
DESIGN OF A STRUCTURE DRIVEN

COOPERATIVE MIGRATING CRAWLER FOR

RETRIEVING QUALITY DATA

 THESIS

Submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSOPHY

to

YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY

by

DEEPIKA

Registration No: YMCAUST/Ph18/2010

Under the Supervision of

Dr. ASHUTOSH DIXIT

ASSOCIATE PROFESSOR

Department of Computer Engineering

Faculty of Engineering & Technology

YMCA University of Science &Technology

Sector-6, Mathura Road, Faridabad, Haryana, INDIA

JUNE, 2017

i

CANDIDATE’S DECLARATION

I hereby declare that this thesis entitled “DESIGN OF A STRUCTURE DRIVEN

COOPERATIVE MIGRATING CRAWLER FOR RETRIEVING QUALITY

DATA” by DEEPIKA, being submitted in fulfillment of the requirements for the

Degree of Doctor of Philosophy in Department of Computer Engineering under Faculty

of Engineering and Technology of YMCA University of Science & Technology,

Faridabad, during the academic year 2016-2017, is a bona fide record of my original

work carried out under the guidance and supervision of Dr. ASHUTOSH DIXIT,

ASSOCIATE PROFESSOR, DEPARTMENT OF COMPUTER ENGINEERING,

YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY, FARIDABAD and has

not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been

submitted for the award of any degree either in this university or in any other university.

 (DEEPIKA)

 Registration No: YMCAUST/Ph18/2010

ii

CERTIFICATE

This is to certify that this thesis entitled “DESIGN OF A STRUCTURE DRIVEN

COOPERATIVE MIGRATING CRAWLER FOR RETRIEVING QUALITY

DATA” by DEEPIKA submitted in fulfillment of the requirements for the award of

Degree of Doctor of Philosophy in Department of Computer Engineering, under Faculty

of Engineering and Technology of YMCA University of Science and Technology,

Faridabad, during the academic year 2016-17, is a bona fide record of work carried out

under my guidance and supervision.

I further declare that to the best of my knowledge, the thesis does not contain any part

of any work which has been submitted for the award of any degree either in this

university or in any other university.

 Dr. ASHUTOSH DIXIT

 Associate Professor

 Department of Computer Engineering

 Faculty of Engineering and Technology

 YMCA University of Science & Technology, Faridabad

Dated:

iii

ACKNOWLEDGEMENT

I express my gratitude to almighty God for giving me strength and courage to complete

this thesis.

I would like to express my sincere and deep gratitude to my Supervisor Dr. Ashutosh

Dixit, Associate Professor, Department of Computer Engineering, YMCA University of

Science & Technology, Faridabad for giving me the opportunity to work in this area. It

would never be possible for me to take this thesis to this level without his innovative

ideas, invaluable guidance, continuous support and encouragement. His knowledge of

different perspectives of research provided me with the opportunity to broaden my

knowledge and to make significant progress.

I gratefully acknowledge my university colleagues for their encouragement, support and

invaluable suggestions in completing this research. I am also thankful to my students

who helped me directly and indirectly in completing my research work.

I would like to express my heartfelt thanks to my husband Rajiv Sindwani for providing

me constant support, encouragement and unconditional love. I also express my sincere

gratitude to my parents, sister, brother, in-laws and other relatives for being a constant

source of motivation. My special thanks to my lovely daughter Enaya for understanding

me and giving me time for doing my research work. I would also like to express my

thanks to my friend Sandhya for being a constant source of motivation.

(Deepika)

iv

ABSTRACT

The large usage of World Wide Web has created challenges for the technology which is

responsible for maintaining it. Search Engines are the means of providing relevant and

useful information from the Web. They are also responsible for providing quality and

accurate information to its end users. Web Crawlers are the main component of the

Search Engines. They play a fundamental role in providing useful information from the

vast Web. Search Engines provide a convenient user interface through which user can

submit their query whereas web crawler traverses/crawls the Web and downloads the

relevant data to maintain its repository/database. The freshness of the

repository/database of any Search Engine is highly dependent on working of a Crawler.

A traditional crawler has only one crawling instance to crawl the huge World Wide

Web. As the nature of web is dynamic, so the traditional crawler fails to keep the pace

with such dynamic and rapid growth of web. There is need to increase the crawling

instances so that they can cover the web as maximum as possible. The existing crawlers

have multiple crawling instances but these instances still have some limitation.

Moreover, the load distribution is also not uniform among these instances.

In this thesis, a design of a structure driven cooperative migrating crawler for retrieving

quality data is being proposed that has capability of creating its instances called

migrants as per the need. With this dynamic creation feature, it tries to cover the web as

maximum as possible. And with the help of sitemaps crawler crawls all the links

available on any particular site.

In order to maintain up-to-date database, crawler revisit a particular site. To preserve

network bandwidth, it is necessary to prevent the crawler to download the same data on

revisit. The crawler should download only the modified data. When there are migrants

executing for crawling then there may be chances of redundancy in database. There

should be cooperation between migrants so that they crawl the web in uniform manner

and do not crawl the duplicate content. A duplicate removal module is proposed to

eliminate redundancy from database. A novel mechanism is developed that checks the

duplicate content before storing the webpage in database. It also checks duplicate URLs

to prevent the redundancy in crawling.

v

Moreover with multiple migrants there is need of URL scheduling policy to schedule

the URL to appropriate migrants so that load is uniformly distributed and network

resources are effectively utilized. This is achieved by using Analytic Hierarchy Process

(AHP) which is multi variant decision making technique.

To get relevant results in response to users’ query, users’ interest should also be

considered. Here, the users’ interest is observed by analyzing their browsing behaviour

on web pages. These browsing behaviours can be mouse click, print, save as, scroll, key

up, key down, bookmark etc. A data mining technique based Apriori algorithm is

applied to these behaviours to get the frequent patterns so that the users’ interest may be

identified.

Another improvement in the process of crawling is introduced in the form of structure

driven crawling, along with content matching. It is suggested that the structure of a

document should also be taken into consideration while crawling the web. It is found

that the structure driven crawling is highly efficient in crawling the related webpages.

A comparison is made between proposed migrating crawler and conventional general

migrating crawler. With the help of implementation results, it has been observed that

proposed crawler works well in all areas like web coverage, load distribution,

elimination of redundant crawling and getting webpage of users’ interest in response to

a query.

vi

 TABLE OF CONTENTS

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Table of Contents vi

List of Tables x

List of Figures xii

List of Abbreviations xv

CHAPTER I. INTRODUCTION

1.1 WORLD WIDE WEB 1

1.2 MIGRATING CRAWLER 3

1.3 MOTIVATION 5

1.4 RESEARCH OBJECTIVES OF THE THESIS 6

1.5 ORGANIZATION OF THE THESIS 8

CHAPTER II. LITERATURE REVIEW

2.1 INTRODUCTION 11

2.2 SEARCH ENGINES 11

2.3 WEB CRAWLER 13

2.3.1 WEB CRAWLER STRATEGIES 14

2.3.2 WEB CRAWLER TYPES 16

2.4 DESIGN ISSUES OF CRAWLERS 26

 2.4.1 COVERAGE 27

 2.4.2 URL SCHEDULING 31

 2.4.3 QUALITY OF DATABASE 38

 2.4.4 RELEVANCY 43

 2.4.5 RANKING BASED ON USERS’ BROWSING BEHAVIOUR 46

2.5 PROBLEM IDENTIFICATION 49

vii

CHAPTER III. DESIGN OF A STRUCTURE DRIVEN COOPERATIVE

MIGRATING CRAWLER FOR RETRIEVING QUALITY

DATA

3.1 INTRODUCTION 51

3.2 DESIGN OF A STRUCTURE DRIVEN COOPERATIVE MIGRATING

CRAWLER FOR RETRIEVING QUALITY DATA 53

 3.2.1 URL Organizer 54

 3.2.2 URL Scheduler 56

 3.2.3 Migrating Crawler Manager 57

 3.2.4 Structure Extractor 60

 3.2.5 Structure Driver 60

 3.2.6 Duplicate Eliminator 61

 3.2.7 User Behaviour Analyzer 62

CHAPTER IV. DESIGN OF A NOVEL URL SCHEDULING MECHANISM

USING AHP

4.1 INTRODUCTION 65

4.2 UNIFORM RESOURCE LOCATOR (URL) 65

4.3 PROPOSED WORK 67

4.3.1 URL Ordering Module 68

4.3.2 Migrant Communication Module 70

4.3.3 URL Scheduling Module 73

4.3.4 Migrating Crawler Manager 82

4.4 EXPERIMENTAL EVALUATION OF THE PROPOSED SYSTEM 82

4.4.1 Procedure 83

4.4.2 Load Distribution 83

4.4.3 Efficiency 84

4.4.4 Uniqueness 84

CHAPTER V. DESIGN OF AN EFFICIENT MIGRATING CRAWLER

BASED ON SITEMAPS

5.1 INTRODUCTION 87

viii

5.2 DESIGN OF AN EFFICIENT MIGRATING CRAWLER BASED ON

SITEMAPS 89

5.2.1The Architecture 89

5.2.2 Mapping Manager 93

5.2.3 URL Classifier 94

5.2.4 Migrating Crawler Manager 94

5.2.5 Migrant 94

5.2.6 Duplicate Eliminator (DE) 95

5.3 PERFORMANCE ANALYSIS 97

5.4 EFFICIENCY WITH SITEMAP 104

5.4.1 Web Coverage 104

5.4.2 Bandwidth Preservation 104

5.4.3Time Taken 105

CHAPTER VI. IMPROVING THE SEARCH RESULTS BASED ON USERS’

BROWSING BEHAVIOUR

6.1 INTRODUCTION 107

 6.1.1 Introduction to Apriori Algorithm 107

6.2 IMPROVING THE SEARCH RESULTS BASED ON USERS’ BROWSING

 BEHAVIOUR 108

6.2.1 User Analysis Module 108

 6.2.2 Working Methodology 112

6.2.3 Example 114

6.2.4 Performance Evaluation 117

CHAPTER VII. A NOVEL APPROACH FOR DOCUMENT STRUCTURE

DRIVEN CRAWLING IN MIGRATING CRAWLER

7.1 INTRODUCTION 119

7.2 DOM TREE 120

7.3 DOCUMENT STRUCTURE DRIVEN CRAWLING 121

7.3.1 Structure Extractor 122

7.3.2 Structure Matcher 123

7.4 PERFORMANCE EVALUATION 125

ix

7.4.1 Accuracy 125

7.4.2 Attribute of Retrieved links comparison 128

7.4.3 User Satisfaction 129

CHAPTER VIII. CONCLUSION AND FUTURE SCOPE

8.1 CONCLUSION 131

8.2 FUTURE WORK 134

REFERENCES 135-147

APPENDICES 149-178

APPENDIX-I 149-151

APPENDIX-II 153-158

APPENDIX-III 159-160

APPENDIX-IV 161-174

APPENDIX-V 175-178

BRIEF PROFILE OF RESEARCH SCHOLAR 179

LIST OF PUBLICATIONS 181

x

LIST OF TABLES

Table Title Page No.

Table 2.1 Comparison of Different Crawlers 26

Table 2.2 Coverage Solutions 31

Table 2.3 Summary of URL Scheduling Algorithms 37

Table 2.4 Summary of Duplicate Elimination Policies 43

Table 2.5 Summary of Structure Driven Crawling methods 46

Table 2.6 Summarized Browsing Indicators 49

Table 4.1 Judgment Scale 76

Table 4.2 Criterion Comparison 77

Table 4.3 Migrants Comparison w.r.t Agent Load 78

Table 4.4 Migrants Comparison w.r.t URL Capacity 78

Table 4.5 Migrants Comparison w.r.t URL Parent Rank 78

Table 4.6 Migrants Comparison w.r.t N/W Bandwidth 79

Table 4.7 Migrants Comparison w.r.t Loading Rate 79

Table 4.8 Migrants Comparison w.r.t Agent Capacity 79

Table 4.9 Migrants Comparison w.r.t N/W Latency 79

Table 4.10 Random Index 80

Table 4.11 Overall Priority Matrix 81

Table 4.12 Rank Matrix 82

Table 4.13 Experiment Results 83

Table 5.1a) First Crawling Results (Both Crawler) Test 1 98

Table 5.1b) Revisit Crawling Results (Proposed Crawler) Test 1 99

Table 5.1c) Revisit Crawling Results (Conventional Crawler) Test 1 99

Table 5.1d) Crawling Results Test 1 100

Table 5.2a) First Crawling Results (Both Crawler) Test 2 100

Table 5.2b) Revisit Crawling Results (Proposed Crawler) Test 2 101

Table 5.2c) Revisit Crawling Results (Conventional Crawler) Test 2 101

Table 5.2d) Crawling Results Test 2 102

Table 5.3 Crawling Results Test 3 103

Table 5.4 Crawling Results Test 4 103

xi

Table 5.5 Links Crawled 104

Table 5.6 Crawled Links on revisit 105

Table 5.7 Time Saving 105

Table 6.1 Users’ Browsing Behaviour Indicators 110

Table 6.2 Database of Actions 114

Table 6.3 Users’ Actions 115

Table 6.4 Frequent Patterns 115

Table 6.5 Confidence values of subsets of most frequent actions 117

Table 6.6 Comparison of Page Weight Calculation Methods 118

Table 7.1 Accuracy Measure 127

Table 7.2 Identified Attributes 128

Table 7.3 User Satisfaction 129

Table 8.1 Accuracy Measure 133

xii

LIST OF FIGURES

Figure Title Page No.

Fig. 1.1 General Architecture of a Search Engine 1

Fig. 1.2 General Architecture of a Crawler 2

Fig. 1.3 Architecture of Migrating Crawler 4

Fig. 1.4 Algorithm: Migrating Crawler 5

Fig. 2.1 Layered Architecture of Search Engine 12

Fig. 2.2 Architecture of Basic Crawler 14

Fig. 2.3 Flow of Multiple Crawling Processes 17

Fig. 2.4 Architecture of Focused Crawler 18

Fig. 2.5 Architecture of Incremental Crawler 19

Fig. 2.6 Architecture of Distributed Crawler 21

Fig. 2.7 Architecture of Hidden Web Crawler 22

Fig. 2.8 Architecture of Migrating Crawler 24

Fig. 2.9 UCYMicra at Work 25

Fig. 2.10 Query-Based Approach 28

Fig. 2.11 A Proposed Architecture of Distributed Crawler 30

Fig. 2.12 Dynamic Assignment of URL model 32

Fig. 2.13 Algorithm: Working of URL Assignment 33

Fig. 2.14 Model of Distributed Parallel Crawler 33

Fig. 2.15 Master-Slave Architecture of URL Scheduling 34

Fig. 2.16 Popularity Based Architecure of Search System 37

Fig. 2.17 Step-Wise Working of identifying syntactically

Similar URLs 42

Fig. 2.18 DOM Tree 44

Fig. 3.1 Three layer Architecutre of Proposed Work 51

Fig. 3.2 Architecture of Proposed Migrating Crawler 53

Fig. 3.3 Algorithm: URL Organizer 55

Fig. 3.4 Algorithm: URL Scheduler 57

Fig. 3.5 Algorithm: Migrant 58

Fig. 3.6 Algorithm: Migrating Crawler Manger 60

Fig. 3.7 Algorithm: Structure Extractor 60

xiii

Fig. 3.8 Algorithm: Structure Driver 61

Fig. 3.9 Algorithm: Duplicate Eliminator 62

Fig. 3.10 Algorithm: User Behaviour Analyzer 63

Fig. 4.1 Architecture of Proposed Migrating Crawler

with URL Scheduling 67

Fig. 4.2 DOM Trees of URLs 68

Fig. 4.3 Algorithm: URL Ordering 70

Fig. 4.4 Migrant-Server Communication 70

Fig. 4.5 Agent Life Cycle 71

Fig. 4.6 Algorithm: URL Scheduling 73

Fig. 4.7 Structural Model 75

Fig. 4.8 Load Distribution of Proposed Migrating Crawler 84

Fig. 4.9 Efficiency of Proposed Migrating Crawler 84

Fig. 4.10 Uniqueness of Proposed Migrating Crawler 85

Fig. 5.1 Workflow of Proposed Architecture 90

Fig. 5.2 Proposed Architecture of Migrating Crawler

with Sitemaps 92

Fig. 5.3 Algorithm: General Working 92

Fig. 5.4 Modified URL_IP 93

Fig. 5.5 Algorithm: Mapping Manager 93

Fig. 5.6 Algorithm: URL Classifier 94

Fig. 5.7 Duplicate Eliminator Module 95

Fig. 5.8 Algorithm: Matcher 96

Fig. 5.9 Algorithm: Link Extractor 97

Fig. 6.1 User Analysis Module 108

Fig. 6.2 Algorithm: User Behaviour Analyzer 110

Fig. 6.3 Algorithm: Data Mining Applier 110

Fig. 6.4 LOG File Structure 112

Fig. 6.5 Flow of Proposed Approach 113

Fig. 6.6 Comparison Page Weight Calculation Methods 118

Fig. 7.1 Snapshot User Query and Results 119

Fig. 7.2 Snapshot of Similar structure webpages 120

Fig. 7.3 DOM Tree 121

Fig. 7.4 Proposed Architecture of Structure Driver 122

xiv

Fig. 7.5 Algorithm: DOM Tree Matching 123

Fig. 7.6 Tree Matching 124

Fig. 7.7 P and R values for each of the four tests 128

Fig. 7.8 Performance on the basis of Identfied Attributes 128

xv

 LIST OF ABBREVIATIONS

WWW: World Wide Web

HTTP: Hypertext Transfer Protocol

URL: Uniform Resource Locator

BFS: Breadth First Search

DFS: Depth First Search

HITS: Hyperlink Induced Topic Search

PR: Page Rank

LVS: Label Value Set

XML: Mark-up Language

D: Domain

DNS: Domain Name Resolver

URI: Uniform Resource Identifier

TEC: Total External Count

UEC: Unique External count

TIC: Total Internal Count

UIC: Unique Internal Count

ACC: Accuracy

TAC-L: Total Access Count-Learning

SAC-L: Split Access Count-Learning

FTP: File Transfer Protocol

IP: Internet Protocol

DUST: Different URLs Same Text

SIG: Signature

DOM: Document Object Model

HTML: Hyper Text Mark-up Language

XHTML: Extensible Hyper Text Mark-up Language

DTD: Document Type Definition

AHP: Analytical Hierarchy Process

CPU: Central Processing Unit

N/W: Network

CR: Consistency Ratio

CI : Computational Index

xvi

RI: Random Index

ChangeFreq: Change Frequency

LOC: Location

LDB: Local Database

DOC: Document

OC: Occurrence Count

SHA-1: Secure Hash Algorithm-1

FP-TREE: Frequent Pattern Tree

SC: Support Count

GPS: Global Positioning System

IDF: Inverse Document Frequency

1

CHAPTER I

INTRODUCTION

1.1 WORLD WIDE WEB (WWW)

The large usage of World Wide Web [1, 2] has created challenge for the tools which are

responsible for maintaining it. Search Engines [3] are the means of providing relevant

and useful information from the Web. They are highly responsible for providing quality

and accurate information to its end users. Web Crawlers are the main component of the

Search Engines. They play a fundamental role in providing useful information from the

vast Web. Search Engines provide a convenient user interface through which user can

submit their query. It is the responsibility and function of Web Crawler to traverse the

Web and download the most relevant data for the user. So, the functioning of Web

Crawler is significant in the architecture of search engine. A general architecture of the

search engine is given in figure 1.1.

Figure 1.1: General Architecture of a Search Engine

A Web Search Engine consists of following main components:

 Crawler Module: It is a component which traverses the Web, collects the

webpages and categorizes them.

Ranked

Database

Ranker
Search Engine

Interface

Indexer URL &

DOC

Repository

Crawler

URLs

Queue

WWW
User

2

 DOC & URL Repository: The downloaded web pages are temporarily stored in

a local storage of search engine called DOC & URL repository. The new pages

remain in the repository until they are sent to the indexer module for indexing.

 Indexer Module: The indexer module takes each new uncompressed page from

the DOC & URL repository extracting suitable descriptors, creates a

compressed description of the page and stores them in the database.

 Ranked Database: It contains web pages in compressed form. After compressing

and indexing, indexer module stores the web pages in the database.

 Ranker Module: The ranker module takes the set of relevant pages from

database and ranks them according to some criterion such as popularity score,

content score etc. and provides them to the search engine interface.

 Search Engine Interface: The user supplies the query on search engine interface

and gets the results for the same on this in the form of a list of relevant

document links.

For downloading the web pages, the web search engines rely on Crawlers. A crawler is

a program that downloads and stores web pages. A general architecture of crawler is

shown in figure 1.2.

Figure 1.2: General Architecture of a Crawler

Generally, a crawler starts off by picking from an initial set of URLs queue, where all

URLs to be retrieved are kept. From this queue, the crawler gets an URL, downloads

Absolute

URLs

URL

s

URL

s Web

Pages

Web

Pages

 Absolute

URLs

URL & DOC

Repository

Crawler

DNS Resolver

WWW
Link

Extractor

URL

s

3

the page and stores in the URL & DOC repository. Link extractor extracts URLs from

the downloaded pages and adds them to the URL queue. This process is repeated until

the URL queue exhausts or crawler decides to stop. There are many design issues

related to crawler like efficient crawling, better network utilization, better cooperation

between migrants, maximum coverage of the web etc.

Based on their working the crawler may be categorized in to the following types:-

 Parallel Web Crawler: Parallel Web Crawler [4] runs multiple processes in

parallel to retrieve the whole or significant portion of the Web so that download

rate is maximized.

 Focused Crawler: A focused crawler [25] may be described as a crawler, which

returns relevant web pages related to a specific topic while traversing the web.

 Incremental Crawler: An incremental crawler [5] is one, which updates the

selective set of downloaded pages instead of restarting the crawl from scratch

each time.

 Migrating Crawler: A migrating crawler [6] distributes the downloading task

among the downloading instances. The major benefits of migrating crawlers are

scalability, reliability, and better network utilization.

 Hidden Web Crawler: A crawler which has the capability of extracting

information from the hidden web is called as hidden web crawler [7]. Hidden

Web consists of web pages that are created dynamically by filling the search

query forms. As search forms are the entry-points into the hidden Web, so

Hidden Web Crawler is designed to automatically process, analyze, and submit

forms, using an internal model of forms and form submissions.

Since the work presented in this thesis is based on Migrating Crawler, a discussion on

Migrating Crawler is given in next section.

1.2 MIGRATING CRAWLER

A migrating crawler [6] distributes the downloading task among the downloading

instances. The major benefits of migrating crawlers are scalability, reliability and better

network utilization. Unlike the centralized architecture of traditional search engines,

4

migrating crawler distributes its crawling instances at geographically far away locations

for crawling.

Migratability [8] can be defined in the context of Web crawling as the ability of a

crawler to migrate to the data source (e.g., a Web server) before the actual crawling

process starts on that Web server. Thus, migrating crawlers are able to move to the

resource, which needs to be accessed in order to take advantage of local data access.

The migrating crawler can perform a complete local crawling (either through HTTP

[11], the file system, RPC or Aglets). The architecture of migrating crawler is shown in

figure 1.3.

Figure 1.3: Architecture of Migrating Crawler

The migrating crawler creates its agents, called migrants [6, 121] and with the help of

these migrants the crawling process takes place. The algorithm of Migrating Crawler is

given in figure 1.4.

Crawler Agent
Crawler Agent Crawler Agent

HT

TP

Ser

ver

Remote Host

WWW

Search Engine

Crawler Manager

Index

HT

TP

Ser

ver

Remote Host

HT

TP

Ser

ver

Remote Host

5

Figure 1.4: Algorithm: Migrating Crawler

These migrants help in achieving benefits like scalability, maximum web coverage,

better network resource utilization etc.

1.3 MOTIVATION

The web is growing at a very fast rate and moreover, the existing pages are changing

rapidly. There are several issues which need to be considered for an efficient web

crawler design. Some major issues are discussed below:-

 How to cover maximum web? The size of the web is too large and it is

difficult to cover the entire web. The crawler should be capable of covering the

maximum web.

 How to migrate the migrants in a proper way? The migrating crawler

migrates its migrants to many machines. The downloading process run in

parallel and it may be the case that some machines are overloaded while some

are sitting idle. If URLs are properly scheduled, then such type of situation can

be avoided.

 How to maintain databases uniqueness and freshness? The crawler

downloads the web pages to get stored in the database. This process is done by

Migrating_ Crawler ()

Steps 1: Begin

 2: Migrate to web server;

 3: Put server URL in url_list;

 4: For all URL belongs to url_list

 5: do begin

 6: Load page; /* local data access */

 7: Store page in page_list

 8: if relevant; /* page analysis */

8.1 Extract page links; /* recursive crawling */

 9: For all links belongs to page

 10: do begin

 11: If link is local then

11.1 Add link to url_list;

11.2 Else

11.3 Add link to external_url_list;

11.4 End

 12: End

 13: End

6

multiple migrants. So, there is a possibility that the same URL may be crawled

by multiple migrants. There should be some mechanism to eliminate such type

of redundancy.

 How to get more relevant results? When a user fires a query, results on the

basis of content matching is displayed. There is no involvement of user

feedback as well as of the structure of web page while getting relevant pages.

