications in modern industrial applications are 

alarming for optimized system monitoring and monitoring for induction machines [3]. 

Even the reduction of the man-machine interface requires requirements for on-line 

detection, with which motor faults can be diagnosed effectively without danger or 

process interruptions. The IMs low cost and miniaturized size, low maintenance cost 

robustness and flexible operation with minimal power supply make this system highly 

efficient and useful in modern industrial process. Detecting faults in the IM in 

advance and diagnosing them optimally makes it easier for industry to work with the 

least unexpected industrial shutdown or maintenance mechanism [4]. This minimizes 

lost production, financial waste, and even prohibits catastrophic penalties. Condition 
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monitoring and fault diagnosis mechanisms are necessary to formulate a well-defined 

and qualified map between the motor signals and the IM fault condition indications 

[4].  

Various failure detection methods have been developed and effectively applied to 

detect machine failures at different stages using various machine variables such as 

current, voltage, speed, efficiency, temperature, and vibration [5]. Therefore, for 

economic and safety reasons, it is important to control the behavior of motors of 

different sizes. As an approach to condition monitoring, a very effective scheme can 

be offered that can provide the warning device at an early stage and efficiently predict 

the possibility of errors at an early stage of operation [6]. The monitoring system 

retrieves the details of the machines in use as raw data or raw details. By 

implementing advanced and highly efficient signal processing approaches, 

communicating diagnostic information to operators becomes very easy and 

straightforward, even well before the catastrophic machine failure. The challenging 

problem with this approach is that this mechanism requires continuous surveillance 

with human presence. Automation in the diagnostic process could include the logical 

progression of condition monitoring methods. To automate the diagnostic process, a 

series of soft computational diagnostic techniques using fuzzy logic [7, 8], NN [9] and 

machine learning algorithm [10] have recently been implemented. 

In view of the need for a robust and highly efficient system for the detection of faults 

in IM, the approaches based on the Fourier transform and the wavelet transform can 

play a decisive role. The precision and spontaneous diagnostic potential of these 

signal processing approaches make them robust and efficient candidates for use in 

most induction machine fault detection applications [11]. The work presented 

considers the Discrete Wavelet Transform (DWT) technique with machine learning 

algorithms to achieve the objective of detection of errors in IM. 

A number of approaches and systems are there for monitoring the IM functions for 

ensuring the higher consistency. Few leading approaches are as follows [12, 13]: 

1. EMF monitoring systems, 

2. Systems based on temperature estimation, 

3. Monitoring approach based on radio frequency emissions analysis, 
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4. Approaches based on the estimation of noise and vibration in IM, 

5. Approaches considering the speed and torque of rotor, 

Despite these approaches and tools mentioned above, there are a number of 

companies that suffer from unexpected system failures that ultimately result in lower 

productivity in the industry. Various issues such as the environment, features, and 

system facilities can cause the system to fail in their combined form. Therefore, any 

type of optimization and improvement of the system could be of great interest to 

everyone. 

1.2   BACKGROUND 

Extensive research has been conducted over the past 20 years to develop new 

diagnostic and Fault Detection techniques for IM. The review also covers a wide 

range of literature in the field  including machine  modeling, conditioning monitoring, 

machine health assessment, types of faults in IM and FD techniques. In addition to the 

methods mentioned above, this literature survey also takes into account the most 

important developments in this area in recent years. This overview covers techniques 

related to model-based fault detection techniques, techniques based on signal 

processing, and techniques based on soft computing. 

1.2.1  Model Based Techniques  

In the recent past numerous researches have been conducted and numerous Fault 

Detection (FD) techniques like Finite Element Method (FEM), and others have been 

employed by the researchers for fault diagnosis. The major developments in these 

fields are covered in the review, from early research to the most recent. 

Nandi et al. [14] has a broad distribution of the major electrical machines faults: 

• Abnormal connection of the stator winding, 

• Broken rotor bars or cracked end rings, 

• Static and/or dynamic air-gap eccentricities, 

• Bent shaft, 

• Shorted rotor field winding, 
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• Bearing and gearbox failures. 

These faults produce one or more of the following symptoms [14]: 

• Unbalanced voltages and line currents, 

• Increased torque pulsation, 

• Decreased average torque, 

• Increased losses and reduction in efficiency, 

Transient analysis of an IM using FEA with predicted transient powers when starting 

the motor without load [15], when operating the motor with asymmetric stator 

excitation and during the turn-by-turn fault state, the geometric dimensions of the IM 

are modeled in the area of the finite elements. Diagnosis and characterization of the 

influence of broken rotor bars  and connectors in squirrel cage motors using the state 

space sampling method for finite elements in connection with the temporal resolution 

method, diagnostic effects and characterization of elongation of broken bars and 

connectors [16]. The models are used to calculate/predict the characteristic frequency 

components that characterize bus bar and connector breakage. The behavior of 

electromagnetic properties is also analyzed using the FEM analysis for the occurrence 

of bus failure [17]. In other research work, flux density and mechanical stress were 

used to capture motor shaft failure in the mainline fed FEM model [18]. 

Most of the FD techniques available in the literature are based on the analytical 

model, which includes various assumptions for current spectrum analysis that does 

not take into account saturation, non-linear core materials and  natural effects etc. To 

address this problem, the Equivalent Magnetic Circuit (EMC) model [19] was used to 

take into account the effects of magnetic saturation, the non-linear behavior of the 

material and the real representation of the air distribution in the stator and grooves 

rotor. Online diagnosis of squirrel cage motor failures using FEM suggests an 

approach based on the signature of global and external variables that is used to solve 

problems related to broken rotor bar and terminal ring [20]. This enables finer 

analysis using finite element-based implementation, higher precision, and an easier 

form of recognition. The use of finite element techniques to improve early fault 

detection techniques in three-phase IM describes how commercial finite element 
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packages can be used to simulate rotor failures and thus improve the capacity of 

practical condition monitoring systems [21]. Accurate models of machines under 

failure conditions are developed using finite element packages with fixed mesh and 

timing. In Martin et al. [22], the influence of non-consecutive line breaks in MCSA to 

diagnose rotor faults in IM provides modeling to investigate the influence of the 

number and position of faulty bars on the diagnostic method of traditional MCSA. 

The analysis is based on the fault current and space vector theory, which provides a 

physical interpretation of the appearance of the left sideband component at a fraction 

of two extremes. In other studies, the static two-dimensional analysis of the fault and 

the results of the stator windings was compared with a healthy motor [23]. 

Vaseghi et al. [24] proposed IM model with stator winding fault and the model is 

validated using time steps FEA. The designed model is used to analyze the behavior 

of the machine under fault conditions. An IM analysis using time-step techniques 

shows that the equivalent circuit approach generally provides reasonable predictions 

about torque and current, but not information about flux distribution. This deficiency 

is remedied by a numerical approach using a nonlinear, time-shifted 2D finite element 

method to drive a constant voltage source [25]. Comparison of no-load stator current 

and other load conditions shows good agreement with test values at a large IM. 

Ebadi et al. [26] introduced the FEM, a numerical method to solve a differential or 

integral equation. This is true for a number of physical problems where the relevant 

differential equations exist. The FEM consists of a continuous function in parts for the 

solution, so that the fault  in the solution is reduced. Ali Ebadi describes the 

performance evaluation of the three phase squirrel cage induction machine according 

to FEM. 

Lombard et al. [27] discussed some of the benefits of Finite Numerical Method( 

FEM), widely used for numerically solving differential equations in two or three 

space variables including higher precision, better design and understanding of critical 

design parameters, virtual prototypes, fewer hardware prototypes, a faster and more 

economical design cycle, higher productivity, and more revenue. The basic theory of 

conventional electromagnetic and direct EMF is given by P Lombard et al. In some 

research papers, modeling based on state space equations is used to determine the 

stator current in the IM for FD using the FEA [28]. 
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Fireteanu et al. [29] provide detailed information on the effects of SE on IM in a 

series of experiments with different strains and eccentricity levels. While this helps to 

understand the effect of SE, it cannot be used directly to detect eccentricity errors 

because detailed error testing is not possible on an industrial motor. Researchers have 

also tried signature (current and air gap magnetic flux) analysis to identify eccentricity 

failure [30], where the coil sensors are arranged in a different orientation to identify 

faults. The severity of SE in induction machines diagnosed using the magnetic flux 

density of airspace [31]. However, due to the difficulty of obtaining air gap magnetic 

induction, no experimental results were provided to validate the results. The 

document does not even offer a solution to implement it. An analysis based on flow 

patterns is presented in some studies [32]. Flow pattern analysis is quite simple and 

completely non-invasive. In addition, it is more effective than conventional motor 

current analyzes in identifying the rotor and stator in induction machines. 

Isermann [33] presented model-based consistent progressive fault identification and 

prediction for Multiple Input Multiple Output (MIMO) nonlinear discrete time 

systems. The proposed scheme handles state and output errors considering separate 

time profiles. Occurring or abrupt errors are modeled on the basis of the input and 

output signals of the system. The asymptotic stability of the Failure Detection and 

Prediction (FDP) scheme improves detection and accuracy of time to failure. The 

robustness of the proposed method is demonstrated using a MIMO (fourth order) 

satellite system. 

Arkan et al. [34] presented two orthogonal wave models of a tri-phasic IM. Of these 

two models, the first has asymmetrical windings and the other has inter-turn shorts in 

the stator winding. The motor is modeled using classical two-axis theory and the 

equations are modified to account for faults between the stator windings. A form of 

the system state space is presented for dynamic modeling. The results of the execution 

of the models are compared with the experiment carried out on a special wound motor 

with bushings to shorten a different number of turns. Previous models were used 

successfully to investigate steady-state and transient behavior of IM in short-circuits 

windings. 

Sahraoui et al. [35] have presented an advanced mathematical model for induction 

machines that operates short circuits between the stator windings. The model is based 
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on the multiple coupled proximity circuit. Inductances are calculated in a 2D 

extension of the Modified Winding Function (EMWFA) approach, in which spatial 

harmonics across the slots are taken into account in addition to the effects of rotor bar 

preload and increasing linear MMF. The results show that the short circuit between 

the windings causes some spectral components that appear in the spectral line of the 

current. 

Bachir et al. [36] have proposed a new model of squirrel cage motors for stator and 

rotor failure. First, they processed a model that takes into account the effects of faults 

between turns that cause a short circuit in one or more stator phase winding circuits. 

They then propose a new faulty model dedicated to detecting broken rotor bars. The 

appropriate diagnostic method is proposed based on the estimation of the defective 

model parameters of the stator and rotor.  

1.2.2 Signal Processing Techniques 

Signal processing techniques have been widely used in recent years to identify various 

instant messaging errors. These techniques successfully detect certain faults  in the IM 

by analyzing the characteristics or specific parameters generated in the data being 

sampled. A new method has been introduced to analyze the signature of inductive 

motors, namely the real-time performance [37]. In this document, real-time energy is 

used instead of stator current to analyze the motor signature and identify mechanical 

defects in the drive system. The information carried by energy in real time is the 

product of voltage and current which is greater than the currently deductible capacity. 

In the current fixed power spectrum, the highest value is -52 dB, and in the current 

power spectrum the highest value is -47 dB.  From the above, it can be seen that the 

real-time power is 5 dB greater than the power of the decentralized spectral 

component. A wavelet package has been proposed to extract useful information from 

IM vibration signals [38]. Although the measured vibration signals contain a transient 

part, the Fourier Transform cannot provide enough information to detect some 

machine faults. The results of using the wavelet packet are used by the statistical 

feature selection criteria to discard feature components that contain less 

discriminatory information. The extracted vector with reduced dimensional properties 

is used as input to the NN classifier. The results show an improvement in the ability to 

generalize the NN and a significant reduction in training time. The current approach is 
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used to analyze signatures to detect instant messaging errors. This approach uses a 

power signature to determine that the author has detected many errors, such as 

breaking rotor bars in the IM squirrel and detecting short revolutions in an industrial 

motor. In this article, the author has created four case studies that identify various 

faults in the induction machine. Based on the results, the author made it clear that 

kinetic current analysis is a powerful technique for monitoring the status of triphasic 

IMs [39]. 

Kim et al. [40] has developed a fault diagnosis system without speed sensor for 

asynchronous motors. In this document, the proposed system is used to detect 

electrical elements (short circuit in the stator winding) and mechanical elements 

(broken rotor bars, eccentric air gap, bearings). Here, they used a combination of 

repetitive NNs and signal processing algorithms, such as wave-based and Fourier-

based techniques, to detect faults in IMs. The voltage and  currents from the terminals 

of motors were used as inputs to the diagnostic system. Fourier-based signal 

processing technology is applicable when the device is in a stable state, and wave-

based signal processing technology is applicable when the device is in transition 

mode. 

Douglas et al. [41] introduced a new algorithm that uses the gradient descent method 

to minimize least squares errors in a series of equations that change with time. The 

algorithm is used for the analysis of the current signature of the transient motor using 

waves. Here, the residual currents are analyzed with wavelets to detect broken rotor 

bars. The advantage of this method is that no parameters such as speed or number of 

rotor bars are required. In this method, a higher order notch filter is used to separate 

the fundamental frequency from the rotor bar frequencies. Once the fundamental 

frequency has been removed, the residual current can be examined using a DWT 

analysis. Therefore, the 8 Daubechies wavelets are used as a function of the mother 

wavelet. It can be seen from the results that the rotating rotor bar can be detected 

using transients measured at maximum current. 

T.Yang et al.[42] proposed feature based  online diagnostic approach for FD  in IM 

using MCSA with advanced signal processing algorithms. The previously planned 

system was ready to diagnose IM with four types of defects such as broken rotor bars 

and also finishing rings, shorting of stator coil windings, bearing cracks and 
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eccentricity defects of the air gap. Motor diagnosis with MCSA is dependent on slip. 

If the detected slip shows an error, the machine diagnostic results are incorrect. 

Therefore, to find the correct slip, the best slip hold algorithm estimator supported by 

the theorem estimation method is used. 

A.M. da Silva et al. [43] has presented an IM fault diagnosis method that uses three-

phase stator current envelopes for broken rotor bars  and shorts between the windings 

in the stator windings. The above methods not only identify an IM as healthy or 

faulty, but also identify the severity of the failure by identifying the number of broken 

bars or the number of short turns in the stator windings. The training and test sets are 

generated from the tri phasic stator current of an IM under both healthy and faulty 

operating conditions using Gaussian Mixture Models (GMM) of reconstructed phase 

space transformations. The author has claimed that the proposed method can be a 

powerful troubleshooting tool for induction machines due to its higher precision. 

M. Riera Guasp [44] proposed a technique based on the transformation of discrete 

wavelets for the detection of asymmetries in the rotor of an IM using the starting 

current and the stop-stop current, as well as the mixed eccentricities using the starting 

current. The author used Daubechies-44 as stem waves for the DWT analysis. To 

avoid an overlap between two neighboring frequency bands, a higher order mother 

wavelet was used. The author also found the parameters to quantify the severity of the 

failure in the case of starter rotor asymmetry and clogged rotor asymmetry. 

1.2.3 Soft Computing Techniques 

Various applications of using soft computing techniques in motor fault detection and 

diagnosis  have been published across the different verticals of the industry journals. 

In most applications, the stator current is used with one of the soft computing 

classification algorithms to obtain FD accuracy. The Park vector patterns are based on 

the detection of different types of supply failures, such as voltage imbalance and 

single-phase adjustment [45]. Furthermore, a NN based back propagation algorithm is 

used to obtain the state of the machine by testing the shape of the vector patterns of 

the park. Two NN-based approaches were used, classical and decentralized. The 

generality of the proposed methodology has been experimentally tested and the 

authors state that the results provide a satisfactory level of precision. Applications of 
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artificial intelligence in machine monitoring and fault diagnosis are examined in detail 

[46]. The expert system was used as a tool for the diagnosis of failures and the 

validity of the use of NN together with the fuzzy logic for the identification of failures 

and the evaluation of their severity. 

Other research introduced a comprehensive adaptive neuro-fuzzy inference system to 

identify stator shorts in brushless DC motors, with fault diagnosis performed by two 

independent ANPHYSES. The first is used to find out the shorted turns and the 

second is used to identify the faulty phase [47]. The inputs to the first Adaptive Fuzzy 

Neural Inference System (ANFIS) are the diagnostic indices for determining the 

number of turns shorted, while the output was set to zero during normal operation and 

integers under fault conditions. The input to the second ANFIS were the identification 

indices of three phases and its output was an integer indicating the defective phase. In 

some applications, a generic approach based on a neuro-fuzzy model is based on the 

detection of flaws in the breaking bar of the rotor in an IM [48]. The data to train the 

neuro-fuzzy system to model the generic static torque-speed relationship of the IM 

class used in the practical evaluation of the fault detector. A modeling error was found 

when comparing the output speed of the neuro-fuzzy model and the speed obtained 

from the experimental torque-speed equation. This approach overcomes the practical 

limitations of model-based strategies by reducing the amount of experimental data 

required to design the flaw detector. This method can also identify the absence / 

presence of cracked rotor bars under various load conditions. 

Ballal et al. [49] proposes ANFIS to detect bearing and insulation wear defects in IM. 

Here, the authors have given ANFIS five contributions which are as motor input 

current, speed, winding temperature, bearing temperature, and noise generation. 

Fuzzy neural architecture takes into account both Artificial Neural Network (ANN) 

and fuzzy logic technology. Authors have used a multilayer feed forward network as 

fuzzy rules of the ANN type and fuzzy inference systems. 

Rodríguez and Antero Arkkio [50] used a method to detect faults in the stator winding 

in IM. In this work, the tri phasic mean square values of the stator and the variance 

were used as input for the fuzzy logic system. The input data is generated by FEM 

analysis with the engine running under various load conditions. The fuzzy logic 

method was able to record the state of the motor with and without noise with high 
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precision. The disadvantage of the method is that a current imbalance generated by 

the power supply can be identified as a motor fault condition. 

R.H. Abiyev and O. Kaynak [51] integrated both fuzzy logic systems with NN 

wavelet for the identification and control of an insecure system. In this article, they 

used the decent gradient algorithm for parameter settings. Two implementation 

examples were presented to identify and monitor performance. It was shown that 

diffuse wave NNs can converge faster and are more adaptable to new data. 

Bouzid et. al [52] proposed NN approach for the automatic detection and localization 

of a short circuit fault between the windings in the stator of an IM. In this, they used a 

feed-forward multilayer NN perceptron that is trained by the back propagation 

technique. The phase shift between the phase voltage and the line current of an IM is 

used as an input to the NN. The desired output is set to one or zero. If a short is 

detected and it is in one of the three phases, the corresponding output NN is set to one 

otherwise it is zero. 

J. Kurek and S. Osowski [53] presented an automated computerized system for 

diagnosing the rotor bars of the induction electric motor using the SVM. Two 

diagnostic system solutions have been developed. The first, called error detection, 

only detects when an error occurs. The second complex diagnosis can determine 

which bars have been damaged. The main problem is related to the generation and 

selection of diagnostic characteristics from which the condition of the rotor bars is 

detected. 

Feng Jia et al. [54] aims to process massive error data immediately and automatically 

provide accurate diagnostic results. Numerous studies have been carried out on the 

intelligent diagnosis of failures in rotating machinery. Commonly used among these 

studies are ANN -based methods that use signal processing techniques to extract 

features and then input the features into ANN to classify faults. 

Zhang W et al. [55] proposed a novel method called deep convolutional neural 

networks with broad first-layer nuclei. The proposed method uses raw vibration 

signals as input (data expansion is used to generate more inputs) and uses the wide 

cores in the first convolution layer to extract characteristics and suppress high 

frequency noise. 
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X Yang et al. [56] proposed an effective and practical fault diagnosis algorithm for 

induction machines, which is based on adaptive weighted votes from various RF 

classifiers. First, the vibration signals and the stator current signals are obtained and 

analyzed. The energy characteristics at various characteristic frequencies related to 

motor failures of each type of signal are extracted and used as input to the appropriate 

RF classifier. Cluster analysis is then applied to the test and training samples to 

determine the weight of each classifier to make decisions about the diagnostic result. 

T. dos Santos et al. [57] proposed an approach to detect short circuit faults in the 

stator winding in SCIM based on RF. This is accomplished by evaluating the 

imbalance in the current and voltage waveforms, as well as in the park‟s vector for 

both current and voltage. 

Aydin et al. [58] introduced the new feature vector based on park's vector approach. 

The phase space of this feature vector is constructed using nonlinear time series 

analysis. Faulty short circuit faults in the rotor rod and stator are rated with SVM in 

the combined phase space. The experimental data come from a three-phase IM. One, 

two and three broken rotor bars faults and a 10% short circuit of stator faults are 

successfully detected. The MCSA technique is based on the analysis of stator current 

under healthy and faulty conditions. This technique suggested diagnosing stator-to-

turn failure in IM using wavelet transform and SVM as tools [59]. The fault diagnosis 

system using SVM-based classification techniques was developed for the diagnosis of 

rotor failures of cage induction machines. Subsequently, a classifier based on SVM 

for various classes will be developed and applied in order to distinguish health status 

from various rotor failure states [60].    

Research based on deep learning is carried out to diagnose and classify the different 

types of faults in induction machines. For sensitive identification of faults between 

shifts in IM using deep learning-based methods, the model is trained and tested early 

on an induction machine to mainly detect short circuit faults between the windings. In 

the proposed work, models of Convolutional Neural Networks (CNN),  recurrent 

NNs. Long-term Short-term Memory (LSTM), included for Fault Detection. 

Furthermore, the results show that CNN is superior to LSTM in accuracy, which 

provides good classification performance for FD in the early stages of fault 

development [61]. 
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E. Pandarakone et al. [62] took into account the practical occurrence of faults and 

introduced the scratch on the outer race of the bearing. An online bearing diagnostic 

method is proposed using a deep learning based approach. The CNN architecture is 

originally used for fault characterization. In particular, a FFT analysis is performed 

using the stator load current, followed by the extraction of characteristics of selected 

frequency components that are used to train the CNN algorithm. 

Heydarzadeh et al. [63] in, deep NNs are employed to diagnose five classes of 

transmission faults that apply to three common supervisory signals, i.e vibration, 

acoustics, and torque. DWT is used to provide the initial functions as inputs to the 

network. To validate the proposed method, a test bench built  based on a 250W three-

phase SCIM shaft which is connected to a single-stage helical gear drive. 

John Grezman et al. [64] in, the authors examine the performance of a CNN that is 

trained using images of time-frequency spectra of vibration signals measured in an 

IM. The results show that the patterns learned by the CNNs in the time-frequency 

spectrum images are intuitive and consistent with respect to network retraining.  

Mohammad Zawad Ali et al. [65], in this research work, stator currents and vibration 

signals from motors are selected to develop fault  detection methods. Additionally, 

two signal processing techniques (Matching Pursue and DWT) are selected for feature 

extraction. Three classification algorithms, SVM, KNN, and Ensemble, with 17 

different classifiers offered in the MATLAB toolbox, are used in the modeling to 

evaluate the performance and suitability of different classifiers for diagnosis of 

failures. 

Tarannum Khan et al [66] in, author suggested Motor Current Signature Analysis 

(MCSA) using deep learning based one dimensional Convolutional Neural 

Network(1D-CNN) model and Long Short Term Model (LSTM). The results using 

these two methods have been compared, and this initial investigation shows that CNN 

is found to be more suitable than LSTM, for incipient fault diagnosis. 

Lots of quality research on fault diagnosis of induction machine and algorithm based 

detection have been examined. To detect and classify various machine learning based 

model, fuzzy based model have been implemented and posted commendable results. 

The literature survey indicates that the individual faults have been the main focused 
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area and combined fault analysis is still an unexplored area. Furthermore, the time 

varying load operating conditions of IMs are not much researched. Need of 

considering combination of faults which could be hazardous for the motor is at most. 

1.3   RESEARCH GAPS 

Previous research has addressed several aspects related to Fault Detection techniques 

used for fault diagnosis of Induction Motor like the model based techniques, signal 

processing techniques and soft computing techniques. 

However, majority of the research work which provides outstanding results mainly 

suggested Motor Current Signature Analysis(MCSA) with stator current as single 

signature analysis with signal processing techniques  like  FFT, STFT, Gabor and 

Hilbert transform etc. to detect presence of fault. But, each technique has some 

advantages and disadvantages like in case of FFT  it has been observed that it cannot 

diagnose  fault  in  non-loading condition unlike DWT. However, by changing the 

wavelet transform only a limited amount of work has been done get out.  

In addition, model based approaches have their own limitation of characterization of 

the faults, these methods detect the severe faults and neglect the early stage failure or 

the faults with diminished magnitude. Previous research suggested primarily fuzzy 

logic , expert system and ANN soft computing associated with single stator current 

used for feature extraction. But, rigorous mathematical calculations are done in  fuzzy 

system  for fault diagnosis and further,  both expert and fuzzy systems have lack of 

self  learning.  

Furthermore, the previous research works mainly focus on identification of  different 

types of faults in IM and various methods used to detect these faults using various 

condition monitoring techniques  but the use of advance machine learning techniques 

in this field still a thrust area now a days. Moreover, earlier research has emphasized 

largely on fault diagnosis of machine using single stator current signature analysis 

under full load conditions.  

But, the use of multiple signature analysis with signal processing techniques in order 

to carry out fault detection is still a challenging task.Very little research has been 

carried out on diagnosis and detection of combined faults   and fault detection based 
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on time varying load conditions. Few researchers have used machine learning and 

deep learning methods for health monitoring of IM.  

However, due to the complexity and importance of the systems, there is a need to 

further improve existing Fault Detection techniques. A major key to the success in FD 

is the ability to use appropriate technology to effectively fuse the relevant information 

to provide accurate and reliable results. The advancement  in technology will provide 

opportunities for improving existing FD schemes. 

The advance algorithms with feature extraction technique DWT, considering both 

vibration and stator current signals have not yet been used in this domain of fault 

diagnosis and detection. The individual faults have been the main focused area and 

combined fault analysis is still an unexplored area. 

Considering the above facts, this present research work includes behavior analysis of 

motor under healthy and faulty conditions for both individual fault as well as 

combined faults  under  different constant and time varying loading conditions in 

order to validate designed model of IM  for carrying out further research work. 

The proposed research  used  hybrid approach of advance machine learning and deep 

learning algorithms with feature extraction technique applied on both vibration and 

stator current signals  in order to get enhanced accuracy under constant and time 

varying loading conditions for fault detection of single and combined faults . This 

approach can identify and aggregate the pertinent information for accurate and 

authentic motor fault detection and further confirms its effectiveness of fault 

diagnosis under both constant and time varying loading conditions. 

1.4    MOTIVATION 

Induction Motor maintenance is one of the severe problem encounters by various 

utilities and industries. A number of researches have been done for the issues of 

automatic and on-line detection of faults in IM. Few of the main research work and 

recommendations were like, Electric Power Research Institute motor literature of 

reliability as per the reference [67], states that stator faults are liable for 36% of the 

IM failures. According to Neale [68], the installation and purchasing cost of the 

equipment‟s usually cost less than half of the total expenditure over the life of the 
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machine for maintenance. According to Wowk [69], maintenance expenditure 

typically presents 15% to 40% of the total cost and it can be up to 80% of the total 

cost. 