The browsing behaviour of user highly effects the relevancy of pages shown to

the user. So, there should be some mechanism to incorporate users’ browsing

behaviour while ranking of pages. Along with content matching, the structure of

web page should also be considered.

1.4 RESEARCH OBJECTIVES OF THE THESIS

When a user fires a query on search engine interface, the results should be relevant,

unique and of user interest. The research objectives of the proposed work are as

follows:

 Structure-Driven Crawling: - By knowing the structure of a required page

beforehand, desired page(s) can be searched more efficiently. So, instead of

fetching all pages related to search topic, modified crawler will fetch preferably

those pages which have a similar structure to that of sample pages in terms of

relevancy. While many works in the literature have addressed the issue of

content-driven Web crawling, the use of the structure of the pages as a criterion

to guide the traversal of crawlers has been almost neglected and will be one of

focus area in this research.

Proposal: - In this work, in order to get more relevant results, along with

content matching, the structure of web page is considered. A structure of web

page can be taken out in the form of DOM tree. The structure is extracted from

a downloaded web page and matched with supplied sample structure of a web

page before storing them to the URL & DOC repository. The pages whose

structure matches get the preference in while storage.

 URL scheduling: - The size of the web is too large. To crawl this big size web

URL plays an important role. The list of URLs selected for crawling highly

affects the coverage of web. If this selection is appropriate then the coverage of

7

web can be increased. Similarly, selection of a migrant can also be very

beneficial in load distribution.

Proposal: - In the proposed architecture of migrating crawler, a module called

as URL ordering and URL scheduling is incorporated, which is responsible for

ordering the URLs while crawling and then scheduling the URLs to appropriate

migrants by using AHP technique [124]. Having a better URL Scheduling

policy, a web crawler is able to download the useful information efficiently in

minimum time. It also tries to cover the web as maximum as possible.

 Volatile information and change frequency of web pages

Web pages are changing at different frequencies [122, 127]. Due to resource

constraints, search engines usually have difficulties keeping the local database

completely synchronized with the Web. So with limited system resources, Web

Crawler must be capable of knowing these frequencies so that it can re-visit

accordingly and collect fresh information as far as possible.

Proposal: - In order to maintain the database up-to-date, instead of revisiting

all web pages, again and again, the proposed crawler is revisiting only those

web pages that have been undergone updation. This has been done with the help

of Sitemap information.

 Relevancy

Whenever user supplies a query, search engine provides a list of document links

relevant to his/her query. While providing these results, the user has no

involvement. It has been observed that for getting relevant results users’ interest

should be considered. So, there should be some mechanism that incorporates

users’ interest while showing results in response to his/her query. Users’

interest can be calculated in terms of their browsing behaviour on webpages.

Proposal: A module called as User Behaviour Analyzer is proposed that is

responsible to capture the users’ browsing behaviour on webpages like print,

copy, save as, click, hyperlink etc. Based on these browsing behaviours, users’

interest is calculated and used in assigning rank to such pages.

 Redundant Crawling

Distributed crawlers may crawl the same region of web and as a result search

engine shows multiple entries [9, 10]. There are many URLs whose syntax is

different but they point to same page. This not only gives redundant results but

8

also waste network resources. So, there should be a well defined cooperation

between the crawling instances so that crawlers crawl large percentage of web

and give more data without redundancy.

Proposal: - To prevent redundant crawling, a Standard Normalization process

has been applied to URLs. After applying this process syntactically similar

URLs are detected and eliminated, thereby reducing the redundant crawling.

 Unique Database

In migrating crawler, migrants are responsible for crawling the web. It may be

the case that migrants download the same set of webpages. So, there should be

some mechanism that stores only unique webpages to the database.

Proposal: - A Duplicate eliminator is proposed here that detects duplicate web

pages and stores only unique web pages and URLs in the repository. This not

only prevents network resource misutilization but also provide unique results to

the user

 Coverage and Scalability

There is always a need to develop some mechanism that will cover the web as

maximum as possible and scale with the growth of the size of the web.

Proposal: -The proposed architecture of migrating crawler is capable of scale

with the growth of the size of the web, by creating the migrants dynamically. It

also covers the maximum web.

1.5 ORGANIZATION OF THESIS

The following is an outline of the contents of this thesis:

 Chapter I explores some elementary aspects of Search Engine and crawlers. The

challenges involved and proposed solutions are discussed in this chapter.

 Chapter II: A literature survey of selected publications related to different

crawlers is given in this chapter along with the general architecture of a search

engine, types of crawlers, a detailed description of migrating crawlers and some

duplicate elimination policies. The identified problems are listed at the end of

this chapter.

9

 Chapter III: In this chapter, the architecture of a structure driven cooperative

migrating crawler for retrieving quality data along with their functional modules

are discussed.

 Chapter IV: In this chapter, the URL Scheduling module is discussed in

detailed. It schedules the migrant for crawling the URL using Analytical

Hierarchy Process (AHP) technique. The architecture comprising of its

functional modules along with their algorithms has been discussed in detail. The

snapshots of implementation are given along with the result analysis.

 Chapter V: In this chapter, duplicate eliminator module is discussed in detailed.

This module is based on hashing. It uses the concept of Cache for storage

purposes. The detail of each module involved and associated are discussed. At

the end of chapter snapshots of implementation and the result analysis is given.

 Chapter VI: In this chapter, a User Behaviour Analyzer is discussed. It is used

for ranking based on the browsing behaviour of user using Apriori algorithm.

The detailed discussion along with algorithms used is given. The snapshots of

implementation are given along with the result analysis.

 Chapter VII: In this chapter, a structure driven crawling is discussed. It is based

on documents matching technique using structure of web document. The DOM

tree is used for the structure of web page. The detailed discussion along with the

flowcharts and algorithms used are discussed here. The snapshots of

implementation are given along with the result analysis.

 Chapter VIII concludes our contributions and provides guidelines for future

work in this area.

 The bibliography includes references to publications in this area.

10

11

CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION

World Wide Web (WWW) [12, 13, 14] is the largest collection of hyperlinked

hypertext documents. The size of Web is growing and changing at a very rapid pace.

Hypertext Transfer Protocol (HTTP) is used for traversing these hypertext links [11,

92]. A web browser provides a medium to access WWW. In 1993, first web browser

Mosaic was released. But, the widespread use of web began after releasing of

Microsoft’s Internet Explorer in 1995. After that many more web browsers came into

existence like Firefox, Mozilla, Google Chrome, Opera and Safari. The information

which is available on the Web is actually gathered by the Search Engines and presented

by these web browsers.

2.2 SEARCH ENGINES

Search Engine is an information tool which provides information regarding users’ query

[106, 109, 110]. It is also is responsible for providing an interface to User for searching

information on World Wide Web. It has various components which traverse the web

and maintain the databases [131]. In general, there are three types of Search Engines

[16, 17, 18].

(i) Crawler-Based Search Engines

These types of search engines are automated by the crawler [129]. A crawler is a

computer program that works automatically and without user intervention and

[downloads the documents from the web and stores them to be used by other

applications. Such type of search engines traverses large area of web gathered the

information and stored in their repository. For example Google, Bing, AltaVista,

AllTheWeb etc.

12

(ii) Human Powered Directory based Search Engines

These types of search engines involved human interventions for maintaining their

database. Unlike crawler based search engine, the rank and position of the webpage in

repository is not rely on keywords but relies on the authors’ choice. The author decides

whether the contents are relevant or not. Some of these directories may not contain

complete information. These are purely powered by human. For example Yahoo, Open

Directory and Look Smart.

(iii) Meta Search Engines

These types of search engines use other search engines database while showing results

in response to users’ query [128]. These search engines do not traverses the web on

their own. According to them, the size of web is too large, so it is difficult to index all

data in their database. They rely on other search engines databases. For example

Dogpile, Metacrawler and Mamma.

Since the crawler-based search engine is used in the present work, therefore a detail

discussion on it is presented here. The basic architecture of a search engine [15]

consists of following components in two layers namely User layer and Crawler layer

and it is shown in figure 2.1.

Figure 2.1: Layered Architecture of Search Engine

Query

Results

User

Crawler

Indexer

Ranker

Search Engine

Interface

URL & DOC

Repository

WWW

URLs

Queue

Ranked

Database

Query

Parser

USER LAYER

CRAWLER LAYER

13

A Web Search Engine consists of following main components:

 Crawler: It is a component which traverses the Web, collect them and

categorize them. There are many design issues are related with this module [20].

The detailed discussion about the crawler is given in subsequent sections.

 URL Queue: It consists of a list of URLs. It contains seed URLs also for

initiating the crawling process.

 URL & DOC Repository: this repository is used for storing webpages along

with their extracted links temporarily. The webpages are used by indexer for

further processing.

 Indexer: The indexer takes each new uncompressed page from the page

repository extracting suitable descriptors, creating a compressed description of

the page. Indexing can be done using various techniques such as full text

indexing, keyword indexing, human indexing, inverted index [116] etc.

 Ranked Database: After indexing web pages get stored in the ranked database.

When User supplies the query, it gets the web pages from this database.

 Ranker: The ranking module takes the set of relevant pages from database and

ranks them according to some criterion such as popularity score, content score

etc. There are many ranking algorithms like Page Rank, HITS, Link based and

much more[21][22][23].

 Query Parser: It receives the search requests from user and relies on indexer

and repository in getting results.

 Search Engine Interface: It provides an interface to the User for searching

information on World Wide Web. User submits a query here and gets the list of

documents and corresponding URLs relevant to its query. For example, Google

Chrome, Internet Explorer, Firefox etc.

2.3 WEB CRAWLER

It is the main module of the search engine. It is responsible for downloading the web

pages from World Wide Web. It maintains the search engine repository. It traverses the

World Wide Web in some manner like breadth first, depth first etc. and downloads the

documents. The richness and freshness of a database of any search engine is highly

depends on working of the crawler. The basic architecture of a crawler is shown in

figure 2.2.

14

Figure 2.2: Architecture of Basic Crawler

The basic crawler consists of following components:-

i. URL Queue: It consists of list of URLs for crawling.

ii. Crawler: It is responsible for traversing, gathering and storing the webpages.

iii. URL & DOC Repository: It is a temporary storage of downloaded webpages

used by crawler.

iv. Link Extractor: It is responsible for extracting embedded links from the

downloaded webpages stored in repository and added them to URL Queue

The crawler has many types of traversing algorithm. Based on their working the crawler

may be categorized in many types. Brief discussions of some are given in next sections.

2.3.1 Web Crawling Strategies

There are many ways in which crawler can traverse the web, gather the information and

stored them in databases [130]. Some basic traversing strategies are given below:-

 Depth First Search (DFS)

 Breadth First Search (BFS)

 Page Rank

Crawler

Link Extractor

URLs

Queue URL &

DOC

Repository
Download Crawl

 WWW

Extracted

Links

15

 HITS

 Fish- Search

 Shark Search

Breadth First Search

In this method, crawler starts at the root node and follows all the neighbour nodes

which are at the same level. After crawling all nodes at first level, it crawls the next

level nodes and the process continues [19].

Depth First Search

The web crawler starts from the root node and follows the depth up to the last child. If

there is more than one child, then left most side child crawls first. After reaching at the

end, it backtracked to the next unvisited node and continues the process till reaches at

last child. It ensures that every path should be visited once.

Page Rank

In this approach, page rank of each link is calculated and then which has highest is

choose for crawling [3]. The page rank is calculated as the sum of page ranks of all

incoming links divided by the number of outgoing links as shown in equation 2.1.

Where, PR (A) is the page rank of page A

PR (P1) is the page rank of a page P1 pointing to A

C (P1): number of out links from page P1

d: damping factor lies between 0 & 1

It is given by Brin & Page in 1998 and this Page Rank method is used by Google [3].

HITS algorithm

It is a link analysis algorithm. It uses hubs and authorities values to rate the page. A

page which has many external links is considered as good hub page [22]. Similarly, a

page which has many internal links is considered as good authority page [23].

PR (A) = (1-d) + d(PR(P1)/C(P1)+..... + PR (Pn)/C (Pn)) (2.1)

16

Fish Search Algorithm

It works on the principle that relevant pages often have relevant neighbours [20]. Here,

relevance is related to query supplied by the user. It treats the Internet as a directed

graph where nodes are considered as a web page and edges as hyperlinks. It maintains a

list of URLs which are to be searched. It scored web pages as 1 for relevant and 0 as

non-relevant. It will traverse the graph in the direction where the relevant web pages are

found.

Shark Search

It is an improvement over fish-search algorithm. The fish-search algorithm has some

limitations and shark search removes these [21]. First of all, it changes binary values of

relevancy as 0 & 1 to fuzzy score. This will give more priority to grandchildren of a

relevant node than to the grandchildren of an irrelevant node. It also considers Meta

information and Anchor text in calculating the relevancy score.

2.3.2 Web Crawler Types

Based on their working, the discussion of various types of crawlers are given below

a) Parallel Crawler

As the size of web increases, it gets more difficult to crawl the entire web. In Parallel

crawler [24, 120], multiple instances of crawler are doing crawling process to cover the

web as maximum as possible. It not only increases web coverage but also speed up the

download rate.

It is clear from the figure 2.3 given below that now crawling is not depend only on

single crawler but on multiple crawlers that are running in parallel.

17

Figure 2.3: Flow of Multiple Crawling processes

The figure above shows how multiple crawling processes works in order to achieve the

desired results in efficient and manageable manner. The crawling instances first gets the

URL from URL list, traverses the web, downloads the webpages, stored in repository

and from repository embedded links are extracted and again supplied to the crawling

instances.

b) Focussed Crawler

The focussed crawler crawls only pre-defined topics related web documents [25, 82].

The goal is to select only those links that are of topic related other links are avoided.

The focussed crawler crawls links that are given priority on the basis on given topic

whereas other crawlers follow every link on a page in breadth first manner. For

selecting the most promising links on related page, it uses an additional classifier. The

seed URLs provided are of relevant to pre-defined topic. The relevancies of links that

are embedded in web pages are calculated both based on content of the source page and

links structure of the web. After finding relevancy, the crawling crawls the calculated

relevant links and process go on. The architecture of focused crawler is given in figure

2.4.

Multiple Crawling processes

U
R

L
 D

IS
T

R
IB

U
T

E
R

WWW WWW WWW

Get

URL

Download

REP

URL

LIST

Get

URL

Download

REP

URL

LIST

Get

URL

Download

REP

URL

LIST

18

Figure 2.4: Architecture of Focused Crawler

The focused crawler [2] has three main components: a classifier which makes relevance

judgments on pages crawled to decide on link expansion, a distiller which determines a

measure of centrality of crawled pages to determine visit priorities and a crawler with

dynamically reconfigurable priority controls which is governed by the classifier and

distiller. The three classifier are used namely page classifier, form classifier and the link

classifier. The page classifier is used to find whether the page belongs to the topic

taxonomy or not. The link classifier identifies whether the links points to page that

contain searchable forms or not. The form classifier is used to filter out useless forms.

After classifying searchable forms, form classifier put them in database if they are not

present there. The topic taxonomy is maintained with the help of users’ feedback by

asking interesting pages as they browse. The basic idea is to categorize crawled pages

to be placed in this taxonomy. By searching to the limiting area, focussed crawler

avoids crawling through unproductive paths.

Select topics

Mark Ratings

Edit Examples

Read Experts

Mark

Relevance

Pick URL

Browser-based

administration interface

Taxonomy

Table

Crawl

Tables

Classifier (Training)

Distiller

MEMORY BUFFERS

Watch Dog

Priority Controls

Worker Threads

Classifier (Filtering)

Topic

 Models

19

c) Incremental Crawler

The main purpose of Incremental crawler is to crawls only those pages that have

changed unlike other crawler that periodically checks the old pages and replaced them

accordingly [104, 119, 120]. During this process, the crawler has two goals:

1. Keep the local database updated

To keep the database updated, crawler should revisit the web pages in timely

manner. The revisit frequency [117] for every page is estimated and then revisits

them accordingly.

2. Improve the local database quality

The crawler enhances the quality of database by fetching more important pages

and replacing the less important one.

An incremental crawler [5] is one, which brings up to date a current set of downloaded

pages instead of revisiting them from beginning every time. The revisiting policy has

been defined and on that revisiting frequency web pages are re-crawled. The

architecture of Incremental Crawler is given in figure 2.5.

Figure 2.5: Architecture of Incremental Crawler

It consists of three modules:-

1. Ranking Module

It is responsible of assigning importance to the URLs so that they will be

selected first for crawling.

All URLs

Update/ Save

Crawl

Push

Scan

Discard

Add/

Remove

Scan

CollURLs

Pop

Checksum

Add URLs

Ranking Module

Update Module

Collection
Crawl Module

20

2. Update Module

It is responsible for maintaining the freshness and quality of database. It takes

the URLs from ranking module for maintaining quality and provided them to

crawl module

3. Crawl Module

It crawls the URLs provided by Update module.

Following lists are used in working of Incremental Crawler:-

1. AllUrls: - list of URLs crawled by crawler. It is used by ranking module to

assign priority to them and placed in CollUrls list

2. CollUrls: - URLs are stored in priority order by ranking module and taken by

update module to assign them revisit frequency. This list is then supplied to

crawl module for crawling.

d) Distributed Crawler

In Distributed web crawler, a URL server scatters individual URLs to different

crawlers, which download web pages in parallel [83]. The Crawler sends these

downloaded pages to a central indexer for further processing. In this crawler, multiple

crawling processes are running in parallel to increases the download speed. These

multiple crawling instances may be geographically far away from each other.

A Distributed Crawler, IglooG [10] based on grid platform. Each crawler is arranging

as grid service to improve the scalability of the system. The module Information

services are responsible for distributing URLs in order to balance loads of the crawlers.

Information services are structured as Peer-to-Peer overlay network.

The IglooG [10] is a distributed crawler and its architecture is shown in figure 2.6,

where C denoted crawler.

21

Figure 2.6: Architecture of Distributed Crawler

According to the ID of crawler and semantic vector of crawl page that is calculated by

Latent Semantic Indexing, the crawler can decide whether pass on the URL to

information service or hold itself. URL filter is used to filter out URLs that are

according to the specified criteria. There are many ways of URL Filtering [88]

e) Hidden Web Crawler

A crawler which has the capability of extracting information from the hidden web is

called as Hidden Web Crawler [84, 107, 113]. As search forms are the entry-points into

the hidden Web, Hidden Web Exposer (HiWE) [7] is designed to automatically process,

analyze, and submit forms, using an internal model of forms and form submissions. The

architecture of Hidden Web is given in figure 2.7.

….

C

Queu

e of

URL

DNS Resolver
Robots.txt

Resolver

HTTP Module

URL Database

Webpage

Database

URL Database

URL

Extractor

URL Filter

URL manager

Policy of Crawling

URL

Dispatch

er

Information

Services

Information

Services

Information

Services

Information

Services

Information

Services

Information

Services

C

C

C C C

C C

.

.

.

.

.

.

Information

Services

Information

Services

I
N
T
E
R
N
E
T

CRAWLER (GRID SERVICE)

22

Figure 2.7: Architecture of Hidden Web Crawler

This model treats forms as a set of (element, domain) pairs. A form element can be any

one of the standard input objects such as selection lists, text boxes or radio buttons. The

architecture of HiWE has following steps:-

1. Analysis of Forms

2. Candidate Value Assignment: The value is assigned to form elements based on

LVS (Label-Value Set) table and then weight is assigned by applying fuzzy

aggregation function. These weights are then used as rank to these form

elements.

3. Submission Form

4. Analysis of Response: The forms submitted are then analyzed for valid results.

The Hidden web performs inefficiently when the size of its crawl area increases. It is

also unable to process the forms which are in different formats like .jpg, .pdf etc. Its

efficiency depends on relevancy function and if this function computes wrong values,

URL List

Form Submission

Feedback

Label Valued Set (LVS) Table

Parser

Crawl Manager

Form Analyzer

Form Processor

Response Analyzer

WWW

Response …

LVS Manager

.

.

.

Data Sources

.

.

.

23

results will be wrong. So, its crawling highly depends on relevancy calculator and it

should be accurate to get accurate results.

f) Migrating Crawler

In this work, the capabilities of migrating crawlers have been utilized to achieve

scalability, reliability, maximum web coverage and better network utilization.

Odysseas et al [8] observed that the traditional centralized crawling model suffers from

the following limitations:

 The task of processing the crawled data introduces a vast processing bottleneck

at the search engine.

 The attempt to download thousands of documents per second creates a network

and a DNS lookup bottleneck.

 Documents are usually downloaded by the crawlers in uncompressed form

which increases the network bottleneck.

The authors also find that traditional centralized crawling cannot effectively catch up

with the dynamic web. So, a novel architecture called UCYMicra [38] was developed.

The UCYMicra Crawling System consists of three subsystems: The Coordinator

Subsystem, The Mobile Agents Subsystem and a Public Search Engine as shown in Fig

2.8

24

.

Figure 2.8: Architecture of Migrating Crawler

The coordinator subsystem resides at the search engine side and is responsible for

maintaining the search database, providing online registration for new Web sites to

participate in UCYMicra, and administering the Mobile Agents Subsystem. The Mobile

Agent Subsystem is responsible for crawling the Web. It consists of two categories of

mobile agents: The Migrating Crawlers and the Data Carries. The former are

responsible for on-site crawling and monitoring of remote Web servers. Furthermore,

they process the crawled pages, and send the results back to the coordinator subsystem

for integration in the search engine’s database. The latter are responsible for

transferring the processed and compressed information from the Migrating Crawlers

back to the Coordinator subsystem. The Public Search Engine is responsible for

executing user queries on the database maintained by the Coordinator subsystem.

Figure 2.9 shows UCYMicra at work.

WWW

Web Clients

performing

searching

 Mobile Agents Subsystem

M/c M/c

M/c

Web servers hosting

migrating crawlers
WWW

Search Engine web

Servers

Coordinator Subsystem

 Search

 Engine

 Database

Maintain

s

 Queries

25

Figure 2.9: UCYMicra at Work

Powered by their inherent mobile capabilities, the Migrating Crawlers can perform the

following tasks:

 Be dispatched to a newly registered web server that will participate in

UCYMicra.

 Crawling: A Migrating Crawler can perform a complete local crawling (either

through HTTP or the file system).

 Processing: Keywords are extracted from crawled documents, and are ranked

based on their visual properties (font and color), position and occurrence

frequency, in order to locally create a keyword index of the web server contents.

 Data transmission: The index is transmitted to the Coordinator subsystem by

the Data Carriers. There it is integrated into the search database.

 Monitoring: The Migrating Crawler can detect changes on the Web server

contents. Detected changes are instantly processed and transmitted to the

Coordinator subsystem.

 Real time upgrades: New code for performing any of the above tasks can be

easily deployed since UCYMicra’s crawling architecture is based on Java.

Search engine

web server

Search

engine

data

base

Coordinator

subsystem

Web server +

mobile agent

platform

WWW

Query

Integration into search

database

Initial crawling

Registers

Migrating crawler dispatcher

Monitoring

Update occurs

Data carrier + data

Data carrier + data

26

Based on their working model, revisit, and many other characteristics, a brief

comparison between the discussed types of crawler is given in table 2.1.

Table 2.1: Comparison of Different Crawlers

2.4 DESIGN ISSUES OF CRAWLER

When a user supplies a query on search engine interface, the results appeared should be

of user interest, relevant and unique [108]. To provide relevant results, the repository

and corresponding database should be fresh and rich. It is the responsibility of crawler

to maintain repository rich and fresh. There are many design issues regarding designing

of an efficient crawler. Some recent research work in the area of these design issues are

described in following subsections [63, 85, 90].

S.

No

Characteristics Parallel Focussed Incremental Distributed Hidden

Web

Migrating

1. Working Model Crawling

done by

crawler

instances

in

parallel

Crawling

is done by

crawler in

a specific

field

Crawling is

done only on

revisit

Crawling

done in

parallel but

at far places

High

quality

Search

forms

Crawling

is done by

multiple

migrants

2. Revisit Policy Revisit

on restart

crawling

- Revisit of

high-rank

pages first

Revisit on

restart

crawling

- Revisit

based on

change

frequency

3. Crawling

Strategy

Breadth

First

Search

Depth

First

Search

Breadth

First Search

Breadth

First Search

Depth

First

Search

Breadth

First

Search

4. Speed Fast - - Fast - Fast

5. Initial URL Seed

URL

Topic

specific

Given by

Priority

Queue

Seed URL Search

Forms

Seed URL

6. Scalable Yes No No Yes No Yes

7. Web Crawler

Example

PARCH

AYD

[64]

S.Chakra

barti [25]

Jungoo

Cho[5]

IglooG [10] HIWE

[7]

Odysseas

[8]

27

2.4.1 Coverage

The coverage includes how much world wide web is captured and how much data is

useful out of captured web. The information available on Web is increasing at a

tremendous rate. To gather maximum information, crawler working should be

optimized. The coverage can be defined in terms of the number of web page and links

structure. The URL plays a vital role in expressing coverage metrics i.e. more number

of URLs means more area covered by the crawler. There should be some efficient way

for crawling the web in order to get maximum coverage.

Uri et al [26] introduce the concept of Sitemaps for crawling the web. Sitemap is an

XML file that contains list of URLs along with some metadata [95, 96]. It includes

change frequency, last modified and priority as Meta information. They classified

URLs into following states:-

1. Seen: The URLs which are seen by crawler but not yet crawled.

2. Crawled: The URLs which are downloaded.

3. Unique: These are URLs which are left after eliminating duplicate ones.

4. Indexed: The URLs which are indexed by Indexer.

5. Results: The URLs which are shown to User in response to his query.

6. Clicked: The URLs clicked by User on the result page.

Then on the basis of these states, coverage metrics and their importance have been

defined. To calculate coverage metrics, they define following relations for Domain D:-

Coverage (D) = Crawled sitemap (D)/ Crawled (D)

UniqueCoverage (D) = │Unique sitemap (D) │/ │Unique (D) │

IndexCoverage (D) = │Indexedsitemap (D) │/ │Indexed (D) │

PageRankCoverage (D) = ∑PageRanksitemap (D)/ ∑PageRank (D)

Where, Crawled sitemap (D) is the list of URLs crawled with the help of Sitemap

Crawled (D) is the list of URLs crawled without Sitemap.

With the help of above metrics, the difference in crawling with and without a sitemap

was shown and it is found that Sitemap crawling provides better results.

Najork et al [27] approach suggests that breadth-first search is a good crawling

strategy, as it tends to discover high-quality pages early on in the crawl. On early it

means that as crawling increases progressively the quality of web pages deteriorates. It

28

uses connectivity based metric, Page Rank given by Brin and Page to measure the

quality of a page which is easy to measure as it is calculated on the basis of links

pointed to any page. When more pages with high rank if pointing to a page then the

Page rank of that page is also high. The document with high Page Rank should have

less outgoing links. It uses the following relation to express Page Rank mathematically.

Let p1, p2 ... pk are the pages link to a page p. The Page Rank of page p is:

R(p)= d/T + (1-d)

Where, R(pi) is the Page Rank of pi

 C(pi) is the number of out links of pi

 T is the total number of pages

 d is the parameter such that it values lies between 0.1 and 1.

With the help of this Page Rank values, there is increases in overall download rate and

the burden on the server is reduced by downloading only important pages.

S S Vishwakarma et al [28] proposed a modified approach for crawling. It uses last

visit time of crawler and applies the filter at the server side. This filter checks this last

visit time and return list of those URLs only that are updated after crawler last visit.

This is a query based approach as shown in the figure 2.10.

Figure 2.10: Query-Based Approach

 HTTP uses it GET method to know the list of updated URLs. This approach reduces

network traffic by avoiding crawling of non-modified web pages.

Brandman [29] introduces the concept of servers providing some meta information to

the crawlers such as last modification and file size. With the help of last modified date,

Web Server

Update Page Web Site

Filter

Crawler

29

crawler crawls only modified pages. This saves a lot of network bandwidth and creates

less traffic on the network. The proposed crawler works in the following manner:-

1. Start from the seed URL, it starts crawling. It follows some order for initial

crawling of URL set.

2. Each web page has meta information associated with it. So, when web page

downloaded along with its meta information also downloaded. For revisiting

them, their meta information is examined and only updated web pages are

downloaded.

3. After downloading L pages i.e. daily page limit, next L modified pages are

crawled next day in some predefined order. Depending upon a number of

modified pages, the crawler continues their downloading for that particular day.

If a number of updated pages are less than L then crawler discontinue their

downloading.

Damien Lefortier Yandex et al [30] worked on a different section of web pages called

as ephemeral new pages. These are those pages on which users’ interest grows within

hours as they appear but remain only for few days. He found the sources of such pages

and then re-visits them in order to get newly created such pages at a faster rate. The

quality of sources estimated from user feedback. Along with content sources, the time

of the page discovered is also contributed in determining the quality of ephemeral

pages.

Tripathy A & Patra P.K [31] describe the design of a web crawler that uses

PageRank algorithm proposed by Brin & Page for distributed searches and can be run

on a network of workstations. The formula for evaluating Page Rank is given in

equation 2.2.

Where p is the web page whose rank is to calculate,

d is another page

out (d) is the number of out links from d

γ is the constant damping factor.

(2.2)

30

On the basis of this Page rank, the importance of web page is calculated. There are

many methods to calculate importance of any webpage [115]. The PageRank was the

criteria to decide the quality of URL to be crawled. A distributed crawler is proposed in

order to increase the crawling task. The proposed architecture is given below in figure

2.11.

Figure 2.11: A Proposed Architecture of Distributed crawler

The crawl manager, downloader, DNS resolver and crawling application are distributed

on different machines. To increase the system performance, these components can be

replicated for increasing the scalability and reliability.

The summarized comparison of discussed work, with respect to the coverage design

issue given in table 2.2.

Table 2.2: Coverage Solutions

Algorithm Uri et al Najork

et al

SS

Vishwakarma

et al

Brandman Damien

Lefortier

Yandex et

al

Tripathy

A et al

31

Technique

Used

Sitemap BFS Query based

approach

Meta

information

User

feedback

Page

Rank

algo

Domain General General General General Ephemeral

pages

General

Crawling

Limit

No No No Yes Yes No

Scalable Yes Yes No No No Yes

Efficiency Freshness High

Quality

Revisiting Freshness Revisiting Important

pages

2.4.2 URL Scheduling

To increase the performance of crawler, the migrating crawler has been proposed. As

discussed above, migrating crawler can create migrants for crawling the web on behalf

of a migrating crawler [6]. When more than one crawling task is executed then there is

the probability of increasing duplicate contents. The migrants may crawl the same URL

and this not only wastes time but also the network resources. There is need of

cooperation between the migrants so that multiple crawling of the same URL should be

avoided. To achieve this goal, URLs should be scheduled properly so that every crawler

has its own unique set of URLs set. Scheduling is the process of assigning a suitable

URL to appropriate migrants in order to get unique URL download and proper

utilization of network resources [80, 81, 111].

Some of the prevalent work in the related area is discussed below:-

Mohd Shoaib et al [32] proposed a web crawler which ordered the URLs on the basis

of web pages content and structure similarity to the query. The occurrence of keywords

in crawled pages corresponding to any given query is used for content similarity

whereas neighbouring nodes linking is used for calculating structural similarity. The

SimRank [69] algorithm also uses the same structural similarity calculation. The

experiment was done on a set of similar websites and result was compared in terms of

top URLs precision, crawling time, ordering time and similarity scores. The comparison

showed that proposed crawler works well.

32

A.Guerriero et al [33] proposed a dynamic URL assignment method based on the

clustering of URLs and then scheduling them. Clustering should be done in such a way

that the same URL shouldn’t be crawled by multiple crawlers. A distributed

architecture of parallel web crawler was proposed. Its components cooperate in efficient

manner in order to get desired results. The architecture is shown in figure 2.12:

Figure 2.12: Dynamic Assignment of URL model

It consists of following components:-

1. Broker: - It is responsible for scheduling of URLs and also to create a

communication link between crawler and database. It picks the URL from

database and with the help of dealer scheduled it to crawlers.

2. Dealer: -It is responsible for crawler efficient working. It manages load

optimization with the help of fuzzy clustering method.

3. Crawlers: -They are responsible for crawling the web and downloading the page

in the repository.

The working of Dynamic URL Assignment is as follows in figure 2.13.

CRAWLER 1

Cache 1

CRAWLER N

Cache n

DB DEALER

BROKER

33

Figure 2.13: Algorithm: Working of URL Assignment

It relies heavily on the communication link, so link failure brings down the system

completely. Load Balancing is also a major issue here.

Yuan Wan et al [34] designed and implemented a URL assignment method based on

hashing. It works on parallel systems [4] where systems are physically independent but

they are cooperating with each other through some mechanism. Each system downloads

the web pages on their local machine and when internal links are extracted from these

web pages, there is need of scheduling of these internal links. Either they are scheduled

to be downloaded on the host machine or to some other machine. The crawlers are not

communicated with each other. Host Machine is the central coordinator through which

communication and scheduling take place between the crawlers. The architecture of the

system is as shown in figure 2.14:

Figure 2.14: Model of Distributed Parallel Crawler

Coordinator assigns the URLs to different crawler based on its hostname. Hostname

decides that whether the URL goes to other machine or downloads on its home

X

X X

X
Crawler

Crawler

Crawler

Crawler

Coordinator

Step 1: Get the URL from the database.

 2: Divide the URL structure into different components as mentioned by URI

 standards [7].

 3: Apply Hash function to each component and convert it into integer form.

 4: Represent integer URL components into 3D coordinates.

 5: Apply Fuzzy Clustering [8] to these URLs.

 6: Assign these clusters to different crawlers for crawling.

 7: Extracted links checks for duplicity with already stored in the database.

 7.1 If already found in database, then

 7.1.1 Discard

 Else

 7.1.2 Stored in database.

 8: Go to Step 1.

34

machine. For this purpose, a hashing scheduling algorithm was designed. It will take

URL as input and then hash function was applied to this URL. In hashing function, the

host name was extracted from URL and converted into the integer format and then

matched with an id of the crawler. It is given by following equation 2.3:

If a match takes place, then it downloaded on the same machine otherwise go to other.

The coordinator has an id of all registered crawler and on the basis of this information,

it schedules the URLs. It prevents duplicate URLs to download again. It partitioned the

URLs list in such a way that ensures that no URL repeated at any machine. But it is not

scalable i.e. if number of URLs increases then it is not sure that they performed in the

same manner as it does now.

Dajie et al [35] introduces a scheduling algorithm for URLs which works on Round

Robin Scheduling. It works on master-slave architecture. One node stores all

information of other nodes and runs the scheduling algorithm. The architecture is given

in figure 2.15.

Figure 2.15: Master-Slave Architecture of URL Scheduling

For calculation of weight, time as an important factor was used. More time value means

crawler has tasks that are yet not completed. It means it should not get more tasks.

MASTER NODE SLAVE NODE

URL &

LINKS

URL

.

.

.

.

CRAWLER

NODE

CRAWLER

NODE

Non Crawled

URLs

Crawled URLs

Node Information

Schedule

Module

Node Table

Get

URL

Store URL

Store

URL

Assigned URLs

List

Store Links

Remove

URL
Crawler

Feedback

Module

Keyi= (∑i=1 to l Transfer (Host (URL i)) mod n (2.3)

35

Here, weight and time are the reciprocal of each other. So, weight is low for that node

which has more time to finish its task.

In master-slave architecture, at the master node, various data structures are used to store

the information of crawler node as well as the status of URLs i.e. whether they are

scheduled to be crawled or completely crawled. The concept of Round Robin algorithm

for assigning URLs to the crawler was used. A weight is assigned to each crawler node.

This weight shows the status of that node. If weight is low then it means crawler is

heavily loaded and vice versa. The weight is assigned with the help of the equation 2.4.

 Where, k=no. of tasks finished recently

 ti =finished time of i tasks

 m=no. of tasks yet not finished

URLs get scheduled on the basis of this weight value of crawler node. A threshold

value is taken to ensure that low weight crawler node will not leave unattended.

Chandramouli et al [36] works on the principle of the popularity of links. It calculates

the popularity by mining the web logs available on the website. It counts the total

access of particular web page and considered them as popularity. URL ordering was

classified into two approaches. One is non-learning algorithms that use predetermined

ordering function and other is learning algorithms that will order the URLs based on

training set of URLs with quality information.

In the non-learning algorithm, high the access count the more important is the page.

But, it is also suggested that it may be case that website owner itself access its website

several times and this cause increase in access count and considered as an important

page. To avoid such situation, four types of accesses to a website were defined. These

are:

1. Total External Count (TEC): - access to URL on website from outside the local

network

2. Unique External Count (UEC): - unique access from outside the local network

3. Total Internal Count (TIC): - access to URL on website from local network

4. Unique Internal Count (UIC): - unique access from local network

W= k

 (2.4)

36

Thus, total access count is obtained by equation 2.5.

To predict the importance of every count value their accuracy is calculated and then

assigns weights to each count value with the help of these accuracy values was

assigned. Thus weighted score of each URL is calculated as per the equation 2.6.

Where, TECacc =TEC accuracy algorithm

UECacc =UEC accuracy algorithm

TICacc = TIC accuracy algorithm

UICacc = UIC accuracy algorithm

a, b, c, d are raw external, unique external, internal and unique internal counts

for the URL.

In learning algorithm, the best combination of above four count values was used. Two

learning algorithms were implemented, Total Access Count Learning (TAC-L) and

Split Access Count Learning (SAC-L). Both algorithms have training and testing

phases. In these algorithms, access counts as input and supplied to any learning

algorithm like decision tree or k-nearest neighbour and model is prepared. To measure

the quality of a page, Page Rank algorithm was used. Higher the rank, more important

is the page. The working of learning algorithm is shown in figure 2.16.

WeightScore=a*TECacc/Total+b*UECacc/Total+c*TICacc/Total+d*UICacc/Total

 (2.6)

Total= TEC+UEC+TIC+UIC (2.5)

37

Figure 2.16: Popularity Based Architecture of Search System

Here, Web log server files are used to calculate the access counts of each URL and

supplied as input to learning algorithm. With the help of Page Rank algorithm, URL can

be ordered and provide to Info Bot for crawling.

The summarized results of all URL scheduling related research in shown in table 2.3.

Table 2.3: Summary of URL Scheduling Algorithms

Algorithm Task Scheduling URL Hash Popularity

Based

Dynamic URL

Technique

Used

Round Robin Hashing Links Count Fuzzy

clustering

Descriptio

n

Works on round

robin policy i.e.

every crawler gets

its turn and weight

assigned get surety

of load balancing

In hashing method,

URL’s host part is find

out and then convert the

characters into its integer

equivalent and matched

with crawler’s ID.

External and

internal links

counts are

calculated.

Clustering is

done to

schedule

URLs.

Search

Engine

Info Bot Web

Service
URL

Ordering

Module

Web Log

Harvester

Access

Count File

Web Server

Ordered List

of URLs

Web Logs

Page Rank

Values for

URLs on

website

WEBSITE DOMAIN

WORLD

38

Algorithm Task Scheduling URL Hash Popularity

Based

Dynamic URL

Input Time URL Link Count URL

Resource

Utilization

Efficient Efficient No

consideration

Efficient

 Duplicity

Check

Yes Yes No Yes

Recovery Yes Not Consider Not

applicable

No

Advantage

s

Simple & efficient,

no starvation, load

balancing

Fast, Load balancing Simple and

better than

BFS, less

burden on

search

engines

Efficient, Load

balancing,

remove

duplicates, low

cost

Disadvanta

ges

Scalability, Single

point of failure

Lack of scalability, less

realistic, single point of

failure

Small data

set, not

applicable to

new pages

Dependency on

communication

link, single

point of failure

2.4.3 Quality Of Database

The quality of Search Engine Database is achieved by having a unique collection of

web pages. Uniqueness is obtained by eliminating duplicate web pages [75, 86].

Duplicity can be at URL level as well as at the level of downloaded web pages. A URL

is composed of five components: the scheme, authority, path, query, and fragment

components [37].

http://www.jabong.com/women/clothing/Biba/?q=biba#pos=3

scheme authority path query fragment

Scheme Component: The scheme is the first part of URLs. It basically tells about the

protocol through which communication is takes place between sender & receiver i.e.

web server & client and vice-versa. There are various protocols:

http://www.jabong.com/women/clothing/Biba/?q=biba

39

ftp File Transfer protocol

http Hypertext Transfer Protocol

gopher The Gopher protocol

mailto Electronic mail address

news USENET news

nntp USENET news using NNTP access

telnet Reference to interactive sessions

wais Wide Area Information Servers

file Host-specific file names

prospero Prospero Directory Service

Each protocol has different syntax for writing a URL and each has different purpose for

writing. For example, FTP is used for files & directories, HTTP is used for internet

resources, the news is used for news group etc.

Authority Component: The authority is the second part of URL. It has three subparts:

1. User information: it has username followed by @ and it is according to the

scheme used. It is an optional part.

2. Hostname: it basically contains the location of a web server. The location of a

web server can be a domain name or Internet Protocol (IP) address.

3. Port: it is a network port number for the server. Many protocols have default

port number. The colon symbol (:) is prefixed before port number.

Path Component: It is the third part of URL. It based on authority or scheme. It

contains data like file name, web page etc. It contains multiple paths which are

separated by ‘/’.

Query Component: It is the fourth part of URL. It starts with the question mark symbol

(?). It has information that is supplied to the web application and interpreted by the

resource. The information it contains is in the form of parameter names and parameter

values. They are separated by equals’ symbol (=).

Fragment Component: It is sometimes an optional part. It contains information that

indicating a particular part of a document. It starts with the hash symbol (#).

40

There are URLs which are different but point to the same page [89]. This type of

problem is designated as DUST [39, 71] i.e. different URLs with similar text. The

impact of DUST effects the whole working of Search Engines i.e. crawling, indexing,

ranking etc. There are many reasons of DUST. Some are listed below:-

1. To Balance Load

2. To served as Backups

3. More user-friendly i.e. By creating shortcuts

4. To reduce network traffic

There can be many more reasons for duplicate URLs. Creating duplicate URLs may be

benefits to Internet Users or webmasters but creating trouble to working of the search

engine. By downloading the same page again waste network bandwidth then creating an

index of these duplicate URLs waste time and effort and then at search engine interface

when user see similar links again then he or she may get irritated.

Some of them which are different slightly in syntax can be identified by applying

standard normalization steps. The elimination of duplicate URLs, as well as duplicate

webpages, saves considerable network resources and this should be detected as early as

possible because such duplicate identities point to other duplicate content. Some work

for removing duplicate URLs done so far is discussed below. Thereafter various

existing duplicate elimination policies for downloaded web documents are discussed.

Berner et al [37] introduces the concept of URL Normalization process. These steps

are considered as standards in this field. These steps are broadly classified in three

categories namely syntax based, scheme based and protocol based normalization

process.

Syntax-Based Normalization

i. Case normalization – Change letters in the scheme & host component into the lower-

case letters

ii. Percent-encoded normalization – decode unreserved character, such as %2D for

hyphen and %5F for underscore.

iii. Path segment normalization – remove dot-segments from the path component, such

as ‘.’ and ‘... ’.

Scheme-Based Normalization

i. Add trailing ‘/’ after the authority component of URL.

41

ii. Remove default port number, such as 80 for http scheme.

iii. Prune the fragment of URL.

Protocol-Based Normalization

i. Remove last trailing slash if the results of accessing the resources are equivalent i.e.

same protocol used.

The results are promising in the sense that non identical URLs were never converted

into identical string and the URLs that are syntactically identical got identified.

Lee et al [38] gave extension to standard normalization process. They suggested

converting the path part of URL into lowercase, removing the slash symbol at end of

URL and also removing default pages. By adding these three steps to standard

normalization process, more unique URLs were identified.

Agarwal et al [40] worked on crawl logs and then from these logs generate rules. These

rules then utilized for finding duplicate web pages. They form clusters of similar pages

from crawl logs. These clusters were then used to generate rules for detecting duplicate

pages. These rules were then generalized and with the help of these rules the URL itself

were able to detect identical pages. The proposals affect crawling, indexing in an

effective way.

Farah et al [41] worked on document similarity along with the URL similarity.

According to them, by taking the signature of whole body text is time-consuming. So,

they considered to reduce the body text and then applied MD5 fingerprinting

mechanism [68]. They suggested some ways to reduce the body text and by doing this

they reduced the time wastage in the fingerprinting method. The step-wise working is

shown in figure 2.17.

42

Figure 2.17: Step-Wise Working of identifying syntactically Similar URLs

In this method, MD5 hashing algorithm was used to calculate message digest. But this

hashing algorithm has limitation of creating same digest values of different webpages.

Luis et al [42] proposed an algorithm for complex hierarchal datasets like XML

datasets [87]. A Bayesian network to check whether the two XML documents are

duplicates or not was used. The two XML documents nodes are considered as duplicate

only when their values are equal and their children nodes are duplicates too. It shows

the probability of how many the documents are duplicates. The proposed technique not

only works on content within the documents but also on how the information is

structured.

Wei Li et al [43] works on both the syntax and semantic part of web documents to

eliminate duplicate web documents. It considers keyword sequences for syntax i.e.

Standard URL Normalization

Fetch Web pages

De –tag web pages & extract body

Calculate MD5 Message digest

Compare SIG(Ui)
 Ui belongs to U

uu

Body Text Normalization

Body Text

Repo.

URL (Sig.)

Web Pages

U(reg)

U(std)

U(f)

43

structure and semantics i.e. intension feature of web documents. The keywords

sequences of different documents are compared to identify duplicate documents. If

comparison found similar then documents are considered as same and one of them is

discarded.

The summarized comparison on duplicate elimination policies both at URL as well as at

Document level is given in table 2.4.

Table 2.4: Duplicate Elimination Policies

Algorithm Berner et

al

Lee et al Agarwal

et al

Farah et

al

Luis et al Wei Li et

al

Technique Normalizat

ion Steps

Extension

to

Normalizat

ion Steps

Generate

rules

based on

crawl

logs

Hashing Bayesian

Network

Keyword

Sequences

Input URLs URLs Crawl

logs

HTML

document

XML

document

HTML

document

Results Unique

URLs

Unique

URLs

Unique

webpages

Unique

URLs

and

webpages

Unique

webpages

Unique

webpages

2.4.4 Lack of Relevancy

When a user supplies a query, the results shown by the search engine is based on user’s

query keyword matching. The documents shown by the search engine are based on

content matching. But these results are not always relevant to user’s query. To provide

results more relevant, database should be richer. So, the crawling should also be done

on the basis of structure of webpages. The structure of documents is in HTML form

which is called as DOM tree i.e. Document object model [91]. Dom is HTML

representation of a web document. The composition of HTML documents consists of all

nodes whether it is an element, attribute, text etc. In DOM tree, the start node is

document node and its branches are extended till all text nodes covered. The structure

of a document is given in figure 2.18.

44

Figure 2.18: DOM Tree

With the help of this DOM tree, HTML structure of web documents is used to check

similarity between them. If the structures matched then web documents are related to

each other. There are various ways of matching structure of HTML documents. Some

are discussed below:-

Ling Yu. et al [44] structure similarity was based on the idea that there exists a similar

structure for pages belonging to a specific domain. He considered a web page in the

form of a tree with specific tags as the nodes of a tree. Structure x Structure [0...1]

returns the degree of similarity of a page structure. If the case is ideal, then if this

function has the property that the value of x1 is greater than x2 then it can be concluded

that the similarity of x1 to a page is greater than x2.

Vidal [45] proposed a method in which all the pages similar to a given page are known

before hand. A tool has used that records all the target pages on a website and hence

generate a navigation pattern to reach these targeted pages. The navigation pattern [79]

consists of a sequence of patterns that a crawler follows to reach the targeted pages.

This tool is then used to create a crawler based on these patterns which can be used to

find out similarly structured pages even if similar pages are added later on.

Wang et al [46] considered web pages in the form of HTML structure. HTML pages

are then represented in the form of XHTML pages. A document object model of web

documents is then presented. For example, if A and B are used to represent two DOM

HTML

Head Body

Title

Text

<p1> img

Text

45

trees corresponding to two HTML documents. Then similarity of A and B is given by

equation 2.7.

Where, simple Tree Matching (A, B) represents the number of maximum

matching nodes of tree A and tree B;

Sizes (X) represents the number of nodes on tree X.

When similarity (A, B) is closer to 1, tree A and tree B are very similar to each other,

and the HTML documents they represent are also very similar.

For a given specific threshold θ (0 ≤θ ≤1) , if the Similarity(A,B) ≥θ , then the two trees

are considered to be matched successfully, and the Web data will be extracted

correspondingly; otherwise, the two trees does not match.

Chunying Kang [47] also decomposed these web pages in DOM tree. Then these

DOM trees are then traversed in breadth first manner. On the basis of traversal, layer by

layer DOM node tree comparison takes place and then the sum of all floors of the

changes are computed. Some threshold value is fixed on the basis of which it is decided

that if their value is less than some threshold then pair of pages are structurally similar

otherwise not.

Nierman et al [48] gives the idea to measure structural similarity between two XML

documents. Tree edit distance based measures are used here. The algorithm developed

by them is dynamically finds the distance between any pair of documents. A collection

of documents are derived from multiple Document Type Descriptors (DTDs), pair-wise

distances between documents in the collection are computed and cluster the documents

using these distances. It is observed that the resulting clusters match the original DTDs

and has better results than previously used similarity methods.

Bertino [49] proposed a matching algorithm to compute the structure similarity

between an XML document and its Document Type Definition (DTD). The matching

algorithm by comparing the document structure against the one the DTD requires is

able to identify the commonalities and differences. Differences are due to the presence

of extra elements and not the required elements. The evaluation gives the numerical

rank of structure similarity.

Similarity (A, B) = SimpleTreeMatching (A, B)

 (sizes (A)+ sizes(B))/2 (2.7)

46

The summarized results of all structure driven crawling methods in shown in table 2.5.