The motivation behind this work is to find a methodology which effectively detects 

faults in induction machine under different constant and time varying loading 

conditions at an early stage in order to avoid its catastrophic failure which may further 

lead to system failure. In addition to this, research work involves the stator current 

with vibration signals for feature selection and proposed framework of novel 

architecture of DBNN for effective detection of faults under time varying load.  

Deep learning techniques are foremost algorithms of artificial intelligence domain. 

Since after the introduction of deep learning algorithms it over shadows the other 

machine learning algorithms and are being extensively used in various applications 

due to its higher accuracy and adaptability to handle data. The ability of the deep 

neural network‟s techniques to perform complex correlation among speech signal 

features, which enhances its performance over traditional approaches. 

The deep learning method is the advanced version of the Neural Networks (NNs) 

which falls under machine learning category and machine learning methods SVM and 

RF are applied for the comparative analysis of new age deep learning classifier with 

conventional SVM and RF classifier. 

Investigations related to different types of faults like broken rotor bars, stator and 

eccentric faults in induction machines and various methods to detect these faults are 

discussed elaborately in the research work. 

In this research work, the ANSYS RMxprt & Maxwell 2D and MATLAB software 

tools were examined using numerous machine learning techniques to diagnose faults 

in SCIM and identify rotor, stator, eccentric, and combined faults under constant and 

time-varying load conditions.  

After analyzing faults in all conditions, it was concluded that wavelet transformation 

with machine learning in conjunction with deep learning techniques is very effective 

in diagnosing various fault related problems. Implementing deep learning methods 

with DWT can be an important step in optimizing overall system performance. 
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The idea is to develop a framework to detect and diagnose faults in IM at an early 

stage. Using deep learning with signal processing technique such as DWT technique 

can improve the performance of the framework as in Dis short time wavelets allow 

information to be extracted from high frequency components, which can also 

diagnose the severity of the fault and its type.  

1.5    RESEARCH OBJECTIVES 

The objective of this research work is to develop health monitoring system that can 

detect and diagnose common faults which are generally occurred in three-phase 

Squirrel Cage Induction Motor. The main aim is to investigate the use of machine 

learning and deep learning techniques in the area of motor health monitoring. Since 

this is an electromechanical system application, the author's objective is to develop a 

health monitoring system that can detect, classify and diagnose common failures that 

commonly occur in electrical and mechanical parts of three-phase asynchronous 

motors. To achieve this objective, the following objectives were established: 

• To design and develop the Induction Motor implementation model for behavioral 

analysis of motor. 

• To investigate the motor under various faults like broken rotor bar faults and 

stator faults under different loading conditions. 

• Investigation of eccentricity faults in Induction Motors. Sometimes multiple 

faults may occur simultaneously in IM during working condition. Less research 

work has been done on investigation of multiple or combined faults. The new 

concept of combined fault is introduced and examined under load conditions. 

• The implemented model put under varied load conditions and faults conditions to 

apply machine learning techniques like Deep Belief Neural Network (DBNN), 

Support Vector Machine (SVM) and Random Forest (RF) to detect and classify 

the motor faults under different faulty conditions. 

• Investigations carried out on effectiveness of proposed fault detection method in 

research work for detecting how the presence of multiple faults as well as 

common faults, such as rotor bar fault, stator winding fault, air gap eccentricity 
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and their combinations affects performance of IM under different constant and 

time varying load conditions. 

1.6    RESEARCH METHODOLOGY 

The strategy adapted to carryout research work has been depicted in the Figure 1.1. 

 

Figure 1.1: Research plan 

Further, the following steps provide a brief overview about the work: 

● The previous research works mainly focus on identification of  different types of 

faults in IM and various methods used to detect these faults but the use of 

advance machine learning techniques in this field still a thrust area now a days.  

In general, broken rotor bars, stator, eccentric and combined faults are discussed 

elaborately in the research work. Need for monitoring dynamic behavior of the 

induction machines and combination of the consideration were the two general 

outcomes of the literature review. In this research work, first the ANSYS RMxprt 

and Maxwell 2D software tools are used to design the induction machine. The IM 

healthy characteristics are obtained using the designed model. Parameters like 
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torque, current, and power are analyzed at constant loading condition. 

Furthermore, various faulty conditions are generated in ANSYS RMxprt 

designed model and the characteristics of the motor are noted under each fault. 

The faults considered are rotor broken faults, stator faults, and eccentric faults. 

● Analyzed performance characteristics results of healthy and faulty IMs are 

compared for fault identification under constant loading condition. The 

MATLAB SCIM model is designed to obtain the health motor performance 

parameters like torque, speed, stator current and rotor current under time varying 

load and different constant loading conditions like 100% loading, 50% loading,  

25% loading and no loading. Obtained performance characteristics of SCIM 

healthy and faulty models of rotor bar fault, stator winding fault, eccentric fault 

and combined faults are compared for fault identification under time varying and 

different constant loading conditions for further effective fault detection using 

machine learning methods. Motor vibration and stator current distortion is taken 

into consideration to detect and diagnose the faulty condition in SCIM. Motor 

performance degrades as the level of fault increases. So, the DWT is used to 

extract features of the motor stator current under various faulty conditions like 

broken rotor bar fault, stator fault, eccentric fault and combination of faults 

(rotor-stator, stator –eccentric & rotor eccentric). 

● To detect and diagnose the type of fault, machine learning algorithms Support 

Vector Machine and Random Forest are applied on features extracted from 

analyzed behavior of IM under healthy and faulty conditions for all constant and 

time varying loading conditions. The accuracies achieved are 96.5% and 97.5% 

from RF and SVM respectively. The deep learning methods are advanced version 

of NNs which fall under the machine learning category. These methods are used 

for effective detection and classification of faults with its type and severity. To 

enhance the accuracy of detection of fault and its specific type on the results, 

deep learning techniques are explored. Proposed framework of  Deep Belief 

Neural Network (DBNN)  is applied on the extracted features which are based on 

stator current and vibration of IM. Finally, FD with 99.83% accuracy is achieved 

from DBNN. The results obtained are compared with other research work for 

validation. 
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1.7   THESIS ORGANIZATION  

This thesis includes six chapters and these chapters are summarized as: 

CHAPTER  1: INTRODUCTION 

This chapter is all about the importance of motors in industry and introduction of 

motor faults diagnosis methods which can detect the type of faults in motor. This 

chapter also includes background of a research work which signifies the foundation of 

research optimization. Numerous reviews have been presented based on systems 

proposed with Fault detection methods or techniques  like  model based methods,  

MCSA with associated signal processing techniques and soft computing based 

approaches, which performed well in a certain way, but could not get the optimum 

solution for fault detection and diagnosis optimization. Therefore, research gaps are 

also mentioned in order to find out the best optimum solution for fault detection with 

high accuracy.  Further, the motivation of the thesis, the research objectives and 

research methodology are presented in this chapter. 

CHAPTER  2: MODELING AND PERFORMANCE  OF SQUIRREL CAGE 

INDUCTION MOTOR UNDER HEALTHY CONDITION                                      

This chapter presents the mathematical modeling of Induction Motor (squirrel cage). 

The ANSYS RMxprt and Maxwell 2D software tools are used to design the induction 

machine and furthermore, MATLAB software is used to apply model the 

mathematical equation of IM and implementation model is designed. Both the 

software‟s virtualizes the induction machine for carrying out the further research.  

Implemented models are operated under healthy operating condition and  performance 

of motor is analyzed in terms of voltage, speed, current and torque. The designed 

model is subjected to various constant and time varying loading conditions.  

CHAPTER  3: FAULT TYPES AND DIAGNOSIS & CLASSIFICATION 

TECHNIQUES 

In this chapter, various faults are discussed in detail which may occur during the 

operating condition of motors and can cause catastrophic failure of motors if not 

detected and classified at an early stage. The utilization of classification techniques 
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like SVM and RF in fault detection and classification in motors are discussed. All 

machine learning algorithms applied to detect the different type of faults generated in 

the SCIM. Deep learning method like DBNN has performed well as compared to the 

other machine learning techniques. 

CHAPTER  4: BEHAVIORAL ANALYSIS OF INDUCTION MOTOR UNDER 

DIFFERENT  FAULTS 

This chapter includes the results obtained from the behavioral analysis of induction 

machine under different faults  such as broken rotor bar faults, stator winding faults, 

eccentric fault and combined faults  like eccentric with stator fault, rotor with stator 

fault and eccentric with rotor fault. ANSYS RMxprt and Maxwell 2D designed model 

with different faults discussed and executed. MATLAB model is operated under 

different faulty conditions and its characteristics performance are analyzed and 

evaluated under various constant and time varying loading conditions. Loading 

conditions considered are no load, 25% load, 50% load and 100% load. In order to 

diagnose the effects of number of broken rotor bars, power spectrum is also obtained 

for different conditions.  Comparison of healthy and faulty conditions is done on the 

basis of IM parameters current, voltage, speed and torque. It is noted that the motor 

speed, current and torque distortions increases on account of faults and under heavy 

loading conditions. Furthermore, the variation of stator current is utilized as features 

in the Fault Detection and classification. 

CHAPTER 5: MACHINE LEARNING ALGORITHM BASED FAULT                 

DIGNOSIS EXPERIMENTATION 

This chapter proposes the fault diagnosis of induction machine using Support Vector 

Machine (SVM), Deep Belief Neural Network (DBNN) and Random Forest (RF) 

using DWT features of the stator current and vibration signals. The feature extraction 

process using stator current is described. The dataset prepared of current signature of 

all the types of faults like rotor faults, stator faults, eccentric faults and combined 

faults under different constant (100%, 50%, 25% and no load) and time varying 

loading conditions. The machine learning algorithms are applied on the dataset 

dividing the complete dataset into training and testing dataset. The total dataset 

generated is 4000 samples in which 1000 are of healthy operating condition, 500 is of 

rotor bar faulty condition, 500 samples stator faults, 500 eccentric faults, 500 rotor-
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stator combined faults, 500 rotor-eccentric combined faults, 500 stator-eccentric 

combined faults and then the whole dataset is divided into 70% training and 30% 

testing. On the training and testing dataset the classification approaches DBNN, SVM 

and RF are applied to get the effectiveness of each algorithm on detection and 

classification of faults in IM. The comparison is done on the basis of accuracy of fault 

type detection and time taken in detecting the fault.  

CHAPTER  6: CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK  

This chapter covers the benefits that can be derived from the research work 

undertaken and also concludes the various results obtained during different faults 

generation and fault diagnosis of induction machine under different constant loads 

and time varying loading condition. The chapter includes benefactions of the present 

work in the field of Fault Detection and diagnosis in Induction Motor by applying 

advanced algorithms of machine learning and deep learning and addresses the future 

scope to continue with this line of research and development in the field of fault 

detection and classification of induction machine. 
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CHAPTER 2 

MODELING AND PERFORMANCE OF SQUIRREL 

CAGE INDUCTION MOTOR UNDER HEALTHY 

CONDITION 

 

2.1   INRODUCTION 

In recent decades, a large number of mathematical models for triphasic Induction 

Motors have been intensively investigated [70]. IM models are created on the basis of 

suitable mathematical descriptions that have a relevant dynamic characterization of 

the processes associated with IM operation under fault-free and error-free conditions. 

Model-based methods have been widely implemented for parameter estimation of 

induction machines [71], condition monitoring, and protection [72]. The advantages 

of model-based methods are: they are not intrusive and application costs tend to be 

low. 

The chapter emphasizes on design of three-phase IM mathematical model and 

performance  analysis that can be further used to detect and classify rotors, stator, 

eccentricity, and combined faults using machine learning detection methods. 

2.2   MODELING OF INDUCTION MOTOR IN ANSYS 

Induction Motor model design is implemented in ANSYS RMxprt software tool and 

the FEM analysis is done in Maxwell 2D software tool.  

2.2.1   ANSYS RMxprt 

Engineers designing electrical machines and generators now have the advantage of 

expanding ANSYS Maxwell with ANSYS RMxprt, a template-based design tool. 

Together, Maxwell and RMxprt have succeeded in developing a truly bespoke 

machine design to meet the market demand for lower cost and above average 

efficiency machines. RMxprt uses classical analytical motor theory and equivalent 

magnetic circuit methods and can therefore calculate machine performance, make 

initial sizing decisions, and perform hundreds of "what-if" analyzes in seconds. A 
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great advantage of RMxprt is that it can automatically configure a complete Maxwell 

project (2-D / 3-D), which can also contain geometry, materials, and boundary 

conditions.  

The motor with rating of 5kW power and 415V rated voltage is taken into 

consideration while designing the complete parameter list is shown in Table 2.1 

Table 2.1 Squirrel Cage Induction Motor parameters 

Parameters Value 

Rated Power 5kW 

Rated Voltage 415V 

Rated Speed 1462.7 rpm 

Frequency 50Hz 

Number of stator slots 36 

Number of rotor slots 28 

Number of poles 4 

Stator Outer Diameter 219.8mm 

Stator Inner Diameter 136mm 

Rotor Outer Diameter 135.42mm 

Rotor Inner  Diameter 44.85mm 

 

2.2.2    Squirrel Cage  IM Design Using  RMxprt 

RMxprt is a template-based design tool that makes it easy for electrical machine 

designers. Maxwell 2D and RMxprt together can result in individual machine design 

according to specific requirements (high efficiency, low cost, good power factor). 
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Machine performance calculations and initial size decisions can be made in seconds 

that would have otherwise taken days to calculate by hand. The motor is designed 

using above parameters as shown above in Table 2.1 using RMxprt tool of ANSYS. 

The RMxprt design can be imported into Maxwell, including geometry, materials, and 

boundary conditions. 

AC motors generally use a squirrel cage. The ironically shaped motor cast aluminum 

or copper that melted between the iron laminates of the rotor. Considerable fragments 

of the rotor currents flow through the lacquered bars and laminates. A 5kW three-

phase SCIM is designed in RMxprt and analyzed using Maxwell 2D. The assigned 

stator windings are made of copper. The FEM model proposed of IM is shown in 

Figure 2.1, which is almost identical to the real machine in terms of its geometry and 

magnetic circuit. 

 

 

Figure 2.1: Induction Motor model for healthy condition 

2.2.3    ANSYS Maxwell  2D  

ANSYS Maxwell is the inexpensive electromagnetic field modeling software for 

designers manufacturing and analyzing 3D and 2D electromagnetic and 

electromechanical devices, including motors, actuators, transformers, sensors, and 

coils. Maxwell 2D that uses Finite Element Analysis (FEA) to identify electrical, 

magnetostatic, eddy current, and transition problems. Maxwell 2D determines the 
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electromagnetic field problems for a given model with pertinent materials, boundaries 

and source conditions applying Maxwell‟s equations over a finite region of space [73-

74]. 

Differential forms of Maxwells equations are as follows: 

                                  
  ⁄     (2.1)  

                                    (2.2) 

                       
  ⁄       (2.3) 

                                      (2.4) 

2.2.4    Finite  Element  Analysis  Using  Maxwell 

With an aim to glean the set of algebraic equations which is to be solved, the 

geometry of the problem is discretized on its own into infinitesimal elements (e.g. 

triangles in 2D). All the model solids will be meshed on its own by the mesher. FEM 

approach is used to analyze the IM under various conditions [75].  

The Finite Element Method (FEM) is a numerical method for solving a differential or 

integral equation.. The motor  specified above is relocated with a direct channel from 

RMxprt to Maxwell. Maxwell uses precise EMF to determine static, frequency 

domain, and time-varying electric and electromagnetic fields. The motor parameters 

are the same as shown in Table 2.1. The graph for the magnetic flux density analysis 

is shown in Figure 2.2.  

 

Figure 2.2: Magnetic flux density model of IM 
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Figure 2.2  shows  motor performance through the magnetic flux of a healthy motor 

under normal operating conditions. 

2.2.5    Induction  Motor  Performance  Under  Normal  Healthy Conditions 

The 5kW SCIM is designed and analyzed using FEM model. Initially healthy motor 

parameters are investigated under normal operating condition.  

The symmetric distribution of flux density over the various parts of stator and rotor of 

the healthy machine can be seen in Figure 2.3. From Figure, it can be clearly seen that 

the flux is uniformly distributed over all the parts of the rotor and the stator. The 

current density plot is shown in Figure 2.4, which shows the uniformity of the current 

density. So, in healthy operation the current are symmetrical in all parts of the stator 

and rotor there is no ambiguity and there is no effect on any part while operation. 

 

     Figure 2.3: Induction Motor flux density distributions during normal 

condition 

 

Figure 2.4: Current density plot of IM during normal condition 

Under normal operating condition torque produced has transients in positive and 

negative direction which tends elevate as the fault occur in motor. Figures 2.5, 2.6,  
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2.7 and 2.8 show  the motor characteristics under normal operating conditions. Figure 

2.5 shows the torque response of the SCIM over the period of time during the normal 

condition. The average load torque in normal operating condition is 33.4175Nm. 

Figure 2.6 illustrates the FEM IM model stator current response under normal 

condition the three phase current showing minimal distortion. But during the starting 

the current peaks are high and gets stable at around 60 sec operating time. Figure 2.7 

illustrates the flux linkage response of the IM model, from the figure it can be clearly 

seen that the stability of the IM is achieved after 60sec of the operation. Figure 2.8 

illustrates the average power in watts under normal operating condition. The average 

power obtained is 5080.111watt and the major transient effective points are there at 

the starting of the motor as the time passes around after 75secs the transient stabilises.  

 

  Figure 2.5: Induction Motor torque response over period of Time during 

normal condition 

 

Figure 2.6: Induction Motor current response during normal condition 
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Figure 2.7: Flux linkage response of IM during normal condition 

 

Figure 2.8: Induction Motor output power response during normal condition 
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4. The magnetic field is not saturated and has a constant permeability; 

5. The skin effect, hysteresis and eddy effects are not taken into account; 

6. The harmonics in voltages and currents are neglected; 

7. The temperature of motor stays constant resulting in constant parameters in the 

mathematical models. 

These hypotheses allow the development of a practical mathematical model with a 

limited complexity. 

2.3.1    Induction Motor Model   in abc  Coordinates 

The proper selection of an IM model structure and its parameterization are critical 

since they influence both the observation and identification ability. The dynamic 

mathematical model of an IM is usually represented in the stationary a, b and c 

reference frame in terms of voltage, current and flux linkage as follows :  
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Where, 

                                                        

                                         

                                        

The stator to stator winding inductances Lss, rotor-to rotor winding inductances Lrr 

and stator-to-rotor mutual inductances Lsr are presented as 
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Where, Lls, Ls and Lsm are the per phase stator leakage inductance, self- inductance 

of the stator winding and mutual inductance between stator windings, respectively; 

Llr, Lr and Lrm are the per phase rotor leakage inductance, self-inductance of the 

rotor winding and mutual inductance between rotor windings, respectively; Lsr is the 

mutual inductance between stator and rotor windings; θr is rotor angular position. The 

peak value of stator-to-rotor mutual inductances Lsr is equal to the transpose of rotor 

to-stator mutual inductances Lrs, i.e. Lsr = LT 

Based on the hypotheses at the beginning of this section, the inductances of Induction 

Motor can be expressed in terms of the per phase total equivalent stator winding turns 

Ns, equivalent rotor winding turns Nr and air-gap permeance Pg. Thus, the sum of 

inductances can be represented by Ls to reduce the number of variables, 

Where, Lls, Ls and Lsm are the per phase stator leakage inductance, self- inductance of 

the stator winding and mutual inductance between stator windings, respectively; Llr, 

Lr and Lrm are the per phase rotor leakage inductance, self-inductance of the rotor 

winding and mutual inductance between rotor windings, respectively; Lsr is the 

mutual inductance between stator and rotor windings; θr is rotor angular position. The 

peak value of stator-to-rotor mutual inductances Lsr is equal to the transpose of rotor 

to-stator mutual inductances Lrs, i.e. Lsr = L
T 

Based on the hypotheses at the beginning of this section, the inductances of Induction 

Motor can be expressed in terms of the per phase total equivalent stator winding turns 

Ns, equivalent rotor winding turns Nr and air-gap permeance Pg. Thus, the sum of 

inductances can be represented by Ls to reduce the number of variables, 
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In this research, the motor parameters are estimated based on both transient response 

and steady state condition.  

2.3.2    Induction  Motor  Model  in αβ Coordinates 

The three-phase quantities (voltages and currents) are transformed from abc to αβ co- 

ordinates to reduce computational complexity. The transformation matrices of stator 

and rotor variables from abc to αβ are defined as follows [77]: 

                stator variables 

                 rotor variables 

Where, 
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Applying these two transformation matrices to equations  (2.10) - (2.13) and replacing 

Lsm, Lr, Lrm and Lsr with Ls using equation (2.8), the mathematical model of an IM in 

the αβ reference frame is presented as, 

[
   

   
]      [

   

   
]  

 

  
 [
   

   
]         (2.14) 

     
 *

   
 

   
 +   

 

  
*
   
 

   
 +      (

 

 
) *

   
 

   
 +      (2.15) 

[
   

   
]       [

   

   
]       ([

   

   
]  *

   
 

   
 +)       (2.16) 

*
   
 

   
 +      

  *
   
 

   
 +      ([

   

   
]  *

   
 

   
 +)     (2.17) 

Where   
   (

  

  
)
 

        
  = 

  

  
         

  = 
  

  
         

  = (
  

  
)
 

           
 

 
     



 

33 
 

 

Figure 2.9: Equivalent circuit representation of IM in αβ reference frame 

Figure 2.9 shows the equivalent circuit model of a three phase IM in the αβ reference 

frame. This model is the base of generating the modeling in the MATLAB 

environment. 

2.4   MATLAB MODEL OF SCIM 

The mathematical equations described in section 2.3 are modeled with MATLAB 

software. The MATLAB development environment offers convenient free-body 

diagram programming, where components are dragged and dropped into a GUI and 

the connection is established according to the equation. In addition to mathematical 

modeling of the IM with different operating conditions, MATLAB can be 

conveniently used to set up a suitable solution method and analyze the results. 

 

Figure 2.10: MATLAB model of SCIM (Healthy condition) 
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Figure 2.10 shows the complete SCIM MATLAB model with a separate subsystem 

for calculating stator voltage, stator current, rotor current, torque, and speed. Each 

subsystem is discussed in the next part of this section. The three-phase IM is provided 

with a three-phase power supply, which is generated by a signal generator in the 

MATLAB block, which is produced with a phase difference of 120 ° from each other 

with 50 Hz as the base frequency. The three-phase supply is fed to the stator voltage 

block, which generates the three-phase stator voltage. Then the Vabcs is connected to 

the Iabcs three-phase stator current subsystem and also the torque and speed 

generation block is connected to Iabcs and Iabcr, i.e stator current block and rotor 

current. The oscilloscope blocks are used to obtain real-time operational output.  

 

Figure 2.11: Phase stator voltage matrix subsystem (Vabcs) 

Figure 2.11 shows the subsystem of the stator voltage matrix creation from equations 

(2.5) – (2.7), the 3-phase stator voltage matrix is created using the input blocks to take 

the Va, Vb and Vc all three phases of the stator and convert it into matrix form using 

reshape block. 

 

Figure 2.12: Phase stator current calculation subsystem (Iabcs) 



 

35 
 

The stator current calculation from equations (2.6) – (2.10) is done in subsystem of 

Iabcs. Mutual inductance calculation, rotor resistance and stator resistance all 

calculation is done using matrix multiply block, integrator block, inverse block and 

add/subtract block generating the Iabcs stator current at the output of Figure 2.12 

subsystem. 

 

Figure 2.13: Phase rotor current calculation subsystem (Iabcr) 

The rotor current calculation from equations (2.6) – (2.10)  is done in subsystem of 

Iabcr. Mutual inductance calculations, rotor resistance and stator resistance all 

calculations are done using matrix multiply block, integrator block, inverse block and 

add / subtract block generating the Iabcr rotor current at the output of Figure 2.13 

subsystem. 

 

Figure 2.14: Torque and speed calculation subsystem 
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Figure 2.14  illustrates the torque and speed calculation subsystem model of the 

SCIM. Majorly function block, integrator block and parameter configuration block is 

utilized to model the equation.  

2.4.1    MATLAB  Model Results of Healthy SCIM 

This section describes all the results obtained from the MATLAB model as worked 

under various load conditions. Four load situations, i.e. no load, 25%, 50% load and 

100% load, are taken into account and the impact on rotor current, stator current, 

torque and speed is evaluated in graphical form.  

 SCIM at No Load Condition  

The model of IM is examined first by running the motor at no load condition during 

the starting of the motor and the obtained results are shown in Figures 2.15, 2.16 and 

2.17. The rotor of the motor initially tends to rotate with minimal jerk and achieve the 

synchronous speed 1470 after 1.15 sec of time. The stability of the system is achieved 

after 1.15 seconds of operating time. The initial overshoot is experienced in the torque 

as well as in the stator and rotor currents as shown in Figures 2.15 and 2.16 is due to 

the initial friction of the SCIM. Figure 2.17 displays the IM signature frequency 

spectrum at no load normal healthy operating condition. From the figure, it can be 

seen that the spectrum is completely free of any current components around the main 

supply frequency and consequently, the frequency range in which current components 

due to broken rotor bars are expected is empty. The motor thus shows no signs of 

broken rotor bars. 

 

Figure 2.15: Speed (rpm) & torque (Nm) at no load condition 
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Figure 2.16: Rotor and stator current (A) at no loading condition 

 

Figure 2.17: Power spectrum of motor stator current at healthy condition 

 SCIM at 25% Loading Condition 

Secondly, the IM is executed at operating condition of 25% loading condition all 

characteristics of the motor are observed and depicted in Figures 2.18 and 2.19. 

Figure 2.18 depicts the motor speed generated and torque produced. Figure 2.19 

shows rotor and stator current flows at 25% loading state.  

 

Figure 2.18: Speed (rpm) and torque (Nm) at 25% loading condition 
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Figure 2.19:  Rotor and stator current (A) at 25% loading condition 

 SCIM  at 50% Loading Condition  

Secondly, the IM is executed at operating condition of 50% loading condition all 

characteristics of the motor are observed and depicted in Figures 2.20 and 2.21. 

 

Figure 2.20: Speed (rpm) and torque (Nm) at 50% loading condition 
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Figure 2.21:  Rotor and stator current (A) at 50% loading condition 

 SCIM at 100%  Loading Condition  

The IM is executed at operating condition of 100% load illustrated in Figures 2.22 

and 2.23 where the graph of speed, torque, stator current and rotor current are 

presented. From the Figure 2.22, it can be clearly seen that at 100% loading the motor 

is taking relatively higher time to reach to the synchronous speed. Here, in this 

implementation the motor took more than 1.2 seconds to reach to the maximum speed 

which is again around 1435 rpm which is lower as compared to 50% and no load 

scenario. As the load on the motor increases the motor currents increases and the 

synchronous speed decreases and which is a slight wear and tear of the motor and 

over the period of time tends to get faulty. However, the diagnosis of the fault at an 

early stage in the motor will results in reducing the deterioration of the motor and 

increase the lifespan of the motor. 

 

Figure 2.22:  Speed (rpm) and torque (Nm) at 100% loading condition 
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Figure 2.23:  Rotor and stator current (A) at 100% loading condition 

Table 2.2 illustrates the behavior of healthy motor under varied loading conditions. 

The torque is maximum at full load condition i.e. 27.17Nm and speed is minimum at 

around 1435 rpm, the speed tends to increase as the load decreases on the motor. The 

motor characteristics have been obtained affectively and MATLAB IM model 

performance at different loading conditions varied as per the theoretical formulation 

of the IM. Thus, validated the MATLAB designed model.   

Table 2.2: Three-phase SCIM performance at different loading conditions 

Loading Conditions Torque (Nm) Speed (rpm) 

Full Load 27.17 1435 

Half Load 13.82 1468 

Quarter Load 7.14 1484 

 

2.4.2   Healthy   Induction Motor Under Time Varying Loading Condition 

The MATLAB model of the IM has been tested under different loading conditions 

and furthermore, it has been analysed on the time varying loading condition during 

runtime. For this experimentation, the model is operated under varied loading at 

different time intervals and its results have been displayed in Figures 2.24 and 2.25. 

The variation of speed and torque is varied as per the on-demand loading conditions 

during runtime is being displayed in Figure 2.24.  
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Figure 2.24:  Speed (rpm) and torque (Nm) at different time varying loading 

conditions 

The load on the motor is applied as from 0-3 seconds it‟s no load, 3-5 seconds it‟s full 

load, 5-8 seconds it‟s half load, 8-11 seconds its quarter load and 11-15 seconds it‟s 

no load. The designed model provided efficiently all the required torque and speed as 

per the variation of the loading condition during runtime.   

 

Figure 2.25:  Rotor and stator Current (A) at different time varying loading 

condition 

2.5   SUMMARY  

The proper selection of an IM model structure and its parameterization are critical 

since they influence both the observation and identification ability. So, the main 

challenging task was to design base model of healthy IM whose behavior resembles 

real motor which is successfully accomplished using Rmxprt a template based 

designed tool and mathematical model of a three phase SCIM implemented in 

MATLAB in the presented chapter .  
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The behavior of  motor in terms of its characteristics like torque, power, and current 

can be done in Maxwell 2D using FEA. The Finite Element Method (FEM) is a 

numerical method for solving a differential or integral equation used for analysis 

purpose and briefly discussed in this chapter.  

Moreover, for the FD and diagnosis, the IM model is implemented in MATLAB 

software tool which will be utilized for further fault analysis and classification of 

faults. The motor characteristics have been obtained affectively and MATLAB IM 

model performance at different loading conditions varied as per the theoretical 

formulation of the IM. Thus, validated the MATLAB designed model. The motor 

parameters and characteristics can be precisely calculated. Further, the designed 

model is subjected to various constant and time varying loading conditions in order to 

carry out research work. 

 



 

43 
 

CHAPTER 3 

FAULT TYPES AND DIAGNOSIS & CLASSIFICATION 

TECHNIQUES 

 

3.1   INTRODUCTION  

This chapter provides a brief description of the different types of faults that occur in 

SCIM. The most common faults are broken rotor bar faults, stator, and eccentric 

faults. Then the fault diagnosis approaches in SCIM are discussed. Signal processing 

based approach, model based approach and vibration signal based approach. The 

DWT-based approach is taken into account in this research work. In addition, various 

soft computing techniques are being developed to autonomously identify and classify 

the fault and its type. The work was mainly focused on the DBNN deep learning 

method but the SVM and RF machine learning methods are also used further for 

detection for comparative analysis. 

3.2   FAULT DIAGNOSIS METHODS 

A number of mechanisms and approaches have been developed to diagnose the faults 

in IM. Numerous approaches have achieved impressive results for detecting and 

diagnosing the faults. However, there is still a large gap for further development and 

improvement.  

This research work examines some of the essential techniques with machine learning 

and deep learning approaches, and it has been found that the signal processing based 

approach may be the optimal one of all the different approaches that will meet all of 

the related requirements for the same. Some of the troubleshooting methods are listed 

below.  

1. Park‟s Vector Approach 

2. Fast Fourier Transformation 

3. FFT enabled monitoring and diagnosis 

4. Discrete Wavelet Transform 

5. Fault Signature Analysis through vibrations and currents 
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6. Discrete Wavelet Transform 

3.2.1 Discrete Wavelet Transform 

The wavelet transform has established itself as a robust tool for dealing with certain 

transient signals, such as waveforms of vibration signals, in numerous applications. 

The approach allows for very accurate and efficient interpretation of time domain and 

frequency domain signals at the same time with the goal of examining all 

components, such as local, transient, or intermittent. In fact, the wavelet transform can 

be of two types, discrete or continuous. 

The wavelet transform of the continuous type shows more significant information of a 

signal compared to DWT, but unfortunately it has a longer computation time than the 

discrete one. On the other hand, signal processing with much higher processing speed 

and efficiency is required for most applications and especially for industrial 

applications. Hence, DWT becomes a potential player for such applications. The 

DWT takes into account a dyadic grid and orthonormal wavelet base functions, which 

ultimately have no redundancy. DWT estimates wavelet coefficients at certain 

particular discrete intervals of time components and scales. The estimated coefficients 

of DWT can be used to construct a set of characteristics that explicitly represent 

different types of signals. 

 

Figure 3.1: Filter bank representation of the DWT [78] 
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At each level in filter bank the signal is decomposed into lower and higher 

frequencies. A function in DWT known as a dilation function can be expressed as a 

tree of high and low pass filters, with each individual pass converting the low pass 

filter into additional lower and higher frequency signal components. The graphical 

representation of such a transformation is shown in Figure 3.1[78]. The filter bank 

implementations can be explicated as computing the wavelet coefficients of a discrete 

set of child wavelets for a given mother wavelet  (t). The mother wavelet  is shifted 

and scaled by power of 2 in the case of Discrete Wavelet Transform as given in 

equation (3.1). 
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 Both j and k are integers, where k is the shift parameter and j is the scale 

parameter. Wavelet coefficient of signal x(t) length of     is in the case of child 

wavelet in the discrete family is : 
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Where in equation (3.2),     is expressed as convolution of x(t) with a dilated, 

reflected, and normalized version of the mother wavelet sampled at points  

                by fixing    at a particular scale which gives detail coefficient of 

filter bank  correspond exactly to a wavelet coefficient of a discrete set of child 

wavelets for a given mother wavelet   . 

The signal decomposition process takes place with the original signal introduced 

through successive decomposition into various components of the signal with lower 

resolution. In other words, components with a higher frequency are not processed for 

analysis in later steps. In the DWT, the components with the lowest frequency of the 

signal are given as approximate values, while on the other hand the components with 

the highest frequency are given as details. 

Time-frequency representation of a digital signal can be achieved using digital filter 

approaches. Filters with different cutoff frequencies are used to analyze signals with 

varying frequencies. The input signal is processed or passed through a sries or series 
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of high-pass filters for the analysis of high-frequency signals and similarly passes 

through low-frequency filters for the analysis of low-frequency signals [78].  

Most researchers have provided sophisticated expressions for fault frequency 

components. However, they have not provided the most accurate diagnostic model for 

stator current analysis. Machine models based on numerical calculations for error 

detection are used in many research projects. However, they do not provide the 

methodological expressions of stator current that are important in choosing the 

appropriate approaches to signal analysis and FD. The most common approach to 

stator current output under these circumstances is to estimate the spectrum. 

The frequency component that is most important in your original signal would have a 

high amplitude in the region of the DWT signal. This signal consists of specific 

frequencies. One of the main advantages of DWT over fourier transformation is that 

DWT does not lose any temporal location of the considered frequencies.\ 

In general, the power spectral density (PSD) for the stator current is calculated using 

Fourier transform approaches. However, there is a need for advanced and very robust 

approaches to analyzing the transient signal. In this research work, stator current 

signals and vibration signals of healthy and faulty IM under different loading 

conditions are considered in order to detect the presence of fault like stator winding 

faults , eccentric faults and broken rotor faults. Further, DWT is used for feature 

extraction of both the signals and extracted  features  are act as input for the fault 

detection and classification methods.  

3.2.2   Fault Signature Analysis Through Vibrations and Currents 

Vibration monitoring technology is one of the most important approaches to 

monitoring mechanical errors or system failures. Due to the nature of mechanical 

failure, vibration occurs in related components of machines. Since mechanical 

vibration causes the generation of acoustic noise, it facilitates the possibility of noise 

monitoring.  

Current monitoring techniques are usually applied to detect the various types of 

induction motor faults such as rotor fault, short winding fault, air gap eccentricity 

fault, bearing fault, load fault etc. While neither of these approaches is economical, 
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given that the cost of the converters used are higher, these approaches could only be 

implemented with large machines or highly critical industrial applications. 

To have a complete monitoring system, a large number of transducers intended for 

vibration measurement must be connected to various system devices that can fail, 

such as bearings, gear machines, stator racks, and load components. So a severe 

mechanical defect in a component affects the electrical machine throughout the load 

torque and shaft speed. This shows that the machines or the motor can be seen as an 

intermediate converter component which is a collection of effects. This severely limits 

the number of sensors or transducer components required. 

3.3   DIFFERENT TYPES OF FAULTS  IN  INDUCTION MOTOR 

Mechanical mechanisms that are in motion in an induction motor are particularly 

giving problem from wear, corrosion, erosion, fatigue, contamination, abuse, etc. 

Electrical components and/or systems tend to suffer from wear, insulation 

deterioration, aging of plastic parts, fatigue from flexing, dirt and moisture 

contamination, terminations becoming loose, etc.  

In general, IM faults can be divided into electrical and mechanical faults. All types of 

faults are summarized in the block diagram in Figure 3.2.  

 

Figure 3.2: Block diagram of Induction Motor faults 
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Electrical faults are further divided into stator and rotor faults. Although the motors 

are reliable electrical devices, they can be prone to numerous types of failure. These 

electrical faults include the short circuit between the turns in the stator windings, 

faults in the stator windings caused by open circuit, faults in broken rotor bars and 

some other faults like broken end rings, rotor eccentricity mechanics. Several studies 

have shown that 30-40% of IM failures are due to a broken insulation in the stator 

winding. The materials used for insulation purposes generally suffer from the 

degradation due to continuous change, instantaneous tension, and system overload 

caused by mechanical as well as environmental situations. 

For all of these possible reasons, the thermal stresses are the most important that 

cause the insulation material of the stator winding to degrade. Even so, the most 

effective insulation fails quickly even if the system operates above the threshold 

temperature and, for every 10°C increase in temperature, the service life of the 

insulation used shortens by 50%. The presence of this type of fault in the IMs results 

in unstable stator voltages and currents, torque fluctuations, a decrease in power 

efficiency, overheating of the system, extreme vibrations, and a decrease in torque. In 

addition, such machine faults can increase the size of certain harmonic components 

[79, 80].  

3.3.1   Stator Faults 

Stator faults mainly occur due to the stator winding-related faults. Stator faults are 

mostly responsible for 38% of the failures in an IM. A number of research works have 

demonstrated that the prevalence of failure of IM stator winding, caused due to the 

destruction of the turns insulation. The failures related to the stator winding could be 

classified into five main groups shown in Figure 3.3. 

 

Figure 3.3: Star connected stator showing possible failure mode 
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1. Line-to-line, 

2. Turn-to-turn, 

3. Line-to-ground,  

4. Coil-to-coil and 

5. Single or multi-phase windings open circuit faults.  

The idle error may be due to other reasons such as: a mechanical failure of a machine 

terminal connector, an internal winding break, or an electrical failure in one of the 

inverter phase branches. Therefore, an idle fault can be considered one of the most 

common failures in IM units. The most undesirable result of an open circuit fault 

would be a serious accident that could injure people's lives and immediately shut 

down the drive. 

In general, the stator winding of an induction machine is subject to stresses caused by 

a number of factors, such as thermal overloads, mechanical vibrations, and voltage 

spikes generated by variable frequency drives. Few of the major causes of stator 

winding failure are: 

 Due to Loose bracing for end windings 

 Due to high stator core or winding temperatures 

 Due to short circuits 

 Due to Contaminations caused by oil, moisture, etc. 

 Due to starting stresses 

 Due to leakage of cooling systems 

 Due to electrical discharges 

3.3.2   Rotor Related Faults 

Breaking the rotor bar is one of the most common machine failures. Several factors 

can contribute to this error, including: hot spots, sparks and thermal imbalance, 

chemical contamination, moisture abrasion of rotor materials, manufacturing defects, 

frequent starts at nominal voltage, thermal stresses and / or mechanical stresses 

caused by bearing errors and metal fatigue [81]. The broken bar can also be partially 

or totally cracked. The resistance due to a broken bar would increase, adding another 

resistance and thus generating more heat. The bar would crack completely and an 
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electric arc would occur over the cracked area. This bending or arcing damages the 

lamination of the rotor. Adjacent bars carry increased current and are exposed to high 

voltages, which ultimately leads to failure of the rotor bars. In short, it can be said that 

centrifugal forces aggravate damaged or broken bars and can also damage the stator 

winding. 

The cage of an IM consists of rotor bars and end rings. A broken bar can be 

incompletely or completely broken. These types of bars can be due to manufacturing 

defects, repetitive starts at nominal voltage, stresses due to thermal irregularities and 

mechanical stresses. A broken rotor bar can cause various effects on IMs. The 

manifestation of the components of the lateral ligament is one of the common effects 

of a broken bar. The sideband components are located in the power spectrum of the 

stator current on the left and right side of the fundamental frequency component. The 

left sideband component is caused by electromagnetic asymmetries in the rotor cage, 

and on the other hand, the right sideband component is generated due to the resulting 

speed ripples caused by the resulting torque pulsations. Sideband frequencies can be 

expressed as in equation 3.3[82, 83]: 

                            (3.3) 

Where     is fault frequency components due to broken bars and   , the supply 

frequency. 

Other effects of broken rotor bars, for classification purpose in IM are the speed 

oscillations torque ripples, instantaneous stator power oscillations and stator current 

envelopes. 

3.3.3   Eccentricity  Related  Faults 

The eccentricity of the machine can be defined as the location of the asymmetric air 

gap that remains between the stator and the rotor stem. In fact, there is usually a 

certain eccentricity in rotating electrical machines. Few users give a maximum value 

of 5%, in some cases 10% of the air gap length is admissible or tolerable [84]. On the 

other hand, in general applications and in manufacturing, it is always attempted to 

reach the full eccentricity level or keep it smaller to reduce the total mechanical 

vibration that causes noise and ultimately leads to reduced magnetic force. Because 
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the air gap of an induction machine is significantly smaller compared to other 

categories of electrical machines used for similar applications, these types of 

machines are more sensitive to changes in the length of the air gap. In general, there 

are two types of eccentricity of the air gap [84]: 

1. Static Eccentricity (SE) 

2. Dynamic Eccentricity (DE) 

In the first case of eccentricity, the arrangement of the nominal length of the radial air 

space in the space is permanent, while in the second scenario the center of the rotor is 

not in the middle of the circulation and the arrangement of the air space spin with the 

rotor. Until it is detected at an early stage, the eccentricity becomes much larger, 

creating higher imbalances in the radial forces that could cause friction from the stator 

to the rotor and, ultimately, this leads to a major failure of the electrical machine. 

3.4   DEEP BELIEF NEURAL NETWORK FRAMEWORK 

The deep learning methods are advanced version of NNs which fall under the 

machine learning category. The DBNN is a deep learning architecture with several 

hidden levels that is able to automatically learn hierarchical representations in an 

unsupervised manner and at the same time perform a classification. To precisely 

structure the model, there is both an unsupervised pre-training process and a 

supervised fine-tuning strategy. Because of the vanishing gradient problem, it is often 

difficult to learn a large number of parameters in a deep learning model that has 

multiple hidden layers. To solve this problem, an improved training algorithm is used 

that processes and learns one layer at a time, and each pair of layers is considered to 

be an RBM model. RBM is the basic unit of DBNN, so RBM is introduced first. 

3.4.1   Restricted Boltzmann Machine 

The RBM is a mathematical model that is often used in probability statistics and 

follows the random field theory of logarithmic linear Markov Random Field [85, 86], 

which has several special forms, and the RBM is one of them. RBM model has two 

levels: one level is the entry level, also known as the visible level, and the other level 

is the exit level, also known as the hidden level. All visible units in the RBM are fully 
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connected to hidden units, while units within layers have no connection to each other. 

The architecture of an RBM is shown in Figure 3.4. 

 

Figure 3.4: RBM architecture [85]. 

3.4.2   Training of RBM 

In order to set the model parameters, the RBM needs to be trained using training 

dataset. In the procedure of training a RBM model, the learning rule of stochastic 

gradient descent is adopted. The log-likelihood probability of the training data is 

calculated, and its derivative with respect to the weights is seen as the gradient shown 

in equation (3.4). 

        

    
                           (3.4) 

Parameter update rules are originally derived by Hinton and Sejnowki shown in 

equation (3.5): 

    
  (                      )    (3.5) 

Where,   is the learning rate, the symbol          represents an expectation from the 

data distribution while the symbol >model is an expectation from the distribution 

defined by the model. 

    
  (                      )    (3.6) 
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Reconstruction model with Gaussian-Bernoulli RBM to deal with the real valued data 

in practical problems is shown in equation (3.6) where in visible units are updated in 

parallel to get a reconstruction and the model updated using equation (3.6). 

3.4.3   Architecture of DBNN 

The DBNN model is a deep faith neural network architecture in a deep learning 

domain with multiple hidden layers containing multiple non-linear representations. It 

is a probabilistic generative model and can be formed from RBM, as shown in Figure 

3.5 that shows how an RBM is stacked on top of one another. The DBNN architecture 

can be built by stacking multiple RBMs in a row to form a deep network architecture. 

 

Figure 3.5: DBNN architecture [87] 

As DBNN has multiple hidden layers, it can learn from the input data and extract 

hierarchical representation corresponding to each hidden layer. Joint distribution 

between visible layer v and the l hidden layers h
m
 can be calculated mathematically 

from conditional distribution ∏       |      
    for the (m–1)

th
 layer conditioned on 

the m‟th layer and visible hidden joint distribution            as shown in equation 

(3.7) 

               ∏       |      
                     (3.7) 

For deep NNs, learning such a set of parameters using a conventional supervised 

training strategy is impractical because the errors transmitted in low-level layers are 
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weakened by multiple hidden layers and the ability to adjust the parameters is weak 

for conventional back propagation methods. It is difficult for the network to generate 

optimal parameters globally. Here, the greedy layer-by-layer method of unsupervised 

pre-training is used to train DBN. This process can be represented as follows. The 

first step is to train the input units (v) and the first hidden layer (h1) using RBM rule 

(denoted as RBM1). Next, the first hidden layer (h1) and the second hidden layer (h2) 

are trained as a RBM (denoted as RBM2) where the output of RBM1 is used as the 

input for the RBM2. Similarly, the following hidden layers can be trained as RBM3, 

RBM4,…, RBMn until the set number of layers are met. It is an unsupervised pre-

training procedure, which gives the network an initialization that contributes to 

convergence on the global optimum. For classification tasks, fine-tuning all the 

parameters of this deep architecture together is needed after the layer wise pre-

training. It is a supervised learning process using labels to eliminate the training error 

and improve the classification accuracy.  

3.4.4   Fault Diagnosis Based on DBNN 

The stator current waveform signals are selected as input to the entire system for fault 

diagnosis because they generally contain useful information that can reflect the 

operating conditions of  IMs.  

However, there is a correlation between the sampled data points. This is difficult to 

model for the DBNN architecture as it is unable to work out the correlation between 

the input units that can affect the next classification task. Therefore, in this research, 

the stator current signals are processed with a Discrete Wavelet Transform to convert 

the stator current signals with two DWT levels from the time domain to the frequency 

domain, and then the wavelet of each signal is used as the input to the DBNN 

Architecture. This is beneficial for the classification task during the training process. 

In particular, DBNN learns a model that generates input data that can get more 

intrinsic properties from the input, ultimately improving the accuracy of the 

classification.  

In this module, DBNNs are created using a series of stacked RBMs and then train by 

training a data set from the data preparation module to obtain the model parameters. 

The input parameters of the architecture are initialized first, including a series of 
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numbers of neurons and numbers of hidden layers, as well as training epochs. Then 

each layer in the architecture is trained as an RBM entity, and the output of the lower 

layer RBM is used as the training input for the RBM of the next layer. 

After learning in layers, the synaptic weights and distortions are established and the 

basic structure is determined. The classification process is then followed to predict the 

failure category. It is a supervised fine-tuning process as shown in Figure 3.6, and the 

proposed method uses the back propagation training algorithm to implement fine-

tuning in which the marked data is used for training to improve the discrimination 

ability for the classification task. 

The unattended training process trains one RBM at a time and then monitors the fit 

process using labels to fit the weights of the entire model. The difference between the 

DBNN outputs and the destination tag is considered a training error.  

 

Figure 3.6: Supervised fine tuning process of DBNN 
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To obtain the minimum error, the deep network parameters are updated based on the 

learning rules. After training the DBNN model, all the DBNN parameters are set and 

the next procedure is to test the classification ability of the trained DBNN model and 

the classification rate is calculated as an index for evaluation as Figure 3.7 

demonstrates the testing process to get the accuracy. The current signal from the stator 

is the input of the established fault diagnosis system, and its output indicates the 

operational status of the IM. 

After the layered synaptic learning loads, the twists and turns are resolved to 

determine the essential structure. In this way, the bundling process continues to 

anticipate the failure class. It is a regulated optimization strategy and the proposed 

technique receives the computation to prepare for the de-spreading to perform the 

adjustment using information that has been established for the preparation to improve 

the separation capacity for the grouping task. Unattended setup processes each train in 

an RBM and then verifies the calibration process using names that change the severity 

of the entire model.  

 

Figure 3.7: Testing process for fault diagnosis 

The distinction between DBNN yields and the target label is considered a preparatory 

error. To get the basic error, the learning rules update the deep system parameters. 

After preparing the DBNN model, all the DBNN parameters are configured. At this 

time, the clustering limit of the prepared DBNN model is tested and the disposition 
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rate is determined as a data set for evaluation. The current stator signal is the 

contribution of the processed frame in the defect processing frame, and its output 

shows the working conditions of the induction machine. 

3.5   SUPPORT VECTOR MACHINES 

Based on the results of statistical learning theory and as a next-generation 

classification method, SVM was introduced in 1992 by Boser, Guyon, and Vapnik. 

SVMs are becoming increasingly popular in many areas and disciplines, from 

bioinformatics to science and technology, due to many attractive features, such as 

precision and efficiency in modeling and empirical performance [88–89]. SVMs 

replace NNs in a variety of areas, including engineering, information retrieval, and 

bioinformatics and belong to the general category of core methods [89]. 

According to [90], SVMs are defined as learning systems that use a hypothesis space 

of linear functions in a high-dimensional feature space. This learning strategy is a 

principled and very powerful method that in the few years since its introduction in the 

1990s it has already outperformed most other systems in a large number of 

applications. 

SVM can process data without losing prior knowledge. This property makes SVM 

suitable for online condition monitoring and fault diagnosis in real-time applications. 

Furthermore, due to improved computing power and the development of algorithms 

for rapid learning, it is now possible to train SVM in real applications [91]. 

SVMs have the disadvantage that they have black box settings in their performance, 

which do not give the user much information about why a particular prediction was 

made. 

3.5.1   Fault Diagnosis using Support Vector Machine 

The stator current signals are processed using the DWT characteristic extractor and 

the characteristics are calculated for all collected data sets. Different scenarios are 

taken into account. The healthy state of the motor characteristics, the stator fault 

condition characteristics, the rotor switch rod fault functions, the eccentric fault 

functions, and the combined fault functions are divided into classes and the set of 
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complete data is divided into training and test data. Consequently, SVM with linear 

kernel function as classifier is applied to training a well test data set to maintain 

accuracy. The block diagram of the entire process is shown in Figure 3.8. 

 

Figure 3.8: SVM based IM fault diagnosis block diagram 

3.5.2   Principle of SVMs 

SVM is considered a binary output classifier where the classification depends on 

separating the data under test into two main classes. The two data sets that can be 

separated with different linear hyperplanes are shown in Figure 3.9.  

 

Figure 3.9: Two data sets with different hyper-planes [91] 
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Of the many hyperplanes that separate, only one (the dotted line) can offer the 

maximum margin of separation. Finding this hyperplane is the basic working 

principle of SVMs. Find the hyperplane  that provides the maximum separation 

distance between the two data sets to be tested. The edge represents the distance 

between the next training point and the separation hyperplane. The classification task 

generally involves the use of two data sets, training and test data. The raw data is 

divided into two sets of test and training data. SVM decides which is the ideal 

hypertext division layer that provides the best information partition and then enforces 

the separation between these two classes [91]. 

Take the following vectors of the two classes and then expand the hole between them, 

accepting that they are directly isolated, as shown in Figure 3.9.  

The elaboration of information consists of information designs that, regardless of its 

characteristics or its esteem as a brand, deliver an objective called a class identifier. 

A definitive objective of the SVM calculation is to make a model that predicts the 

class name of the test information occasions when just the information properties are 

entered. 

Given a training data set with n training examples, (xi, yi), i= 1, 2, …, n, where each 

example has d inputs i.e. each xi is a list of d real numbers; (xi ϵ Rd) and y=±1 , and 

yi are the labels or targets of the samples, (R) is real numbers. The hyper-planes are 

characterized by a vector (w), which is orthogonal to the hyper-plane, and a constant 

(b). The hyper-plane that separates the data is expressed by: 

              (3.8) 

The canonical hyper-plane which separates the data from the hyper-plane expressed 

by equation (3.8)  by a distance of at least 1 should satisfy the following conditions: 

                            

                             

The preparation vectors are mapped into high dimensional space. A division hyper 

plane is discovered which boosts the edge between the two isolated classes. The 

procedure requires the arrangement of the accompanying enhancement issue 
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‖ ‖   ∑   

 
          (3.9) 

                
                    

Where α is a coefficient related with each preparation test and known as the double 

portrayal of the choice limit in equation (3.9). The parameters α, b and w are gotten 

through the advancement procedure. (x) is the new example to be characterized. 

3.5.3   SVM kernels 

SVMs depend on the idea of SVM centers. The centering machines offer a separate 

system that can be adapted to different assignments and rooms by selecting the core 

capacity and basic calculation. 

SVM uses centers to deal with learning disabilities. SVM uses several types of main 

capacitance centers, such as Direct, Polynomial, and Outspread (RBF). Non-straight 

center elements are used to mark information to an area with high readings in which 

the information can be directly distinguished. Choosing the best type of part is an 

integral part of the repair process. This is done tentatively by testing different parts 

and choosing the one that gives the best results. 

SVMs are considered a phenomenal classifier for dual classes, but can be used to 

handle multiclass problems with multiclass extensions, where the multiclass problem 

is divided into a sequence of companies of two classes and this is known as multi-

class. SVM can be moved up as a classifier for multiple classes. 

Serviceability is critical to good SVM pooling. The selection of the correct part and 

the preliminary setting of the parameters have a direct effect on the final result. There 

are numerous accessible sub-works. These are three of the most used bits [91]: 

1. Linear: K(x,xi) = xT xi  

2. Polynomial: K(x,xi) = ( ˠ xT xi+1)d, ˠ>0  

3. Radial Basis Function (RBF): K(x,xi) = exp (-ˠ | |x- xi ||2), ˠ>0  

Where: d is the degree of the polynomial and equals 1 for the linear kernel. The 

parameter ˠ controls the width of the Gaussian and ||x|| is the norm of x. 
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3.5.4   SVM Testing 

For testing, the following two methods are used. Leave-One-Out (LOO) and N-fold 

cross-validation. In N-fold cross-validation, the data sample set is divided into 

complementary N-subsets. The first subset is used for testing the model that trained 

on the remaining subsets N subsets. The analysis is performed upon one subset which 

called the training set. Validation analysis is performed on the other subset which is 

called the validation set or testing set. The process is repeated for next subset and so. 