Table 2.5: Summary of Structure Driven Crawling methods

Algorithm Ling Yu

et al

Vidal et al Wang

et al

Chunying

Kang

Nierman

et al

Bertino

et al

Input DOM tree HTML

page

DOM

Tree

DOM

Tree

DTDs DTDs

Technique

Used

HTML

Tag

Matching

Navigation

Pattern

Convert

HTML

to

XHTML

BFS

traversing

Edit

distance

DTD

matching

Domain Specific Input

based

General General General General

User

Intervention

No Yes No No No No

2.4.5 Ranking based on Users’ browsing behaviour

In order to get relevant results, a search engine has to modify their page rank methods

[112, 114]. It is suggested that before showing the results to the user, their interest

should also be taken into consideration i.e. Users’ browsing behaviour actions should be

involved in showing results [100, 123]. There are many actions on a web page that

indicate users’ interest. Some of them are discussed below:-

Duration on Web Page

The user opens the web page and then after sometimes closes it. This time interval is

called as duration on web page spend by the user. Morita et al. [50], Konstan [51],

Claypool [52] and many others conclude that user spends much time on the page which

is of his/her interest. According to them, the longer the user spends time on some page,

the more interested he/she is.

But this is not always true. As H. Weinreich et al. [53] found that in nearly 50% cases

user spend much time in deciding whether to move to the next page or not rather in

reading the content. It may also possible that due to images on the web page which take

47

time to show is the reason of long duration of user on that web page. Hence, it should

not be the only indicator to show user interest on that web page.

Mouse Clicks

The user uses mouse click on the web page for many reasons like for to open hyperlink,

to copy the content or may be as habitual behaviour. Goeck’s browser [54] and Letizia

[55] examined this indicator and include in the list of users’ interest shown actions. The

number of mouse clicks shows user interest on that web page. More is the number.

More interested the user is.

Keys UP and DOWN and Scrollbar Clicks

The user uses keys UP and DOWN or Scrollbar clicks for scrolling the web page. If the

number of keys uses is high that it means the user is interested in that web page. It may

be the case that due to slow downloading of web page user uses these keys again and

again. Due to high use of these keys may be longer length of the web page.

Print, Copy, Save as buttons

The user uses these buttons often when he is interested in that web page. When a user

finds something of his interest on a web page, he may want to take print or may copy

the content or may save it to his local drive for future use. So, these buttons are high

indicators of users’ interest on that web page.

Add to Favorites

This button is the clear indicator of Users’ interest. He stores the particular web page

under the category of Add to Favorites so that he can revisit it and saves his time. By

pressing the Add to Favorites button, stores the URL of that web page for user prompt

access.

Open URL

When any URL is opened by directly typing its address in address bar and then click on

go indicates that this URL is of user interest.

In other research done by Ying Xiaomin [56] obtained the following conclusions:

48

 The user's browsing behaviour can be classified into three categories, namely

physical behaviour (eye rotation, heart rate changes etc.), significant behaviour

(save the page, print page and other acts) and indirect behaviours (browsing

time, mouse keyboard operation etc.).

 Indirect behaviours are the main source to estimate user interest rate. Significant

behaviours act in the event that the user is a high degree of interest in the

corresponding page, but fewer significantly behaviours happen, a large number

of pages have no corresponding significant acts, as a result, the significant

behaviours only play a supporting role in the estimation of user interest.

 With the analysis of user's indirect behaviours, the smallest combinations of

browsing behaviours draw as follows: save a page, print a page, store a page in

the Bookmark, the number of times to visit the same page, dwell time on a page.

Many studies have found that the precision of user interests extracting without

considering user behaviours is inaccurate. Claypool [52] proposed that user behaviours

including residence time, visiting frequency, saving, editing could reveal user interests.

Weinreich [53] presented that average reading speed plays a key role in determining

the grade of user interests.

Goecks and Shavlik [54] proposed an approach for an intelligent web browser that is

able to learn a user’s interest without the need for explicitly rating pages. They

measured mouse movement and scrolling activity in addition to user browsing activity

(e.g., navigation history). It shows the somewhat better results are obtained as compared

to previous work.

Kun Xing et al [57] suggested that some actions like scrolling, mouse clicking should

be included in the total browsing time. They worked on user browsing history and

analyze documents which user has visited. On analysis, he concludes that browsing

time and printing are important actions in showing users’ interest.

Zhao et al [58] proposed a mechanism for service providers to understand the users’

needs. After analyzing user browsing behaviour, this mechanism understands users’

needs and accordingly providing services to them. Each user has individual needs and

required different services. With the help of this mechanism, the service provider

provides different services to different users. Support Vector Machine is used here for

49

analyzing users’ browsing behaviour. This is supervised learning method in which

browsing indicators are classified and helps in predicting their interest.

Yang et al [59] proposed personalized teaching software based on students interest.

Students’ interest was calculated by analyzing their browsing behaviour. By knowing

their interest, they developed the software and cater the need of students in efficient

way.

The all summarized browsing indicators in shown in table 2.6.

Table 2.6: Summarized Browsing Indicators

Browsing Indicators Xiaomin,

Claypool,

Weinreich

Goecks &

Shavlik

Kun Xing

et al

Zhao et

al

Yang et

al

Hyperlinks Clicked No Yes No No Yes

Scrolling Activity No Yes No No No

Mouse Activity No Yes No No Yes

Keyboard

Activity

No No No No No

Time on Page Yes Yes Yes No Yes

Print No No Yes Yes Yes

Prediction user’s

interest for the page

No Yes Yes Yes Yes

Explicit rating No No No No No

Saving No Yes Yes Yes Yes

Number of visit No No No Yes Yes

2.5 PROBLEM IDENTIFIED IN EXISTING APPROACHES

A critical look at the available approaches indicates the following issues need to be deal

with towards building an effective Migrating Crawler:

 In distributed architecture, multiple crawling instances download each and every

page whether relevant or not which may leads to the unnecessary congestion on

the network.

50

 In existing URL assignment strategies due to wrong selected threshold value,

some of the crawler node may be left unattended and which may lead to uneven

load distribution.

 The existing URL scheduling methods fails when the system grows i.e. methods

are non scalable.

 To maintain quality of database, MD5 hashing is used to eliminate duplicate

contents. It is observed that this method generates the collision i.e. same digest

values are computed for different inputs.

 None of the structure based techniques consider structure matching at crawling

level to maintain database richer with more relevant pages

 None of the users’ browsing behaviour technique considers all the indicators to

find the actual users’ interest in existing researches. Also no ranking technique

considers users’ browsing behaviour while ranking the webpages before

presenting them to the user.

A design of a structure driven cooperative migrating crawler for retrieving quality data,

deals with all the identified shortcomings/problems found in existing work. The

architecture of the proposed work with brief discussion on each component is given in

next chapter.

51

CHAPTER III

DESIGN OF A STRUCTURE DRIVEN, COOPERATIVE

MIGRATING CRAWLER FOR RETRIEVING QUALITY

DATA

3.1 INTRODUCTION

The proposed Search Engine works in three layers namely remote web layer, crawler

layer and user layer. Each layer is well interfaced with other layers to perform the

search engine function in appropriate manner. The figure 3.1 shows the three layer

architecture of the proposed work.

Figure 3.1: Three layer architecture of the proposed work

REMOTE

WEB LAYER

CRAWLER

 LAYER

USER

LAYER

From Mapping

Manager

Page attributes

Buffer

STRUCT &

URL

Something to

organize

URL_Read

y
Web Page

Query

Check Crawl

More

Specialized
Migrants

STRUCT Buffer

STRUCT

Buffer

Low Rating

webpage

Re-rank

Actions

Results

URL-Migrant

Pair Buffer

 URLs

Match

WWW Downloaded webpages

Search Engine

Interface

Migrating

Crawler

Manager

URL

Scheduler

Structure

Extractor

Ranked Database

User

Behaviour

Analyzer

Duplicate

Eliminator

DOC & URL

REPOSITORY

Migrants
Migrants

Structure

Driver

Low

Rating

RANKER

URL

Organizer

52

The working of all three layers is given below:-

a) Crawler Layer

At this layer, all the work is mainly done by crawler. This layer takes seed URLs as

input. After getting URLs list, URL Organizer organizes them in some order to be

distributed among the Migrants for crawling. URL Scheduler is responsible for picking

up a migrant from the executing/available migrants which is then supplied a URL for

downloading. Migrants crawl the web as depicted in Remote Web Layer. One more

module is there which is responsible for extracting the structure of webpages called as

Structure Extractor and supplied to Migrating Crawler Manager. Migrating crawler

manager then creates more Migrants dynamically and supplies these structures along

with URL for structure driven crawling of the web.

b) Remote Web Layer

At this layer, Migrants come into action. Two types of Migrants are specified at this

layer. These are Migrants and Specialized Migrants. Migrants are the normal Migrant

then gets the URLs from migrating crawler manager from crawler layer and crawls the

web. Whereas Specialized Migrants are responsible for structure driven crawling. They

are supplied with structures of webpages whose IDF is high. These structures are then

stored in STRUCT Buffer which are then utilized by another module called as Structure

Driver. The role of structure driver is to match the structure of those webpages that are

crawl by specialized migrants and the selected webpages are then stored to DOC &

URL Repository which is at Crawler Layer for further processing.

c) User Layer

This layer contains search engine interface where user supplies a query and gets the

results. A ranked database is maintained by two modules namely duplicate eliminator

and user behaviour analyzer. The role of duplicate eliminator is to remove redundancy

from the downloaded webpages before storing them to ranked database. The User

Behaviour Analyzer is responsible to capturing the users’ interest and stores them as

webpage attributes so that they may be used while ranking of the webpage.

53

3.2 DESIGN OF A STRUCTURE DRIVEN, COOPERATIVE MIGRATING

CRAWLER FOR RETRIEVING QUALITY DATA

The detailed design of the Structure driven, cooperative, migrating crawler for

retrieving quality data is shown in figure 3.2. It takes the input from URL queue, where

pair of URL and its sitemap is stored.

Figure 3.2: Architecture of Proposed Migrating Crawler

The system consists of the following major functional components:

i. URL Organizer

ii. URL Scheduler

iii. Migrating Crawler Manager

Results

REMOTE WEB LAYER

Low rated

webpage

STRUCT

Buffer

Weekly

Hourly

Daily

Daily

Weekly

Hourly

Migrant
Migrant

URL SCHEDULER

URLs

Queue

DOC &URL

Repository

Ranked

Database

URL

ordering

WWW

Migrant

Unique URLs

Buffer

Syntactically

Similar URL

Eliminator

MIGRATING CRAWLER

MANAGER

Migrant

Communication

Module

URL Classifier

QUERY USER
SEARCH ENGINE

USER

BEHAVIOUR

ANALYZER

STRUCTURE

EXTRACTOR

Unique &

Ordered

URLs

Buffer

STRUCTURE

DRIVER

DUPLICATE

ELIMINATOR

CRAWLER LAYER

USER LAYER

Crawl_More

URL ORGANIZER

Specialized

Dynamic

Migrants

54

iv. Duplicate Eliminator

v. User Behaviour Analyzer

vi. Structure Extractor

vii. Structure Driver

A brief discussion on each of these functional components is given below:

3.2.1 URL Organizer

The role of URL organizer is to organize the URLs before scheduling them migrants.

After getting signal (something to classify) from Mapping Manager, it takes URLs from

DOC & URL Repository. It consists of following three functional components:-

 (i) Syntactically Similar URL Eliminator

 (ii) URL Ordering

 (iii) URL Classifier

A brief discussion on each of these components is given below:

(i) Syntactically Similar URL Eliminator

It is responsible for eliminating URLs which has same syntax. This module gets the

input from URL Queue and applies Standard Normalization process to those Urls for

identifying the syntax similar URLs. There are six normalization steps that help in

identifying the similar syntax URLs as discussed below:-

 Step 1: Change letters in the scheme component into the lower-case letters

 Step 2: Change letters in the host component into the lower-case letters

 Step 3: Eliminate the default port (i.e., “:80”)

 Step 4: Transform a null path string into the slash symbol

 Step 5: Decode unreserved characters

 Step 6: Eliminate the fragment component

With the help of these normalization steps, syntactically similar URLs are identified. By

using string matching [105] the identified syntactically similar URLs are then

eliminated.

After applying above steps on URLs list, the unique URLs list then stored in Unique

URL buffer.

55

(ii) URL Ordering

The aim of this module is to order the URLs in efficient manner so that maximum

coverage in less time can be achieved. It takes the input from Unique URL buffer,

where along with URL its sitemap [61, 97] is also provided. A sitemap is an XML file

in which a list of links available on that particular site is mentioned. Sitemap also

contains the change frequency, last modification and priority of each link contained in

that site. It is maintained by Website owner so that his site can be fully access by the

crawler. With the help of this information, the URL which has maximum link is placed

at the first position and so on. It may be the case that after getting hyperlinks of each

webpage corresponding to an URL, some links appear in more than one webpage. So,

URL Ordering module deletes one of the common links to prevent redundancy of same

link. The ordered links are stored in unique and ordered URL list.

(iii) URL Classifier

The URL Classifier module takes the input from unique and ordered URL list and

classifies them with the help of Sitemaps. The basis of classification is page change

frequency (i.e. hourly, weekly, monthly etc) given in sitemap and makes their separate

lists. This helps in assigning the URLs to different set of Migrants on the basis of their

change frequency.

The algorithm for URL Organizer is given in figure 3.3.

URL_Organizer

Do Forever

Step 1: Wait (something_to_classify)

 2. Pick URLs from URL queue.

 3. Call Syntactically Similar URL Eliminator ()

3.1 Check for duplicate URLs after undergoes normalization process.

 4. Call URL Ordering ()

4.1 Calculate weight of each URL with the help of sitemap.

4.2 Ordered the URLs with the highest weight first.

 5. Call URL Classifier ()

5.1 Classify URLs on the basis of their change frequency i.e. hourly, daily,

weekly etc.

 6. Pick the first URL and send it to URL Scheduling module.

 7. Signal (URLs_ ready).

Figure 3.3: Algorithm: URL Organizer

56

The detailed description of the URL Organizer module is given in subsequent chapters.

The working of URL scheduler is given below.

3.2.2 URL Scheduler

The proposed URL Scheduler module gets various lists of URLs from URL classifier.

URL Scheduler is responsible for picking up a migrant from the executing/available

migrants which is then supplied a URL for downloading. The scheduling is done on

basis of criterions of URLs as well as machine on which the migrants is presently

executing. To get best alternative by using both criterions an Analytical Hierarchy

Process (AHP) has been applied. It works on situation where multiple criterions are

available for taking decision. In scheduling URLs, this AHP works well. The AHP

methodology in brief is given below:-

a. First, design a structural modal with goal, criterions and alternatives. In this

work, goal is to select a Migrant for URL, criterion are Migrants information

like its load, URL capacity, N/W Bandwidth etc and alternatives are various

available/executing Migrants.

b. Then, weights of different criterions are evaluated.

c. Next, a score is marked for each criteria of a migrant.

d. Then, a total weight is calculated for each given migrant.

e. Finally, Migrant with the maximum weight gets the next URL for downloading.

Following are the criterions which are used here:-

 Agent Load: the number of task executed at Migrant side is considered as its

load.

 Agent Capacity: the size of hard disk available at Migrant side

 Network Latency: amount of time required to transfer a data from source to

destination

 Network Bandwidth: Data rate supported by network connection

 Loading rate: ratio of the number of crawl tasks to memory capacity

 URL Capacity: it is measured as in terms of number of forward links

 CPU: it is expressed in terms of frequency

 URL Parent Rank: the rank of parent URL from which it is linked.

57

The relative importance of each criterion is calculated with the help of 9-point scale

which is given by Saaty [60]. Similarly, the contribution of each criterion with available

alternatives is calculated using same scale. In this case, Migrants are alternatives. So,

contribution of every criterion for each Migrant is calculated. At end, total contribution

in terms of weight is calculated and the Migrant with maximum weight has been

assigned highest rank in terms of getting the next URL.

The algorithm for URL Scheduler is given in figure 3.4.

Figure 3.4: Algorithm: URL Scheduler

After selecting migrant, URL scheduler send signal (Migrant_Selected) to the

Migrating Crawler Manager and scheduled Migrant with maximum weight gets the

URL for downloading. The detailed description with experiment analysis is given in

subsequent chapters.

3.2.3 Migrating Crawler Manager

The Migrating Crawler Manager is one of the main modules of proposed architecture. It

is the responsibility of migrating crawler manager to create multiple Migrants and with

the help of these Migrants crawl the web as maximum as possible. It takes the Migrants

information from Migrant Communication Module (i.e. load, URL capacity, N/W

Bandwidth etc) and provided it to the URL scheduler so that the URL scheduler can

schedule the appropriate Migrant based on available information. URL scheduler picks

up an appropriate migrant on the basis of available information and provides it to the

URL for downloading. It also creates the migrants depending upon the classification of

URLs done by URL classifier like Migrants for daily change webpages, weekly change

webpages and so on. For each list, it has a different set of migrants and accordingly

schedules the URLs. After getting list of URLs, migrants crawls the web and send

URL_Scheduler ()

Step 1: Do Forever

 2: wait (URL_Ready)

 3: Pick URLs from DOC & URL Buffer

 4: Get Migrants Information from Migrating Crawler

 5: Apply AHP technique on available Migrant data to schedule Migrant.

 6: Supply the URL to the migrant with the maximum weight.

 7: signal (Migrant_selected)

 8: End

58

signal (done) to migrating crawler manager for further processing. The algorithm of

Migrants is given in figure 3.5.

Figure 3.5: Algorithm: Migrant

The main functions of Migrating Crawler Manager are:-

1. Migrant Communication

2. Structure Driven Crawling

The detailed explanation of each of the function is discussed below.

 Migrant Communication

It is responsible for establishing and maintaining communication between the Migrants

executing and Migrating Crawler Manager. The communication between migrants and

Migrating Crawler Manager is implemented with the help of Aglets. Aglet is a java

based mobile agent technology.

There are many communication models exist like home proxy, follower, email etc. In

the present work, home proxy model is used for communication. The migrants get the

absolute URL from Mapping Manager. Migrant carries itinerary along with it. Itinerary

is a travel plan of Migrants. With the help of this itinerary aglets can roam the World

Wide Web easily. The planning of itinerary can be done on various criterions like list of

Migrant ()

Step 1: Pick the URLs assigned by the Migrating Crawler Manager and stores

them in MainQ.

 2: While (remote MainQ ≠ empty)

 2.1: Download robot.txt.

 2.2: If unable to download

 2.2.1: Set IP part as blank.

 2.2.2: Store URL in local document & URL buffer.

 Else

 2.2.3: Read robot.txt.

 2.2.4: Download extracted links.

 2.2.5: Segregate the internal and external links.

 2.2.6: Add URL and internal links to LocalQ.

 2.2.7: Store the external links to DOC & URL Repository.

 3: While (remote LocalQ≠empty)

 3.1: Pick a URL from LocalQ.

 3.2: Download documents and store them in document and URL buffer

 4: Call Duplicate Eliminator ().

 5: Signal (check)

 6: Signal (done).

59

sites to be visited in some order, what are the actions done by Migrant, source &

destination addresses, etc. In the present work, the itinerary has following attributes:-

(i) Sender & Receiver Address

(ii) URL to be fetch

(iii) Authenticity of Sender

After reaching at server side, Migrant’s itinerary is first explored and then allowed to

access the database. Migrants take the advantage of local downloading, filtering and

duplicacy detection before transmitting the downloaded pages to the central machine.

The proposed Migrating Crawler Manager has special property that it can create its

Migrant dynamically also as per requirement. These dynamically created migrants

download webpages on the basis of their structure. This structure driven crawling is

explained in next section.

 Structure Driven Crawling

The Migrants are proposed to specialize in crawling the web on the basis of webpage

structure instead of content matching. The structure of a webpage is taken in form of

DOM tree. There is a module in proposed migrating crawler architecture called as User

Behaviour Analyzer [62]. This module keep a track on users’ activity on web page like

saving the page, printing the page, time spend upon page, rating giving on page, closing

of browser etc. On closing the browser or on retyping query, feedback is taken from

user whether the information provided by search engine is sufficient? If he/she gives the

answer as NO, this module sends signal to crawler manager to create dynamic

specialized Migrants. These specialized Migrants crawls the web on the basis of

structure of webpages.

A module at crawler layer called as structure extractor extracts the structure of web

pages and sends it to the migrating crawler manager for supplying it to specialized

Migrants. After receiving the structure from migrating crawler manager, these Migrants

then crawl the web and stores only those web pages that have similar structure that of

supplied web page structure. By doing this, the repository is getting richer with the

more pages of users’ interest.

The algorithm for Migrating Crawler Manager is given in figure 3.6.

60

Migrating_Crawler_Manager ()

Do Forever

Step 1: Get Migrants information from Migrant Communication Module and send it to

the URL scheduling module

 2: Wait (Migrant_selected)

 3: Get selected migrant from URL scheduling module

 4: Send selected migrant to the remote server for crawling

 5: Wait (crawl_more)

 6: Create specialized Dynamic Migrants

 7: Take structure from STRUCT Buffer.

 8: Send picked Structure to Migrants

 9: Migrants stored these structures to remote STRUCT Buffer

 10: Migrants crawls the web

 11: wait (done)

 12: Signal (check)

 13: End

Figure 3.6: Algorithm: Migrating Crawler Manager

3.2.4 Structure Extractor

The role of structure extractor is to extract the structure of webpage. The structure of

web pages is in the form of DOM tree form. The DOM tree is extracted with the help of

IE DOM Inspector. . After getting signal (Low_Rating) from User Behaviour Analyzer,

it gets those webpages from the URL & DOC Buffer and extracted and stored it to the

STRUCT buffer. The Migrating Crawler Manager can supply these structures to the

migrants for the purpose of downloading the documents with similar structure. The

algorithm for Structure Extractor is given in figure 3.7.

Figure 3.7: Algorithm: Structure Extractor

3.2.5 Structure Driver

The purpose of structure driver is to stores only those webpages which are similar in

structure. This module is available at remote web layer. The structure driver performs

two functions: structure extraction and structure matching. It extracts the structure of

Structure_Extractor ()

Step 1: Do Forever

 2: wait (Low_Rating)

 3: Pick webpage from DOC & URL Buffer.

 4: Extract structure of picked webpage.

 5: Stored in STRUCT buffer.

 6: End

61

those webpages that are downloaded by specialized migrants. These structures are then

matched with structure stored in STRUCT buffer. The STRUCT buffer contains those

webpages structures that are supplied by migrating crawler manager to migrants for

downloading similar structure webpages. If matches, webpage gets stored in DOC &

URL repository otherwise gets stored at Migrant side and can be used later on.

The algorithm for Structure Driver is shown in figure 3.8.

Figure 3.8: Algorithm: Structure Driver

It will work only when it get signal form User Behaviour Analyzer. The detailed

architecture and experiment analysis will explain in subsequent chapter.

3.2.6 Duplicate Eliminator

After the downloading by different Migrants, Migrating Crawler Manager sends signal

(check) to the duplicate Eliminator. The Duplicate eliminator will check the webpage

before storing them to ranked database. The webpages are first checked with stored

webpages i.e. already crawled webpages and if they are found new then it will pass the

webpages to link extractor. Otherwise, compare its last modification date and time

because it may be the case that same webpage again crawled due to some changes in it.

So, if it is updated only then it gets stored. Afterwards, it also checks duplicacy in

extracted links. If extracted links matched with already visited stored links, then it gets

discarded and if they are new only then they are added to URL Queue for crawling.

Checking is done on the basis of hash values of web documents. With the help of

hashing, the time of matching reduces sufficiently.

Structure_ Driver ()

Step 1: Do Forever

 2: Pick webpage from downloaded webpages

 3: Extract structure of downloaded webpage

 4: Match structure of downloaded webpage and stored in STRUCT Buffer

 5: Matched documents/ pages get stored in URL & DOC Buffer.

 6: End

62

The algorithm for Duplicate Eliminator is given in figure 3.9.

Figure 3.9: Algorithm: Duplicate Eliminator

For storing URLs cache and memory both are used. The advantage of cache is that it

has faster access as compared to memory. The recently used URLs are stored in cache

to prevent time delay in matching duplicate URLs. As the size of cache is small, so the

limited data can only be stored on it. Many replacement algorithms are there such as

LRU, FIFO etc for replacement.. Here, LRU is used i.e. the URL which is least recently

used is removed. The detailed description and experiment analysis is discussed in

subsequent chapters.

3.2.7 User Behaviour Analyzer

This module analyses the behaviour of user on webpages [62]. The behaviour are the

actions that a user is performing on a particular webpage. It also maintains date of visit,

URL and feedback information of each webpage related to each user. A browser is

developed to store all these actions in a database. A data mining algorithm is applied on

this stored information. Apriori data mining algorithm is used here. With the help of

calculated values of support and confidence, the weight of webpage is calculated. In

Apriori algorithm, Confidence value(C) can be calculated as per equation 3.1.

Confidence value(C) = support_count (most frequent action)

 support_count (subset of most frequent action) (3.1)

Duplicate_Eliminator ()

Step 1: Do Forever

 2: Wait (check)

 3: Take webpage from DOC & URL Buffer

 4: generate its SHA-1 Hash

 5. Match with existing Digest values of each web page available in stored page

Database.

 6. If (exists)

6.1 Remove the web page

 7. Otherwise

7.1 Store web page in ranked database

7.2 Check duplicacy in extracted links

 7.2.1 If (exists)

 Check for modification

 7.2.2 Otherwise

 Added to URL Queue

 8. End

63

Based on the confidence value of each subset the weight of a webpage can be calculated

as per given equation 3.2.

Pwt= C1+C2+C3+………..+Ci= ∑Ci (3.2)

where C1, C2, C3…. are the confidence values of subsets of frequent occurring actions

which satisfy minimum confidence threshold.