To reduce variability, the above procedure is run for multiple iterations upon the 

different N partitions of the whole set, and the validation results are averaged over the 

rounds. This process is repeated for N rounds. 

3.6   RANDOM FOREST 

A Random Forest is a machine learning technique that‟s used to solve regression and 

classification problems. It utilizes ensemble learning , which is a technique that 

combines many classifiers to provide solutions to complex problems. A RF algorithm 

consists of many decision trees. Random Forest (RF), derived from the decision tree 

classifier, is a composite method. Grow trees to maximum size and without pruning 

using the CART method (Classification And Regression Trees). RF is used to 

implement the SCIM health monitoring system under various conditions of constant 

load and variable conditions over time. 

3.6.1   Fault Diagnosis using Random Forest 

RF can improve classification accuracy resulting from growing an ensemble of trees 

and making them vote for the most promising class. A convenient method to build the 

ensembles is by random vectors which are generated via random selection procedure 

from integrated training set. The constituent in this method is that one has to prepare k 

random vectors, Θk, which are independent of the past random vectors Θ1, Θ2, 

Θ3,…, Θk-1 but with the same distribution to build the trees among the RF. The 

corresponding individual classifier is noted by C (X, Θk) [92]. For example, in the 

bagging processing the random vector Θ as the N observations randomly draws out 

from entire training data proportionally where N is the number of observations of 

training data. And then they vote for the most popular class. Breiman names these 

procedures as RFs. Figure 3.10 depicts the block diagram of RF utilized for 
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identifying the faults in IM. The collected dataset of various operating condition of 

IM like healthy, rotor bar faults, stator faults, eccentric faults and combined faults are 

divided into training and testing. Afterwards the training process is performed to train 

the RF model to detect and classify the faulty condition in the IM autonomously. 

 

Figure 3.10: Block diagram of RF on fault diagnosis 

3.6.2   Two Randomized Procedures in RF Tree Building 

As mentioned above, RF significantly improves classification accuracy compared to 

the decision tree classifier. For this reason, RF uses two random methods when 

building trees. Each tree is structured in the following way. Assume that the number 

of cases in the training set is N and the number of variables in the classifier is M. 

Select the number of input variables that will be used to determine the decision at a 

node in the tree.  

This number, m, should be much less than M (m<< M). Secondly, choose a training 

set by choosing N samples from the training set with replacement. And then, for each 

node of the tree randomly select m of the M variables on which to base the decision at 

that node. Calculate the best split based on these m variables in the training set. 

Finally, each tree is fully grown and not pruned. There are two different randomized 

procedures in the next four steps. That is, RF randomly draws a fixed amount from a 



 

63 
 

training set or calls it the bagging process [92]. Each base classifier in the set is 

trained on a bootstrap of all the available data. However, each of these bootstrap 

replicates tends to omit about a third of the sample. Therefore, each classifier in the 

set is trained on approximately two-thirds of the original data. Consequently, each 

item in the sample of size n trains approximately (2/3) k of all classifiers in the set so 

that it can be used to validate the remaining k / 3. Figure 3.11 where n is the number 

of training data, k is the total number of individual tree classifiers. This part of the 

data is called non-included data to provide an unbiased estimate of the failure of the 

single tree test set. The rest of the data is used to build the single tree classifier. 

 

Figure 3.11: Schematic of bagging using the decision tree as the  classifier [92] 

After bagging processing, the other random procedure is displayed in node splitting 

during tree classifier creation. Unlike a normal CART-like algorithm for splitting the 

decision tree, CART only looks at n variables within the RF algorithm, which are a 

small number and are randomly drawn from all M variables rather than full variables. 

Breiman's research explains why these two random methods are effective in 

increasing classification accuracy: Improvements will occur in unstable methods, 

where a small change in the training set can result in a large change between the 

component classifiers and the classifiers trained by the entire training set. In RF, 

regardless of bagging processing or random selection of variables to split the node, it 

is the difference between individual trees and forests. Therefore, these two sources of 

randomness are the most important characteristics of RF. 
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3.6.3   Convergence of RF 

RF adopts a set of decision trees and determines the categorical classes using a 

majority voting algorithm. Therefore, serious over-tuning consideration is required to 

test RF performance. It may restricted in very specific random features of the training 

data that are not causally related to the objective function. However, RF can 

completely prevent overfitting [92]. To confirm this point, a limit function is defined 

first. Given an ensemble of a series of classifiers C1 (X), C2 (X), …, Ck (X), and with 

the training set drawn at random from the distribution of the random vector Y X, 

define the margin function as shown in equation (3.10): 

                                             (3.10) 

where X is input metric, avk is the normal number of votes at X, Y for the comparing 

class and I (•) is the marker work. The edge estimates the degree to which the normal 

number of votes at X, Y for the correct class surpasses the normal decision in favor of 

some other class. The bigger the edge, the more trust in the characterization. 

According to this function, the generalization error is given by: 

                               (3.11) 

Where, PX,Y indicates the probability which is over the X, Y space in equation (3.11). 

3.7   SUMMARY  

Various types of IM faults like rotor bar faults, stator faults and eccentric faults 

occurrences and their causes are discussed in brief. Several fault diagnosis techniques 

like DWT and vibration analysis are also elaborated in terms of its benefits in 

selecting as features extraction in implementing health monitoring system for SCIM. 

Furthermore, the classification techniques of soft computing proposed in the research 

work are discussed in this chapter. Proposed model of SVM and RF for fault detection 

and diagnosis are elaborated and described in a flow chart. The deep learning method 

DBNN is explained briefly and its application in FD is described with a block 

diagram. DBNN analysis is done to achieve more robust accuracy in detecting the 

fault at the early stage which means detecting the occurrence of fault just in time to 

avoid any further damage to the industrial machine. 
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CHAPTER 4 

BEHAVIORAL ANALYSIS OF INDUCTION MOTOR 

UNDER DIFFERENT FAULTS 

 

4.1   INTRODUCTION  

This chapter includes the different fault analysis using ANSYS RMxprt & Maxwell 

2D and MATLAB in SCIM. The designed model is put under different faulty 

conditions like broken rotor bar fault , stator fault , eccentricity fault and combined 

faults  and their  effects  on the motor behavior are  analyzed under various load 

ranges  closely on the basis of rotor speed, torque, stator current and power. The 

performance of motor under constant and time varying load is evaluated. 

Furthermore, the   implementation model of MATLAB is used to apply the machine 

learning and deep learning algorithm to detect and classify the faults using DWT as a 

feature extractor.   

4.2   INDUCTION MOTOR UNDER BROKEN ROTOR BAR FAULTY  

        CONDITION  

Rotor bar fault is an incipient fault and its effects on the system within the starting are 

nearly unnoticeable. Early identification of a wrecked rotor bar limits machine 

mischief leads to economical repair. Often, the wrecked bar condition begins with a 

break at the intersection between the rotor bar and furthermore the complete the 

process of ring as an aftereffects of warm and mechanical burdens. These anxieties 

are a great deal of crucial once starting engines with high-idleness hundreds. The 

bowing of a messed up bar in view of changes in temperature makes the bar intrude. 

When one bar breaks, the nearby bars convey flows bigger than their style esteems, 

causing a ton of damage if the messed up bar condition isn't quickly identified. Inter-

bar flows that appear to be inferable from the messed up bar affect the development of 

the shortcoming inside the rotor, exacting mischief inside the covers of the rotor 

centre. These areas plan to consider totally various models of machine with one, two, 

and three broken bars to break down the symphonies substance of the stator loop 

flows for these operational conditions. 
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4.2.1   One Broken Rotor Bar Fault Analysis 

The IM is experimented with one rotor bar fault generated in ANSYS RMxprt model 

and its various characteristics are observed to analyze the behavior under faulty 

condition. Designed IM model and its structural information are displayed in Figures 

4.1, 4.2 and 4.3. Figure 4.1 displays the designed SCIM model using ANSYS RMxprt 

with one broken rotor bar marked with circle. The designed model is then fed to 

Maxwell 2D for FEM analysis. Figures 4.2 and 4.3  show  the flux density and current 

density distribution of the designed motor under one broken fault condition 

respectively. From the graphs, it can be clearly seen that the distribution of the flux 

and current is not uniform as it was in healthy motor condition. 

 

Figure 4.1: Model with one broken rotor bar 

 

Figure 4.2: Induction Motor flux density distributions during fault condition 

with one broken rotor bar 
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Figure 4.3: Current density plot of IM during fault condition with one broken 

rotor bar 

From the distribution of magnetic flux density and current density in Figures 4.2 and 

4.3,  it is seen that because of the absence of prompted flows in the one broken bar, 

the attractive field becomes asymmetrical prompting immersion in the rotor and stator 

teeth close to the flawed bar. Accordingly the wrecked bar deficiencies affect the 

machine parameters, for example, torque and speed motions because of the impact of 

reverse attractive field part. 

The IM machine with one broken rotor bar fault design operating characteristics are 

illustrated in Figures 4.4,  4.5,  4.6 and 4.7  in terms of torque, flux linkage, current 

and power respectively. Figures 4.4 and 4.5 display  the torque and the flux linkage 

graphs obtained during the analysis respectively. The torque obtained is around 28.68 

Nm and the flux is stable after 70 seconds of operating time.  

Figure 4.6 illustrates the FEM IM model stator current response under one broken 

rotor bar faulty condition the three-phase current showing quite high oscillations and 

distortion due to the presence of one rotor bar fault. Figure 4.7  illustrates  the average 

power in watts under one rotor bar faulty condition. The average power obtained is 

4361.33 watt which is lower as compared to the normal operating condition. The 

motor performance under faulty condition deteriorates results in lower torque and 

power along with increase in the transients which results in vibration and wired sound 

in the motor while operation. 
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Figure 4.4: IM torque response over period of time during fault condition with 

one broken rotor bar 

 

Figure 4.5: Flux linkage response of Induction motor during fault condition with 

1 broken rotor bar 

 

Figure 4.6: Induction Motor current response during fault condition with one 

broken rotor bar 
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Figure 4.7: Induction Motor output power response during fault condition with 

one broken rotor bar 

4.2.2    Two Broken Rotor Bars Fault 

The FEM model is designed under rotor bar fault at two different locations and then 

its flux distribution and current, torque and powers are observed. IM designed model 

and its flux distribution are displayed in Figures 4.8, 4.9 and 4.10. Figure 4.8 displays 

the RMxprt designed SCIM model with two broken rotor bar marked with the circle. 

Figure 4.9 & 4.10 displays the SCIM flux density and current distribution of the two 

broken rotor bars model of SCIM. The uniformity of the flux and current distribution 

is disturbed and the distribution is no longer even. 

 

Figure 4.8: Model with two broken rotor bar 
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Figure 4.9: Induction Motor flux density distributions during fault condition 

with two broken rotor bars 

 

Figure 4.10: Current  density plot of Induction Motor during fault condition 

with two broken rotor bars 

The two broken rotor bar faulty IM motor characteristics are presented in Figures 

4.11, 4.12, 4.13 and 4.14. Figures 4.11 and 4.12 displays the torque and flux produced 

in motor at two broken rotor bars fault, the transient in torque are higher as compared 

to motor with one or no faulty rotor bar. Figure 4.13   illustrates  the FEM IM model 

stator current response under healthy operating condition the three-phase current 

displaying high oscillations and distortion due to the presence of two broken rotor bar 

faults. The starting current peaks are very high and gets stable at around 75 sec of 

time. The severity of the oscillation increases as the number of broken rotor bar 

increases. Figure 4.14   illustrates the average power in watts under two broken rotor 

bar faulty condition. The average power obtained is 3981.21watt which is quite lower 

as compared to the normal operating condition. The power is reduced as the faulty 

broken bar numbers increases to two. 
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Figure 4.11: Induction Motor torque response over period of time during fault 

condition with two broken rotor bars 

 

Figure 4.12: Flux linkage response of Induction Motor during fault condition 

with 2 broken rotor bars 

 

Figure 4.13: Induction Motor current response during fault condition with two 

broken rotor bars 
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Figure 4.14: Induction Motor output power response during fault condition with 

two broken rotor bars 

4.2.3    Three Broken Rotor Bars Fault 

The FEM model is put under rotor bar fault at three different locations and then its 

flux distribution, current, torque and powers are analyzed. Figure 4.15 shows the 

motor model with three broken rotor bar encircled. From the distribution of magnetic 

flux density and current density plot as shown in Figures 4.16 and 4.17, it is seen that 

due to the lack of induced currents in the three broken bar, the magnetic field becomes 

more asymmetrical leading to saturation in the rotor and stator teeth near the faulty 

bars resulting in broken bar faults have an impact on the machine parameters such as 

torque and speed oscillations due to the influence of inverse magnetic field 

component. 

 

Figure 4.15: Model with three broken rotor bar 
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Figure 4.16: Induction Motor flux density distributions during fault condition 

with three broken rotor bars 

 

Figure 4.17: Current density plot of Induction Motor during fault condition with 

three broken rotor bars 

The motor performance characteristics under three broken rotor bar faults are 

analyzed and depicted in Figures 4.18, 4.19, 4.20 and 4.21. Figures 4.18 and 4.19 

displays the torque and flux linkage response of the motor during three broken rotor 

bars. The torque produced is 24.67 Nm and the flux oscillations stabilize at around 78 

seconds. Figure 4.20  illustrates the FEM SCIM model stator current response under 

three broken rotor bar faulty condition.  Due to the faulty condition the current 

showing high oscillations and higher distortion levels. The initial current overshoots 

are high and it gets stabilizes at around 78 sec simulation time. Figure 4.21 illustrates 

the average power in watts under three rotor bar faulty conditions. The average power 

obtained is 3750.34watt which is lower as compared to the healthy operating 

condition of the SCIM. The motor faulty condition deteriorates the performance of the 

motor. 
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Figure 4.18: Induction Motor torque response over period of time during fault 

condition with three broken rotor bars 

 

Figure 4.19: Flux linkage response of Induction Motor during fault condition 

with three broken rotor bars 

 

Figure 4.20: Induction Motor current response during fault condition with three 

broken rotor bars 
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Figure 4.21: Induction Motor output power response during fault condition with 

three broken rotor bars 

4.3    RESULTS AND DISCUSSION OF FEM ANALYSIS 

The outcome of induction machine under different faulty conditions are determined 

and analysed in the table underneath where Table 4.1 looks at average magnetic 

torque at 1451.65rpm speed. The torque reduces as the fault level increases in the 

rotor bars of the SCIM. The torque value from 33.4175Nm in case of healthy 

operating condition reduced down to 24.6709Nm in case of three broken rotor bars.  

Table 4.1: Average magnetic torque during three different broken bar faulty 

conditions 

S. No. Conditions Average magnetic torque (Nm) 

1 Healthy motor 33.4175 

2 one broken rotor bar 28.6899 

3 two broken rotor bar 26.1894 

4 three broken rotor bar 24.6709 

 

Here below in Table 4.2, it compares stator current at 1451.65rpm speed. The current 

reduction experiences from 8.9257A to 7.27A  moving from healthy condition to 

three broken bar faulty condition respectively. 
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Table 4.2: Stator current with three broken rotor bar faulty conditions 

S. No. Conditions Stator current A (rms) 

1 Healthy motor 8.9257 

2 one broken rotor bar 8.1562 

3 two broken rotor bar 7.66651 

4 three broken rotor bar 7.2764 

 

Here below in Table 4.3, it compares average mechanical power at 1451.65rpm rated 

speed. The average power obtained also experienced the reduction as moving from 

healthy to severe faulty condition. The experimentation of running IM at different 

broken rotor bars faults have been conducted and from Tables 4.1, 4.2 and 4.3 it has 

been concluded that the motor performance deteriorated when subjected to broken 

rotor bar faults.     

Table 4.3: Average mechanical power during fault condition with three broken 

rotor bar 

S. No. Conditions Average output power (W) 

1 Healthy motor 5080.01 

2 one broken rotor bar 4361.33 

3 two broken rotor bar 3981.21 

4 three broken rotor bar 3750.38 

 

4.4    MATLAB IMPLEMENTATION MODEL  

The MATLAB model of SCIM is designed to investigate the motor performance 

under various loading operating conditions and under various fault condition specially 

broken rotor bar. The designed MATLAB model with broken rotor bar is displayed in 
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Figure 4.22 which is modeled in free body diagram programming environment of 

MATLAB.  

 

Figure 4.22: MATLAB implementation model for broken rotor bar 

4.4.1   Motor Implementation with One Broken Rotor Bar Faulty  Condition  

For the implementation and experimentation SCIM (5Hp, 400Volts and 50Hz) is 

considered. Motor is subjected to one broken rotor bar fault and the performance is 

analyzed on the basis of speed, torque, stator & rotor current and power. Figure 4.23 

(a, b, c and d) displays the speed (rpm) at different constant loads here it can be 

concluded that the speed obtained is around 1250 (rpm) and there are bit of prominent 

oscillations in synchronous region also as compared with the healthy motor speed. 

Oscillation results in vibration and disturbing sound generation in motor which 

increases as the severity of the fault increases. Figure 4.23 (a, b, c and d) displays the 

torque obtained during one broken rotor bar fault at different constant loads. The 

oscillations are quite high and deviation of the torque from stable condition is on the 
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higher side suppressing the motor performance. The magnitude of the torque is 

around 23.59Nm with high ripples indicating the lag and vibration on the movement 

of the motor. Figure 4.24 (a, b, c and d) displays the stator and rotor current during 

one broken rotor fault. The initial oscillations are higher as normal but the oscillations 

are experienced at stable state also i.e. after achieving the synchronous speed the 

motor experiencing the oscillations due to the broken bar presence. 

 

(a) One broken bar torque and speed at full load condition 

 

(b) One broken bar torque and speed at half load condition 
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(c) One broken bar torque and speed at quarter load condition 

 

(d) One broken bar torque and speed at no load condition 

Figure 4.23: (a, b, c & d) IM speed (rpm) and torque (Nm) response during fault 

at 100%, 50%, 25% and no loading conditions with one broken rotor bar  

 

(a) One broken bar rotor and stator at full load condition 
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(b) One broken bar rotor and stator at half load condition 

 

(c) One broken bar rotor and stator at quarter load condition 

 

(d) One broken bar rotor and stator at no load condition 

Figure 4.24: (a, b, c, and d) IM rotor and stator current (A) response during 

fault at 100%, 50%, 25% and no loading conditions with one broken rotor bar 
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Figure 4.25: Power spectrum of motor stator current with one broken rotor bar 

faulty condition 

Power spectrum signature of the motor under one broken bar is observed in Figure 

4.25 which depicts the motor current power spectrum signature with the sidebands 

peaks of faulty frequencies which shows the presence of the faulty condition in motor 

while operation. The side band on the left side is at 44Hz              and on the 

right side is at 56Hz              . The frequency spectrum is obtained after 

spectral analysis of the stator current of the IM. 

4.4.2   Motor Implementation with Two Broken Rotor Bars Faulty Condition  

In second scenario, the motor is subjected to two broken rotor bars fault and the 

performance is analyzed on the basis of speed, torque, stator and rotor current 

displayed in Figures 4.26 and 4.27 in comparison with the motor characteristics 

obtained during healthy operating condition. Figure 4.26 (a, b, c and d) displays the 

speed (rpm) at different constant loads here it can be clearly seen that the speed 

obtained is around 1231 rpm which is lower as compared to speed 1435 rpm obtained 

at healthy operating condition and highly prominent oscillations at stable state are  

also experienced. Figure 4.26 (a, b, c and d) other part displays the torque of IM under 

two broken rotor bar faulty condition at different constant loads. On encounter with 

faulty condition the motor providing the oscillatory torque. The torque is not stable 

and average torque experienced is about 22.24 Nm which is lesser as compared with 

27.17 Nm torque at healthy operating condition. 
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(a) Two broken bar torque and speed at full load condition 

 

(b) Two broken bar torque and speed at half load condition 

 

 

(c) Two broken bar torque and speed at quarter load condition 
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(d) Two broken bar torque and speed at no load condition 

Figure 4.26: (a, b, c, and d) IM speed (rpm) and torque (Nm) response during 

fault at 100%, 50%, 25% and no load conditions with one broken rotor bars 

 

(a) Two broken bar rotor and stator at full load condition 

 

(b) Two broken bar rotor and stator at half load condition 
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(c) Two broken bar rotor and stator at quarter load condition 

 

 

(d) Two broken bar rotor and stator at no load condition 

Figure 4.27: (a, b, c, and d) IM rotor and stator current (A) response during 

fault at 100%, 50%, 25% and no load conditions with two broken rotor bars 

The rotor current experiences high distortion and unstable phase magnitudes of 

currents shown in Figure 4.27. The oscillations are higher at the stable state and 

suppressing the motor performance by making the current synchronization unstable. 

Rotor current vibrations are prominent and peaks are continuous indicating the stress 

on the motor which is degrading the performance of the motor. Figure 4.28 illustrates 

the motor current power spectrum signature with the sidebands peaks. Here the 

sidebands are quite prominent and are there in various frequency range. The presence 
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of severe faulty condition is felt in motor while operation. The side band on the left 

side is at 44Hz and on the right side is at 56Hz and some others also experienced at 

30Hz and 60Hz. 

 

Figure 4.28: Power spectrum of motor stator current with two broken rotor bars 

faulty condition 

4.4.3   Motor Simulation with Three Broken Rotor Bars Faulty Condition  

In third scenario, the motor is subjected to three broken rotor bars fault and the 

performance is observed on the basis of speed, torque, stator and rotor current 

depicted in Figures 4.29, 4.30. Figure 4.29 (a, b, c and d) displays the speed (rpm) 

under three broken rotor bar modelling in MATLAB at different constant load 

conditions. From the figure, it is clear that the speed reduces with a high rate as the 

degradation in the motor increases with three broken bar faults in the IM. Figure 4.29 

other part displays the torque of IM under three broken rotor bar faulty condition. The 

motor torque magnitude reduces with high oscillation due to the presences of the high 

faults in bars of the rotor.  Figure 4.30 (a, b, c, and d) two parts illustrates the rotor 

current and stator current respectively under three broken rotor bar condition at 

different constant load conditions. The stator and rotor current become highly 

unstable under the three broken bar condition. The distortion in the stator and rotor 

current are very high quite visible in both the parts of the Figure 4.30. Figure 4.31 

illustrates the motor current power spectrum signature with the sidebands peaks. Here 

the sidebands are quite prominent and are there in various frequency ranges. The side 

band on the left side is at 44Hz and on the right side is at 56Hz, the magnitude of the 

side bands have increased as compared to the magnitude in healthy, one and two 

broken rotor bar.   
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(a) Three broken bar speed and torque at full load condition 

 

(b) Three broken bar speed and torque at half load condition 

 

(c) Three broken bar speed and torque at quarter load condition 
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(d) Three broken bar speed and torque at no load condition 

Figure 4.29: (a, b, c and d) IM speed (rpm) an torque (Nm) response during 

fault at 100%, 50%, 25% and no load conditions with three broken rotor bars 

 

(a) Three broken bar rotor and stator at full load condition 

 

(b) Three broken bar rotor and stator at half load condition 
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(c) Three broken bar rotor and stator at quarter load condition 

 

(d) Three broken bar rotor and stator at no load condition 

Figure 4.30: (a, b, c and d) IM rotor and stator current (A) response during fault 

at 100%, 50%, 25% and no load conditions with three broken rotor bars 

 

Figure 4.31: Power spectrum of motor stator current with three broken rotor 

bar faulty condition 
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SCIM characteristics responses at different rotor bar faulty conditions are illustrated 

in Tables 4.4 and 4.5. From the Table 4.4 it can be clearly seen that the speed tends to 

reduce as the number of rotor bar fault increases. At full load the speed is 1251 rpm 

on 1 broken bar of rotor fault which reduces to 1211 in case of 3 broken bars of rotor. 

So, the speed is highly impacted on encounter of the fault. Similarly, the torque 

behavior is illustrated in Table 4.5 where the effects of 1 broken bar to 3 broken bar of 

rotor are presented and the reduction of torque is visible. At full load the torque from 

23.59 Nm at 1 broken bar reduced to 22.12 Nm at 3 broken bar fault. The designed 

model with broken bar rotor fault has been executed successfully under different 

constant loading conditions and its characteristics parameters have been analyzed in 

comparison with healthy state results given in chapter 2 and shown in Table 2.2.   

Table 4.4: (1, 2 and 3) broken rotor bar faulty SCIM motor speed at different 

loading conditions 

Loading 

conditions 

Speed (rpm)       

(1-brb) 

Speed (rpm)       

(2-brb) 

Speed (rpm)       

(3-brb) 

Full Load 1251 1231 1211 

Half Load 1281 1241 1224 

Quarter load 1294 1254 1242 

 

Table 4.5: (1, 2 and 3) broken rotor bar faulty SCIM motor torque at different 

loading conditions 

Loading 

Conditions 

Torque (Nm)       

(1-brb) 

Torque (Nm)       

(2-brb) 

Torque (Nm)       

(3-brb) 

Full Load 23.59 22.24 22.12 

Half Load 9.05 8.92 8.72 

Quarter load 3.76 3.48 3.14 
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The motor performance deteriorated when analyzed under various broken rotor bar 

faulty conditions (i.e. 1, 2 and 3 broken rotor bar), it has been observed that the motor 

torque and speed reduced considerably as the severity of the fault increases 

4.4.4   Effect of Time Varying Load on the Motor under Broken Rotor Bar 

           Faulty Condition 

The Induction Motor is put under various load variations in continuous operation for 

the 15 seconds, the load torque is varied during runtime from 0-3 seconds the motor is 

at no load, 3-5 seconds the motor is at full load, 5-8 seconds the motor is half load, 8-

11 seconds the motor is quarter load and 11-15 seconds the motor is at no load. The 

characteristics obtained during the time varying scenarios are analyzed and depicted 

in Figures 4.32, 4.33, 4.34 and 4.35. Figure 4.32 displays the speed and torque of the 

healthy motor at time varying loading conditions and Figure 4.33 displays the speed 

and torque curve produced at broken rotor bar faulty condition under time varying 

loading conditions. From both 4.32 and 4.33, it can be clearly seen that the magnitude 

of the torque and speed are lower at faulty in Figure 4.33 as compared to the healthy 

in Figure 4.32.  

 

Figure 4.32: IM Speed (rpm) and torque (Nm) of healthy operating condition at 

time varying loading conditions 

The variation of speed can be seen in Figure 4.32  as the load varies the speed tends to 

change and tries to achieve the stability and it can be seen that there is not much of the 

oscillation during run time apart from initial overshoot that shows the implemented 

model obtained is stable. The torque varies as per the demand varies can be seen 

significantly in Figures 4.32 and 4.33.  The stator current and rotor current also got 
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affected with dynamic variation of the load shown in Figures 4.34 and 4.35 for 

comparison with healthy one. The stability of the implemented model is visible as 

there is no abrupt variation in power while there is a changeover of the demand load. 