This weight is considered as rank of that particular webpage. The rank of webpage is

highest whose page weight is highest. This module also stored the feedback of

information provided by proposed browser. This information is stored with webpage

who get highest rank at the time of feedback. Either on closing the browser or on

retyping the query, a pop up window is opened and asked the User that is the

information provided by the search engine is sufficient? If he says yes then fine

otherwise it sends signal to crawler manager to do more crawling for similar

information. On getting signal from user behaviour analyzer, crawler manager creates

specialized Migrants to crawls the web.

The algorithm for User Behaviour Analyzer is given below in figure 3.10.

User Behaviour Analyzer ()

Do Forever

Step 1: Read visited pages.

 2: Analyze that page.

 3: Maintain log files of the browsing behaviours.

 4: If (satisfied==No)

4.1: Signal (crawl_more)

4.2: Signal (Low_Rating)

 5: Apply Apriori algorithm on log files.

 6: Calculate Page Weight on the basis of user behaviour

 7: Rank the webpage as per weight calculated.

 8: Store them in ranked database

 9: End

Figure 3.10: Algorithm: User Behaviour Analyzer

The detailed description of the each module of the proposed system is given in

subsequent Chapters.

64

65

CHAPTER IV

DESIGN OF A NOVEL URL SCHEDULING MECHANISM

USING ANALYTIC HIERARCHY PROCESS (AHP)

4.1 INTRODUCTION

With the increase in the size of the web, it is necessary to ensure the richness and

uniqueness of information available on it. The crawler is the main module responsible

for gathering the information from the web. There are many design issues [63] while

designing the crawler like uniqueness and richness of database, cooperation between

migrants, fast and efficient crawling. There are many types of crawler exists such as

Parallel Crawler, Migrating Crawler, Focussed Crawler, Hidden Crawler, Incremental

Crawler etc. In this chapter, the capabilities of migrating crawler [6] are being utilized

for designing an efficient crawling system. The proposed Crawler tries to achieve all the

design issues needed for efficient crawling. In this work, the improvement in quality

with minimum communication overhead of database is achieved by proper scheduling

of Migrants.

4.2 UNIFORM RESOURCE LOCATOR (URL)

URL is uniform resource locator. It is used to address a resource. In World Wide Web,

the resource is a web page and URL is the address of that web page. User searches by

query and search engine in return show URLs of corresponding web pages from its

repository. The Search Engines repository is maintained by a Crawler. Crawler gets the

seed URL from URL Queue and starts the crawling process. It fetches a web page

corresponding to that seed URL and extracts the internal URLs from that page and

added to URLs Queue. Crawler picks the URLs from URL Queue and the process

repeats until the Queue is empty. Now, as the size of the web increases tremendously,

retrieving the information available on the net is becoming a very tedious task. The task

becomes more difficult when crawler fetches the same page but with different URLs.

This problem is designated as DUST [39, 74] i.e. different URLs with similar text.

66

DUST effect the whole working of Search Engines i.e. crawling, indexing, ranking etc.

There are many reasons of DUST. Some are listed below:-

1. To Balance Load

2. To served as Backups

3. More user-friendly i.e. By creating shortcuts

4. To reduce network traffic

There can be many more reasons for duplicate URLs. Creating duplicate URLs may be

benefits to Internet Users or webmasters but creating trouble to working of the search

engine. By downloading the same page again will waste network bandwidth then

creating an index of these duplicate URLs will waste time and effort. Moreover, at

search engine interface when the user sees the similar page again then he or she may get

irritated. In this work, duplicity at URL level is trying to eliminate.

The URL is composed of five components namely the scheme, authority, path, query

and fragment components [37] as shown below:

http://www.jabong.com/women/clothing/Biba/?q=biba#pos=3

scheme authority path query fragment

The brief description of each component of URL is given in Chapter II.

There are URLs which points to the same page. This problem is designated as DUST

[39] i.e. different URLs with similar text. DUST effect the whole working of Search

Engines i.e. crawling, indexing, ranking etc. In order to remove this duplicity at URLs

level proper processing has been adopted. Before checking for duplicity in URLs, URL

standard Normalization process [37] is applied to them. This process eliminates the

syntactically similar URLs. There are three types of normalization process:

1. Case normalization

Conversion of scheme component letters and hostname to lowercase is done in

this type of normalization

2. Percent-encoding normalization

All unreserved characters like ~, _ etc are decoded into %form.

3. Path segment normalization

http://www.jabong.com/women/clothing/Biba/?q=biba

67

Remove all ‘.’, ‘..’ from the path component of the URL.

Remove the fragment component from the URL i.e. after#.

Eliminate port number like 80.

Remove ‘/’ from the end and add ‘/’ at path location if it is null.

With the help of these normalization processes, syntactically similar URLs are

identified. By using string matching the identified syntactically similar URLs are then

eliminated.

Sitemap [61] is also used here to get the information of all links present in a web page.

Basically, sitemap gives the number of links present in a web page. This helps in

ordering the URLs before downloading them.

4.3 PROPOSED WORK

The architecture of proposed migrating crawler consists of following major modules

and is shown below in figure 4.1.

1. URL Ordering Module

2. Migrant Communication Module

3. URL Scheduling Module

4. Migrating Crawler Manager

Figure 4.1: Architecture of Proposed Migrating Crawler with URL Scheduling

Agent selected

URLs Ready

URL Scheduling

Module

URLs

Queue

URL ordering

module

Unique URLs

Buffer

Apply Standard URL

Normalization

Migrating Crawler

Manager

Migrant

Communication

Module

Unique &

Ordered

URLs list

68

The detailed description of each module is given below:-

4.3.1 URL Ordering Module

It takes normalize URLs from URL Queue as input and removes duplicates if any. For

ordering the URLs it takes the help of sitemap which contains the graph of internal

links corresponding to each URL. The URL which has the highest number of links is

considered for first downloading.

The number of internal links found in an URL with the help of sitemap is considering

the weight of it. As discussed earlier, the multiple URLs may have the common links

which may lead to duplicate downloads. So for removing these duplicate links DOM

tree graph of each URL is used. And after every download, each URL will generate its

new DOM tree graph with that commonly downloaded link may be deleted from it.

Let’s take an example,

In the following example, 6 URLs from the URL Queue namely A, B, C, D, E, F have

been taken and their internal links are obtained from Sitemap. The links which are

common are marked black as shown in figure 4.2:

Figure 4.2: DOM Trees of URLs

Small case letters are used for representing the internal links as given below:-

For site A: a1, a2, a3, a4 are internal links

Likewise,

B: b1, b2, a1, b3.

C: c1, c2, c3.

D: d1, d2, d3, d4.

E: e1, e2, b3, e3, b1.

a) DOM Tree of A a) DOM Tree of B a) DOM Tree of E a) DOM Tree of F a) DOM Tree of D a) DOM Tree of C

69

F: f1, f2, d1, e1.

With the help of DOM tree graph, internal links of each website are obtained. Now,

URL with highest internal links is considered to be submitted to crawler manager and

rest are ordered accordingly. The reason behind this consideration is more the number

of internal links means maximum coverage of Web by crawling a maximum number of

links.

So, the obtained order is E, A, B, D, F, C. After the selection, all other URLs are

matched with this initially selected URL. The internal link which is common to both

will be deleted from other URLs to avoid multiple crawling of the same URL and the

process continues with other URLs. This can be done as follows:

E∩A= Ø, E∩B=b1, b3, E∩C= Ø, E∩D= Ø, E∩F=b1.

By this comparison with E, b1 and b2 links may be removed because of duplicate

matching. After crawling of E, the selection algorithm starts again with the following

situation:

A=a1, a2, a3, a4.

B=b2, a1.

C=c1, c2, c3.

D=d1, c1, d2, d3.

F=f1, f2, f3, a1.

Likewise reapplying selection algorithm on above links, the next new order will be A,

D, F, C and B. This process repeats until the URL Queue is empty. It may be observed

that the order has changed after first selection because of common internal links

available in other URLs. So, every time when URL is to be selected, the internal links

of every URL are to be calculated every time before submitting to migrating crawler

manager.

The algorithm for URL Ordering is given in figure 4.3.

70

Figure 4.3: Algorithm: URL Ordering

4.3.2 Migrant Communication Module

In migrating crawler, crawler manager create its Migrants and send them to WWW.

These Migrants then behalf of migrating crawler crawls and send the downloaded pages

to the Migrant machine. The communication between migrant and server is

implemented with the help of Aglets. Aglet is a java based mobile agent technology.

The communication architecture is given below in figure 4.4.

Figure 4.4: Migrant- Server Communication

When a migrant visits server then it is necessary that server machine also has aglet

technology on its machine. Without aglet at both sides, communication can’t take place.

 Server

Environment

Aglet Viewer

DB

Migrant Manager

AGLET Viewer

 Server

Environment

 Aglet Viewer

DB

-- -

- --

URL Ordering Module ()

Do Forever

Step 1: Pick URLs from URL queue.

 2: Check for duplicate URLs after undergoes normalization process.

 3: Find out a number of links of each URL with the help of sitemap.

 4: Order the URLs with the highest number of internal links first.

 5: Pick the first URL and send it to URL Scheduling module.

 6: Signal (URLs_ ready).

 7: After ordering, all URLs matched with initially selected URL

 7.1: Internal common links get removed

 8: Again go to Step 4.

 9: End

71

Aglet Model

It is an IBM’s Agent Technology for programming migrant in Java. In this proposed

work, home proxy model is used for communication. In this method, sender knows the

receiver’s name. It has lookup service through which it gets the receiver’s address. The

sender knows the URL as name of server and from DNS resolver gets the

corresponding address.

The Aglet architecture has following key concepts:-

 Aglet: it is migrant in Java technology. It visits different machines and these

machines have aglet technology in them.

 Proxy: It serves as aglet representative. It is responsible for protection of aglets

from outside sources. It can also provide location transparency i.e. hide the

location of aglet from other aglets.

 Context: it is aglet execution place. It provides aglet running environment

where aglets can run conveniently and also protect from malicious aglets. The

server’s address and their name combined become the context name.

 Identifier: A unique number which is associated with each aglet and also it is

permanent throughout the lifetime of an aglet.

During the lifetime of an aglet, it comes across the number of states or operations as

shown in figure 4.5.

Figure 4.5: Migrant Life Cycle

Create

Clone

Context B

Context A

Retract

Dispatch

Deactivate

Aglet Aglet

Activate

Dispose of

72

The explanation of each state is given below:-

 Creation: it is created in context and an identifier is assigned to it during

this phase.

 Cloning: it is the phase when aglet creates its identical copy called as clone.

Its clone gets the different identifier.

 Dispatching: During this phase aglet changes its context from source to

destination. After reaching in destination context, it is restarted its execution.

 Retraction: in this phase aglet will remove from the current context and

inserted into requested context.

 Activation and deactivation: the ability of an aglet to halt its execution and

store its state is called as deactivation. To restore its execution is called as

activation of an aglet.

 Disposal: When aglet current execution will halt and remove it from its

current context then an aglet is said to be in disposal state.

During the execution of migrants, they will undergo in any of the phases. The cloning

ability of aglet helps in creating migrants dynamically. As per load increases or

requirement arises, migrants will be available always. Similarly, after Migrants work

finishes, it can dispose also. When any high priority migrant comes, current executed

migrants can be halt and resume later.

Along with mobile code, aglet also carries itinerary along with it. Itinerary is a travel

plan of migrants. With the help of this itinerary aglets can roam the World Wide Web

easily. The planning of itinerary can be done on various criterions like list of sites to be

visited in some order, what are the actions done by Migrant, source & destination

addresses, etc. In this proposed work, the itinerary has following attributes:-

(i) Sender & Receiver Address

(ii) URL to be fetch

(iii) Authenticity of Sender

73

After reaching at server side, Migrant’s itinerary is first explored and then allowed to

access the database.

4.3.3 URL Scheduling Module

The URLs stored in Unique URL Buffer are required to assign to appropriate migrant.

With the help of Migrant communication module, migrating crawler manager gets the

information such as agent load, network latency, network load, URL capacity etc about

every migrating crawler and URLs. On the basis of this information, the appropriate

migrating crawler is selected. An URL scheduling module is designed in order to get an

optimal migrant for each URL [93, 103].

The algorithm for URL scheduling is given in figure 4.6.

Figure 4.6: Algorithm: URL Scheduling Module

For finding the appropriate migrant for picked URL, the following are the criterion

taken to design module and are discussed below:-

 Agent Load: the number of the task presently executing at agent side.

 Agent Capacity: the size of hard disk available at agent side

 Network Latency: amount of time required to transfer a data from source to

destination

URL_Scheduling ()

Do Forever

Steps 1: Wait (URLs_ ready)

 2: Pick the URL from Unique URL buffer

 3: Ask Migrants information from Migrating Crawler manager.

 4: Find an optimal migrant for picked URL.

 4.1: Collect all the criterions for selecting Migrants

 4.2: Construct the structural model

4.3: Compute comparison matrix of collected criterion

 4.3.1: Compare Pair-wise criteria using Saaty scale (1980).

4.3.2: Construct Normalized pair-wise matrix and calculate Wn as weight

of matrix

4.4: Calculate importance of each criterion with respect to available alternatives

and also weight Wi for each matrix for each criterion.

 4.5 Overall Score= WnxWi

 5: Assign the URL to the migrant whose Overall score is highest. (i.e. Rank 1)

 6: Repeat the steps 1-4 till the Unique URL buffer is empty.

 7: Signal (migrant_ selected)

 8: End

74

 Network Bandwidth: Data rate supported by network connection

 Loading rate: ratio of the number of crawl tasks to memory capacity

 URL Capacity: it is measured as in terms of number of forward links

 CPU: it is expressed in terms of frequency

 URL Parent Rank: the rank of parent URL from which it is linked.

To take a decision with these criterions, the decision-making method called as Analytic

Hierarchy Process (AHP) is used. The AHP methodology, in brief, is given below:-

1. First, develop a structural model of the problem. It consists of three layers

namely goal, criterion, and alternatives

2. Next, comparison matrix is prepared to find out how relative important of each

criterion in achieving the goal.

3. Then, find out priority of each alternative in terms of their contribution to each

criterion

4. Then, check the consistency of the given information on the relative importance

of each criterion.

5. At the end, Rank all the alternatives and to find the best alternative based on the

above steps.

Illustration

The Proposed decision-making procedure using AHP is given below:-

Step 1: Structural Model Design

In this step, the structural model is designed in which selecting a migrant as a goal at

the first layer, characteristics of the migrant as criterions at middle layer and migrating

crawlers as alternatives at the bottom layer as shown in figure 4.7.

75

Figure 4.7: Structural Model

Step 2: Comparison Matrix

In this step, the relative importance of each characteristic of migrants is calculated.

These characteristics can be obtained from migrating crawler manager as it has all the

information about each migrant. A matrix is formed in which relative importance of

criteria are calculated by making pair-wise comparisons in following two steps:-

Step 2.1 Assigning the relative importance to criterion

To develop the comparison matrix, the relative importance among criterion is required

to be computed. It is difficult to measure the criteria of the migrant directly as each

criteria has different measuring unit. To overcome this issue, nine-point given by Saaty

[60] was used as shown in Table 4.1. A small workshop of experts in field of Search

Engines was conducted to assign relative importance to criterion using the nine point

scale. The Expert as per their opinion have assigned the weight to each criterion with

respect to other criteria such as an expert finds the URL capacity is 8 times better than

the Agent Load and most of other also agreed on same. This is shown in Table 4.2.

Select an Optimal Migrating Agent

Agent

Load

Agent

Capacity

CPU N/W

Latency

N/W

Bandwidth

URL Parent

Rank

URL

Capacity

Loading

Rate

MIGRATING AGENT 1 MIGRATING AGENT 2 MIGRATING AGENT 3 MIGRATING AGENT N

76

Table 4.1: Judgement Scale

Numerical Rating Verbal Judgement

9 Extremely preferred

8 Very strongly to extremely preferred

7 Very strongly preferred

6 Strongly to very strongly preferred

5 Strongly preferred

4 Moderately to strongly preferred

3 Moderately preferred

2 Equally to moderately preferred

1 Equally preferred

Step 2.2 Weight calculations of each Criteria

Weight of each criterion is calculated by adding the values in each column, dividing

each element by its column total and by taking the average of elements in each row.

This calculated weight is considered as the relative importance of each criterion with

respect to other. The highest value of weight is considered as most important criteria

than others.

Example:-

In given table 2, criterion importance with each other is expressed such as URL

capacity is 7 times more important than agent load, Agent load is 2 times more

important than N/W bandwidth and so on. The weight of each criterion is calculated in

following steps:-

 (i) First, sum the values in each column

 (ii) Then, divide each element by its column total.

 (iii) Then, take the average of elements in each row.

For instance, the weight of the URL Parent Rank is calculated:-

(i) Total= 1/8+1/2+1+1/7+1/2+1/3+1/4=2.851

77

(ii) Divides each row element by its column total.

(iii) Take an average= (8/21.833+2/ 4.176+1/2.851+7/18+4/10.583+5/13.5+4/18)/7

This comes out to .373. Similarly, all weights are calculated as shown in table 4.2.

Table 4.2: Criterion Comparison

Attributes Agent

Load

URL

Capacity

URL

Parent

Rank

N/W

Bandwidth

Loading

Rate

Agent

Capacity

N/W

Latency

Weights

Agent

Load

1 1/7 1/8 2 ¼ 1 3

0.0735

URL

Capacity

7 1 ½ 5 4 3 4

0.273

URL

Parent

Rank

8 2 1 7 4 5 4

0.373

N/W

Bandwidth

½ 1/5 1/7 1 1 1 1

0.055

Loading

Rate

4 ¼ ½ 1 1 2 3

0.116

Agent

Capacity

1 1/3 1/3 1 ½ 1 2

0.061

N/W

Latency

1/3 ¼ ¼ 1 1/3 1/2 1

0.046

Total 21.833 4.176 2.851 18 10.583 13.5 18

Step 3: Priority computation for each alternative

Next, priority is calculated of each alternative with respect to the every criterion. For

this, alternatives are compared pair-wise and find out how well each alternative serves

each criterion. The priority is calculated in terms of weight by comparing every migrant

with respect to all criterions. Suppose there are N numbers of migrant alternatives, M

are the number of criterions then M number of NxN matrices will be constructed. The

matrix formed with the help of data of each migrant and URLs like its load, bandwidth,

URL capacity etc. In given matrix, the number shows how much these criteria are

important to each other like MC1 is 4 times more better criterion than MC2 in terms of

agent load. The weight is calculated by the same step as done in step 2.

For example, for MC1, first, sum its column elements (1+1/4+1/5+1/6=1.62), and then

divide the elements with the sum. Then, take an average of its row elements

[(1/1.62+4/5.66+5/9.5+6/12)/4]. This comes out to be .597. Similarly, all weights are

calculated with respect to every criterion as shown in table 4.3 to table 4.9.

78

Table 4.3: Migrants Comparison w.r.t Agent Load

Agent Load MC1 MC2 MC3 MC4 Weights

MC1 1 4 5 6 0.597

MC2 1/4 1 3 3 0.222

MC3 1/5 1/3 1 2 0.108

MC4 1/6 1/3 ½ 1 0.073

Total 1.62 5.66 9.5 12

Table 4.4: Migrants Comparison w.r.t URL Capacity

URL

Capacity

MC1 MC2 MC3 MC4 Weights

MC1 1 1/6 3 ½ .119

MC2 6 1 7 3 .580

MC3 1/3 1/7 1 1/7 .500

MC4 2 1/3 7 1 .250

Total 8.33 1.64 17 4.64

Table 4.5: Migrants Comparison w.r.t URL parent Rank

URL parent

Rank

MC1 MC2 MC3 MC4 Weights

MC1 1 1/3 1/7 ½ .075

MC2 3 1 1/3 1 .191

MC3 7 3 1 4 .575

MC4 2 1 ¼ 1 .160

Total 13 5.33 1.72 6.5

79

Table 4.6: Migrants Comparison w.r.t N/W Bandwidth

N/W

Bandwidth

MC1 MC2 MC3 MC4 Weights

MC1 1 3 4 6 .547

MC2 1/3 1 2 3 .224

MC3 ¼ ½ 1 4 .163

MC4 1/6 1/3 ¼ 1 .066

Total 1.75 4.83 7.25 14

Table 4.7: Migrants Comparison w.r.t Loading Rate

Loading

Rate

MC1 MC2 MC3 MC4 Weights

MC1 1 1/7 ¼ 1/3 .060

MC2 7 1 3 4 .551

MC3 4 1/3 1 3 .260

MC4 3 ¼ 1/3 1 .129

Total 15 1.72 4.58 8.33

Table 4.8: Migrants Comparison w.r.t Agent Capacity

Agent Capacity MC1 MC2 MC3 MC4 Weights

MC1 1 ¼ ¼ 1 .094

MC2 4 1 1/4 3 .253

MC3 4 4 1 4 .555

MC4 1 1/3 ¼ 1 .099

Total 10 5.58 1.75 9

Table 4.9: Migrants Comparison w.r.t N/W Latency

N/W

Latency

MC1 MC2 MC3 MC4 Weights

MC1 1 2 3 1 .362

MC2 ½ 1 3 1 .255

80

N/W

Latency

MC1 MC2 MC3 MC4 Weights

MC3 1/3 1/3 1 ½ .111

MC4 1 1 2 1 .272

Total 2.83 4.33 9 3.5

Step 4: Checking consistency using consistency ratio:

After calculating weights, consistency of the given information is checked

corresponding to relative importance between criterion and also for available migrant

alternatives using the values of Consistency Ratios. Consistency Ratio (CR) measures

how consistent the judgments have been relative to large samples of purely random

judgments. Consistency Ratio explained by Saaty [] as the ratio of consistency index

(CI) and random consistency index (RI):-

CR= CI/RI

CI is consistency index and calculated by using formula given in equation 4.1.

Where, is summation of each weight and sum of columns of comparison

matrix with respect to other criterion and n is number of criterion being

compared (i.e. size of pair-wise comparison matrix).

As per Saaty [60], Random index (RI) is the consistency index of a randomly generated

pair-wise comparison matrix. RI depends on the number of elements being compared

(i.e. size of pair-wise comparison matrix) and takes on the following values as shown in

table 4.10.

Table 4.10: Random Index

N 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

If the value of consistency ratio is smaller or equal to 10%, the inconsistency is

acceptable. For consistency ratio higher than 10% (i.e. 0.1), the judgment needs to be

revised.

For instance, the CR of Table 4.3 is calculated by taking ratio of CI and RI. First, CI is

calculated as per equation 4.2.

Consistency index ((4.1)

81

Where, λmax= (1.62*.597) + (5.667*.222) + (9.5*.108) + (12*.073) =4.12714 and

 n=4

So, CI= 4.12714-4/3= .04238

And CR= .04238/0.90= .047

Similarly, CR is calculated for table 4.4 to table 4.9. The obtained values are given

below:-

Table 4.4= .005

Table 4.5= .008

Table 4.6= .052

Table 4.7= .044

Table 4.8= .076

Table 4.9= .003

From the above-computed consistency values, it is observed that all are below 0.1

(Saaty, 1980). It means all the matrices are consistent and the information it contains is

acceptable.

Step 5: Assigning Rank to various alternatives:

After checking the consistency of available information, the overall priority of each

alternative i.e. migrant is calculated as shown in table 4.11. Then on the basis of these

priorities rank will be calculated.

Table 4.11: Overall Priority Matrix

Criterions

Weight
0.073 0.273 0.373 0.055 0.116 0.061 0.046

 Criterions

Alternatives

Agent

Load

URL

Capacity

URL

Parent

Rank

N/W

Bandwidth

Loading

Rate

Agent

Capacity

N/W

Latency

Priority

MC1 0.597 .119 .075 .547 .060 .094 .362 .164

MC2 0.222 .580 .191 .224 .551 .253 .255 0.350

MC3 0.108 .500 .575 .163 .260 .555 .111 0.315

MC4 0.073 .250 .160 .066 .129 .099 .272 0.171

 (4.2)

82

Priority of MC1=

.073*.597+.273*.119+.373*.075+.055*.547+.116*.060+.061*.094+.046*.362=.164

Similarly, Priority for MC2, MC3 and MC4 are calculated as shown in table 4.11.

Table 4.12 represents ranking of priorities where highest priority has been assigned

Rank 1 and the lowest one is assigned the last rank.

Table 4.12: Rank Matrix

Alternatives Priorities Rank

MC1 .164 4

MC2 0.350 1

MC3 0.315 2

MC4 0.171 3

This URL scheduling module waits on URL_ ready signal and then picks the URL to

schedule it to appropriate migrant. After finding an optimal migrant for URL, it sends a

signal to migrating crawler manager to inform that migrant is selected for crawling.

4.3.4 Migrating Crawler Manager

It is the main module responsible for downloading of URLs. It creates its multiple

Migrants and distributed over the network. It waits for the signal called as migrant

selected from the URL scheduling module. It assigns the URL to corresponding

selected migrant. These Migrants work on behalf of migrating crawler and do the whole

process of crawling. It also provides Migrants information to the URL scheduling

module for scheduling the URL to the appropriate migrant.