 

Figure 4.33: IM Speed (rpm) and torque (Nm) under broken rotor bar faulty 

condition at time varying loading conditions 

 

Figure 4.34: IM rotor and stator current (A) of healthy operating condition at 

time varying loading conditions 

 

Figure 4.35: IM rotor and stator current (A) under broken rotor bar faulty 

condition at time varying loading conditions 



 

92 
 

4.5   INDUCTION MOTOR UNDER STATOR WINDING FAULTY  

        CONDITIONS 

Overheating is one of the main causes of stator winding insulation deterioration and 

even failure of it. The insulation degrading or failure is mainly caused by poor 

ventilation, problem in cooling circuit or overload condition, contamination in air 

and/or humidity etc. These erroneous conditions are possibly causing shorted turns, 

shorted coils (same phase, it is the most common fault), phase to phase, phase or coil 

to ground and single phasing. Such failures cause stator electrical imbalance as well 

as variations in the current harmonic content. Mechanical problems can also occur in 

the stator such as loosen edges, but this is statistically less frequent. 

4.5.1   Faulty Condition in Induction Motor having One Coil Open of Stator  

           Winding 

The designed FEM model of SCIM is tweaked by opening one coil of phase A of 

stator winding to analyze the harmonic content of the motor at 1451.65 rpm. FEM 

structural design model with flux density maps are shown in Figures 4.36 and 4.37. 

Figure 4.36 shows the IM FEM model with one coil of phase (A) open of stator 

winding. From the distribution of magnetic flux density in Figure 4.37, it is seen that 

due to the lack of induced currents sue to the open coil fault, the magnetic field 

becomes asymmetrical leading to saturation in the rotor and stator teeth near the 

faulty location. 

 

Figure 4.36: Model of Induction Motor with one coil of phase (A) open of stator 

winding 
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Figure 4.37: Flux density distribution of Induction Motor during fault condition 

with one coil open of stator winding 

 

Figure 4.38: Torque response of Induction Motor over period of time during 

fault condition with one coil open of stator winding 

 

Figure 4.39: Current response of Induction Motor during fault condition with 

one coil open of stator winding 
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Figure 4.40: Output power response of Induction Motor during fault condition 

with one coil open of stator winding 

As a result the stator winding faults have an impact on the machine parameters such 

as torque and speed oscillations due to the influence of inverse magnetic field 

component. The 3-phase current tends to have high oscillation when put under open 

coil faulty state, motor characteristics are depicted in Figures 4.38, 4.39 and 4.40.   

4.5.2   Faulty Condition in Induction Motor having Two Coils Open of Stator  

           Winding 

The FEM designed model is modified to generate stator winding fault with two coil 

open of stator winding and then its structural model performance in terms of  flux 

distribution, current, torque and powers are analyzed presented in Figures 4.41 and 

4.42. Figure 4.41 displays the FEM model with two open coils which are marked with 

two arrows in the model. Figure 4.42 displays the distribution of magnetic flux 

density where the magnetic field is more asymmetrical due to the presence of two 

open coils in stator which in turns lead to saturation in the rotor and stator teeth near 

the faulty coil location.  

 

Figure 4.41: Model of Induction Motor with two coils open of stator winding 
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Figure 4.42: Flux density distribution of Induction Motor during fault condition 

with two coils open of stator winding 

The impact of two open coils at stator windings on torque current and power is 

analysed and graphs obtained are shown in Figures 4.43, 4.44 and 4.45. 

 

Figure 4.43: Torque response of Induction Motor over period of time during       

fault condition with two coils open of stator winding 

 

Figure 4.44:  Current response of Induction Motor during fault condition with 

two coils open of stator winding 
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Figure 4.45: Output power response of Induction Motor during fault condition 

with two coils open of stator winding 

4.5.3  Faulty Condition in Induction Motor having Three Coil Open of Stator  

          Winding 

In third experimentation, the FEM designed model is modified to generate more 

severe stator fault i.e. with three open coil windings. FEM modified model with its 

flux density map is displayed in Figures 4.46 and 4.47. Figure 4.46 shows the motor 

model with three coils open of stator winding marked with three arrows. Figure 4.47 

depicts the magnetic flux density at three open coil stator fault; from the magnetic 

flux density map it is clear that the flux distribution is highly asymmetric as compared 

to healthy, one and two stator fault conditions. 

 

Figure 4.46: Model of Induction Motor with three coils open of stator winding 
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Figure 4.47: Flux density distribution of Induction Motor during fault condition 

with three coils open of stator winding 

The effect of asymmetric magnetic flux and three open coil stator fault on 

characteristics parameter of the motor in terms of torque, currents and power are 

displayed in Figures 4.48, 4.49 and 4.50.  

 

Figure 4.48: Torque response of Induction Motor over period of time during 

fault condition with three coils open of stator winding 
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Figure 4.49: Current response of Induction Motor during fault condition with 

three coils open of stator winding 

 

Figure 4.50: Output power response of Induction Motor during fault condition 

with three coils open of stator winding 

4.6    RESULTS AND CONCLUSION OF FEM ANALYSIS 

The FEM model of IM is analyzed for three different stator faulty conditions one, two 

and three open coils stator windings. The deigned model is modified to generated 

stator open winding faults and its characteristics parameters have been observed. The 

obtained parameters have been verified and effect of stator fault results in poor 

performance of motor due to which the motor become unsuitable for the any process 

industry operation. Thus the need of fault monitoring and diagnosis is very higher as 

the downtime in industry should be avoidable to keep the production. These abrupt 

behaviors of motor parameters as utilized to extract the features and those features are 

furthermore used to detect and classify the fault and its type using machine learning 

and deep learning algorithms.  
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4.7    MATLAB IMPLEMENTATION MODEL  

The MATLAB model of SCIM is designed to investigate the motor performance 

under stator short circuit faulty operating condition. The motor is put under stator 

short circuited winding fault and its characteristics behavior is analyzed which are 

used for detection and diagnose of the fault using deep learning method. Figure 4.51 

displays the MATLAB working model of SCIM with stator winding fault. 

 

Figure 4.51: Induction motor  model with stator fault condition 

4.7.1   Implementation Model of Stator Winding Faulty SCIM at Full Load 

The second type of fault in SCIM considered is stator short circuit fault. The stator 

winding faulty motor model is operated under time varying loading condition and 

characteristics obtained at full load are illustrated in Figure 4.52 and 4.53. Figure 4.52 

shows the rotor & stator current and Figure 4.53 shows the torque & speed at the full 

load. Under the stator winding fault the motor distortion in stator current are extensive 

and rotor current shows the distortion on peaks of its waveforms. 

The torque & speed is distorted and the sped reduces at full load as compared to the 

healthy condition. The effect of the short circuit winding at the stator side results in 

lower speed and distorted magnitude of the torque. 
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Figure 4.52: Rotor and stator current of stator winding fault SCIM at full 

loading condition 

 

Figure 4.53: Speed and torque of stator winding fault SCIM at Full loading 

condition 

4.7.2   Implementation Model of Stator Winding Faulty SCIM at 50% Load 

The MATLAB model is operated under varied loading conditions, here the motor is 

put at 50% loading condition to extract the features and analyze the effect of its 

variation. The stator winding faulty MATLAB model characteristics parameters are 

obtained at 50% load are illustrated in Figure 4.54 and Figure 4.55.  
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Figure 4.54: Rotor and stator current of stator winding fault SCIM at 50% 

loading 

 

Figure 4.55: Speed and torque of stator winding fault SCIM at 50% loading 

4.7.3   Implementation Model of Stator Winding Faulty SCIM at 25% Load 

Here, the motor is operated at 25% loading condition under short circuit stator 

winding faulty condition. The characteristics of the motor as displayed in Figures 4.56 

and 4.57. Figure 4.56 depicts the stator and rotor currents whereas Figure 4.57 

displays  the speed and the torque of the motor. The torque and speed is 1189 rpm and 

4.24 Nm respectively which is quite lower as compared to healthy state values 1484 

rpm and 7.14 Nm. Distortion in current and oscillations in torque and speed leads to 

degraded performance of motor under short circuit faulty condition.  
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Figure 4.56: Rotor and stator current of stator winding fault SCIM at 25% 

loading 

 

Figure 4.57: Speed and torque of stator winding fault SCIM at 25% loading 

4.7.4   Implementation Model of Stator Winding Faulty SCIM at No Load 

Here, the motor is operated at 25% loading condition under short circuit stator 

winding faulty condition. The characteristics of the motor as displayed in Figure 4.58 

and 4.59. Figure   4.58  depicts the stator and rotor current whereas 4.59 displays the 

speed and the torque of the motor. The torque and speed graph is compared with 

healthy state torque and speed,  it is found that the distortion occurred due to the fault 

in current and oscillations in torque and speed leads to degraded performance of 

motor under short circuit faulty condition.  
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Figure 4.58: Rotor and stator current of stator winding fault SCIM at no load 

 

Figure 4.59:   Speed and torque of stator winding fault SCIM at no load 
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Table 4.6 summarizes the short winding stator fault motor behavioral characteristics. 

The torque produced at full load is 20.31 Nm which is low and the speed is 1149 rpm.  

The motor performance is degraded under the stator fault conditions as compared to 

healthy state stated in Table 2.2  in chapter  2. The torque and speed have deviated 

largely from its healthy state, which leads to the damage of the motor if the problems 

persist for longer period of time. The need of detecting these types of faults as early as 

possible is the utmost requirement. The stator short circuit faulty state experiments 

have been effectively performed and speed, torque and stator current parameters have 

been obtained as per requirement in order to process these findings for feature 

extraction and ultimately utilized for automatic fault detection and diagnosis. 

Table 4.6: Stator short circuit winding fault SCIM motor speed and torque at 

different loading conditions 

Loading conditions Torque (Nm) Speed (rpm) 

Full Load 20.31 1149 

Half Load 8.76 1179 

Quarter Load 4.24 1189 

 

4.7.5   Effects of Time Varying Load on the Motor under Stator Short Circuit  

           Winding Faulty Condition 

The time varying effects of healthy motors are displayed in Figure 4.60 for the 

comparison of the oscillations and distortions with faulty condition. The IM under 

stator short circuit winding fault is experimented under various time varying loading 

conditions in continuous operation for the operation of 15 seconds where 0-3 seconds 

at no load, 3-5 seconds at full load, 5-8 seconds at half load, 8-11 seconds at quarter 

load and 11-15 seconds at no load conditions are used, the load torque and speed are 

varied and the effects of that variation are analyzed and depicted in Figure 4.61.  
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Figure 4.60:   IM speed (rpm) and torque (Nm) of healthy operating condition at 

time varying loading conditions 

 

Figure 4.61:    IM torque(Nm) and speed (rpm) under time varying loading 

conditions at stator short circuit faulty condition 
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Figure 4.62:   IM rotor and stator current (A) under time varying loading 

conditions at healthy state 

The variation of speed can be seen in Figure 4.60  for healthy and 4.61 for faulty state, 

as the load varies the speed tends to change and tries to achieve the stability and it can 

be seen that there is not much of the oscillation during run time apart from initial 

overshoot that shows the operating system obtained is stable. The torque varies as per 

the demand varies can be seen significantly in Figure 4.61. Figure 4.62 shows the 

stator current and rotor current for healthy state and Figure 4.63 for  faulty state which 

are also got affected with dynamic variation of the load. The experimentation of time 

varying loading effects has been conducted successfully and all the outputs achieved 

have been compared with respect to healthy state. After comparison of healthy with 

faulty graphs, faults can be easily identified.  
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Figure 4.63: IM rotor & stator current (A) under time varying loading 

conditions at stator short circuit faulty condition 

4.8   ECCENTRICITY FAULTS  

Eccentricity is common mechanical fault in electrical machine. Approximately, 80% 

of the mechanical faults lead to the eccentricity. Eccentricity fault may occur during 

manufacturing and assembling process. Eccentricity exits when there is a non-uniform 

distance between the rotor and stator in the air-gap.  Figure 4.64 represents healthy IM 

without eccentric fault. 

 

Figure 4.64:   Healthy Induction Motor 
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There are two types of eccentricity faults: Static Eccentricity and Dynamic 

Eccentricity and combination of both are mixed eccentricity. 

In the SE, the symmetrical axis of rotor coincides with the rotational axis of the rotor, 

but it is displaced from stator symmetrical axis as depicted in Figure 4.65(a). In this 

case, air-gap distribution is non-uniform around the rotor but the minimum air-gap 

angular position is fixed. SE fault is created by shifting the stator geometry. However, 

static eccentricity may cause dynamic eccentricity, too. Assuming that the rotor shaft 

assembly is sufficient stiff, the level of static eccentricity does not change. Due to the 

air gap asymmetry, the stator currents will contain well defined components, and 

these can be detected. 

 

Figure 4.65:   (a) Static Eccentricity (b) Dynamic Eccentricity 

DE means that the rotor is rotating on the stator bore axis but not on its own axis. The 

off-center axis of rotation spin along a circular path with the same speed as the rotor 

does as depicted in Figure 4.65(b). This kind of eccentricity may be caused by a bent 

shaft, mechanical resonances, bearing wear or movement, and even static eccentric. 

Therefore, the non-uniform air-gap of a certain spatial position is sinusoidally 

modulated, and results in an asymmetric magnetic field gives rise to revolving 

unbalance magnetic pull. Due to dynamic eccentricity, side band components appear 

around the slot harmonics in the stator line current frequency spectra. 
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4.9   ANALYZING BEHAVIOUR OF IM UNDER ECCENTRIC FAULTY  

        CONDITION 

The modeling work was conducted on a three phase IM having specifications given in 

chapter 2 Table 2.1, is designed using RMxprt and Maxwell 2D is used for FEM 

analysis. The proposed model of IM is shown in Figure 4.66. 

Here, a 3 phase IM is operated under various conditions of Static and Dynamic 

Eccentricity, and the results are shown.  

 Fault condition with 34.48% Dynamic Eccentricity 

 Fault condition with 27.58% Dynamic Eccentricity 

 Fault condition with 34.48% Static Eccentricity 

 Fault condition with 27.58% Static Eccentricity 

 

 

Figure 4.66:   Induction Motor FEM model 

4.9.1   Induction Motor having  Fault Condition with 34.48% Dynamic  

          Eccentricity 

The FEM designed model is put under DE faulty condition and its magnetic flux 

density map is analyzed. Figure 4.67 displays the flux density distribution with 34.48 

% DE.  
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Figure 4.67:   Flux density distribution with 34.48% DE 

The nominal air gap in designed motor is 0.29. So, for creating 34.48 dynamic 

eccentricities along x-axis required shift distance is 0.1mm. Figure 4.68 depicts the 

current density distribution at 34.48 % DE faulty condition. 

 

Figure 4.68:   Current density distribution with 34.48% DE 

The effects of DE fault on FEM model are analyzed by obtaining characteristics 

parameter of the IM model shown in Figures 4.69, 4.70 and 4.71. Figure 4.69  

displays the torque obtained 25.7804Nm with high level of visible distortion. Figure 

4.70  shows the stator current 8.1635A with high distortions at the beginning of the 

running condition. The power obtained at DE fault is shown in Figure 4.71 and its 

magnitude is 3919.05W. 
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Figure 4.69:   Torque response of Induction Motor with 34.48% DE 

 

Figure 4.70:   Current response of Induction Motor with 34.48% DE 

 

Figure 4.71:   Output power response of Induction Motor with 34.48% DE 
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4.9.2   Induction Motor having Fault Condition with 27.58% Dynamic  

          Eccentricity 

In the second eccentric faulty experimentation, the FEM designed model is put under 

27.58% DE fault. The model current and magnetic flux densities are shown in Figures 

4.72 and 4.73. The nominal air gap in designed motor is 0.29.So, for creating 27.58% 

dynamic eccentricity along x-axis required shift distance is 0.08mm. 

 

Figure 4.72:   Flux density distributions with 27.58% DE 

 

Figure 4.73:   Current density distribution with 27.58% DE 

The effects of 27.58% DE fault on machine characteristics parameters such as torque, 

stator current and power are analyzed and are shown in Figures 4.74, 4.75 and 4.76. 

Figure 4.74  displays the torque produced during 27.58% DE fault. The magnitude of 

the torque is 25.79Nm. Figure 4.75  illustrates the FEM induction motor model stator 
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current response under normal condition the 3-phase current showing high oscillations 

and distortion due to the presence of 27.58% DE fault. Figure 4.76 illustrates the 

average power in watts under 27.58% DE faulty condition. The average power 

obtained is 3921.89W which is quite lower as compared to the normal operating 

condition. 

 

 Figure 4.74:   Torque response of induction motor with 27.58% DE 

 

Figure 4.75:   Current response of Induction Motor with 27.58% DE 

 

Figure 4.76:   Output power response of Induction Motor with 27.58% DE 
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4.9.3   Induction Motor having Fault Condition with 34.48% Static Eccentricity 

The third experimentation is the static eccentric fault generation and its behavior 

observation. The FEM model is tweaked for 34.48% SE fault, its flux and current 

density distribution maps are shown in Figures 4.77  and 4.78.   

 

Figure 4.77:   Flux density distribution with 34.48% SE 

 

Figure 4.78:   Current density distribution with 34.48% SE 

The effects of SE fault with 34.48% on the different characteristics parameters of 

motor are observed are and elaborated in Figures 4.79, 4.80 and 4.81. Figure 4.79 

displays the torque developed which is 25.8117 Nm with ripples while in operation. 

Figure 4.80 displays the distorted current obtained with 8.1660A. Figure 4.81 depicts 

the power produced which is 3923.7994W which is lower as compared to healthy 

state power 3927.9849W. 
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Figure 4.79:   Torque response of Induction Motor with 34.48% SE 

 

Figure 4.80:    Current response of Induction Motor with 34.48%SE 

 

Figure 4.81:   Output power response of Induction Motor with 34.48% SE 

4.9.4   Induction Motor having Fault Condition with 27.58% Static Eccentricity 

The fourth experimentation is the static eccentric fault generation and its behavior 

observation. The FEM model is tweaked for 27.58% SE fault, its flux and current 

density distribution maps are shown in Figures 4.82 and 4.83. The flux density graph 

in Figure 4.82 displays the non-uniformity of the flux in the IM results in wear and 

tear of the motor.  
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 Figure 4.82:   Flux density distribution with 27.58% SE 

 

 Figure 4.83:   Current density distribution with 27.58% SE 

The effects of SE fault with 27.58% on the different characteristics parameters of 

motor are observed are and elaborated in Figures 4.84, 4.85 and 4.86. Figure 4.84 

displays the torque developed which is 25.82 Nm with ripples while in operation. 

Figure 4.85 displays the distorted current obtained with 8.1670 A. Figure 4.86  depicts 

the power produced which is 3925.65W which is lower as compared to healthy state 

power 3927.9849W. 

 

Figure 4.84:   Torque response of Induction Motor with 27.58% SE 
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Figure 4.85:   Current response of Induction Motor with 27.58%SE 

 

Figure 4.86:   Output power response of Induction Motor with 27.58% SE 

4.10    RESULTS AND CONCLUSION 

The results of IM under different eccentric fault conditions are calculated and 

compared in the table below where Table 4.7 compares the IM under normal 

conditions with the two different DE situations and Table 4.8 compares the IM under 

normal conditions with the two different SE situations. The analysis of above results 

show that due to non-uniform air gap, flux distortion will occur that causes distortion 

in torque, flux, voltage and power in terms of fluctuations and mechanical vibrations. 

Table 4.7: Comparison table between normal DE conditions with 34.48% and 

27.58% variation 
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Conditions Normal Conditions Faulty Conditions 

Parameters Healthy 34.48% DE 27.58% DE 

Magnetic torque Nm (Average) 25.8392 25.7804 25.7991 

Stator current A(rms) 8.1644 8.1635 8.1649 

Power W (Average) 3927.9849 3919.0514 3921.8917 
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Table 4.8: Comparison table between normal and SE conditions with 34.48% 

and 27.58% variation 

 

4.11   ECCENTRIC FAULT GENERATION IN MATLAB   

The MATLAB model of SCIM as shown in Figure 4.87  is designed to investigate the 

motor performance under Eccentric fault condition  and different combined faults 

combinations (rotor-stator, stator-eccentric and rotor-eccentric). To extract the 

features from its stator waveform behavior and apply the deep learning method to 

detect these faults as soon as they appear in the motor.   

 

Figure 4.87:   Induction motor implementation model with eccentric fault 

condition 

Conditions Normal Conditions Faulty Conditions 

        Parameters Healthy 34.48% SE 27.58% SE 

Magnetic torque Nm(Average) 25.8392 25.8117 25.8239 

Stator current A (rms) 8.1644 8.1660 8.1670 

Power W (Average) 3927.9849 3923.7994 3925.6583 
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 Implementation Model of Static Eccentric Fault in SCIM at Full Load  

The MATLAB model with static eccentric fault in SCIM is operated under various 

loading conditions. The motor characteristics obtained at full load are illustrated in 

Figure 4.88 and Figure 4.89. Figure 4.88 shows the rotor and stator current and Figure 

4.89 shows the torque and speed at the full load torque obtained is 23.04 Nm and 

speed attained at full load is 1197 rpm. 

 

Figure 4.88:   Rotor and stator current of static eccentric fault in SCIM at Full 

load 

 

Figure 4.89:   Speed and torque of static eccentric fault SCIM at Full load 
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 Implementation Model of Static Eccentric Fault in SCIM at 50% Load 

The motor is now set at 50% loading condition and its characteristics obtained briefly 

illustrated in Figure 4.90 and Figure 4.91. Figure 4.90 shows the rotor and stator 

current and Figure 4.91 shows the torque and speed at the 50% load. The torque 

obtained is 10.90 Nm and the speed developed in motor is 1225 rpm. The static 

eccentric fault degraded the performance of the motor at all loading conditions.  

 

Figure 4.90:   Rotor and stator current of static eccentric fault in SCIM at 50% 

loading 

 

Figure 4.91:   Speed and torque of static eccentric fault in SCIM at 50% loading 
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 Implementation Model of Static Eccentric Fault in SCIM at 25% Load 

The eccentric faulty MATLAB model of the motor is put at 25% loading condition. 

Its characteristics obtained at 25% load are illustrated in Figure 4.92 and Figure 4.93. 

Figure 4.92  shows the rotor and stator current and Figure 4.93  shows the torque and 

speed. The magnitude of the torque is 4.82 Nm and speed is 1238 rpm. The magnitude 

of the torque decreases as per the demand load percentage and speed increase due to 

the decrement of the loading percentage.  

 

Figure 4.92:    Rotor and stator current of static eccentric fault in SCIM at 25% 

loading 
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Figure 4.93:   Speed and torque of static eccentric fault in SCIM at 25% loading 

 Implementation Model of Static Eccentric Fault in SCIM at No Load 

The eccentric faulty MATLAB model of the motor is put at no load condition. Its 

characteristics obtained at no load are illustrated in Figure 4.94 and Figure 4.95. 

Figure 4.94 shows the rotor and stator current and Figure  4.95 shows the torque and 

speed. The magnitude of the torque is 4.82 Nm and speed is 1238 rpm. The magnitude 

of the torque decreases as per the demand load percentage and speed increase due to 

the decrement of the loading percentage.  

 

Figure 4.94:   Rotor and stator current of static eccentric in fault SCIM at no 

load 
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Figure 4.95:    Speed and torque of static eccentric fault in SCIM at no load 

Table 4.9 summarizes the static eccentric fault motor behavioral characteristics. The 

torque produced at full load is 23.04 Nm which is lesser as compared to healthy 

condition output and the speed is 1197 rpm at full load. The designed motor is put 

under varied loading condition to generate the data for the classification at later stage 

and to analyze the behavior which will be further utilized to classify the fault type. 

Table 4.9: Static eccentric fault SCIM motor speed and torque at different 

loading conditions 

Loading conditions Torque (Nm) Speed (rpm) 

Full Load 23.04 1197 

Half Load 10.90 1225 

Quarter Load 4.82 1238 

 

 

4.12   EFFECTS OF TIME VARYING LOAD ON THE MOTOR UNDER 

          STATIC ECCENTRIC FAULTY CONDITION   

The IM was subjected to multiple load variations in continuous operation for 15 

seconds, the loads varied are as 0-3 seconds at no load, 3-5 seconds at full load, 5-:8 

seconds at 50% load, 8-11 seconds at 25% load, 11-15 seconds at no load  

 



 

124 
 

Figure 4.96:   IM Torque (Nm) and speed (rpm) of static eccentric condition 

under time varying loading conditions 

The results are presented in Figures 4.96  and 4.97. The variation of speed is shown in 

Figure 4.96 as the load varies the speed appears to change and striving to reach 

stability and it can be seen that there is not much of the oscillation during run time 

apart from initial overshoot that shows the implementation system obtained is stable. 

The torque varies as per the demand varies can be seen significantly in Figure 4.96 

and the stator current and rotor current also got affected with dynamic variation of the 

load shown in Figure 4.97.  

 

Figure 4.97:   IM rotor and stator current (A) of static eccentric condition under 

time varying loading conditions 

4.13   COMBINED FAULT ANALYSIS 

In this section, IM is analyzed under various multiple faults conditions. Different 

combinations of faults are produced in MATLAB model and then their characteristics 

behaviors are noted and features are calculated under different loading conditions and 

on the basis of distortion of stator current. The combinations of faults considered are 

as follows:  

 Rotor-Stator combined fault 
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 Stator-Eccentric combined fault 

 Rotor-Eccentric combined fault 

4.13.1   Rotor-Stator Combined Fault at Different Loading Conditions 

The combined fault in motor is analyzed under varied loading conditions each type of 

combined fault combination is put under different loading conditions in order to 

obtain its performance characteristics which will further be utilized as data to extract 

features for fault detection and classification.  

 

Figure 4.98:   IM rotor and stator current (A) under rotor-stator combined fault 

at 100% loading condition 

 

Figure 4.99:   IM torque (Nm) and speed (rpm) under rotor-stator combined 

fault at 100% loading condition 

The full load motor parameters are shown in Figures 4.98 and 4.99. Figure 4.98 shows 

the stator and rotor current at combined fault where the oscillations of the waveforms 

are at a highest level and it is deviating from being a pure sinusoidal current 

waveform. The distortion can also be seen in Figure 4.99 depicting the motor torque 
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and speed, this distortion results in the vibration of the motor while running and 

deteriorating its performance.  

 

Figure 4.100:   IM rotor and stator current (A) under rotor-stator combined 

fault at 50% loading condition 

 

Figure 4.101:   IM torque (Nm) and speed (rpm) under rotor-stator combined 

fault at 50% loading condition 

The motor behavior at 50% loading condition is depicted in Figures 4.100 and 4.101. 

From the Figures, it can be clearly seen that at the combined fault condition the motor 

is at a peak stress level and not able to move without jerks. The magnitude of torque 

lower and speed is higher as compared to the full load condition which is justified as 

per the demand load this varies accordingly. Figures 4.102 and 4.103 depicts the 

stator and rotor currents, speed and torque respectively at 25 % loading condition. 

Here, in these the torque 3.98 Nm which is lower as compare to 50% and 100% 

loading condition and speed is 1025 rpm which is higher as compared to 50% loading 

speed 1014 and 100 % loading speed 991 rpm. Figures 4.104 and 4.105 represent 
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behavior of motor at no loading condition same as per expected results under no load 

condition.  

 

Figure 4.102:   IM rotor and stator current (A) under rotor-stator combined 

fault at 25% loading condition 

 

Figure 4.103:   IM torque (Nm) and speed (rpm) under rotor-stator combined 

fault at 25% loading condition 
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Figure 4.104:   IM rotor and stator current (A) under rotor-stator combined 

fault at no loading condition 

 

Figure 4.105: IM torque (Nm) and speed (rpm) under rotor-stator combined 

fault at no loading condition 

Table 4.10 illustrating the complete performance of the motor at rotor-stator 

combined faults, the variation of the speed and torque can be seen and due to the 

vibration and stress the negative torque is also experienced. The combined fault of 
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rotor-stator has been successfully generated and its characteristics have been obtained. 