4.4 EXPERIMENTAL EVALUATION OF THE PROPOSED SYSTEM

The performance of proposed migrating crawler was compared with a Conventional

migrating crawler. In Conventional Crawling, load was unevenly distributed which

takes more crawling time and misutilization of resources by leaving many machines

unutilized while others are heavily loaded. Whereas proposed migrating crawler

83

generates required number of migrants which crawl the web on behalf of a migrating

crawler. With the help of URL scheduling module, load distribution was almost

balanced, crawling time reduces and proper utilization of resource. The purpose of the

migrant is to crawl the web as maximum as possible in efficient manner.

4.4.1 Procedure

The experiment conducted on 4 systems of different configurations in computer lab of

YMCA University of Sciences and Technology. Migrating Crawler manager was

running on one machine and rest of the machines are having instances of migrating

crawler called as migrants. Migrating Crawler manager is responsible for distributing

the crawling work on different machines and which is handled by migrants. The

efficiency of proposed migrating crawler can be calculated in terms of number of URLs

crawled in particular time. It also utilized network resources by selecting appropriate

migrating crawler at an appropriate time. It also balances the load effectively by

distributing load proportionally to the systems available.

The summary results obtained in table 4.13 support the results that proposed migrating

crawler crawled more links in same time as compared to conventional one.

Table 4.13: Experiment Results

Parameters Proposed Migrating

Crawler

Conventional Migrating

Crawler

Total Links Crawled 4169 3735

Total Links Saved 4035 3692

Time taken (in secs) 14400 14400

Duplicate URLs

Identified

134 43

4.4.2 Load Distribution

The proposed migrating crawler performs the function of balancing loads across

different migrants. In Conventional crawler, it has been observed that URLs on

machines were not equally distributed and the variation across machines was huge. But

the proposed URL scheduling module distributed the URLs almost equally on all the

machines. The result comparison of load distribution using conventional and proposed

migrating crawler is depicted in figure 4.8.

84

y y y yx x x x
0

500

1000

1500

MC1 MC2 MC3 MC4N
u

m
b

e
r

O
f

U
R

Ls

Machines

Proposed

Conventional

Figure 4.8: Load Distribution of Proposed Migrating Crawler

In above graph all x represents number of URLs crawled by conventional whereas all y

represents number of URLs crawled by proposed one. It is observed from the above

graph that variation in load distribution is almost uniform in case of proposed crawling

method in comparison with conventional crawling method.

4.4.3 Efficiency

The efficiency can be calculated in terms of how many URLs were crawled in particular

time. In given example, the proposed migrating crawler crawled more links as

compared to Conventional migrating crawler in same time. The graph shows the

efficiency of proposed as compared to Conventional one in figure 4.9

0

1000

2000

3000

4000

5000

3600 7200 10800 14400

N
u

m
b

e
r

O
f

U
R

Ls

Crawled Time in secs

Proposed

Conventional

Figure 4.9: Efficiency of Proposed Migrating Crawler

From the above given figure 4.9, it may observed that proposed Migrating crawler

crawls more links i.e.4169 than Conventional i.e. 1387 in same time i.e. 14400 secs.

4.4.4 Uniqueness

In this work, Standard Normalization techniques are applied on set of URLs to

identified duplicate URLs. These steps works on syntax of URLs and after

85

normalization URLs whose syntax are same are identified. This will make migrants to

crawl unique set of Urls and thus preserves time and network resources.

0

50

100

150

3600 7200 10800 14400

Id
e

n
ti

fi
e

d
 D

u
p

lic
at

e

U
R

Ls

Crawled Time in secs

Proposed

Conventional

Figure 4.10: Uniqueness of Proposed Migrating Crawler

From the above figure 4.10, it is observed that proposed migrating crawler identified

more duplicate URLs whereas Conventional crawler identified less in same time.

Different migrants before downloading the web pages passed them to Duplicate

Eliminator Module. This module is responsible for preventing duplicate web pages to

be stored in a database. This module checks the duplicacy both at web page and at

URLs. The links extracted from the downloaded web page checked for duplicacy with

already stored URL list before added to URL Queue for crawling. The detailed

explanation of this module along with the architecture is explained in next chapter with

implementation results.

86

87

CHAPTER V

DESIGN OF AN EFFICIENT MIGRATING CRAWLER

BASED ON SITEMAPS

5.1 INTRODUCTION

Search Engines are the most common and widely used medium of finding information

on the web. The user enters a keyword for searching the information and on the basis of

that keyword search engine searches their databases and give the results related to

users’ query. These databases are created from a repository maintained by web

crawlers. Web crawler crawls the web, downloads the documents and stored them in a

search engines repository. They continuously crawl the web to get new and more

relevant information. So, the web crawler is an important module of any search engines.

There are many issues [63] related to design an efficient web crawler. For example,

User interest [50, 51, 62] can also be considered while designing a crawler. In this

chapter, more emphasis is on maximum coverage and freshness of database while

keeping the network traffic low. As the size of the web grows exponentially, it is very

difficult to crawl to the whole web and maintained the freshness of the search engines

repository. Even with the presence of massive resources, the present crawlers are not

able to do their task efficiently.

Sitemaps may be utilized to discover all the links present on a particular web page. It is

an XML file that lists all the links of a web page and also the other information about

that web page, e.g. when the page was last modified, how frequently the web page will

change and how much the importance of any link in comparison to other links present

on that web page. Sitemaps also help in extracting structure of a web page and then this

extracted structure can be used for many purposes [61].

Although without sitemap crawler may discover most of the links but with a sitemap it

will do the task more efficiently. Following are the reasons for this:

1. The Large size of Web Site: - it may be possible that due to the large size of the

website, some links may be left can explore by a crawler while downloading the

web pages.

88

2. New Web Site: - The web crawler always follows the same pattern of crawling

and due to this it may miss the new entries.

3. Less External Links: - some websites have fewer links to other websites and

crawler crawls to the web by following one page to another. So having less

number of links causes crawler to rarely visit that particular site.

From above mentioned reasons, it is justified that with the help of sitemap crawler is

work more efficiently while downloading the web pages.

Here an example of Gmail is taken where sitemap of Gmail technical support is

designed with the help of the website www.web-site-map.com. A Sitemap protocol for

Gmail technical support is given below:

<?xml version="1.0" encoding="UTF-8"?>

<urlset xsi:schemaLocation="http://www.sitemaps.org/schemas/sitemap/0.9

http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

<url>

<loc>http://www.gmailtechnicalsupport.com/</loc>

<changefreq>daily</changefreq>

<priority>1.00</priority>

</url>

<url>

<loc>http://www.gmailtechnicalsupport.com/services</loc>

<changefreq>daily</changefreq>

<priority>0.85</priority>

</url>

<url>

<loc>http://www.gmailtechnicalsupport.com/privacy-policy</loc>

<changefreq>daily</changefreq>

<priority>0.85</priority>

</url>

<url>

<loc>http://www.gmailtechnicalsupport.com/contacts</loc>

http://www.web-site-map.com/
file:///G:/Deepika15/Downloads/sitemap%20(3).xml
file:///G:/Deepika15/Downloads/sitemap%20(3).xml
file:///G:/Deepika15/Downloads/sitemap%20(3).xml
file:///G:/Deepika15/Downloads/sitemap%20(3).xml
file:///G:/Deepika15/Downloads/sitemap%20(3).xml
http://www.gmailtechnicalsupport.com/%3c/loc
file:///G:/Deepika15/Downloads/sitemap%20(3).xml
http://www.gmailtechnicalsupport.com/services%3c/loc
file:///G:/Deepika15/Downloads/sitemap%20(3).xml
http://www.gmailtechnicalsupport.com/privacy-policy%3c/loc
file:///G:/Deepika15/Downloads/sitemap%20(3).xml
http://www.gmailtechnicalsupport.com/contacts%3c/loc

89

<changefreq>daily</changefreq>

<priority>0.85</priority>

</url>

<!-- Generated by www.web-site-map.com -->

</urlset>

The sitemap may consist of some essential fields and some optional fields as discussed

below: -

Loc- it specifies the URL of particular page.

Lastmod: it is an optional field, which specifies when the page was last updated

Changefreq: it is an optional field, which specifies the frequency of web page changed

like always, hourly, daily, weekly, monthly, never.

Priority: it is also an optional field, which specifies the priority in comparison with

other URLs present in the page.

Other than above mentioned parameters various other parameters can be added to

sitemap e.g. information about images, sitemap for mobile, etc. For large websites

whose sitemaps are very large in size are difficult to download. So instead of

downloading large size sitemap, SitemapIndex files are used. This allows big sitemaps

breaking into smaller sitemaps and keeps their entries in SitemapIndex file. The size of

these SitemapIndex files is small and they are easy to download and manage.

5.2 DESIGN OF AN EFFICIENT MIGRATING CRAWLER BASED ON

SITEMAPS

With the help of sitemaps, crawler tries to crawl the web more efficiently so that

updated information always gets stored in the database while keeping the network load

low. The Sitemaps are used to provide checks at various levels before downloading the

page. These checks are done by web crawlers. The fields which are used in this work

are changefrequency and lastmod.

5.2.1 The Architecture

A migrating Crawler is a crawler which has its agents called as Migrants [6]. Crawler

sends these Migrants to different servers and on the server side, Migrants do the

90

processing e.g. downloading, compressing etc at server side only and return the results

back to the crawler side.

The proposed architecture has following subsystems:

1. Mapping Manager

It maps URLs into their IP addresses and also stores sitemap of the

corresponding URL with the help of Sitemap Generator in resolving URL-IP-

Sitemap Queue.

2. URL Classifier

It will classify the URLs on the basis of their changed frequency like hourly,

daily, weekly, monthly etc. And then inform the crawl manager about their

classification.

3. Migrating Crawl Manager

It will send the migrants to their assigned URL server as provided by URL

Classifier. After calculating their revisit, documents are downloaded.

4. Document & URL Buffer

This is a buffer for storing documents send by different Migrants from different

servers. From this buffer, URLs are extracted and send back to Mapping

Manager for further processing.

Here in proposed architecture, by using the sitemap Migrants will work in different

ways and crawls the web efficiently. The workflow of proposed architecture is given in

figure 5.1.

Figure 5.1: Workflow of proposed Architecture

The working of each involved module is described in the next section.

The working of Proposed Migrating Crawler is as follows: - URL_IP_sitemap values

generated by Mapping Manager are used by URL Classifier for classifying URLs on the

Document & URL URL Classification

URL

s

Mapping

Manager

URL Classifier DOC & URL

Buffer

Migrating

Crawl Manager

Resolved

URL_IP_SITEMAP

91

basis of their change frequency. It may change daily, hourly, weekly, monthly or never.

Migrants are assigned to each such classified list and visit the URLs according to their

change frequency. On reaching the websites, whether to download the pages or not will

depend on whether it has updated or obsolete copy. If the Migrant is visiting the first

time, then Migrant doesn’t have any last crawled time of the web page and it simply

downloads the page. But if the Migrant is revisiting it, then it will check the last

crawled time of web page with the last mod values of the web page which it has got

from the sitemap. If last crawled value is greater than last mod value, it will not

download the page as Migrant already has its updated copy with it. But if the value of

last crawled is lesser than last mod value, it shows there are some modifications have

been done and the Migrant has an old copy with it. So it will download the page and

replace its copy with the new updated one.

It consists of following functional components and detail of each component is given in

next section:-

1. Mapping Manager

2. URL Classifier

3. Migrating Crawler Manager

4. Migrants

5. Duplicate Eliminator

The general architecture of the proposed work is as follows in figure 5.2.

92

Figure 5.2 Proposed Architecture of Migrating Crawler with Sitemaps

The general algorithm of the system is given in figure 5.3.

Figure 5.3: Algorithm: General Working

Step1:URL_List_Sitemap= Mapping Manager ()

 Do Forever

 2: Pick URLs from URL_List_Sitemap.

 3: URLi=URL_classifier(s(i), URL_List).

//URLi is the list of URL of i category

Where i= daily, weekly, monthly

 4: Signal (agents_ready).

 5: LDB= Migrating_Crawl_manager(URLi).

 5.1: Doc_Buffer= DE(URLi).

 6: (URL,Doc)= Extract(doc_buffer).

 7: Take URLs and give it to URL_classifier.

 8: End

Start Crawling

Check

Done

Md

SERVER 1

Mh

Something to classify

Mh

Mapping Manager

Lists ready

Hourly Daily

Url Classifier

Weekly

Something to map

Resolved

Url-Ip-

Sitemap

Mw

Mh

Migrating

Crawl Manager

WWW

DOC & URL Buffer

SERVER N

Ranked Database

Mh

Revisit Freq

Checker

LDB

DE

Revisit Freq

Checker

LDB

DE

Revisit Freq

Checker

LDB

DE

SERVER 2

93

5.2.2 Mapping Manager

 Mapping manager [64] provides resolved URL_IP pair. It gets an IP for the

corresponding URL from DNS resolver and stored the pair in a Queue. In addition to

this pair with the help of sitemap generator [65], a sitemap of every URL is also

provided and stored with the same resolved URL_IP pair. For incorporating the above

said Sitemap field, the structure of URL_IP pair has been modified and shown below in

figure 5.4:-

URL IP SITEMAP

Figure 5.4: Modified URL_IP

After filling modified structure in the queue, mapping manager sends the signal to a

URL classifier to start their work.

The Mapping Manager uses following data structures:

 URL-IP Queue: It consists of a queue of unique seed URL-IP pairs. The IP part

may or may not be blank. It acts as an input to the mapping manager.

 Resolved URL-IP-Sitemap Buffer: It stores resolved URLs and also their

corresponding sitemap. Sitemaps are generated with the help of Sitemap

Generator. It acts as input to the URL Classifier.

The algorithm for Mapping Manager is given in figure 5.5.

Figure 5.5: Algorithm: Mapping Manager

Mapping Manager ()

Step1: Wait (Something to map)

 2: While (URL-IP Queue is not empty)

 3: Take a URL-IP pair from the Queue.

 4: If the IP is blank

4.1 Call DNS resolver to resolve URL for IP.

4.2 Store the Resolved URL in the Resolved URL Queue.

 5: Call SiteMap Generator to create sitemap of every resolved

URL.

 6: Store the sitemap with each URL_IP pair.

 7: Signal (something to classify).

 8: End.

94

5.2.3 URL Classifier

 After getting the signal from Mapping Manager, it picks the URLs and classifies them

on the basis of their change frequency received from the sitemapS[i]. According to its

change frequency whether it is daily, weekly, monthly etc changes, lists are maintained

and corresponding URLs are added to them.

The algorithm for URL Classifier is given in figure 5.6.

Figure 5.6: Algorithm: URL Classifier

After maintaining the lists, it will send a signal to crawl manager to inform that lists are

ready for Migrants to crawling.

5.2.4 Migrating Crawler Manager

 It is the responsibility of the crawler manager to create multiple Migrants. After getting

the signal (URLs_ready) from URL classifier, it will assign the Migrants to each list of

URLs supplied by URL classifier. Then it will send a signal(crawl) to Migrants to start

crawling to the WWW. After sending URLs to migrants. It will wait for downloading to

be done so that new list will be provided to migrants and the process continues.

5.2.5 Migrant

 Migrants are waiting for the signal (start crawling) from their crawl manager to start

their work. They get their list of URLs and now they start downloading the data

URL_classifier()

Do forever

Step1: Wait (Something to classify)

 2: Pick a URL from URL_IP_SITEMAP queue.

 3: Check respective S(i) for frequency change

 3: If (changefreq==daily)

3.1: Add to Ld.

 4: If (changefreq==weekly)

4.1: Add to Lw.

 5: If (changefreq==monthly)

5.1: Add to Lm.

 6: Signal (list_ready)

 7: End.

Where,

 Ld: list of URLs changes daily

Lw: list of URLs change weekly

Lm: list of URLs changes monthly

95

corresponding to each URL. After downloading the webpages, they send signal (check)

to duplicate eliminator for checking duplicity and signal (done) to migrating crawler

manager for more URLs to be crawled.

The Migrants during their working use the following data structures:

5.2.5.1 Local Buffer: It is a buffer used by the migrants for keeping the downloaded

documents temporarily. Before storing the documents, Duplicate Checker Module

checks whether the downloaded document is unique or the duplicate one.

5.2.5.2 Document and URL Buffer: This buffer is used to store the recently

downloaded documents sent by migrants. From this buffer, URLs are sent back to the

URL Classifier for classification.

5.2.6 Duplicate Eliminator (DE)

This module gets the web page from local buffer downloaded by Migrants. It is

responsible for preventing duplicate web pages to be stored in a database [76, 94].

Figure 5.7 shows the component of duplicate eliminator module:

Figure 5.7: Duplicate Eliminator Module

Before storing the documents in the database, it sends the downloaded web page to the

matcher module. After passing from matcher if the web page is not found matched, then

stored in the stored pages database and passed to link extractor for extracting the links.

Duplicate Eliminator

Module

Internal &

External Links

No

No

No Add

Yes

Yes

Duplicate

& Discard

Stored

Pages

Link Extractor

Cache

URLs

with OC

Stored

URLs

URL

Queue Duplicate,

Discard &

increment

OC count

Matcher

Migrants

Download

Pages

W

W

W Stored

Pages

Check

Matched? Matched?

Duplicate,

Discard, and

put in cache &

increment OC

count

Yes

96

These extracted links are then matched with already stored URLs. First, the matching is

done with URLs which are stored in cache memory. If found, check their lastmod value

with the help of Sitemap. If found updated, the link/URL is added into the URL Queue

for revisiting otherwise discarded as duplicate and its occurrence count (OC) is

incremented by 1. Occurrence Count is the field that has integer value and used for

maintaining Cache entries which are discussed later. If URL is not found in the cache,

then it is searched in the database stored in secondary memory. If found, its change

frequency and modification values is checked and it is added into the URL Queue for

revisiting otherwise discarded as duplicate and its OC count is incremented by 1. If not

found in secondary storage, it is added into the stored URLs database and URL Queue

as a new entry.

The Duplicate Eliminator Module has the following components:-

1. Matcher

2. Link Extractor

1. Matcher

Matcher module matches the digest values of the downloaded web page with the pages

available in stored page database. The digest value is calculated by applying hashing

algorithm.

The algorithm for Matcher is given in figure 5.8.

Figure 5.8: Algorithm: Matcher

This matching is done by creating a SHA-1 hash of web document. The reason behind

using SHA-1 hash is that it is more reliable and efficient hashing algorithm. The

converted digest values are then matched with already existing digest value of web

documents. These matching will filter out duplicate pages and stored only the unique

web pages to the stored pages database.

Matcher ()

Step 1: Process Downloaded web pages and generate its SHA-1 Hash

 2: Match with existing Digest values of each web page available in stored page

database.

 3: If (exists)

3.1: Remove the web page

 4: Otherwise

4.1: Store web page in stored pages database

4.2: Call Link _Extractor ()

 5: End

97

2. Link Extractor

This module is responsible for checking the duplicacy at URL level. The extracted links

get stored on cache and hard disk. The links which are frequently crawled are stored in

cache.

The algorithm for Link extractor is given in figure 5.9.

Figure 5.9: Algorithm: Link Extractor

The advantage of Cache is to get the URLs frequently. It is helpful in accessing the

URLs faster as compared to the URLs stored in secondary storage. Cache is maintained

on the principle of Least Recent Used and implemented by having occurrence count

values. The purpose of maintaining this occurrence count is to check which URL is

frequently required and which is not like URL having high OC means it is used

frequently whereas OC whose values is less than it is least used URL and can be

removed from the cache.

5.3 PERFORMANCE ANALYSIS

While implementing the architecture of a migrating crawler the access permission from

the website and the availability of the requisite environment always remain important

issues; most of the present websites do not provide the access permission and suitable

Link Extractor ()

Do Forever

Step 1: Check the extracted links in stored cache URL list

 1.1: If Matched occurs

 1.1.1: Check lastmod value

 1.1.2: If Updated

 Add to Queue

 Else

 Discard and increment its occurrence count by 1.

 1.2: Otherwise

 1.2.1: Check in stored URLs list

 1.2.1.1: If found,

 Check change frequency and last modified value

 If so,

 Add to Queue

 Otherwise

Discard and increment its occurrence count by 1.

 1.2.1.2: Otherwise

 Add it to stored URLs and URL Queue

 2: End

98

environment for the foreign agents/programs to run on their websites as it affects their

performance. So far implementing the proposed Migrating Crawler, a virtual

environment has been created where a copy of the respective target website was stored

locally thereby making a virtual server for the websites. The implemented instance of

migrating crawler is also provided the environment and the requisite data (sitemap) on

the virtual server for the experimentation discussed in detail in the following sections.

The performance was compared with the conventional method of crawling i.e. the

crawler without a sitemap. Various tests have been performed on different websites to

observe the difference in crawling parameters e.g. web coverage, bandwidth

preservation and time taken.

The Test1 was conducted by using Gautam Buddha University (GBU) website. The

Website was crawled by both conventional and proposed new method of crawling. The

results obtained are discussed in the next section. For simplicity, few links are shown

here to verify the results.

The Test 1 was done on www.gbu.ac.in/UserViewNews.aspx?NewsId=0 and results

obtained are shown in table 5.1(a), 5.1(b) and 5.1(c).

Table 5.1(a): First Crawling Results (Both Crawler) Test 1

Anchor Text URL Data Received

(in Bytes)

Home http://www.gbu.ac.in/home.aspx 80476

ContactUs http://www.gbu.ac.in/ReachUs.aspx 18171

University Grant

Commission (UGC)

http://www.gbu.ac.in/UserViewNe

ws.aspx?NewsId=117

46197

Ph.D. in Buddhist Studies &

Civilization

http://www.gbu.ac.in/UserViewNe

ws.aspx?NewsId=119

46454

Legal Aid Clinic http://www.gbu.ac.in/UserViewNe

ws.aspx?NewsId=160

45427

Academic Calendar 2016-

17 Session

http://www.gbu.ac.in/UserViewNe

ws.aspx?NewsId=298

96216

Boys/Girls Hostel allotment

List for Academic Session

2016-2017

http://www.gbu.ac.in/UserViewNe

ws.aspx?NewsId=301

49753

http://www.gbu.ac.in/UserViewNews.aspx?NewsId=0
http://www.gbu.ac.in/home.aspx
http://www.gbu.ac.in/ReachUs.aspx
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=117
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=117
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=119
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=119
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=160
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=160
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=298
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=298

99

 The Total links crawled by Conventional crawler=723

 The Total links crawled by Proposed Crawler= 980

On revisiting proposed crawler has downloaded only the links which have undergone

modifications as shown in table 5.1(b).

Table 5.1(b): Revisit Crawling Results (Proposed Crawler) Test 1

Anchor Text URL Data Received

(in Bytes)

Boys/Girls Hostel allotment

List for Academic Session

2016-2017

http://www.gbu.ac.in/UserViewNews.asp

x?NewsId=301

49753

New Student Hostel

allotment List for Academic

Session 2016-2017

http://www.gbu.ac.in/UserViewNews.asp

x?NewsId=302

46875

Whereas Conventional crawler has downloaded the all documents whether modified or

not as shown in table 5.1(c).

Table 5.1(c): Revisit Crawling Results (Conventional Crawler) Test 1

Anchor Text URL Data

Received

In Bytes

Home http://www.gbu.ac.in/home.aspx 80476

ContactUs http://www.gbu.ac.in/ReachUs.aspx 18171

University Grant

Commission (UGC)

http://www.gbu.ac.in/UserViewNews.aspx?NewsId

=117

46197

Ph.D. in Buddhist

Studies &

Civilization

http://www.gbu.ac.in/UserViewNews.aspx?NewsId

=119

46454

Legal Aid Clinic http://www.gbu.ac.in/UserViewNews.aspx?NewsId

=160

45427

Academic Calendar

2016-17 Session

http://www.gbu.ac.in/UserViewNews.aspx?NewsId

=298

96216

Boys/Girls Hostel

allotment List for

Academic Session

2016-2017

http://www.gbu.ac.in/UserViewNews.aspx?NewsId

=301

49753

New Student Hostel

allotment List for

Academic Session

2016-2017

http://www.gbu.ac.in/UserViewNews.aspx?NewsId

=302

46875

http://www.gbu.ac.in/UserViewNews.aspx?NewsId=301
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=301
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=302
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=302
http://www.gbu.ac.in/home.aspx
http://www.gbu.ac.in/ReachUs.aspx
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=117
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=117
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=119
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=119
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=160
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=160
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=298
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=298
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=301
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=301
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=302
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=302

100

On revisit:-

 The Total links crawled by Conventional crawler=734

 The Total links crawled by Proposed Crawler= 221

Summarized results of full website by Conventional Crawler and Proposed Crawler are

shown in table 5.1 (d).

Table 5.1(d): Crawling Results Test 1

Parameters Conventional Crawling Proposed Crawling

with Sitemaps

Number of Links 723 980

Total Data downloaded(Bytes) 5401300 7501233

Crawl Time(sec) 1051.35 890.23

Duplicate Links Identified 64 243

Total Pages Downloaded on

revisit

734 221

Total Data Downloaded on

revisit

5402387 897531

It is worth noting that the conventional crawling crawled less links i.e. 723 whereas

proposed crawling crawled more links i.e. 980 as shown in table 5.1(d). But on

revisiting, proposed crawler crawled only changed or modified links i.e.221 whereas

conventional crawling crawled all unchanged and new i.e. 734 links as shown in table

5.1(d) and thus wasted network resources.

Similarly, the Test 2 was conducted by using YMCA website. Results obtained from

www.ymcaust.ac.in/computers are shown in table 5.2 (a), 5.2 (b) and 5.2(c).

Table 5.2(a): First Crawling Results (Both Crawler) Test 2

Anchor

Text

URL Data Received

(in Bytes)

Chairman

message

http://www.ymcaust.ac.in/computers/index.php/chairm

an-s-message

13450

Faculty http://www.ymcaust.ac.in/computers/index.php/faculty 10823

http://www.ymcaust.ac.in/computers/index.php/chairman-s-message
http://www.ymcaust.ac.in/computers/index.php/chairman-s-message
http://www.ymcaust.ac.in/computers/index.php/faculty

101

Anchor

Text

URL Data Received

(in Bytes)

Labs http://www.ymcaust.ac.in/computers/index.php/labs 14549

Courses http://www.ymcaust.ac.in/computers/index.php/courses 15883

B.Tech

Syllabus

http://www.ymcaust.ac.in/computers/index.php/b-tech-

syllabus

96216

M.Tech

Syllabus

http://www.ymcaust.ac.in/computers/index.php/m-tech-

syllabus

11762

Updated

Time

Table

http://www.ymcaust.ac.in/computers/index.php/update

d-time-table

11450

Notices http://www.ymcaust.ac.in/computers/index.php/notices 11928

 The Total links crawled by Conventional crawler=141

 The Total links crawled by Proposed Crawler= 158

Whereas, on revisiting proposed crawler has downloaded the links which have

undergone modifications only as shown in table 5.2(b).

Table 5.2(b): Revisit Crawling Results (Proposed Crawler) Test 2

Anchor

Text

URL Data Received

(in Bytes)

Updated

Time

Table

http://www.ymcaust.ac.in/computers/index.php/updated-

time-table

11450

Notices http://www.ymcaust.ac.in/computers/index.php/notices 11728

And Conventional crawler has downloaded the all documents whether modified or not

as shown in table 5.2(c).

Table 5.2(c): Revisit Crawling Results (Conventional Crawler) Test 2

Anchor

Text

URL Data Received

In Bytes

Chairman

message

http://www.ymcaust.ac.in/computers/index.php/chairm

an-s-message

13450

Faculty http://www.ymcaust.ac.in/computers/index.php/faculty 10823

Labs http://www.ymcaust.ac.in/computers/index.php/labs 14549

Courses http://www.ymcaust.ac.in/computers/index.php/courses 15883

B.Tech

Syllabus

http://www.ymcaust.ac.in/computers/index.php/b-tech-

syllabus

96216

M.Tech

Syllabus

http://www.ymcaust.ac.in/computers/index.php/m-

tech-syllabus

11762

Updated

Time Table

http://www.ymcaust.ac.in/computers/index.php/update

d-time-table

11450

Notices http://www.ymcaust.ac.in/computers/index.php/notices 11728

http://www.ymcaust.ac.in/computers/index.php/labs
http://www.ymcaust.ac.in/computers/index.php/courses
http://www.ymcaust.ac.in/computers/index.php/b-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/b-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/m-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/m-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/updated-time-table
http://www.ymcaust.ac.in/computers/index.php/updated-time-table
http://www.ymcaust.ac.in/computers/index.php/notices
http://www.ymcaust.ac.in/computers/index.php/updated-time-table
http://www.ymcaust.ac.in/computers/index.php/updated-time-table
http://www.ymcaust.ac.in/computers/index.php/chairman-s-message
http://www.ymcaust.ac.in/computers/index.php/chairman-s-message
http://www.ymcaust.ac.in/computers/index.php/faculty
http://www.ymcaust.ac.in/computers/index.php/labs
http://www.ymcaust.ac.in/computers/index.php/courses
http://www.ymcaust.ac.in/computers/index.php/b-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/b-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/m-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/m-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/updated-time-table
http://www.ymcaust.ac.in/computers/index.php/updated-time-table
http://www.ymcaust.ac.in/computers/index.php/notices

102

On revisit:-

 The Total links crawled by Conventional crawler=145

 The Total links crawled by Proposed Crawler= 40

It has been observed that in first visit of a specific link, both the crawlers have

downloaded the same set of pages as shown in table 5.2(a). But on revisiting, proposed

crawler crawled only changed or modified links whereas conventional crawling crawled

all as shown in table 5.2(b) and 5.2(c).

Summarized results of full website by Conventional Crawler and Proposed Crawler are

shown in table 5.2(d).

Table 5.2(d): Crawling Results Test 2

Parameters Conventional

Crawling

Proposed Crawling

with Sitemap

Number of Links 141 158

Total Data

Downloaded(Bytes)

1401300 1501233

Crawl Time(sec) 273.44 185.45

Total Pages Downloaded on

revisit

145 40

Total Data Downloaded on

revisit

1402387 397531

In this example also, it is observed that the conventional crawling crawled less links i.e.

141 whereas proposed crawling crawled more links i.e. 158 as shown in Table 5.2(d).

But on revisiting, proposed crawler crawled only changed or modified links i.e.40

whereas conventional crawling crawled all unchanged and new i.e. 145 links as shown

in table 5.2(d).

Likewise, The Test 3 was conducted on

www.ngfcet.in/computer_science_engineering and results obtained are summarized

in table 5.3.

http://www.ngfcet.in/computer_science_engineering

103

Table 5.3: Crawling Results Test 3

Parameters Conventional

Crawling

Proposed Crawling with

Sitemap

Number of Links 423 503

Total Data Downloaded(Bytes) 1040104 1091000

Crawl Time(sec) 537.69 350

Total Pages Downloaded on

revisit

442 154

Total Data Downloaded on

revisit

1051123 303445

 The Total links crawled by Conventional crawler=423

 The Total links crawled by Proposed Crawler= 503

On revisit:-

 The Total links crawled by Conventional crawler=442

 The Total links crawled by Proposed Crawler= 154

Also, The Test 4 was conducted on www.titsbhiwani.ac.in/departments/department-

of-computer-engineering and results obtained are summarized in table 5.4.

Table 5.4: Crawling Results Test 4

Parameters Conventional

Crawling

Proposed Crawling

with Sitemap

Number of Links 174 223

Total Data Downloaded(Bytes) 1651256 1960107

Crawl Time(sec) 313.522 210

Total Pages Downloaded on revisit 180 34

Total Data Downloaded on revisit 1651598 30605

 The Total links crawled by Conventional crawler=174

 The Total links crawled by Proposed Crawler= 223

http://www.titsbhiwani.ac.in/departments/department-of-computer-engineering
http://www.titsbhiwani.ac.in/departments/department-of-computer-engineering

104

On revisit:-

 The Total links crawled by Conventional crawler=180

 The Total links crawled by Proposed Crawler= 34

The conventional method of crawling crawls to a limited number of links and it also

downloads all documents, whether they have changed or not and thus, wasted network

resources. On the contrary, this proposed new crawling method crawls the web with the

help of sitemap. Now it will cover utmost URLs and downloads only that documents

that have changed and thus utilize the network resources in an efficient manner.

5.4 EFFICIENCY WITH SITEMAP

There are many benefits of sitemap for both web users and web crawlers’. Following

are the advantages while using a sitemap in the crawling process:

5.4.1 Web Coverage

By comparing the coverage area by Conventional Crawling and Proposed Crawling, it

is observed that later one will have the better area of covering the web as it will visit

more links. The results are shown in Table 5.5:

Table 5.5: Links Crawled

TESTS Conventional Proposed Improvement%

TEST 1 723 980](980-723)/723]*100=35.5%

TEST 2 141 158 12%

TEST 3 423 503 18%

TEST 4 174 223 28%

So, this coverage will increase if the size of website increases.

5.4.2 Bandwidth Preservation

It also preserves bandwidth by reducing the network traffic by downloading only

modified pages on a revisit of a crawler. This can be seen from the above experiments

where the total number of links on the first and second visit is same for conventional

crawling whereas less for the new crawling method. In this simulation, links

corresponding to each page has taken into the consideration for looking at the

105

consumption of bandwidth by the conventional crawler. The improvement in bandwidth

utilization is shown in table 5.6.

Table 5.6: Crawled Links on revisit

TESTS Conventional Proposed Saving%

TEST 1 734 221 [(734-221)/734]*100=69.8%

TEST 2 145 40 72.4%

TEST 3 442 154 65.15%

TEST 4 180 34 81.1%

Thus, by getting information about the last modified date of the web page from the

sitemap, the new crawling method now downloads only that pages that are modified or

updated. This will help in saving bandwidth and also reduces network traffic.

5.4.3 Time Taken

The proposed crawling method crawled more links in less time as compared to the

conventional crawling method. This will make proposed crawling method more

efficient and time saving crawling. The time saving in all tests are shown in table 5.7.

Table 5.7: Time Saving

TESTS Conventional Proposed Saving%

(approx)

TEST 1 1051.35 890.23 [(1051.35-890.23)/1051.35]*100=15.3%

TEST 2 273.44 185.45 32.17%

TEST 3 537.69 350 34.9%

TEST 4 313.522 210 33.01%

The snapshots of crawling with the help of sitemap are shown in Appendix 5. After

making database up to date by incorporating sitemap in crawling, database rich should

be rich also i.e. contain almost all information. In maintaining richness of database,

structure of web page is used which is discussed in next chapter.

106

107

CHAPTER VI

IMPROVING THE SEARCH RESULTS BASED ON

USERS’ BROWSING BEHAVIOUR

6.1 INTRODUCTION

With the advent increase in information over the web, people are now more interested

and inclined towards the internet to get the information. Each user has its own interest

and accordingly his expectations from search engine vary. Search engines use various

ranking methods like HITS, PageRank etc. but these ranking methods do not consider

user browsing behaviours on the web. In this work, a page rank mechanism has been

proposed which considers users’ browsing behaviour [73, 77, 78] to provide relevant

pages from the web [102]. While browsing users perform various actions such as

clicking, scrolling, opening an URL, searching text, refreshing etc. These actions can be

used to perform an automatic evaluation of a web page and hence to improve search

results. After storing these actions as events, Apriori algorithm has been applied to

calculate the rank of a particular web page.

6.1.1 Introduction to Apriori Algorithm

Apriori algorithm [3] is an algorithm used in mining frequent itemsets for learning

association rules. This algorithm is designed to operate on large databases containing

transactions e.g. collection of items purchased by a customer. The whole point of an

algorithm is to extract useful information from a large amount of data. This can be

achieved by finding rules which satisfy both a minimum support threshold and a

minimum confidence threshold.

The support and confidence can be defined as below:

- Support count of an itemset is a number of transactions that contain that itemset.

- The confidence value is the measure of certainty associated with discovered pattern.

108

Formally the working of Apriori algorithm can be defined by following two steps:-

i. Join Step

- Find the frequent itemsets i.e. Items whose occurrence in database are greater

 than or equal to the minimum support threshold

 - Iteratively find frequent itemsets from 1 to k for k-itemsets.

ii. Prune Step

- The results are pruned to find the frequent itemsets.

 - generate association rules from these frequent itemsets which satisfy

minimum support and minimum confidence threshold.

6.2 IMPROVING THE SEARCH RESULTS BASED ON USERS’ BROWSING

BEHAVIOUR

Although many researchers have been worked in analyzing users’ browsing behaviour

pattern but relevancy is still lacking. One possible reason may be that not including

every action of Users’ behaviour for finding the interest. A module is proposed here

that will try to give more relevant results by analyzing appropriate users’ browsing

behaviour. The description of

User Behaviour Analyzer module is explained in following section.

6.2.1 User Analysis Module

The general architecture of User Analysis module is shown in figure 6.1.

Figure 6.1 User Analysis Module

Web Pages

Calculating

Users’ Interest

USER

Data Mining

Applier

User Behaviour Analyzer

Maintaining Log Files

Repository

WWW
Crawler

109

The User Analysis Module consists of following major components:

a. User Behaviour Analyzer

b. Data Mining Applier

Following are the data structures used:-

(i) Log Files

(ii) Repository

The details of components and data structures used are explained in following section.

a. User Behaviour Analyzer

From the past researches, it is concluded that browsing time play a vital role while

analyzing the users’ browsing behaviour. Other behaviour patterns like saving, printing,

bookmarking, scrolling, copying etc also contribute to analyzing users’ behaviour. But

It has been observed that alone browsing time will not give the accurate idea about

users’ interest.

There can be several reasons of spending long time or short time on a particular web

page such as:

For short time:-

 The content on the page is very less,

 The presentation of the page is not good

For long time,

 Doing another work along with browsing

 Loading of page takes time

So, along with browsing time other behaviour patterns should also consider. Moreover

Kun Xing et al. [11] suggested that some actions like scrolling, mouse clicking should

also be included in the total browsing time. The proposed algorithm for user behaviour

Analyzer is given below in figure 6.2.

110

Figure 6.2 Algorithm: User Behaviour Analyzer

By considering all possibilities, browsing behaviour indicators that may relate to users’

interest are listed below in table 6.1.

Table 6.1 Users’ Browsing Behaviour Indicators

Pattern ID Actions Purpose of actions

PID1 Scroll Moving page up & down

PID2 Copy Text Copy page content

PID3 Search Text Searching text in a page

PID4 Back Go back one document

PID5 Open URL Go to page via URL

PID6 Go Forward Go forward one page

PID7 Stop Loading Stop loading of page

PID8 Add to Favorite Save URL for future use

PID9 Print Take print out of a page

PID10 Save As Save page to local disk

PID11 Hyperlink Selection of hyperlink

PID12 Homepage Go to home page

PID13 Mouse click To read page

In above table, pattern ID is used for referencing patterns, actions indicates browsing

behaviour pattern and purpose of actions describes the meaning of actions. For further

analysis, some factors are taken into consideration that has a high frequency of

occurrence. By combining contribution of browsing time along with above described

user behaviour indicators, users’ interest will be estimated more accurately.

User behaviour analyzer ()

Step 1: Read visited pages;

 2: Analyze that page;

 3: Maintain log files of the browsing behaviours;

3.1: How many mouse clicks?

3.2: For how long user stay on page?

3.3: Is user save that page?

3.4: Is user print that page?

3.5: Is user click on hyperlink?

3.6: Is user click forward or backward button?

 4: Enter all these details in database;

 5: Signal (Mining);

 6: End

111

b. Data Mining Applier

There are some indicators/behaviours that may contribute more while computing the

user interest in comparison to other behaviour. These indicators are browsing time,

bookmarking, printing, saving and copying.

Many Data Mining Techniques are available such as association rules, decision tree,

correlations, Apriori, rule-based, FP-tree, Support Vector Machines etc [70, 72]. Any of

these methods may be used to find frequent patterns. In this work, Apriori technique has

been used to identify frequent item sets. By applying Apriori technique on the above

stated browsing indicators, an association is generated between the indicators. Hence an

order of indicators contributing in users’ interest as percentage has been calculated. A

threshold value has been considered to decide which association is to be considered as

of interest or of non-interest as for as users’ interest is concerned. The algorithm of Data

Mining Analyzer is given in figure 6.3.

Mining Analyzer ()

Step 1: Wait (Mining)

 2: Read Log files.

 3: Apply Apriori algorithm on the browsing behaviours mentioned in log files.

3.1 Find out frequent patterns from the noted down browsing behaviours.

3.2 Calculate confidence level of these patterns and remove those which are

below specified threshold value of confidence.

3.3 Add the Confidence level values calculated in above step.

3.4 Added values are considered as weight. Larger the weight value, higher the

importance of web page.

 4: Add the webpages in the database along with their weights.

 5: Signal (empty)

Figure 6.3: Algorithm: Data Mining Applier

The Data mining Analyzer access the log files on daily basis. Every day, different set of

users on different set of webpages performs different set of actions. The set of

webpages are maintained with corresponding to a particular query such as for query q1,

a set of 7 users were accessing a set of 20 webpages. So, on these 20 webpages their

actions are observed and the frequent occurring actions are found. On the basis these

actions weight is calculated for each page and ranked them accordingly. In this work,

log files were scanned and top 20 queries are picked for analyzing users’ browsing

behaviour. On these 20 queries, Apriori was applied and accordingly to their weight,

pages added to the repository.

112

The description of used data structures are given below:-

(i) Log Files

Log files are used to analyze users’ browsing behaviour. In these files, users’ identity is

recorded by Web server. Its structure is shown in figure 6.4 below:-

ID No URL Event Frequency

Figure 6.4: LOG File Structure

These files contain the following information:

 The ID No : It is identification number of each user

 URL : It the website address which user access

 Events : These are browsing indicators that user performed on web pages

 Frequency: This is the frequency of indicators happened.

When User performs actions/events on webpages, these actions/events get stored in log

file.

(ii) Repository

The repository is the collection of webpages. After applying data mining technique on

these web pages, weight is assigned and these weight values are used as rank.

6.2.2 Working Methodology

The main purpose of proposed approach is to find relevant pages by estimating user’s

interest implicitly. The proposed technique starts by developing a web browser to

record user’s actions. Actions include duration on a web page, the number of mouse

clicks, the number of key ups and down, save, print, the number of scrollbar clicks,

reload, save, open URL, stop loading, add to favorites, back, Forward, Copy, Search

Text, Hyperlink, Active time duration etc. The proposed browser also pops up a

window at the time of closing the web page that asks the user to rate that web page.

Whenever the user performs above mentioned actions, their details will be stored in the

database. Apriori Algorithm will then be applied on above collected data. This

algorithm will result in most frequent actions and confidence values of subsets of

frequent actions .The values satisfying minimum confidence threshold will be used to

calculate the weight of the web page. The flow of proposed work is shown in figure 6.5.

113

Figure 6.5: Flow of Proposed Approach

The detailed description of each step is discussed below:-

Step 1: Developing User Interface: A web browser was proposed in the first step. The

proposed web browser automatically stores various actions performed by different

users. When a user opens this browser a unique id is generated and his/her actions get

stored with this id.

Step 2: Storing Actions performed by the user in database: All actions performed

by user get stored in the database. A user can view a summary of all actions by clicking

on “User Stats” on the interface. “User stats” show the frequency of every action that is

performed by different users.

Step 3: Applying Apriori: Apriori is applied on stored actions to get most frequent

actions. For each page most frequent patterns are generated. These patterns are then

used for calculating the Page Weight.

Step 4: Calculate Page Weight & Page Rank: After applying Apriori on actions,

frequent patterns are obtained. Confidence values of each pattern are taken to calculate

page weight. Confidence value can be calculated as per equation 6.1.

Confidence value = support_count (most frequent action)

support_count (subset of most frequent action) (6.1)

Where support count of an itemset is a number of transactions that contain that itemset.

Storing actions performed

by users in database

Applying Apriori algorithm

Calculating page weight

Applying Rank

Developing user interface

(Web Browser)

114

Based on the confidence value of each subset the weight can be calculated by the

formula given in equation 6.2.

Pwt= C1+C2+C3+………..+Ci= ∑Ci (6.2)

Where C1, C2, C3…. are the confidence values of subsets of frequent occurring actions

which satisfy a minimum confidence threshold.

Step 5: Apply Rank: Higher the page weight, higher its rank. It means the weight of

the page which is calculated from above step is considered for page rank. The page

which has the highest weight is assigned higher rank.

6.2.3 Example

In this section, an example is taken to show the working of proposed work. For this,

actions performed by 40 users on two pages Page1, Page2 were stored in the database.

The database also stored number of times users visited those pages at different times.

Users perform actions on those pages according to their needs. Their actions will be

stored in a database. Apriori will be applied to those actions. For applying Apriori,

minimum support of 20% and minimum confidence threshold of 60% were taken as it

was used in previous researches [73]. The result of Apriori shows that most frequent

actions on P1 were Save As, Add to Favorites, Number of scrollbar clicks and most

frequent actions on another page P2 were Number of Mouseclicks and Print. With the

help of this, the confidence values of pages were calculated.

Step 1: A Web browser is developed to store the user actions. It is developed using C#

and .NET technology.

Step 2: All the actions performed by 15 users on two page P1 & P2 get stored in the

database with the help of SQL. The actions on Page P1 are shown in table 6.2.

Table 6.2: Database of Actions

User ID List of Items

U1 PID8, PID1,PID5

U2 PID10, PID8,PID1

U3 PID6

U4 PID7

U5 PID9

U6 PID11

115

Similarly, 15 users performed actions Page 2.

The actions for Page 1 and Page 2 with their support count more than 20% are shown in

table 6.3.

Table 6.3: Users’ Actions

Action ID Actions on Page 1 Support

Count

Action ID Actions on Page 2 Support

Count

PID1 Scroll 4 PID9 Print 6

PID8 Add to Favorites 6 PID13 Mouse Clicks 3

PID10 Save As 3 PID8 Add to Favorites 4

Step 3: After applying Apriori on stored actions, the frequency of actions can be

calculated and then find out frequent patterns. Following are the frequent patterns with

their support count as shown in table 6.4.

Table 6.4: Frequent Patterns

Frequent Pattern Support Count

{Save As, Add to Favorites, Number of Scrollbar Clicks} 2

{Number of Mouseclicks, Print, Add to Favorites} 2

Step 4: The confidence value of a page is calculated by putting the values in equation

(6.1) and using the values from table 6.3 and table 6.4.

User ID List of Items

U7 PID12

U8 PID1, PID8,PID10

U9 PID4

U10 PID2

U11 PID8, PID3

U12 PID13

U13 PID8, PID10

U14 PID8

U15 PID1,PID5

116

First of all the confidence values of most frequent actions of page P1 has been

calculated as shown below: -

 C1=sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Save

As} =2/3=67%

 C2= sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Add to

Favorites} =2/6=33%

C3= sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Number

of Scrollbar Clicks} =2/4=50%

C4= sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Save As,

Add to Favorites} =2/3=67%

C5= sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Save as,

Number of Scrollbar Clicks} =2/2=100%

C6= sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Add to

Favorites, Number of Scrollbar Clicks} =2/3=67%

Then, Confidence values of most frequent actions of page P2 has been calculated

C1’=sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Number of

mouseclicks} =2/3=67%

C2’=sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Print}

=2/6=33%

C3’=sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Add to Favo

-rites} =2/4=50%

C4’=sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Number of

Mouseclicks, Add to Favorites} =2/2=100%

C5’=sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Number of

Mouseclicks, Print} =2/4=50%

C6’=sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Print, Add to

Favorites} =2/3=67%

Now, Confidence values above the specified threshold value i.e. 60% were selected and

others were rejected as shown in table 6.5.

117

Table 6.5 Confidence Values of Subsets of Most Frequent Actions

Confidence Values Selection

 C1=100% √

 C2=33% ×

 C3=50% ×

 C4=67% √

 C5=100% √

 C6=67% √

 C1’=67% √

 C2’=33% ×

 C3’=50% ×

 C4’=100% √

 C5’=50% ×

 C6’=67% √

Since minimum confidence threshold is 60%, confidence values C2, C3, C2’, C3’, C5’

will be rejected in page weight calculation.

Therefore, weight of page P1 is calculated as per equation 6.2:-

Pwt = C1+C4+C5+C6=1+0.67+1+0.67=3.34

Similarly, Weight of page P2 is:-

Pwt ’ =C1’+C4’+C6’ =0.67+1+0.67=2.34

Step 5: Since Page P1 has higher weight than Page P2, Rank of Page P1 will be higher.

6.2.4 Performance Evaluation

The proposed method is compared with Hit Count and User Rating method.

Page weight by Hit Count will be calculated by taking an average of the frequency of

their visit on a particular page. Star rating is calculated by the user by explicitly asking

while closing the web page.

118

Table 6.6: Comparison of Page Weight Calculation Methods

Pages Pwt (Apriori) Pwt(Hit Count) Star Rating(by User)

Page1 3.34 1.34 3

Page2 2.6 2.2 2

By the use of above table 6.6, we can give a graphical representation in figure 6.6

which shows the comparison between page weights calculated by both Apriori and Hit

Count.

0

1

2

3

4

Page 1 Page 2

L
ik

in
g
s

(i
n

 t
er

m
s

o
f

P
ag

e
w

ei
g
h

t

&
 s

ta
r

ra
ti

n
g
)

Proposed

Hit Count

Star Rating (By User)

Figure 6.6: Comparison of Page Weight Calculation Methods

It is observed that Apriori is performing better than hit count as proposed work

calculates higher relevance score. By explicitly asking users’ interest also shows that

proposed method predicts more accurate interest then Hit Count method.

119

CHAPTER VII

A NOVEL APPROACH FOR DOCUMENT STRUCTURE

DRIVEN CRAWLING IN MIGRATING CRAWLER

7.1 INTRODUCTION

It has been observed that when a user fires a query, it gets the results on the basis of

keywords matching i.e. the webpages as results which have these keywords are shown

to the user. It may be the case that some webpages are not shown to the user as they

didn’t have all keywords. For example, a user searches for admission in engineering. In

response to his query, search engine shows the results based on keyword matching and

shows the links of colleges as shown in figure 7.1.

Figure 7.1: Snapshot User Query and Results

On searching Google ask for GPS location and shows the results of that particular

location. In this example, results shown are nearby Haryana. As it is clearly visible

from above given snapshot that User gets the link of colleges after 3 links. But it may

be possible that User wants college links more and at starting positions. Moreover,

results didn’t show link of YMCA, MDU, GJU etc and these are the reputed

universities of Haryana. So, there should be some other way of searching.