The motor model have shown considerable good results at different constant loading 

condition validating the model by getting the results as per the theoretical desired 

values of torque, speed and currents.    

Table 4.10: Rotor-stator combined fault SCIM motor speed and torque at 

different loading conditions 

Loading conditions Torque (Nm) Speed (rpm) 

Full Load 21.8 991 

Half Load 9.92 1014 

Quarter Load 3.98 1025 

 

4.13.2   Stator-Eccentric Combined Fault at Different Loading Conditions 

The IM is put under combined fault combination which is stator-eccentric and its 

performance under different loading conditions is analyzed. Stator current, rotor 

current, speed and torque are the parameters on which motor performance is 

evaluated. Figures 4.106 and 4.107  show  the behavior of the IM motor under stator – 

eccentric combined faulty condition at 100% loading.  At 100% loading condition the 

speed 927.8 rpm which is lowered  as compare to rotor-stator combined faulty 

condition speed 991 rpm. So, the stator-eccentric fault tends to deteriorate the 

performance more extensively.  

 

Figure 4.106: IM rotor and stator current (A) under stator- eccentric combined 

fault at 100% loading condition 



 

130 
 

 

Figure 4.107: IM torque (Nm) and speed (rpm) under stator- eccentric combined 

fault at 100% loading condition 

Figures 4.108  and 4.109  show  the behavior of the IM motor under stator – eccentric 

combined faulty condition at 50% loading. Figure 4.108 displays the rotor and stator 

currents and Figure 4.109  depicts the speed and torque. Figures 4.110  and 4.111 

show the behavior of the IM motor under stator – eccentric combined faulty condition 

at 25% loading. Figure 4.110 shows rotor and stator at no load and Figure 4.111 

depicts the torque and speed no load performance of the motor. Figures 4.112 and 

4.113  represent behavior of motor at no loading condition same as per expected 

results under no load condition.   

 

Figure 4.108: IM rotor and stator current (A) under stator- eccentric combined 

fault at 50% loading condition 
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Figure 4.109: IM torque (Nm) and speed (rpm) under stator- eccentric combined 

fault at 50% loading condition 

 

Figure 4.110: IM rotor and stator current (A) under stator- eccentric combined 

fault at 25% loading condition 

 

Figure 4.111: IM torque (Nm) and speed (rpm) under stator-eccentric combined 

fault at 25% loading condition 
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Figure 4.112: IM rotor and stator current (A) under stator- eccentric combined 

fault at no load condition 

 

Figure 4.113: IM torque (Nm) and speed (rpm) under stator-eccentric combined 

fault at no load condition 

The IM model have been successfully experimented with another combined fault i.e. 

stator-eccentric at different constant loading conditions and all of its parameters like 

speed and torque have been obtained at full, half, and quarter load are shown in Table 

4.11. 

Table 4.11: Stator-eccentric combined fault SCIM motor speed and torque at 

different loading conditions 

Loading conditions Torque (Nm) Speed (rpm) 

Full Load 20.71 927.8 

Half Load 9.37 948.7 

Quarter Load 3.69 958.8 
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4.13.3   Rotor-Eccentric Combined Fault at Different Loading Conditions 

Third experimentation is done with rotor-eccentric combination of fault, where motor 

is put under both the faults at the same time in the implementation model of 

MATLAB. Figures 4.114 and 4.115 shows the behavior of the IM motor under rotor – 

eccentric combined faulty condition at 100% loading. Figures 4.116  and 4.117 show  

the behavior of the IM motor under rotor – eccentric combined faulty condition at 

50% loading. Figures 4.118  and 4.119 display the effect on parameters at 25 % 

loading whereas Figures 4.120  and 4.121  show the results of motor parameters at no 

load condition.  

 

Figure 4.114: IM rotor and  stator current (A) under rotor- eccentric combined 

fault at 100% loading condition 

 

Figure 4.115: IM torque (Nm) and speed (rpm) under rotor- eccentric combined 

fault at 100% loading condition 
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Figure 4.116: IM rotor and stator current (A) under rotor- eccentric combined 

fault at 50% loading condition 

 

Figure 4.117: IM torque (Nm) and speed (rpm) under rotor- eccentric combined 

fault at 50% loading condition 

 

Figure 4.118: IM rotor and stator current (A) under rotor- eccentric combined 

fault at 25% loading condition 
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Figure 4.119: IM torque (Nm) and speed (rpm) under rotor-eccentric combined 

fault at 25% loading condition 

 

Figure 4.120: IM rotor and stator current (A) under rotor- eccentric combined 

fault at no load condition 

 

Figure 4.121: IM torque (Nm) and speed (rpm) under rotor-eccentric combined 

fault at  no load condition 
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The combined faults have been easily identified in the MATLAB implemented model 

and the results obtained should further be used for the feature extraction process that 

would further be utilized to implement the automated detection of combined faulty 

condition in the motor at runtime.  

Table 4..12: Rotor-eccentric combined fault SCIM motor speed and torque at 

different loading conditions 

Loading conditions Torque (Nm) Speed (rpm) 

Full Load 19.35 872 

Half Load 8.54 892.5 

Quarter Load 3.13 902 

 

Table 4.12 illustrates the rotor-eccentric combined fault SCIM motor speed and 

torque at different loading conditions. The motor speed reduced down to 872 rpm at 

full load condition. The combined fault affected the motor performance as the normal 

speed is quite low as compared to the normal healthy condition performance of the 

motor. Furthermore, occurrence of fault identification with classification of its type 

using deep learning and machine learning techniques with its type would be 

implemented which was not done earlier, this research work occupying this research 

gap considering the combined fault for the detection and classification.   

4.13.4   Combined Fault under Time Varying Loading Condition 

The experimentation of time varying loading effect on different combined faulty 

motor has been performed in MATLAB and its characteristics parameters have been 

identified. For the investigation the motor is operated for 15 seconds and after every 3 

seconds interval the demand load is varied as follows 0-3 seconds it‟s no load, 3-5 

seconds its 100 % load, 8-11 seconds its 50% load and 11-13 seconds its 25% load 

and for 13-15 seconds it‟s no load. The stability of the motor can be observed from 

the Figures 4.122 , 4.123, 4.124 and 4.125 which depict the healthy and combined 

faults torque and speed variations of rotor-stator, stator-eccentric and rotor-eccentric 

respectively. As the load demands increases torque tends to increase and speed tends 
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to decrease due to the stress on the motor, this conventional behavior of motor is 

completely depicted in the entire time varying Figures 4.122, 4.123,  4.124 and 4.125.  

 

 

Figure 4.122: IM torque (Nm) and speed (rpm) at normal healthy condition 

under time varying loading condition 

 

Figure 4.123: IM torque (Nm) and speed (rpm) at rotor-stator combined fault 

under time varying loading condition 
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Figure 4.124: IM torque (Nm) and speed (rpm) at stator-eccentric combined 

fault under time varying loading condition 

 

Figure 4.125: IM torque (Nm) and speed (rpm) at rotor-eccentric combined fault 

under time varying loading condition 
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4.14   SUMMARY 

The main objective of  the chapter  is to address the conduct of the 3 phased induction 

machines under  different  faults like broken rotor bar, stator fault, eccentricity fault 

and combined faults (rotor –stator, rotor- eccentric and stator - eccentric) at different 

constant and time varying loading conditions.  A 5kW SCIM is considered for the 

analysis and  faults  are generated in motor and its behavior is investigated. The motor 

characteristics parameters like rotor speed, stator current and its torque is evaluated 

and closely analyzed. 

From the analysis of the broken rotor bar results, it is concluded that as the severity of 

fault increases with increases the number of broken rotor bar due to the variations in 

magnitudes of the fault frequency sideband components, fluctuations in the magnetic 

torque and stator current increases. The stator current is continuously decreasing with 

the increase in number of broken rotor bars at the different  loading levels. 

Under MATLAB model operation the motor is put at various varied loading 

conditions to get its maximum performance analysis along with  different faults. 

Loading considered are 100%, 50%, 25% and no load. The performance is evaluated 

on the basis of its speed, torque, rotor, stator current and power spectrum. 

 The SCIM performance under time varying loading conditions is analyzed and its 

stability in terms of variation of torque produced and speed variation are observed in 

both healthy and broken rotor bar faulty environment.  

The three-phase IM model have been successfully operated under stator and eccentric  

faulty conditions at different constant and time varying loading conditions and its 

characteristics parameters are noted and their variations are being used to extract 

features in the further stages of the health monitoring system implementation. All 

experimentations have been executed effectively and the stator and eccentric faults 

effects have been achieved as per the requirement.  

The experimentation on IM model with stator faults ( open winding and short circuit) 

and eccentric faulty conditions  have been conducted successfully and obtained all the 

desired parameters for the feature extraction process.  
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The effect of time varying loading conditions have also been considerably observed 

by operating motor at different load demands at different times during the runtime. 

The motor remained stable at loading variation during runtime stating the model 

robustness and stability.  

In this chapter, the introduction of combined faults (i.e. presence of more than one 

fault at the time of execution) of the motor is done which is used to evaluate the 

robustness of the proposed algorithm of classification and detection of faults. The 

combined faults are more severe and parameter obtained are more degraded which are 

considered as features and used for feature extraction. Combined faults considered are 

rotor-stator, stator-eccentric and rotor-eccentric all are investigated and the 

performance of the motor is evaluated under various combination of combined fault at 

different constant and time varying loading conditions. This research work have 

considered the left-out more severe faults which are combined faults and designed 

models have easily operated and performance characteristics have been obtained 

successfully for further processing in the stage where automatic detection and 

classification of the faults would be done using deep learning techniques. 
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CHAPTER 5 

MACHINE LEARNING ALGORITHM BASED FAULT 

DIAGNOSIS EXPERIMENTATION 

 

5.1    INTRODUCTION 

The fault detection and its classification are discussed in brief in this chapter. IM 

characteristics in terms of vibrations and stator currents are converted into DWT 

features. For the dataset creation the total 4000 samples are taken into consideration, 

out of which 1000 samples are of healthy state, 500 samples each class of rotor fault, 

stator fault, eccentric faults, rotor-stator combined faults, rotor-eccentric faults and 

stator-eccentric faults. The data of all 7 classes is divided into training and testing to 

train the proposed machine learning and deep learning framework stated in chapter 4 

using DBNN, SVM and RF. The accuracy in detecting and classifying the different 

types of possible faults is compared within the proposed algorithms in order to get the 

most robust framework. Furthermore, the comparison with previous work is done to 

validate the accuracy obtained with proposed algorithm. Firstly, feature extraction 

using DWT is discussed followed by DBNN method then SVM method and finally 

RF method is described.  

The classification algorithms performances metrics used are as follows: 

1. Confusion matrix: A confusion matrix is a summary of prediction results on a 

classification problem. The number of correct and incorrect predictions are 

summarized with count values and broken down by each class. 

2. Accuracy: It is the fraction of relevant instances among the total instances   

      A = (TP+ TN)/ (TN + TP+ FN + FP) * 100                                       (5.1) 

3. Precision: It is the fraction of relevant instances among the retrieved instances.  

     P = TP/ (TP + FN) *100%                                                               (5.2) 

4. Recall: It is the fraction of relevant instances that were retrieved 

     R = TN/ (FP + TN) *100%                                                            (5.3) 
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Where,  

  True Positive (TP): Number of correctly identified positive examples as positive. 

  True Negative (TN): Number of correctly identified negative examples as 

negative. 

  False Positive (FP): Number of incorrectly identified positive examples as 

negative. 

  False Negative (FN): Number of incorrectly identified negative examples as 

positive. 

 5.2    INDUCTION MOTOR VIBRATION SIGNALS 

The IM vibration analysis is done for various operating condition like healthy and 

faulty conditions. Vibrations generally develop during the oscillations of the 

mechanical parts while in operating conditions. The oscillation becomes severe if any 

electrical and mechanical fault exists in the motor. This oscillatory motion and stator 

current analysis are important factor to detect the presence of fault in the motor.   

The IM vibration graphs are depicted in Figures 5.1 to 5.8. In Figure 5.1, the healthy 

operating condition of the motor is displayed at different constant loading conditions, 

from the Figures it can be seen clearly that the vibration signals are very smooth and 

there is a good uniformity in the signal.  

  

Figure 5.1: Healthy state vibration signals of  IM at full, half, quarter and no 

loads 
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In Figure 5.2, the broken rotor faulty condition vibration signals are displayed at 

different loading conditions in which the oscillations of the signals are quite 

prominent as compared to the healthy operating condition. Similarly, the stator fault 

and eccentric faulty conditions are shown in Figure 5.3 and 5.4 in which both have 

shown the prominent oscillations. 

 

Figure 5.2: Broken rotor bar vibration signals of  IM at full, half, quarter and 

no loads 

 

Figure 5.3: Stator fault vibration signals of  IM at full, half, quarter and no 

loads 
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Figure 5.4: Eccentric fault vibration signals of  IM at full, half, quarter and no 

loads 

 

Figure 5.5: Rotor-stator combined fault vibration signals of  IM at full, half, 

quarter and no loads 
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Figure 5.6: Rotor-eccentric combined fault vibration signals of  IM at full, 

half, quarter and no loads 

 

Figure 5.7: Stator-eccentric combined fault vibration signals of  IM at full, 

half, quarter and no loads 

 

Figure 5.8: Vibration signals of  IM at time varying loading condition 
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Figures 5.1-5.4 shows the healthy and single faults (rotor, stator and eccentric) 

vibration signals analysis at different constant loading conditions whereas Figures 5.5, 

5.6 and 5.7 show  the rotor-stator, rotor-eccentric and stator-eccentric combination of 

the faults at different constant loading conditions respectively. Figure 5.8 displayed 

the vibration signals at time varying loading condition. From these Figures, it can be 

analyzed that the peaks of the magnitude of the vibrations are quite high as compared 

to single faults. Vibration signals as per the requirement have been obtained 

successfully under all conditions of constant and time varying loading. 

5.3    DWT FEATURE EXTRACTION OF STATOR CURRENT 

The Discrete Wavelet Transform is utilized for the feature extraction of the IM 

current variations. The motor stator current is taken as input and 2 level DWT is 

performed with „db4‟ as the wavelet. The low frequency components of the wavelet is 

selected from the 1st level and computed 2nd level DWT which finally taken as 

features. Figure 5.9 to 5.15 depicts the samples of DWT features on healthy and 

different faulty conditions at various constant loading conditions. Figure 5.16 shows 

the DWT features at time varying loading condition to classify the fault and its type.  

 

Figure 5.9: DWT features extracted in healthy operating condition at full, 

half, quarter and no loads 
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Figure 5.10: DWT features extracted in broken rotor faulty operating condition 

at full, half, quarter and no loads 

 

Figure 5.11: DWT features extracted in stator faulty operating condition at full, 

half, quarter and no loads 
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Figure 5.12: DWT features extracted in eccentric faulty operating condition at 

full, half, quarter and no loads 

 

Figure 5.13: DWT features extracted in rotor-eccentric combined  faulty    

operating condition at full, half, quarter and no loads 
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Figure 5.14: DWT features extracted in stator-eccentric combined faulty   

condition at full, half, quarter and no loads 

 

Figure 5.15: DWT features extracted in rotor-stator combined faulty operating 

condition at full, half, quarter and no loads 

 

Figure 5.16: DWT features extracted in time varying loading conditions 
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DWT extracted features of 4000 samples are collected few of those are shown in 

Figures 5.9-5.15. 1000 samples of healthy operating condition and 500 each of all 

possible combination of single and combined faults are taken into consideration.  

5.4    DBNN TRAINING FOR FAULT CLASSIFICATION 

The total 4000 collected samples are divided into training and testing set, 70% of the 

data is divided into training and 30% data is divided into testing. The analysis of 

classification is done till 10-fold cross validation to assure the accuracy. Three layer 

DBNN architecture is used for the classification with RBM layers. In which, 800-set 

optimal data is used to make the backward fine-tuning learning from the classification 

layer to low layers and 800-set test data is used to investigate the recognition rate of 

DBN classifier. Additionally, it is found in this work that the main factors affecting 

the recognition rate are three aspects: different units in second layer of DBN 

classifier, the number of layers and training data. 

The DBNN training is performed using scale conjugate gradient method for training 

with Mean Square Error (MSE) as a performance measurement calculation. Total 

numbers of epochs considered are 200 and performance achieved is 0.00262. The 

performance of the training process is illustrated in the Figures 5.17 and 5.18. Figure 

5.17 shows the convergence graph of the MSE, from the graph it is clear that the 

training error loss is up to 10e-3 which is quite near to 0 within 200 training epochs.  

 

Figure 5.17: DBNN training performance parameters 
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Figure 5.18: DBNN training error histogram 

Figure 5.18 shows the error histogram is displayed where also it can be seen that the 

histogram bin is accumulated at center where the minimum of value is there. Both 

Figures 5.17 and 5.18 depict the robustness of the training phase. 

Tables 5.1-5.4 describe the performance of the proposed DBNN architecture via 

confusion matrix at different loading conditions of IM. The confusion matrices rows 

depict the actual 7 classes and columns depict the predicted 7 classes. The diagonal 

elements of the matrix show the correct predicted numbers. Therefore the sum of total 

diagonal elements divided by total number of samples measures the accuracy.  Table 

5.1 shows the confusion matrix at 100% loading with accuracy of 99.83 (i.e. obtained 

using 1198/1200). At 50% loading condition the accuracy obtained is 1190/1200 i.e. 

99.16% shown in Table 5.2. At 25% loading condition the accuracy is 99.08% and at 

no load conditions it is 98.99% as shown in Tables 5.3 and 5.4 respectively. Here, it 

can be clearly seen that at lesser severity at no load condition, the proposed method 

obtained the 98.99% accuracy validates the capability of the system to detect the 

diminished faults at an incipient stage.  

 

Table 5.1 Confusion matrix at 100% loading condition using DBNN as classifier 
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Table 5.2 Confusion matrix at 50%loading condition using DBNN as classifier 

 

Table 5.3 Confusion matrix at 25%loading condition using DBNN as classifier 

 

Table 5.4 Confusion matrix at no load condition using DBNN as classifier 

 

5.5   SUPPORT VECTOR MACHINE CLASSIFIER ON DWT FEATURE 

The SVM classifier is one of the versatile classifier of the machine learning domain 

which has been applied on several applications using its different kernel function. The 
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SVM Radial Bias Function (RBF) kernel function is utilized to accomplish the fault 

diagnosis problem in SCIM. The training of the SVM is done on the training dataset 

kept common for all the classifier used. The training loss function graph is shown in 

Figure 5.19, from the figure it can be seen that the convergence of the loss is at the 

lowest possible point which is around 0.04.  

The loss is minimized to the lowest possible extent. And the accuracy, precision and 

recall are calculated using the testing data confusion matrix at all different constant 

loading conditions which are elaborated in Table 5.5-5.8. The overall accuracy of the 

system is 1170/1200 = 97.5%. Precision of the SVM is 0.97 and recall is 0.97. 

 

Figure 5.19: SVM training loss function graph 

Table 5.5 Confusion matrix at 100% loading condition using SVM as classifier 
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Table 5.6 Confusion matrix at 50% loading condition using SVM as classifier 

 

Table 5.7 Confusion matrix at 25% loading condition using SVM as classifier 

 

Table 5.8 Confusion matrix at no load condition using SVM as classifier 
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5.6   RANDOM FOREST CLASSIFIER ON DWT FEATURES 

The RF is one of the ensembles learning process of the machine learning algorithms 

where the collection of decision trees is used to reach to the best solution. The 10-fold 

cross validation process is used to train and test the dataset of 4000 samples. The 

compete misclassification process graph is shown in Figure 5.20 where the minimum 

value achieved is 0.06.  

 

Figure 5.20: RF training misclassification graph 

Table 5.9 Confusion matrix at 100%loading condition using RF as classifier 
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Table 5.10 Confusion matrix at 50%loading condition using RF as classifier 

 

Table 5.11 Confusion matrix at 25%loading condition using RF as classifier 

 

Table 5.12 Confusion matrix at no load condition using RF as classifier 
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Tables 5.9-5.12 illustrate the confusion matrix of all the healthy and faulty samples 

accuracies at 100%, 50%, 25% and no load conditions. All confusion matrices have 

been obtained successfully and FD detection at all conditions have been stated. The 

healthy samples are recognized with 100 % accuracy. In faulty states like rotor and 

stator the accuracy is almost 100% in rest there is a downfall in accurate detection of 

the fault which leads to the overall accuracy of 96.5%. So, the average overall 

accuracy of the system is 1159/1200 = 96.5%. Precision is 0.983 and recall is 0.97. 

5.7   COMPARISON OF MACHINE AND DEEP LEARNING ALGORITHM 

        FOR FAULT DIAGNOSIS OF INDUCTION MOTOR  

The three algorithms are compared on the basis of the accuracy, precision and recall 

illustrated in Tables 5.13-5.16 under different constant loading conditions. Deep 

learning algorithm like DBNN  train machines by learning . Deep learning is a subset 

of machine learning, which is essentially a neural network with three or more layers. 

A large dataset of input and output pairs help it to minimize the difference between its 

prediction and expected output. A Deep learning methods are very popular now a 

days in the field of fault diagnosis as they can learn feature extraction well and 

successfully handle big data for detection and classification task in case of fault 

occurrence. DBNN a class of deep neural network, composed of multiple layers of 

hidden units, with connection between the layers but not between units with each 

other.  From Tables 5.13-5.16, it can be seen that the deep learning method DBNN 

has given 99.83% accuracy whereas  RF and SVM have given 96.5% and 97.5% 

accuracies. The precision and recall of deep learning method DBNN also is on the 

higher side. The accuracy, precision and recall have successfully been obtained at all 

different loading conditions with significant high correctness. The overall 

performance of the DBNN is better in terms of detection and classification of fault. 

The obtained accuracy in DBNN proves that in almost 100% of time the DBNN 

detect the fault correctly and classify its type with a good precision. Furthermore, this 

can be utilized in proper maintenance steps that could be taken if the type of fault is 

precisely detected. So, DBNN adds a good value to the SCIM maintenance where the 

problem of monitoring and detecting the faults consumes lots of time. So, the 

downtime can be drastically reduced and machine can be made intelligent.   
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Table 5.13 Machine learning and deep learning algorithms performance 

comparison chart at 100% loading 

Algorithm Accuracy (%) Precision (p) Recall (r) 

Deep learning 

method DBNN 

99.83 0.99 0.99 

Random Forest 96.5 0.98 0.97 

Support Vector 

Machine 

97.5 0.97 0.97 

 

Table 5.14 Machine learning and deep learning algorithms performance 

comparison chart at 50% loading 

Algorithm Accuracy (%) Precision (p) Recall (r) 

Deep learning 

method DBNN 

99.16 0.99 0.99 

Random Forest 95.75 0.98 0.97 

Support Vector 

Machine 

97.08 0.97 0.97 

 

Table 5.15 Machine learning and deep learning algorithms performance 

comparison chart at 25% loading 

Algorithm Accuracy (%) Precision (p) Recall (r) 

Deep Learning 

method DBNN 

99.08 0.99 0.98 

Random Forest 95.08 0.95 0.96 

Support Vector 

Machine 

96.41 0.96 0.97 

 

Table 5.16 Machine learning and deep learning algorithms performance 

comparison chart at no load 

Algorithm Accuracy (%) Precision (p) Recall (r) 

Deep Learning 

Method DBNN 

98.99 0.98 0.97 

Random Forest 94.58 0.95 0.94 

Support Vector 

Machine 

95.66 0.95 0.95 
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Figure 5.21, 5.22 and 5.23 are showing the comparison of all the three methods used 

for FD in terms of accuracy, precision and recall comparison at different constant 

loading conditions respectively. In all the three graphs the DBNN performance is 

profound as compared to the machine learning algorithms SVM and RF. The RF 

classifier is based on ensemble learning where bunch of decision trees altogether 

tends to get the best accuracy out of the sample provided to it while training, in the 

fault detection case the accuracy obtained from collection of decision trees creating 

random forest is 96.5%. 

 

Figure 5.21: Recall bar graph comparisons at different loading conditions 

 

Figure 5.22: Precision bar graph comparisons at different loading conditions 
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Figure 5.23: Accuracy bar graph comparisons at different loading conditions 

On the other side, SVM with RBF kernel function extract the 97.5 % accuracy for 7 

classes fault classification problem it is due to the fact that RBF kernel function 

handles the non-linearity of the system effectively while performing the convergence 

during the training process. So, overall performance comparison is like the 

performance of DBNN is greater than SVM and the performance of SVM is greater 

than RF in terms of precision, recall and accuracy. 

5.8   FAULT DETECTION AT TIME VARYING LOAD CONDITION  

The experimentation of fault detection and classification under time varying loading 

condition is conducted on all three FD methods SVM, RF and DBNN displayed in 

Figures 5.24, 5.25 and 5.26. The motor is subjected to faults seven times during 

runtime (Rotor Fault, Rotor fault, Rotor-Eccentric fault, Rotor-Stator fault, Stator 

Fault, Rotor-Eccentric Fault, Eccentric fault). 

 

Figure 5.24: Time varying fault detection using DBNN 
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Figure 5.24 depicts the fault detection and classification using proposed DBNN 

technique under time varying load condition. All the seven faults have been 

successfully detected using DBNN framework. Figure 5.25 shows the detection of 

fault during runtime using SVM algorithm, from the figure it can be seen that the 

rotor fault is misinterpreted as stator fault and rest all other faults are correctly 

detected and classified. Figure 5.26 display the performance of RF algorithm under 

time varying loading condition. RF algorithms have incorrectly classified multiple 

faults Rotor fault classified as stator fault and rotor-stator fault is classified as stator-

eccentric. Here, it is concluded that all three approaches have detected the faults 

successfully and in classification the DBNN have shown the better performance as 

compared to SVM and RF. 

 

Figure 5.25: Time varying fault detection using SVM 

 

Figure 5.26: Time varying fault detection using RF 
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The runtime fault detection have been the part of the research since so many past 

years. This research work have introduced the detection as well as classification of the 

fault at the same time i.e. which type of fault occur at the time of fault so that the 

downtime due to the repair of the motor could be reduced and can be valuable in 

increasing the productivity in the industry. In this research work the novel approach is 

used for the online fault detection and classification is done considering various more 

severe combined faults under constant and time varying loading conditions.   

5.9   SUMMARY  

In this chapter, the fault diagnosis methods are applied to diagnose the faults in motor 

with its classification. The feature extraction is done using DWT using stator current 

and the vibration signals. Identification of the faults is done using machine learning 

and deep learning methods mainly SVM, RF and DBNN. Overall the performance of 

all the algorithms is good. The DWT feature extractor segregates the vibration and 

current signals into electrical signals in an efficient way and database created for all 

the possible faults occurrences in SCIM motor for example rotor faults, stator faults, 

eccentric faults and combined faults. Dataset is then utilized for supervised learning 

process divided into training and testing with 10-k fold cross validation approach for 

SVM, RF and DBNN. The analyses of three algorithms are done on the basis of 

different loading conditions and time varying load to increase the data set and 

authenticate the performances of the proposed architecture. Features are extracted and 

divided in different sets at 100%, 50%, 25% and no load condition to analyze the 

performance of algorithms at different severity level of the fault. Subsequently, the 

detection and classification of the faults under all loading conditions is performed 

with high accuracies. During the investigation of the classification algorithm, it is 

found that DBNN has performed well and obtained a 99.83% accuracy of 

classification of fault. SVM with RBF kernel extracted 97.5 % and RF the ensemble 

classification machine learning algorithms have shown 96.5% accuracy. 
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CHAPTER 6 

CONCLUSIONS, CONTRIBUTIONS AND FUTURE 

WORK 

 

 
6.1   INTRODUCTION 

The present research work contributes to the field of fault detection and diagnosis in 

Induction Motor by applying advanced algorithms of machine learning and deep 

learning. The IMs are the backbone of industrial processes such as power, automotive, 

machine tools plant processes. Due to the increased use of IM, the need for fault 

detection and classification has increased significantly. Therefore, the classification of 

faults of induction motors such as rotor faults, stator faults, eccentric faults, and 

various combined faults (rotor-stator, stator-eccentric, and rotor-eccentric) are the 

focus of this research.  

6.2   CONCLUSIONS  

The common types of faults in Induction Motor are analyzed in the research work. 

Various condition monitoring methods and fault diagnosis methods have been 

discussed and reviewed. The present research work is divided into three parts: first 

part is to design and implement the IM model in RMxprt and Maxwell 2D software 

tool to analyze the effects of load variations and faulty conditions in the motor. 

Second part is to design the mathematical modeling of IM in MATLAB software tool. 

Explicitly the effects of rotor bar faults (one bar, two bars and three bars), (Stator 

open winding & short circuit faults), eccentric faults and combined faults (one or 

more faults at the same time) on the motor have been extensively experimentally 

analyzed.  

Third part, is the IM fault diagnosis using DWT analysis of stator current which 

identify the patterns caused during the different operating conditions of the motor 

(healthy or faulty) and furthermore, the classification of the faults is done using 

various machine learning algorithms like RF, SVM and DBNN. The training dataset 

used is built from stator current envelope i.e. spectral analysis and its feature 

extraction at each level under different motor operating conditions. Several 



 

164 
 

implementation executions have been performed on the IM (squirrel-cage) setting the 

motor under different loading conditions constant & time varying under different 

faults like rotor, stator, eccentric and combined faulty operating conditions. The 

implementation showed that the condition of any fault causes vibrations in the stator 

current, torque and speed. It can be seen that these oscillations are proportional to the 

type of fault. The fault generation and the motor behavior at different range of load 

condition is executed using Maxwell 2D with FEM technique. Machine learning and 

deep learning algorithms with DWT are applied on MATLAB model to detect and 

classify the faults.  

The conclusions of the research work are summarized as follows:  

1. Literature survey in the field of IM fault diagnosis techniques have been 

performed which is further categorize in three sections model based methods, 

signal processing based methods and soft computing algorithm based techniques.  

2. Healthy SCIM characteristics have been experimentally obtained with the help of 

ANSYS RMxprt tool and MATLAB software. 

3. Broken rotor bar faults generation and detection have been successfully 

performed:  

 Broken rotor bar faults are generated using FEM analysis in ANSYS RMxprt 

and Maxwell 2D. The vibration in stator, current and speed have been 

observed by experimenting motor at one, two and three broken rotor   bars and 

it‟s been analyzed that the vibration tends to increase and distortion magnitude 

increases as broken rotor bar faults. 

 The effects of rotor faults have been observed in comparison to healthy motor 

behavior under constant loading condition. 

 MATLAB implemented SCIM model has proficiently generated the broken 

rotor bar faults and motor parameters are obtained. 

 The experimentations of effects of constant loads variation (100%, 50%, 25% 

and no load) on broken bar faulty motor in comparison to healthy motors for 

fault diagnosis have been successfully presented. 
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 Power spectrum of generated faulty conditions has been investigated which 

concludes the behaviour of motor as the magnitudes of the sidebands increases 

on the increment of severity of the faults. 

 The effect of time varying loading condition during runtime has been executed 

conclusively, stating the robustness of the implemented SCIM model.  

 The characteristics obtained from different constant loading condition were 

further used for feature extraction for automatic detection and classification of 

broken rotor bars.  

 

4. Stator open and short circuit winding faults detection and classification 

experimentation was performed: 

 Open winding faults have been effectively generated in RMxprt model and its 

characteristics were obtained using FEM analysis using Maxwell 2D. 

 The experimentation on short circuit stator winding fault has been performed 

using MATLAB implemented model. The effects of different constant load 

(100%, 50%, 25% and no load) on faulty SCIM motor have been successfully 

analysed and compared with healthy motor.  

 Time varying loading condition experiment has been performed on short 

circuited stator winding faulty motor and its effect has been observed.  

 Obtained characteristics at the time of stator faulty condition have been further 

utilised to extract features for classification of fault types.  

 

5. Designed SCIM has been analysed on the presence of eccentric faulty condition 

both dynamic and static: 

 Static and dynamic faults have been successfully generated using Rmxprt 

designed model and its characteristics behaviour has been observed at constant 

load condition using Maxwell 2D and also compare with healthy one. 

 Static eccentric fault has been successfully implemented using MATLAB 

software and its effect under different loading conditions (100%, 50%, 25% 

and no load) have been presented in this research work. 

 The faulty motor has been positioned under time varying loading condition 

and the stability performance analysis has been successfully performed.    
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6. Considering the gap in research work where the combined faults based research 

were hard to find, an experimentation on combined faults has been efficiently 

conducted: 

 The distortion of the characteristics of the motor has been analysed on various 

combined faulty conditions (rotor-stator, stator-eccentric and rotor-eccentric). 

 The effect of combined faulty conditions on the different (100%, 50%, 25% 

and no load) constant loading conditions has been presented effectively and 

the implemented model stability has been observed from the characteristics 

obtained. 

 The experimentation on the effect of time varying loading condition on 

different set of combined faults has been conducted positively and all the 

characteristics have been obtained and presented. 

 The characteristics obtained were further more utilised to obtain features for 

classification process. 

 

7. The proposed DBNN model framework has been developed successfully to 

detect and classify the type of fault during the runtime: 

 DWT features have been comprehensively extracted using stator current 

signature at different faulty conditions (rotor, stator, eccentric, and 

combination of combined faults) under constant and time varying loading 

conditions. 

 Machine learning algorithms SVM and RF have also been used for detection 

and classification of fault along with proposed DBNN framework. The results 

of proposed method has been compared with other machine learning 

algorithm, the proposed method has outperformed the others existing ones. 

 Combined faults have been detected and classified successfully from the 

proposed DBNN framework. 

6.3   CONTRIBUTIONS OF THE RESEARCH WORK  

 The vital prominence of this research work based on the methods which  effectively 

 detects faults in IM under different constant and time varying loading conditions  

 prior to the system failure. 
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 From the research work, it is concluded that the motor performance varies 

drastically when put at different constant and time varying loading conditions and 

it adversely affect its wear and tear which makes motor prone to get faulty.  

 In order to observe all these effects, in this research work fifty six 

experiments have been conducted using two different machine learning 

algorithm and one deep learning algorithm to detect and classify faults like 

rotor, stator and eccentric and their combinations (rotor-stator, stator-eccentric 

and eccentric-rotor) at different constant loading conditions and time varying 

load. 

 

 The  data driven method/technique deep learning  is applied in the present work 

for intelligent  fault detection and classification of a particular fault under all 

situations. 

 

 The implemented DBNN method performance outcomes obtained in terms 

of accuracy  has been proved to be effective and outstanding  under  change of 

constant loading conditions  like the motor at 100% loading condition tends to 

deteriorate more and its effect on its characteristics parameters are higher due 

to which the extracted features of the motor at 100% loading helps 

classification algorithm to detect and classify the type of faults precisely and 

same for other loading effects even at no load where small effect of faults 

occur.  

 Also fault detection methods have shown great performance under severe  

conditions when combined faults occur . 

 

 The supervised machine learning algorithms such as SVM and RF have 

performed well in the field of detection of different type of faults at different 

constant loading conditions and during time varying load in this research work. 

 Comparing all the algorithms (DBNN, SVM and RF) on the basis of 

accuracy,  precision and recall, it is found that SVM gives better results than 

RF but as the deep learning algorithms utilize the supervised and unsupervised 

concepts to attain the maximum accuracy for the classification processes due 
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to this reason the DBNN algorithm has achieved higher accuracy  as compared 

to RF and SVM in all different loading conditions for different types of faults. 

 

 The proposed method DBNN with DWT  is adopted to design hybrid approach 

DBNN-DWT for fault detection and classification of single and combined fault 

under different constant and time varying loading conditions. 

 The present research work outperformed the other existing ones which is 

only possible due to robust feature extraction using unsupervised learning of 

features of advance deep learning method to classify the faults more precisely. 

6.4    FUTURE WORK   

 In future, the high rating motor should be considered for the experimentation to 

robustness of the proposed algorithms.  

 Online motor fault diagnosis using deep learning methods should be performed to 

detect the fault as early as possible and avoid the harm to the motor.  

 The diagnosis of power quality problems, which are related to motor power 

supply, may be incorporated in the system.  

 Based on this research, a real-time system can be developed in which the IM data 

can be captured and entered into an intelligent system at the same time. The 

intelligent system would process the condition of the IM and issue the suitable 

command accordingly. 
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1.    INTRODUCTION 

The electric motor is an electromechanical device that converts electrical energy into 

mechanical energy. As a very important part of modern industry, Induction Motors 

play an important role in important applications such as pump systems, fans, lifting 

systems, electric vehicles, crushers, cement plants, and many other industrial 

segments. An asynchronous motor, which is actually an AC motor in which the 

current required to generate torque, is induced by electromagnetic induction of the 

magnetic field of the stator winding [1]. Therefore, induction machines generally do 

not require external mechanical switching, individual excitation, or even self-

excitation for part of the energy transferred from the stator to the rotor. The rotors of 

numerous electrical components in operating induction machines are highly prone to 

system failure [2].  

With a squirrel cage rotor [3], its bars can be damaged by mechanical stresses on the 

machine. Meanwhile, the bearings in the IM can be affected by extreme wear and 

fragmentation caused by improper lubrication, unbalanced load on the motor, 

misalignment of the bearing components with the rotor, etc. Traditionally, most 

manufacturers and users trust it in a very traditional way approaches to IM protection 

such as overcurrent or overvoltage estimation to ensure reliable system operation. Fast 

and immensely complex IM applications in modern industrial applications are 

alarming for optimized system monitoring and monitoring for induction machines [3]. 

Even the reduction of the man-machine interface requires requirements for on-line 

detection, with which motor faults can be diagnosed effectively without danger or 

process interruptions. The IMs low cost and miniaturized size, low maintenance cost 

robustness and flexible operation with minimal power supply make this system highly 

efficient and useful in modern industrial process. Detecting faults in the IM in 

advance and diagnosing them optimally makes it easier for industry to work with the 

least unexpected industrial shutdown or maintenance mechanism [4]. This minimizes 

lost production, financial waste, and even prohibits catastrophic penalties. Condition 

monitoring and fault diagnosis mechanisms are necessary to formulate a well-defined 

and qualified map between the motor signals and the IM fault condition indications 

[4].  

Various failure detection methods have been developed and effectively applied to 

detect machine failures at different stages using various machine variables such as 
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current, voltage, speed, efficiency, temperature, and vibration [5]. Therefore, for 

economic and safety reasons, it is important to control the behavior of motors of 

different sizes. As an approach to condition monitoring, a very effective scheme can 

be offered that can provide the warning device at an early stage and efficiently predict 

the possibility of errors at an early stage of operation [6]. The monitoring system 

retrieves the details of the machines in use as raw data or raw details. By 

implementing advanced and highly efficient signal processing approaches, 

communicating diagnostic information to operators becomes very easy and 

straightforward, even well before the catastrophic machine failure. The challenging 

problem with this approach is that this mechanism requires continuous surveillance 

with human presence. Automation in the diagnostic process could include the logical 

progression of condition monitoring methods. To automate the diagnostic process, a 

series of soft computational diagnostic techniques using fuzzy logic [7, 8], NN [9] and 

machine learning algorithm [10] have recently been implemented. 

In view of the need for a robust and highly efficient system for the detection of faults 

in IM, the approaches based on the Fourier transform and the wavelet transform can 

play a decisive role. The precision and spontaneous diagnostic potential of these 

signal processing approaches make them robust and efficient candidates for use in 

most induction machine fault detection applications [11]. The work presented 

considers the Discrete Wavelet Transform (DWT) technique with machine learning 

algorithms to achieve the objective of detection of errors in IM. 

A number of approaches and systems are there for monitoring the IM functions for 

ensuring the higher consistency. Few leading approaches are as follows [12, 13]: 

1. EMF monitoring systems, 

2. Systems based on temperature estimation, 

3. Monitoring approach based on radio frequency emissions analysis, 

4. Approaches based on the estimation of noise and vibration in IM, 

5. Approaches considering the speed and torque of rotor, 

Despite these approaches and tools mentioned above, there are a number of 

companies that suffer from unexpected system failures that ultimately result in lower 

productivity in the industry. Various issues such as the environment, features, and 
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system facilities can cause the system to fail in their combined form. Therefore, any 

type of optimization and improvement of the system could be of great interest to 

everyone. 

2.   BACKGROUND 

Extensive research has been conducted over the past 20 years to develop new 

diagnostic and Fault Detection techniques for IM. The review also covers a wide 

range of literature in the field  including machine  modeling, conditioning monitoring, 

machine health assessment, types of faults in IM and FD techniques. In addition to the 

methods mentioned above, this literature survey also takes into account the most 

important developments in this area in recent years. This overview covers techniques 

related to model-based fault detection techniques, techniques based on signal 

processing, and techniques based on soft computing. 

2.1  Model Based Techniques  

In the recent past numerous researches have been conducted and numerous Fault 

Detection (FD) techniques like Finite Element Method (FEM), and others have been 

employed by the researchers for fault diagnosis. The major developments in these 

fields are covered in the review, from early research to the most recent. 

Nandi et al. [14] has a broad distribution of the major electrical machines faults: 

• Abnormal connection of the stator winding, 

• Broken rotor bars or cracked end rings, 

• Static and/or dynamic air-gap eccentricities, 

• Bent shaft, 

• Shorted rotor field winding, 

• Bearing and gearbox failures. 

These faults produce one or more of the following symptoms [14]: 

• Unbalanced voltages and line currents, 

• Increased torque pulsation, 

• Decreased average torque, 

• Increased losses and reduction in efficiency, 
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Transient analysis of an IM using FEA with predicted transient powers when starting 

the motor without load [15], when operating the motor with asymmetric stator 

excitation and during the turn-by-turn fault state, the geometric dimensions of the IM 

are modeled in the area of the finite elements. Diagnosis and characterization of the 

influence of broken rotor bars  and connectors in squirrel cage motors using the state 

space sampling method for finite elements in connection with the temporal resolution 

method, diagnostic effects and characterization of elongation of broken bars and 

connectors [16]. The models are used to calculate/predict the characteristic frequency 

components that characterize bus bar and connector breakage. The behavior of 

electromagnetic properties is also analyzed using the FEM analysis for the occurrence 

of bus failure [17]. In other research work, flux density and mechanical stress were 

used to capture motor shaft failure in the mainline fed FEM model [18]. 

Most of the FD techniques available in the literature are based on the analytical 

model, which includes various assumptions for current spectrum analysis that does 

not take into account saturation, non-linear core materials and  natural effects etc. To 

address this problem, the Equivalent Magnetic Circuit (EMC) model [19] was used to 

take into account the effects of magnetic saturation, the non-linear behavior of the 

material and the real representation of the air distribution in the stator and grooves 

rotor. Online diagnosis of squirrel cage motor failures using FEM suggests an 

approach based on the signature of global and external variables that is used to solve 

problems related to broken rotor bar and terminal ring [20]. This enables finer 

analysis using finite element-based implementation, higher precision, and an easier 

form of recognition. The use of finite element techniques to improve early fault 

detection techniques in three-phase IM describes how commercial finite element 

packages can be used to simulate rotor failures and thus improve the capacity of 

practical condition monitoring systems [21]. Accurate models of machines under 

failure conditions are developed using finite element packages with fixed mesh and 

timing. In Martin et al. [22], the influence of non-consecutive line breaks in MCSA to 

diagnose rotor faults in IM provides modeling to investigate the influence of the 

number and position of faulty bars on the diagnostic method of traditional MCSA. 

The analysis is based on the fault current and space vector theory, which provides a 

physical interpretation of the appearance of the left sideband component at a fraction 

of two extremes. In other studies, the static two-dimensional analysis of the fault and 

the results of the stator windings was compared with a healthy motor [23]. 
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Vaseghi et al. [24] proposed IM model with stator winding fault and the model is 

validated using time steps FEA. The designed model is used to analyze the behavior 

of the machine under fault conditions. An IM analysis using time-step techniques 

shows that the equivalent circuit approach generally provides reasonable predictions 

about torque and current, but not information about flux distribution. This deficiency 

is remedied by a numerical approach using a nonlinear, time-shifted 2D finite element 

method to drive a constant voltage source [25]. Comparison of no-load stator current 

and other load conditions shows good agreement with test values at a large IM. 

Ebadi et al. [26] introduced the FEM, a numerical method to solve a differential or 

integral equation. This is true for a number of physical problems where the relevant 

differential equations exist. The FEM consists of a continuous function in parts for the 

solution, so that the fault  in the solution is reduced. Ali Ebadi describes the 

performance evaluation of the three phase squirrel cage induction machine according 

to FEM. 

Lombard et al. [27] discussed some of the benefits of Finite Numerical Method( 

FEM), widely used for numerically solving differential equations in two or three 

space variables including higher precision, better design and understanding of critical 

design parameters, virtual prototypes, fewer hardware prototypes, a faster and more 

economical design cycle, higher productivity, and more revenue. The basic theory of 

conventional electromagnetic and direct EMF is given by P Lombard et al. In some 

research papers, modeling based on state space equations is used to determine the 

stator current in the IM for FD using the FEA [28]. 

Fireteanu et al. [29] provide detailed information on the effects of SE on IM in a 

series of experiments with different strains and eccentricity levels. While this helps to 

understand the effect of SE, it cannot be used directly to detect eccentricity errors 

because detailed error testing is not possible on an industrial motor. Researchers have 

also tried signature (current and air gap magnetic flux) analysis to identify eccentricity 

failure [30], where the coil sensors are arranged in a different orientation to identify 

faults. The severity of SE in induction machines diagnosed using the magnetic flux 

density of airspace [31]. However, due to the difficulty of obtaining air gap magnetic 

induction, no experimental results were provided to validate the results. The 

document does not even offer a solution to implement it. An analysis based on flow 
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patterns is presented in some studies [32]. Flow pattern analysis is quite simple and 

completely non-invasive. In addition, it is more effective than conventional motor 

current analyzes in identifying the rotor and stator in induction machines. 

Isermann [33] presented model-based consistent progressive fault identification and 

prediction for Multiple Input Multiple Output (MIMO) nonlinear discrete time 

systems. The proposed scheme handles state and output errors considering separate 

time profiles. Occurring or abrupt errors are modeled on the basis of the input and 

output signals of the system. The asymptotic stability of the Failure Detection and 

Prediction (FDP) scheme improves detection and accuracy of time to failure. The 

robustness of the proposed method is demonstrated using a MIMO (fourth order) 

satellite system. 

Arkan et al. [34] presented two orthogonal wave models of a tri-phasic IM. Of these 

two models, the first has asymmetrical windings and the other has inter-turn shorts in 

the stator winding. The motor is modeled using classical two-axis theory and the 

equations are modified to account for faults between the stator windings. A form of 

the system state space is presented for dynamic modeling. The results of the execution 

of the models are compared with the experiment carried out on a special wound motor 

with bushings to shorten a different number of turns. Previous models were used 

successfully to investigate steady-state and transient behavior of IM in short-circuits 

windings. 

Sahraoui et al. [35] have presented an advanced mathematical model for induction 

machines that operates short circuits between the stator windings. The model is based 

on the multiple coupled proximity circuit. Inductances are calculated in a 2D 

extension of the Modified Winding Function (EMWFA) approach, in which spatial 

harmonics across the slots are taken into account in addition to the effects of rotor bar 

preload and increasing linear MMF. The results show that the short circuit between 

the windings causes some spectral components that appear in the spectral line of the 

current. 

Bachir et al. [36] have proposed a new model of squirrel cage motors for stator and 

rotor failure. First, they processed a model that takes into account the effects of faults 

between turns that cause a short circuit in one or more stator phase winding circuits. 
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They then propose a new faulty model dedicated to detecting broken rotor bars. The 

appropriate diagnostic method is proposed based on the estimation of the defective 

model parameters of the stator and rotor.  

2.2   Signal Processing Techniques 

Signal processing techniques have been widely used in recent years to identify various 

instant messaging errors. These techniques successfully detect certain faults  in the IM 

by analyzing the characteristics or specific parameters generated in the data being 

sampled. A new method has been introduced to analyze the signature of inductive 

motors, namely the real-time performance [37]. In this document, real-time energy is 

used instead of stator current to analyze the motor signature and identify mechanical 

defects in the drive system. The information carried by energy in real time is the 

product of voltage and current which is greater than the currently deductible capacity. 

In the current fixed power spectrum, the highest value is -52 dB, and in the current 

power spectrum the highest value is -47 dB.  From the above, it can be seen that the 

real-time power is 5 dB greater than the power of the decentralized spectral 

component. A wavelet package has been proposed to extract useful information from 

IM vibration signals [38]. Although the measured vibration signals contain a transient 

part, the Fourier Transform cannot provide enough information to detect some 

machine faults. The results of using the wavelet packet are used by the statistical 

feature selection criteria to discard feature components that contain less 

discriminatory information. The extracted vector with reduced dimensional properties 

is used as input to the NN classifier. The results show an improvement in the ability to 

generalize the NN and a significant reduction in training time. The current approach is 

used to analyze signatures to detect instant messaging errors. This approach uses a 

power signature to determine that the author has detected many errors, such as 

breaking rotor bars in the IM squirrel and detecting short revolutions in an industrial 

motor. In this article, the author has created four case studies that identify various 

faults in the induction machine. Based on the results, the author made it clear that 

kinetic current analysis is a powerful technique for monitoring the status of triphasic 

IMs [39]. 

Kim et al. [40] has developed a fault diagnosis system without speed sensor for 

asynchronous motors. In this document, the proposed system is used to detect 
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electrical elements (short circuit in the stator winding) and mechanical elements 

(broken rotor bars, eccentric air gap, bearings). Here, they used a combination of 

repetitive NNs and signal processing algorithms, such as wave-based and Fourier-

based techniques, to detect faults in IMs. The voltage and  currents from the terminals 

of motors were used as inputs to the diagnostic system. Fourier-based signal 

processing technology is applicable when the device is in a stable state, and wave-

based signal processing technology is applicable when the device is in transition 

mode. 

Douglas et al. [41] introduced a new algorithm that uses the gradient descent method 

to minimize least squares errors in a series of equations that change with time. The 

algorithm is used for the analysis of the current signature of the transient motor using 

waves. Here, the residual currents are analyzed with wavelets to detect broken rotor 

bars. The advantage of this method is that no parameters such as speed or number of 

rotor bars are required. In this method, a higher order notch filter is used to separate 

the fundamental frequency from the rotor bar frequencies. Once the fundamental 

frequency has been removed, the residual current can be examined using a DWT 

analysis. Therefore, the 8 Daubechies wavelets are used as a function of the mother 

wavelet. It can be seen from the results that the rotating rotor bar can be detected 

using transients measured at maximum current. 

T.Yang et al.[42] proposed feature based  online diagnostic approach for FD  in IM 

using MCSA with advanced signal processing algorithms. The previously planned 

system was ready to diagnose IM with four types of defects such as broken rotor bars 

and also finishing rings, shorting of stator coil windings, bearing cracks and 

eccentricity defects of the air gap. Motor diagnosis with MCSA is dependent on slip. 

If the detected slip shows an error, the machine diagnostic results are incorrect. 

Therefore, to find the correct slip, the best slip hold algorithm estimator supported by 

the theorem estimation method is used. 

A.M. da Silva et al. [43] has presented an IM fault diagnosis method that uses three-

phase stator current envelopes for broken rotor bars  and shorts between the windings 

in the stator windings. The above methods not only identify an IM as healthy or 

faulty, but also identify the severity of the failure by identifying the number of broken 

bars or the number of short turns in the stator windings. The training and test sets are 
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generated from the tri phasic stator current of an IM under both healthy and faulty 

operating conditions using Gaussian Mixture Models (GMM) of reconstructed phase 

space transformations. The author has claimed that the proposed method can be a 

powerful troubleshooting tool for induction machines due to its higher precision. 

M. Riera Guasp [44] proposed a technique based on the transformation of discrete 

wavelets for the detection of asymmetries in the rotor of an IM using the starting 

current and the stop-stop current, as well as the mixed eccentricities using the starting 

current. The author used Daubechies-44 as stem waves for the DWT analysis. To 

avoid an overlap between two neighboring frequency bands, a higher order mother 

wavelet was used. The author also found the parameters to quantify the severity of the 

failure in the case of starter rotor asymmetry and clogged rotor asymmetry. 

2.3   Soft Computing Techniques 

Various applications of using soft computing techniques in motor fault detection and 

diagnosis  have been published across the different verticals of the industry journals. 

In most applications, the stator current is used with one of the soft computing 

classification algorithms to obtain FD accuracy. The Park vector patterns are based on 

the detection of different types of supply failures, such as voltage imbalance and 

single-phase adjustment [45]. Furthermore, a NN based back propagation algorithm is 

used to obtain the state of the machine by testing the shape of the vector patterns of 

the park. Two NN-based approaches were used, classical and decentralized. The 

generality of the proposed methodology has been experimentally tested and the 

authors state that the results provide a satisfactory level of precision. Applications of 

artificial intelligence in machine monitoring and fault diagnosis are examined in detail 

[46]. The expert system was used as a tool for the diagnosis of failures and the 

validity of the use of NN together with the fuzzy logic for the identification of failures 

and the evaluation of their severity. 

Other research introduced a comprehensive adaptive neuro-fuzzy inference system to 

identify stator shorts in brushless DC motors, with fault diagnosis performed by two 

independent ANPHYSES. The first is used to find out the shorted turns and the 

second is used to identify the faulty phase [47]. The inputs to the first Adaptive Fuzzy 

Neural Inference System (ANFIS) are the diagnostic indices for determining the 

number of turns shorted, while the output was set to zero during normal operation and 
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integers under fault conditions. The input to the second ANFIS were the identification 

indices of three phases and its output was an integer indicating the defective phase. In 

some applications, a generic approach based on a neuro-fuzzy model is based on the 

detection of flaws in the breaking bar of the rotor in an IM [48]. The data to train the 

neuro-fuzzy system to model the generic static torque-speed relationship of the IM 

class used in the practical evaluation of the fault detector. A modeling error was found 

when comparing the output speed of the neuro-fuzzy model and the speed obtained 

from the experimental torque-speed equation. This approach overcomes the practical 

limitations of model-based strategies by reducing the amount of experimental data 

required to design the flaw detector. This method can also identify the absence / 

presence of cracked rotor bars under various load conditions. 

Ballal et al. [49] proposes ANFIS to detect bearing and insulation wear defects in IM. 

Here, the authors have given ANFIS five contributions which are as motor input 

current, speed, winding temperature, bearing temperature, and noise generation. 

Fuzzy neural architecture takes into account both Artificial Neural Network (ANN) 

and fuzzy logic technology. Authors have used a multilayer feed forward network as 

fuzzy rules of the ANN type and fuzzy inference systems. 

Rodríguez and Antero Arkkio [50] used a method to detect faults in the stator winding 

in IM. In this work, the tri phasic mean square values of the stator and the variance 

were used as input for the fuzzy logic system. The input data is generated by FEM 

analysis with the engine running under various load conditions. The fuzzy logic 

method was able to record the state of the motor with and without noise with high 

precision. The disadvantage of the method is that a current imbalance generated by 

the power supply can be identified as a motor fault condition. 

R.H. Abiyev and O. Kaynak [51] integrated both fuzzy logic systems with NN 

wavelet for the identification and control of an insecure system. In this article, they 

used the decent gradient algorithm for parameter settings. Two implementation 

examples were presented to identify and monitor performance. It was shown that 

diffuse wave NNs can converge faster and are more adaptable to new data. 

Bouzid et. al [52] proposed NN approach for the automatic detection and localization 

of a short circuit fault between the windings in the stator of an IM. In this, they used a 

feed-forward multilayer NN perceptron that is trained by the back propagation 
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technique. The phase shift between the phase voltage and the line current of an IM is 

used as an input to the NN. The desired output is set to one or zero. If a short is 

detected and it is in one of the three phases, the corresponding output NN is set to one 

otherwise it is zero. 

J. Kurek and S. Osowski [53] presented an automated computerized system for 

diagnosing the rotor bars of the induction electric motor using the SVM. Two 

diagnostic system solutions have been developed. The first, called error detection, 

only detects when an error occurs. The second complex diagnosis can determine 

which bars have been damaged. The main problem is related to the generation and 

selection of diagnostic characteristics from which the condition of the rotor bars is 

detected. 

Feng Jia et al. [54] aims to process massive error data immediately and automatically 

provide accurate diagnostic results. Numerous studies have been carried out on the 

intelligent diagnosis of failures in rotating machinery. Commonly used among these 

studies are ANN -based methods that use signal processing techniques to extract 

features and then input the features into ANN to classify faults. 

Zhang W et al. [55] proposed a novel method called deep convolutional neural 

networks with broad first-layer nuclei. The proposed method uses raw vibration 

signals as input (data expansion is used to generate more inputs) and uses the wide 

cores in the first convolution layer to extract characteristics and suppress high 

frequency noise. 

X Yang et al. [56] proposed an effective and practical fault diagnosis algorithm for 

induction machines, which is based on adaptive weighted votes from various RF 

classifiers. First, the vibration signals and the stator current signals are obtained and 

analyzed. The energy characteristics at various characteristic frequencies related to 

motor failures of each type of signal are extracted and used as input to the appropriate 

RF classifier. Cluster analysis is then applied to the test and training samples to 

determine the weight of each classifier to make decisions about the diagnostic result. 

T. dos Santos et al. [57] proposed an approach to detect short circuit faults in the 

stator winding in SCIM based on RF. This is accomplished by evaluating the 
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imbalance in the current and voltage waveforms, as well as in the park‟s vector for 

both current and voltage. 

Aydin et al. [58] introduced the new feature vector based on park's vector approach. 

The phase space of this feature vector is constructed using nonlinear time series 

analysis. Faulty short circuit faults in the rotor rod and stator are rated with SVM in 

the combined phase space. The experimental data come from a three-phase IM. One, 

two and three broken rotor bars faults and a 10% short circuit of stator faults are 

successfully detected. The MCSA technique is based on the analysis of stator current 

under healthy and faulty conditions. This technique suggested diagnosing stator-to-

turn failure in IM using wavelet transform and SVM as tools [59]. The fault diagnosis 

system using SVM-based classification techniques was developed for the diagnosis of 

rotor failures of cage induction machines. Subsequently, a classifier based on SVM 

for various classes will be developed and applied in order to distinguish health status 

from various rotor failure states [60].    

Research based on deep learning is carried out to diagnose and classify the different 

types of faults in induction machines. For sensitive identification of faults between 

shifts in IM using deep learning-based methods, the model is trained and tested early 

on an induction machine to mainly detect short circuit faults between the windings. In 

the proposed work, models of Convolutional Neural Networks (CNN),  recurrent 

NNs. Long-term Short-term Memory (LSTM), included for Fault Detection. 

Furthermore, the results show that CNN is superior to LSTM in accuracy, which 

provides good classification performance for FD in the early stages of fault 

development [61]. 

E. Pandarakone et al. [62] took into account the practical occurrence of faults and 

introduced the scratch on the outer race of the bearing. An online bearing diagnostic 

method is proposed using a deep learning based approach. The CNN architecture is 

originally used for fault characterization. In particular, a FFT analysis is performed 

using the stator load current, followed by the extraction of characteristics of selected 

frequency components that are used to train the CNN algorithm. 

Heydarzadeh et al. [63] in, deep NNs are employed to diagnose five classes of 

transmission faults that apply to three common supervisory signals, i.e vibration, 
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acoustics, and torque. DWT is used to provide the initial functions as inputs to the 

network. To validate the proposed method, a test bench built  based on a 250W three-

phase SCIM shaft which is connected to a single-stage helical gear drive. 

John Grezman et al. [64] in, the authors examine the performance of a CNN that is 

trained using images of time-frequency spectra of vibration signals measured in an 

IM. The results show that the patterns learned by the CNNs in the time-frequency 

spectrum images are intuitive and consistent with respect to network retraining.  

Mohammad Zawad Ali et al. [65], in this research work, stator currents and vibration 

signals from motors are selected to develop fault  detection methods. Additionally, 

two signal processing techniques (Matching Pursue and DWT) are selected for feature 

extraction. Three classification algorithms, SVM, KNN, and Ensemble, with 17 

different classifiers offered in the MATLAB toolbox, are used in the modeling to 

evaluate the performance and suitability of different classifiers for diagnosis of 

failures. 

Tarannum Khan et al [66] in, author suggested Motor Current Signature Analysis 

(MCSA) using deep learning based one dimensional Convolutional Neural 

Network(1D-CNN) model and Long Short Term Model (LSTM). The results using 

these two methods have been compared, and this initial investigation shows that CNN 

is found to be more suitable than LSTM, for incipient fault diagnosis. 

Lots of quality research on fault diagnosis of induction machine and algorithm based 

detection have been examined. To detect and classify various machine learning based 

model, fuzzy based model have been implemented and posted commendable results. 

The literature survey indicates that the individual faults have been the main focused 

area and combined fault analysis is still an unexplored area. Furthermore, the time 

varying load operating conditions of IMs are not much researched. Need of 

considering combination of faults which could be hazardous for the motor is at most. 

3.   RESEARCH GAPS 

Previous research has addressed several aspects related to Fault Detection techniques 

used for fault diagnosis of Induction Motor like the model based techniques, signal 

processing techniques and soft computing techniques. 
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However, majority of the research work which provides outstanding results mainly 

suggested Motor Current Signature Analysis(MCSA) with stator current as single 

signature analysis with signal processing techniques  like  FFT, STFT, Gabor and 

Hilbert transform etc. to detect presence of fault. But, each technique has some 

advantages and disadvantages like in case of FFT  it has been observed that it cannot 

diagnose  fault  in  non-loading condition unlike DWT. However, by changing the 

wavelet transform only a limited amount of work has been done get out.  

In addition, model based approaches have their own limitation of characterization of 

the faults, these methods detect the severe faults and neglect the early stage failure or 

the faults with diminished magnitude. Previous research suggested primarily fuzzy 

logic , expert system and ANN soft computing associated with single stator current 

used for feature extraction. But, rigorous mathematical calculations are done in  fuzzy 

system  for fault diagnosis and further,  both expert and fuzzy systems have lack of 

self  learning.  

Furthermore, the previous research works mainly focus on identification of  different 

types of faults in IM and various methods used to detect these faults using various 

condition monitoring techniques  but the use of advance machine learning techniques 

in this field still a thrust area now a days. Moreover, earlier research has emphasized 

largely on fault diagnosis of machine using single stator current signature analysis 

under full load conditions.  

But, the use of multiple signature analysis with signal processing techniques in order 

to carry out fault detection is still a challenging task.Very little research has been 

carried out on diagnosis and detection of combined faults   and fault detection based 

on time varying load conditions. Few researchers have used machine learning and 

deep learning methods for health monitoring of IM.  

However, due to the complexity and importance of the systems, there is a need to 

further improve existing Fault Detection techniques. A major key to the success in FD 

is the ability to use appropriate technology to effectively fuse the relevant information 

to provide accurate and reliable results. The advancement  in technology will provide 

opportunities for improving existing FD schemes. 

The advance algorithms with feature extraction technique DWT, considering both 

vibration and stator current signals have not yet been used in this domain of fault 
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diagnosis and detection. The individual faults have been the main focused area and 

combined fault analysis is still an unexplored area. 

Considering the above facts, this present research work includes behavior analysis of 

motor under healthy and faulty conditions for both individual fault as well as 

combined faults  under  different constant and time varying loading conditions in 

order to validate designed model of IM  for carrying out further research work. 

The proposed research  used  hybrid approach of advance machine learning and deep 

learning algorithms with feature extraction technique applied on both vibration and 

stator current signals  in order to get enhanced accuracy under constant and time 

varying loading conditions for fault detection of single and combined faults . This 

approach can identify and aggregate the pertinent   information for accurate and 

authentic motor fault detection and further confirms its effectiveness of fault 

diagnosis under both constant and time varying loading conditions. 

4.    MOTIVATION 

Induction Motor maintenance is one of the severe problem encounters by various 

utilities and industries. A number of researches have been done for the issues of 

automatic and on-line detection of faults in IM. Few of the main research work and 

recommendations were like, Electric Power Research Institute motor literature of 

reliability as per the reference [67], states that stator faults are liable for 36% of the 

IM failures. According to Neale [68], the installation and purchasing cost of the 

equipment‟s usually cost less than half of the total expenditure over the life of the 

machine for maintenance. According to Wowk [69], maintenance expenditure 

typically presents 15% to 40% of the total cost and it can be up to 80% of the total 

cost. 

The motivation behind this work is to find a methodology which effectively detects 

faults in induction machine under different constant and time varying loading 

conditions at an early stage in order to avoid its catastrophic failure which may further 

lead to system failure. In addition to this, research work involves the stator current 

with vibration signals for feature selection and proposed framework of novel 

architecture of DBNN for effective detection of faults under time varying load.  

Deep learning techniques are foremost algorithms of artificial intelligence domain. 

Since after the introduction of deep learning algorithms it over shadows the other 

machine learning algorithms and are being extensively used in various applications 
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due to its higher accuracy and adaptability to handle data. The ability of the deep 

neural network‟s techniques to perform complex correlation among speech signal 

features, which enhances its performance over traditional approaches. 

The deep learning method is the advanced version of the Neural Networks (NNs) 

which falls under machine learning category and machine learning methods SVM and 

RF are applied for the comparative analysis of new age deep learning classifier with 

conventional SVM and RF classifier. 

Investigations related to different types of faults like broken rotor bars, stator and 

eccentric faults in induction machines and various methods to detect these faults are 

discussed elaborately in the research work. 

In this research work, the ANSYS RMxprt & Maxwell 2D and MATLAB software 

tools were examined using numerous machine learning techniques to diagnose faults 

in SCIM and identify rotor, stator, eccentric, and combined faults under constant and 

time-varying load conditions.  

After analyzing faults in all conditions, it was concluded that wavelet transformation 

with machine learning in conjunction with deep learning techniques is very effective 

in diagnosing various fault related problems. Implementing deep learning methods 

with DWT can be an important step in optimizing overall system performance. 

The idea is to develop a framework to detect and diagnose faults in IM at an early 

stage. Using deep learning with signal processing technique such as DWT technique 

can improve the performance of the framework as in Dis short time wavelets allow 

information to be extracted from high frequency components, which can also 

diagnose the severity of the fault and its type.  

5.    RESEARCH OBJECTIVES 

The objective of this research work is to develop health monitoring system that can 

detect and diagnose common faults which are generally occurred in three-phase 

Squirrel Cage Induction Motor. The main aim is to investigate the use of machine 

learning and deep learning techniques in the area of motor health monitoring. Since 

this is an electromechanical system application, the author's objective is to develop a 

health monitoring system that can detect, classify and diagnose common failures that 
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commonly occur in electrical and mechanical parts of three-phase asynchronous 

motors. To achieve this objective, the following objectives were established: 

• To design and develop the Induction Motor implementation model for behavioral 

analysis of motor. 

• To investigate the motor under various faults like broken rotor bar faults and 

stator faults under different loading conditions. 

• Investigation of eccentricity faults in Induction Motors. Sometimes multiple 

faults may occur simultaneously in IM during working condition. Less research 

work has been done on investigation of multiple or combined faults. The new 

concept of combined fault is introduced and examined under load conditions. 

• The implemented model put under varied load conditions and faults conditions to 

apply machine learning techniques like Deep Belief Neural Network (DBNN), 

Support Vector Machine (SVM) and Random Forest (RF) to detect and classify 

the motor faults under different faulty conditions. 

• Investigations carried out on effectiveness of proposed fault detection method in 

research work for detecting how the presence of multiple faults as well as 

common faults, such as rotor bar fault, stator winding fault, air gap eccentricity 

and their combinations affects performance of IM under different constant and 

time varying load conditions. 

6.    RESEARCH METHODOLOGY 

The strategy adapted to carryout research work has been depicted in the Figure 1.1. 

 

Figure 1.1: Research plan 
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Further, the following steps provide a brief overview about the work: 

● The previous research works mainly focus on identification of  different types of 

faults in IM and various methods used to detect these faults but the use of 

advance machine learning techniques in this field still a thrust area now a days.  

In general, broken rotor bars, stator, eccentric and combined faults are discussed 

elaborately in the research work. Need for monitoring dynamic behavior of the 

induction machines and combination of the consideration were the two general 

outcomes of the literature review. In this research work, first the ANSYS RMxprt 

and Maxwell 2D software tools are used to design the induction machine. The IM 

healthy characteristics are obtained using the designed model. Parameters like 

torque, current, and power are analyzed at constant loading condition. 

Furthermore, various faulty conditions are generated in ANSYS RMxprt 

designed model and the characteristics of the motor are noted under each fault. 

The faults considered are rotor broken faults, stator faults, and eccentric faults. 

● Analyzed performance characteristics results of healthy and faulty IMs are 

compared for fault identification under constant loading condition. The 

MATLAB SCIM model is designed to obtain the health motor performance 

parameters like torque, speed, stator current and rotor current under time varying 

load and different constant loading conditions like 100% loading, 50% loading,  

25% loading and no loading. Obtained performance characteristics of SCIM 

healthy and faulty models of rotor bar fault, stator winding fault, eccentric fault 

and combined faults are compared for fault identification under time varying and 

different constant loading conditions for further effective fault detection using 

machine learning methods. Motor vibration and stator current distortion is taken 

into consideration to detect and diagnose the faulty condition in SCIM. Motor 

performance degrades as the level of fault increases. So, the DWT is used to 

extract features of the motor stator current under various faulty conditions like 

broken rotor bar fault, stator fault, eccentric fault and combination of faults 

(rotor-stator, stator –eccentric & rotor eccentric). 

● To detect and diagnose the type of fault, machine learning algorithms Support 

Vector Machine and Random Forest are applied on features extracted from 

analyzed behavior of IM under healthy and faulty conditions for all constant and 
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time varying loading conditions. The accuracies achieved are 96.5% and 97.5% 

from RF and SVM respectively. The deep learning methods are advanced version 

of NNs which fall under the machine learning category. These methods are used 

for effective detection and classification of faults with its type and severity. To 

enhance the accuracy of detection of fault and its specific type on the results, 

deep learning techniques are explored. Proposed framework of  Deep Belief 

Neural Network (DBNN)  is applied on the extracted features which are based on 

stator current and vibration of IM. Finally, FD with 99.83% accuracy is achieved 

from DBNN. The results obtained are compared with other research work for 

validation. 

7.   THESIS ORGANIZATION  

This thesis includes six chapters and these chapters are summarized as: 

CHAPTER  1: INTRODUCTION 

This chapter is all about the importance of motors in industry and introduction of 

motor faults diagnosis methods which can detect the type of faults in motor. This 

chapter also includes background of a research work which signifies the foundation of 

research optimization. Numerous reviews have been presented based on systems 

proposed with Fault detection methods or techniques  like  model based methods,  

MCSA with associated signal processing techniques and soft computing based 

approaches, which performed well in a certain way, but could not get the optimum 

solution for fault detection and diagnosis optimization. Therefore, research gaps are 

also mentioned in order to find out the best optimum solution for fault detection with 

high accuracy.  Further, the motivation of the thesis, the research objectives and 

research methodology are presented in this chapter. 

CHAPTER  2: MODELING AND PERFORMANCE  OF SQUIRREL CAGE 

INDUCTION MOTOR UNDER HEALTHY CONDITION                                      

This chapter presents the mathematical modeling of Induction Motor (squirrel cage). 

The ANSYS RMxprt and Maxwell 2D software tools are used to design the induction 
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machine and furthermore, MATLAB software is used to apply model the 

mathematical equation of IM and implementation model is designed. Both the 

software‟s virtualizes the induction machine for carrying out the further research.  

Implemented models are operated under healthy operating condition and  performance 

of motor is analyzed in terms of voltage, speed, current and torque. The designed 

model is subjected to various constant and time varying loading conditions.  

CHAPTER  3: FAULT TYPES AND DIAGNOSIS & CLASSIFICATION 

TECHNIQUES 

In this chapter, various faults are discussed in detail which may occur during the 

operating condition of motors and can cause catastrophic failure of motors if not 

detected and classified at an early stage. The utilization of classification techniques 

like SVM and RF in fault detection and classification in motors are discussed. All 

machine learning algorithms applied to detect the different type of faults generated in 

the SCIM. Deep learning method like DBNN has performed well as compared to the 

other machine learning techniques. 

CHAPTER  4: BEHAVIORAL ANALYSIS OF INDUCTION MOTOR UNDER 

DIFFERENT  FAULTS 

This chapter includes the results obtained from the behavioral analysis of induction 

machine under different faults  such as broken rotor bar faults, stator winding faults, 

eccentric fault and combined faults  like eccentric with stator fault, rotor with stator 

fault and eccentric with rotor fault. ANSYS RMxprt and Maxwell 2D designed model 

with different faults discussed and executed. MATLAB model is operated under 

different faulty conditions and its characteristics performance are analyzed and 

evaluated under various constant and time varying loading conditions. Loading 

conditions considered are no load, 25% load, 50% load and 100% load. In order to 

diagnose the effects of number of broken rotor bars, power spectrum is also obtained 

for different conditions.  Comparison of healthy and faulty conditions is done on the 

basis of IM parameters current, voltage, speed and torque. It is noted that the motor 

speed, current and torque distortions increases on account of faults and under heavy 

loading conditions. Furthermore, the variation of stator current is utilized as features 

in the Fault Detection and classification. 
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CHAPTER 5: MACHINE LEARNING ALGORITHM BASED FAULT 

                        DIGNOSIS EXPERIMENTATION 

This chapter proposes the fault diagnosis of induction machine using Support Vector 

Machine (SVM), Deep Belief Neural Network (DBNN) and Random Forest (RF) 

using DWT features of the stator current and vibration signals. The feature extraction 

process using stator current is described. The dataset prepared of current signature of 

all the types of faults like rotor faults, stator faults, eccentric faults and combined 

faults under different constant (100%, 50%, 25% and no load) and time varying 

loading conditions. The machine learning algorithms are applied on the dataset 

dividing the complete dataset into training and testing dataset. The total dataset 

generated is 4000 samples in which 1000 are of healthy operating condition, 500 is of 

rotor bar faulty condition, 500 samples stator faults, 500 eccentric faults, 500 rotor-

stator combined faults, 500 rotor-eccentric combined faults, 500 stator-eccentric 

combined faults and then the whole dataset is divided into 70% training and 30% 

testing. On the training and testing dataset the classification approaches DBNN, SVM 

and RF are applied to get the effectiveness of each algorithm on detection and 

classification of faults in IM. The comparison is done on the basis of accuracy of fault 

type detection and time taken in detecting the fault.  

CHAPTER  6: CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK  

This chapter covers the benefits that can be derived from the research work 

undertaken and also concludes the various results obtained during different faults 

generation and fault diagnosis of induction machine under different constant loads 

and time varying loading condition. The chapter includes benefactions of the present 

work in the field of Fault Detection and diagnosis in Induction Motor by applying 

advanced algorithms of machine learning and deep learning and addresses the future 

scope to continue with this line of research and development in the field of fault 

detection and classification of induction machine. 

8.   OUTCOMES OF THE RESEARCH WORK 

The present research work contributes to the field of fault detection and diagnosis in 

Induction Motor by applying advanced algorithms of machine learning and deep 
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learning. The IMs are the backbone of industrial processes such as power, automotive, 

machine tools plant processes. Due to the increased use of IM, the need for fault 

detection and classification has increased significantly. Therefore, the classification of 

faults of induction motors such as rotor faults, stator faults, eccentric faults, and 

various combined faults (rotor-stator, stator-eccentric, and rotor-eccentric) are the 

focus of this research. 

The vital prominence of this research work based on methods which effectively 

detects faults in IM under different constant and time varying loading conditions prior 

to the system failure. The fault generation and the motor behavior at different range of 

load condition is executed using Maxwell 2D with FEM technique. MATLAB 

software is used to apply model the mathematical equation of IM and implementation 

model is designed. Both the software‟s virtualizes the induction machine for carrying 

out the further research. The designed model is subjected to various constant and time 

varying loading conditions. Machine learning and deep learning algorithms with 

DWT are applied on MATLAB model to detect and classify the faults. The results  of 

the research work are summarized as follows:  

 Literature survey in the field of IM fault diagnosis techniques have been 

performed which is further categorize in three sections model based methods, 

signal processing based methods and soft computing algorithm based 

techniques.  

 Healthy SCIM characteristics have been experimentally obtained with the help 

of ANSYS RMxprt tool and MATLAB software. 

 Broken rotor bar faults generation and detection have been successfully 

performed:  

 Broken rotor bar faults are generated using FEM analysis in ANSYS 

RMxprt and Maxwell 2D. The vibration in stator, current and speed have 

been observed by experimenting motor at one, two and three broken rotor   

bars and it‟s been analysed that the vibration tends to increase and 

distortion magnitude increases as broken rotor bar faults. 

 The effects of rotor faults have been observed in comparison to healthy 

motor behaviour under constant loading condition. 
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 MATLAB implemented SCIM model has proficiently generated the 

broken rotor bar faults and motor parameters are obtained. 

 The experimentations of effects of constant loads variation (100%, 50%, 

25% and no load) on broken bar faulty motor in comparison to healthy 

motors for fault diagnosis have been successfully presented. Power 

spectrum of generated faulty conditions has been investigated which 

concludes the behaviour of motor. 

 The effect of time varying loading condition during runtime has been 

executed conclusively, stating the robustness of the implemented SCIM 

model.  

 The characteristics obtained from different constant loading condition 

were further used for feature extraction for automatic detection and 

classification of broken rotor bars.  

 Stator open and short circuit winding faults detection and classification 

experimentation was performed: 

 Open winding faults have been effectively generated in RMxprt model 

and its characteristics were obtained using FEM analysis using Maxwell 

2D. 

 The experimentation on short circuit stator winding fault has been 

performed using MATLAB implemented model. The effects of different 

constant load (100%, 50%, 25% and no load) on faulty SCIM motor have 

been successfully analysed and compared with healthy motor.  

 Time varying loading condition experiment has been performed on short 

circuited stator winding faulty motor and its effect has been observed.  

 Obtained characteristics at the time of stator faulty condition have been 

further utilised to extract features for classification of fault types.  

 Designed SCIM has been analysed on the presence of eccentric faulty 

condition both dynamic and static: 
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 Static and dynamic faults have been successfully generated using Rmxprt 

designed model and its characteristics behaviour has been observed at 

constant load condition using Maxwell 2D and also compare with healthy 

one. Static eccentric fault has been successfully implemented using 

MATLAB software and its effect under different loading conditions 

(100%, 50%, 25% and no load) have been presented in this research work. 

The faulty motor has been positioned under time varying loading 

condition and the stability performance analysis has been successfully 

performed.    

 Considering the gap in research work where the combined faults based 

research were hard to find, an experimentation on combined faults has been 

efficiently conducted: 

 The distortion of the characteristics of the motor has been analysed on 

various combined faulty conditions (rotor-stator, stator-eccentric and 

rotor-eccentric). 

 The effect of combined faulty conditions on the different (100%, 50%, 

25% and no load) constant loading conditions has been presented 

effectively and the implemented model stability has been observed from 

the characteristics obtained. 

 The experimentation on the effect of time varying loading condition on 

different set of combined faults has been conducted positively and all the 

characteristics have been obtained and presented. 

 The characteristics obtained were further more utilised to obtain features 

for classification process. 

The proposed DBNN model framework has been developed successfully to detect and 

classify the type of fault during the runtime: 

 DWT features have been comprehensively extracted using stator current 

signature at different faulty conditions (rotor, stator, eccentric, and 
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combination of combined faults) under constant and time varying loading 

conditions. 

 Machine learning algorithms SVM and RF have also been used for 

detection and classification of fault along with proposed DBNN 

framework. 

 The results of proposed method has been compared with other machine 

learning algorithm, the proposed method has outperformed the previous 

research work. 

 Combined faults have been detected and classified successfully from the 

proposed DBNN framework. 

9.   CONCLUSION 

From the research work, it is concluded that the motor performance varies 

drastically when put at different constant and time varying loading conditions 

and it adversely affect its wear and tear which makes motor prone to get faulty. 

In order to observe all these effects, in this research work fifty six experiments 

have been conducted using two different machine learning algorithm and one 

deep learning algorithm to detect and classify faults like rotor, stator and 

eccentric and their combinations (rotor-stator, stator-eccentric and eccentric-

rotor) at different constant loading conditions and time varying load. 

The proposed framework detection and classification performance outcomes 

obtained in terms of accuracy on change of constant loading conditions are 

outstanding like the motor at 100% loading condition tends to deteriorate more 

and its effect on its characteristics parameters are higher due to which the 

extracted features of the motor at 100% loading helps classification algorithm to 

detect and classify the type of faults precisely and same for other loading effects 

even at no load where small effect of faults occur. Also fault detection methods 

have shown great performance under severe faulty conditions at combined faulty 

conditions. 

The supervised machine learning algorithms such as SVM and RF have 
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performed well in the field of detection of different type of faults at different 

constant loading conditions and during time varying load in this research work 

but as the deep learning algorithms utilize the supervised and unsupervised 

concepts to attain the maximum accuracy for the classification processes due to 

this reason the DBNN algorithm has achieved higher accuracies  as compared to 

RF and SVM in all different loading conditions for different types of faults in 

IM which is well investigated during the comparative analysis of all above 

methods for fault detection in this work.  

The present research work outperformed the other existing ones which is only 

possible due to robust feature extraction using unsupervised learning of features 

of advance deep learning method to classify the faults more precisely. 
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