120

It has been observed that the web pages which are related to a common field such as

Academic website posses’ almost similar structure. For example, the site of two major

universities of Haryana, MDU and YMCA UST displays similar structure as shown in

figure 7.2.

Figure 7.2: Snapshot of Similar Structure Web Pages

In above figure 7.2, both websites have similar links like home, administration,

admissions etc. Similarly, websites of Automobiles, websites of shopping etc have

similar structure. So, it is observed that structure also plays a vital role in showing user

interest webpages. Therefore, it is proposed that merely considering the content may not

give as good as expected results while computing the rank before showing the results to

the user. It is further suggested that crawler should also taken into consideration the

structure as parameter while downloading the webpages from the web [98, 99]. At first,

crawler searches its repository for similar structure pages. When such webpages are not

available in its repository, it crawls the web and downloads those webpages whose

structure is similar to those documents that have low IDF (Inverse document frequency)

i.e. count is less in database.

7.2 DOM TREE

The internal structure of a web page is in the form of DOM tree i.e. Document object

model [67, 101]. Dom is HTML representation of a web document. The composition of

HTML documents consists of all nodes whether it is an element, attribute, text etc. In

DOM tree, the start node is document node and its branches are extended till all text

nodes covered. If the DOM trees of two documents are same then these web pages are

treated to be same pages. In general, the structure of a document is expressed as in

figure 7.3:-

121

Figure 7.3: DOM Tree

The structure extractor extracts the DOM tree representation of webpage and then with

the help of this DOM tree, HTML structure of web documents is used to check

similarity between them. If the structures matched then web documents are also said to

be similar in structure.

7.3 DOCUMENT’S STRUCTURE DRIVEN CRAWLING

In this work, a novel migrating crawler is proposed that has the capability that will

create its Migrants [6] dynamically as per requirement. In this case, Migrants are

created as per crawler manager decisions. The Crawler Manager takes the decision on

behalf of User satisfaction signal. Every time when user retypes the query or closes the

browser, a dialogue box is proposed to be opened which ask them whether the given

information is sufficient or not. If user says yes then no action takes place otherwise the

signal is sent to crawler manager. In response to this signal, crawler manager do two

things as listed below:-

1. First searches the webpages with similar structure in its local repository

2. Searches the webpages with similar structure on the web

To search on web, it creates the Migrants. Now these Migrants crawl the web and send

those pages only to the repository whose structure gets matched with supplied structure.

These supplied structures are those web pages structure which is on top rank on users’

HTML

Head Body

Title

Text

<p1> img

Text

122

query but the user was not satisfied with the shown webpages as result. The architecture

of proposed structure driver is given in figure 7.4.

Figure 7.4: Proposed Architecture of Structure Driver

In this architecture, Structure Driver is the major module and it has following sub

modules:-

a) Structure Extractor: This module is responsible for extracting the structure of a

webpage.

b) Structure Matcher: It is responsible for matching the structure of webpage supplied

by crawler manager and the webpage crawl by the Migrant.

The detailed explanation of these two modules is given below.

7.3.1 Structure Extractor

The matching of two or more documents on the basis of structure can be done by

matching their DOM tree. The DOM tree of a document can be obtained by using

different software. IE Dom Inspector is one of them and is used here.

Structure Driver

Web Page Structure

AGENT

SIDE

Web Page Structure

User

Behaviour

Analyzer

Crawler

Manager

Web Pages

Migrants

Structure

Extractor

Structure

Matcher Webpage

Structure DB

WWW

Matched Web Pages

Structure

Extractor

123

7.3.2 Structure Matcher

After taking structure of web pages supplied by crawler manager and by migrants,

structure matcher matched them. After getting DOM tree, Simple tree matching

algorithm [66] is used here to calculate the similarity between two trees. The matching

of nodes at each level occurs and continues till last level subtrees. The following are the

steps:-

i. First, the roots of nodes are compared.

ii. If their roots contain different symbols, the comparison stops here and the tree

does not match declared.

iii. Otherwise, the algorithm repeats, again and again, to find the maximum

matching of subtrees at each level.

iv. The matching subtrees nodes get stored in matrix W.

v. Then, calculate the M according to W i.e. M[i, j] = max(M[i, j-1], M[i-1, j], M[i-

1, j-1]) + W[i, j], where W[i, j] = SimpleTreeMatching (Ai, Bj);

The algorithm of Simple Tree Matching is given below in figure 7.5.

Figure 7.5: Algorithm: DOM Tree Matching

After finding matching number of nodes, similarity can be calculated using the formula

given in equation 7.1.

SimpleTreeMatching (A, B)

Step 1: if the roots of the two trees A and B contain distinct symbols then

 2: return 0;

 3: else m = the number of first-level sub trees of A;

 4: n = the number of first-level sub trees of B;

 5: Initialization: M[i, 0] = 0 for i = 0, … , m; M[0, j] = 0 for j = 0, …, n;

 6: for i = 1 to m do

 7: for j = 1 to n do

 8: M[i, j] = max(M[i, j-1], M[i-1, j], M[i-1, j-1]) + W[i, j]

where W[i, j] = SimpleTreeMatching (Ai, Bj);

 9: End for

 10: End for

 11: return (M[m, n]+1);

 12: End if

124

Where, Size(A)= number of nodes in Tree A

 Size(B)= number of nodes in Tree B

The value of Similarity lies in between 0 & 1. The value which is closer to 1 is treated

as more similarity between two trees. Let’s take an example by taking two trees as

shown in figure 7.6.

Figure 7.6: Tree Matching

In given above example, A and B are two trees. By applying above Simple Tree

Matching algorithm on these two trees and then calculate their similarity.

Matching Nodes at each level as follows:

At level one: 1

At level second: 2

At level third: 3

At level fourth: 0

 Similarity = STM (A&B)

 (size (A) + size(B))/2 (7.1)

125

Therefore, Similarity by using equation 7.1 is given below:-

Similarity= [1+2+3+0]/[(9+7)/2]= 6/8 = .75

The similarity comes out to be .75 i.e. closer to 1. The similarity values show that two

trees are similar. The threshold range for structure similarity is taken as 0.4 to 0.9. The

similarity lies between this ranges is considered as similar trees.

7.4 PERFORMANCE EVALUATION

The performance of the proposed crawler can be compared with traditional crawler

based on measures of accuracy, retrieved links attributes and user satisfaction.

7.4.1 Accuracy

To measure the accuracy of proposed crawler, two metrics are taken namely Precision

and Recall. Precision is defined as ratio of relevant URLs crawled and Total URLs

crawled and it is written as

 Precision = Relevant URLs crawled

 Total URLs crawled

Recall is the ratio of relevant URLs crawled and total number of available URLs. It is

written as:-

 Recall= Relevant URLs crawled

 Total relevant URLs available

For experimental analysis of the proposed crawler, following ate the list of URLs taken:

 www.ymcaust.ac.in

 www.ngfcet.in

 www.titsbhiwani.ac.in

 www.gbu.ac.in/UserViewNews.aspx?NewsId=0

These lists are supplied to proposed crawler and their accuracy is calculated separately.

Following are the measurement for each URL.

http://www.titsbhiwani.ac.in/
http://www.gbu.ac.in/UserViewNews.aspx?NewsId=0

126

a)Test 1

The link www.gbu.ac.in/UserViewNews.aspx?NewsId=0 is supplied to crawler and

the following ate the data collected:

Total Number of Total URLs crawled= 980

Total Number of Relevant URLs crawled= 837

Total Number of URLs irrelevant= 143

Total number of relevant URLs not crawled= 126

Therefore, Precision= (837/980)*100=83.7%

 Recall= (837/837+126)*100=86.9%

b) Test 2

The link www.ngfcet.in is supplied to crawler and the following are the data collected:-

Total Number of Total URLs crawled= 376

Total Number of Relevant URLs crawled= 308

Total Number of URLs irrelevant= 68

Total number of relevant URLs not crawled= 45

Therefore, Precision= (308/376)*100=81.9%

 Recall= (308/308+45)*100=87.2%

c) Test 3

The link www.titsbhiwani.ac.in is supplied to crawler and the following ate the data

collected:

Total Number of Total URLs crawled= 574

Total Number of Relevant URLs crawled= 480

http://www.gbu.ac.in/UserViewNews.aspx?NewsId=0
http://www.ngfcet.in/
http://www.titsbhiwani.ac.in/

127

Total Number of URLs irrelevant= 94

Total number of relevant URLs not crawled= 102

Therefore, Precision= (480/574)*100=83.6%

 Recall= (480/480+102)=82.4%

d) Test 4

The link www.ymcaust.ac.in is supplied to crawler and the following ate the data

collected:

Total Number of Total URLs crawled= 158

Total Number of Relevant URLs crawled= 136

Total Number of URLs irrelevant= 22

Total number of relevant URLs not crawled= 27

Therefore, Precision= (136/158)*100=86.0%

 Recall= (136/136+27)*100=83.4%

Summarizing, the Precision (P) is found in the range of 81.9% to 86%, Recall (R) is

found in the range of 82.4% to 87.2%. The table 7.1 shows the summarize result.

Table 7.1: Accuracy Measure

Test # P (in %) R (in %)

1 83.7 86.9

2 81.9 87.2

3 83.6 82.4

4 86.0 83.4

Average 83.8 84.9

The value of Precision and Recall for each of the four tests of the proposed crawler is

depicted graphically in figure 7.7:

http://www.ymcaust.ac.in/

128

75

80

85

90

TEST 1 TEST 2 TEST 3 TEST 4

Precision

Recall

Figure 7.7: P and R values for each of the four test

7.4.2 Attribute of Retrieved links comparison

The performance can also be calculated based on the given below attributes. In given

experiment total 70 documents are retrieved by all crawlers. The following attributes

gives the performance of proposed crawler and traditional and shown in table 7.2:

a) Retrieved number of dead links: These are the links that doesn’t contain any

data i.e. pointed to blank webpage.

b) Retrieved number of redundant links: These are links that point to the same

downloaded webpage i.e. duplicate link.

Table 7.2: Identified Attributes

Attributes Conventional Proposed

Dead Links 9 15

Redundant Links 4 29

The figure 7.8 given below compared the performance of proposed crawler and

conventional in terms of above mentioned attributes identified:

0

10

20

30

40

Dead Links Redundant Links

N
u

m
b

e
r

o
f

Li
n

ks

Proposed

Conventional

Figure 7.8: Performance on the basis of Identified Attributes

129

This graph depicts that the relevancy is higher in our proposed mechanism as compared

to other search engines and redundancy is also completely removed through this

methodology.

7.4.3 User Satisfaction

After maintain the database, with the help of all proposed modules such as URL

ordering, Migrant Scheduling, Users’ Browsing Behaviour Analyzer, Structure driven

crawling etc, was examined by User. On closing the browser, a pop up window was

open on which user rates his satisfaction for the available information. A 5-point scale

is taken to rate the satisfaction level by 10 user. The table 7.3 given below shows the

result.

Table 7.3: User Satisfaction

USER Proposed Crawler Traditional Crawler

USER 1 4 2

USER 2 4 1

USER 3 5 3

USER 4 4 1

USER 5 5 3

USER 6 5 2

 USER 7 3 2

USER 8 4 2

USER 9 4 1

USER 10 4 3

Average 4.2 2

From the above table, it is clearly observed that proposed crawler has better average

rating as compared to traditional crawler. The conclusion and future scope is discussed

in next chapter.

130

131

CHAPTER VIII

CONCLUSION AND FUTURE SCOPE

8.1 CONCLUSION

In this thesis, a novel architecture of Structure Driven Cooperative Migrating Crawler

for Retrieving Quality data has been developed and implemented. After a widespread

study of existing crawling techniques, limitations were identified which became the

basis for the objectives of the work carried out in this thesis.

The proposed work meets the following objectives:-

 Web Coverage & Scalability

The proposed architecture of migrating crawler designed in this work creates the

migrants on the basis of the available load and also as per requirement

dynamically. These migrants crawls the web effectively and cover the web as

maximum as possible. Their dynamic creation property makes them to handle

any amount of load and thus make system scalable.

 Load Distribution and cooperation

It should not be the case that some migrants are overloaded and some are idle.

This distribution is efficiently balanced with the help of proposed URL

Scheduling Module. All the migrants are supplied with the list of URLs for

downloading in such a way that load is uniformly distributed over all available

migrants. A novel Scheduling method is proposed in this work that schedules

the URLs on the basis of the migrants and URL criterions. A multi variant

decision making technique based on AHP is used for designing of scheduling

policy.

 Unique Database

In order to make the database unique, redundancy removal both at URL level as

well as at document level is necessary. Here, normalization steps are applied to

identify syntactically similar URLs. A duplicate removal module is proposed to

132

identify duplicacy at the document level before storing them to ranked database.

To save the time hashing technique is applied so that less time is taken while

matching the duplicate documents. To further speedup the matching process, the

concept of cache is also used. With the help of this proposed module, duplicate

documents are identified and only the unique one are stored in Ranked database.

 Volatile Information Updation

Once the webpages get stored in database, there is need to revisit them so that if

there is any change then that changed webpages can be stored in place of old

ones. The concept of Sitemap is incorporated here. It contains the information of

website like its change frequency i.e. daily, weekly, hourly, etc, last modify

date, number of links etc. With the help of this information proposed migrants

visit the site accordingly and download the updated information only.

 Relevant Results

The results obtained from search engine in response to user query should be of

user interest. A module called as User Behaviour Analyzer is proposed. It

analyzes the user interest from their browsing behaviour on the web page. The

browsing behaviour indicators are mouse click, scroll, print, save, bookmark,

key up and down, hyperlink click etc. With the help of these indicators users’

interest are identified and the webpages are ranked accordingly.

 Structure Driven Crawling

In general, search results are provided by the technique of content matching. But

it has been observed that structure of webpage should also be taken into

consideration for better results. A structure driven crawling is proposed here

which works on the basis of the feedback supplied by the user. If user is not

satisfied with available links then more webpages are incorporated in the

database. The identification of such documents is done with the help of their

document structure. The structure of document along with content is taken as

the criteria of crawling the web. The dynamic creation property of proposed

migrants is used to crawl the web and store only those documents that are

structurally similar in order to make database rich and relevant.

133

The proposed architecture of structure driven cooperative migrating crawler has been

implemented using Aglets. The following is the summary of results obtained thereof:

 COVERAGE

The web coverage is calculated in terms of number of URLs crawled. The web

coverage is high in all four tests as compared to conventional migrating crawler.

The increase in coverage lies between 12% to 35% in different tests.

 NETWORK UTILIZATION

The network bandwidth utilized by the proposed migrating crawler is found less

in all four tests done so far. The bandwidth calculation is based on duplicate

elimination and revisit frequency of crawler. In this work, the saving in

bandwidth lies between 65% to 81% in different tests.

 ACCURACY

To measure the accuracy of proposed crawler, two metrics are taken namely

Precision and Recall. The results of four tests are given in table 8.1.

Table 8.1: Accuracy Measure

Test Precision (in %) Recall (in %)

1 83.7 86.9

2 81.9 87.2

3 83.6 82.4

4 86.0 83.4

Average 83.8 84.9

The average Precision and Recall as shown in Table 8.1 is found to be more than 80%

suggesting a high performance of the proposed crawler design

134

8.2 FUTURE WORK

In this dissertation various design issues of crawler has been addressed. But still there is

a scope of improvement in few areas as discussed below:

 Fault Tolerance at database level

The number of migrants is sufficient here to manage the load in case of any

failure. But still there should also be some mechanism that will handle fault

which may be at database level.

 Hidden Web

The proposed migrating crawler has been designed for general web. However,

the same can be modified for hidden web also. Design issues regarding hidden

web must be incorporated while extending this work.

135

REFERENCES

[1] A. Arasu, J. Cho, and H. G. Molina, “Searching the Web,” ACM Transactions

on Internet Technology, vol. 1, no. 1, pp. 2–43, Aug. 2001.

[2] A. Terrence Brooks, “Web Search: How the Web has changed information

retrieval”, Information Research, April 2003.

[3] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search

engine,” Computer Networks and ISDN Systems, vol. 30, no. 1-7, pp. 107–117,

1998.

[4] J. Cho and H. Garcia-Molina, “Parallel crawlers,” Proceedings of the eleventh

international conference on World Wide Web - WWW 02, 2002.

[5] J. Cho and H. Garcia-Molina. "The evolution of the web and implications for an

incremental crawler".. In Proceedings of the 26th International Conference on

Very Large Databases 2000a

[6] N. Singhal, A. Dixit, R. P. Agarwal, A. K. Sharma, (2012), “Using Migrating

Agents in Designing Web Search Engines and Property Analysis of Available

Platforms”, International Journal of Advancements in Technology (IJOAT),

ISSN: 0976-4860, Vol. 3, No. 4, December 2012, pp.254-269.

[7] S. Raghavan and H. Garcia-Molina, "Crawling the Hidden Web", VLDB

conference, 2001.

[8] O. Papapetrou, S. Papastavrou, and G. Samaras, “UCYMICRA: Distributed

Indexing of the Web Using Migrating Crawlers,” Advances in Databases and

Information Systems Lecture Notes in Computer Science, pp. 133–147, 2003.

[9] V. Shkapenyuk and T. Suel, “Design and implementation of a high-performance

distributed Web crawler,” Proceedings 18th International Conference on Data

Engineering.

[10] F. Liu, F.-Y. Ma, Y.-M. Ye, M.-L. Li, and J.-D. Yu, “IglooG: A

Distributed Web Crawler Based on Grid Service,” Web Technologies Research

and Development - APWeb 2005 Lecture Notes in Computer Science, pp. 207–

216, 2005.

[11] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource

Identifier (URI): Generic Syntax,” 2005.

136

[12] S. Lawrence, “Searching the World Wide Web,” Science, vol. 280, no.

5360, pp. 98–100, Mar. 1998.

[13] B. E. Brewington and G. Cybenko, “How dynamic is the

Web?,” Computer Networks, vol. 33, no. 1-6, pp. 257–276, 2000.

[14] O. Mcbryan, “GENVL and WWWW: Tools for taming the

Web,” Computer Networks and ISDN Systems, vol. 27, no. 2, p. 308, 1994.

[15] C. Franklin, "How Internet Search Engines Work", Sep 2002.

[16] B. Grossan, "Search Engines: What they are, how they work, and practical

suggestions for getting the most out of them," February 1997.

[17] A. Dixit, N. Singhal, "Retrieving Information from the Web and Search

Engine'^ Application, National conference on Emerging trends in Software and

Networking Technologies (ETSNT09), Amity University, Noida, India, April

17- 18,2009.

[18] A. Dixit, N. Singhal, ''Need of Search Engines and Role of a Web Crawler",

National Conference on Recent Trends in Computer and Information

Technologies Century (RTCIT-2009), Panipat, Haryana, India, April 2009.

[19] M. Najork and J. L. Wiener, “Breadth-first crawling yields high-quality

pages,” Proceedings of the tenth international conference on World Wide Web -

WWW 01, May 2001.

[20] P. De Bra, G.-J. Houben, Y. Kornatzky, R. Post, "Information Retrieval in

distributed hypertexts", Proc. of RIAO'94, Intelligent Multimdia, Information

Retrieval systems and management, New York, 1994

[21] M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim, and S.

Ur, “The shark-search algorithm. An application: tailored Web site

mapping,” Computer Networks and ISDN Systems, vol. 30, no. 1-7, pp. 317–

326, 1998.

[22] J. M. Kleinberg, “Hubs, authorities, and communities,” ACM Computing

Surveys, vol. 31, no. 4es, Jan. 1998.

[23] J. C. Miller, G. Rae, F. Schaefer, L. A. Ward, T. Lofaro, and A. Farahat,

“Modifications of Kleinbergs HITS algorithm using matrix exponentiation and

web log records,” Proceedings of the 24th annual international ACM SIGIR

conference on Research and development in information retrieval - SIGIR 01,

2001.

137

[24] M. Abukausar, V. S. Dhaka, and S. K. Singh, “Web Crawler: A

Review,” International Journal of Computer Applications, vol. 63, no. 2, pp.

31–36, 2013.

[25] S. Chakrabarti, M. V. D. Berg, and B. Dom, “Focused crawling: a new

approach to topic-specific Web resource discovery,” Computer Networks, vol.

31, no. 11-16, pp. 1623–1640, 1999.

[26] U. Schonfeld and N. Shivakumar, “Sitemaps,” Proceedings of the 18th

international conference on World wide web - WWW 09, 2009.

[27] M. Najork and J. L. Wiener, “Breadth-first crawling yields high-quality

pages,” Proceedings of the tenth international conference on World Wide Web -

WWW 01, May 2001.

[28] S. S. Vishwakarma , A. Jain, and A. K. Sachan. "A Novel Web Crawler

Algorithm on Query based Approach with Increases Efficiency." vol 46 2011,

pp: 34-37.

[29] O. Brandman, J. Cho, H. Garcia-Molina, and N. Shivakumar, “Crawler-

Friendly Web Servers,” ACM SIGMETRICS Performance Evaluation Review,

vol. 28, no. 2, pp. 9–14, Jan. 2000.

[30] D. Lefortier, L. Ostroumova, E. Samosvat, and P. Serdyukov, “Timely

crawling of high-quality ephemeral new content,” Proceedings of the 22nd ACM

international conference on Conference on information & knowledge

management - CIKM 13, 2013.

[31] A. Tripathy and P. K. Patra, “A Web Mining Architectural Model of

Distributed Crawler for Internet Searches Using PageRank Algorithm,” 2008

IEEE Asia-Pacific Services Computing Conference, 2008.

[32] M. Shoaib and A. K. Maurya, “URL ordering based performance

evaluation of Web crawler,” 2014 International Conference on Advances in

Engineering & Technology Research (ICAETR - 2014), 2014.

[33] A. Guerriero, F. Ragni, and C. Martines, “A dynamic URL assignment

method for parallel web crawler,” 2010 IEEE International Conference on

Computational Intelligence for Measurement Systems and Applications, 2010.

[34] Y. Wan and H. Tong, “URL Assignment Algorithm of Crawler in

Distributed System Based on Hash,” 2008 IEEE International Conference on

Networking, Sensing and Control, 2008.

138

[35] D. Ge and Z. Ding, “A Task Scheduling Strategy Based on Weighted

Round-Robin for Distributed Crawler,” 2014 IEEE/ACM 7th International

Conference on Utility and Cloud Computing, 2014.

[36] A. Chandramouli, S. Gauch, and J. Eno, “A popularity-based URL

ordering algorithm for crawlers,” 3rd International Conference on Human

System Interaction, 2010.

[37] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource

Identifier (URI): Generic Syntax,” 2004.

[38] S. H. Lee, S. J. Kim, and S. H. Hong, “On URL

Normalization,” Computational Science and Its Applications – ICCSA 2005

Lecture Notes in Computer Science, pp. 1076–1085, 2005.

[39] U. Schonfeld, Z. Bar-Yossef, and I. Keidar, “Do not crawl in the

DUST,” Proceedings of the 15th international conference on World Wide Web -

WWW 06, 2006.

[40] A. Agarwal, H. S. Koppula, K. P. Leela, K. P. Chitrapura, S. Garg, P. K.

Gm, C. Haty, A. Roy, and A. Sasturkar, “URL normalization for de-duplication

of web pages,” Proceeding of the 18th ACM conference on Information and

knowledge management - CIKM 09, 2009.

[41] F. Qureshi & A. A. Khan. Improving the Performance of Crawler Using Body

Text Normalization. Compusoft, 2(7), 2013, pp215.

[42] L. Leitão, P. Calado, and M. Herschel, “Efficient and Effective

Duplicate Detection in Hierarchical Data,” IEEE Transactions on Knowledge

and Data Engineering, vol. 25, no. 5, pp. 1028–1041, 2013.

[43] W. Li, J.-Y. Liu, and C. Wang, “Web Document Duplicate Removal

Algorithm Based on Keyword Sequences,” 2005 International Conference on

Natural Language Processing and Knowledge Engineering.

[44] H. L. Yu, L. Bingwu, and Y. Fang, “Similarity Computation of Web

Pages of Focused Crawler,” 2010 International Forum on Information

Technology and Applications, 2010.

[45] M. C. A. L. A. Vidal, A. S. D. Silva, E. S. D. Moura, and J. M. B.

Cavalcanti, “GoGetIt!,” Proceedings of the 15th international conference on

World Wide Web - WWW 06, 2006.

139

[46] H. Wang and Y. Zhang, “Web Data Extraction Based on Simple Tree

Matching,” 2010 WASE International Conference on Information Engineering,

2010.

[47] C. Y. Kang, “DOM-Based Web Pages to Determine the Structure of the

Similarity Algorithm,” 2009 Third International Symposium on Intelligent

Information Technology Application, 2009.

[48] Nierman and H. V. Jagadish. “Evaluating structural similarity in XML

documents”. In Proceedings of the 5th International Workshop on the Web and

Databases (WebDB2002), Madison, Wisconsin, USA, June 2002.

[49] E. Bertino, G. Guerrini, and M. Mesiti, “A matching algorithm for

measuring the structural similarity between an XML document and a DTD and

its applications,” Information Systems, vol. 29, no. 1, pp. 23–46, 2004.

[50] M. Morita and Y. Shinoda, “Information Filtering Based on User

Behavior Analysis and Best Match Text Retrieval,” Sigir ’94, pp. 272–281,

1994.

[51] B. M. Sarwar, J. A. Konstan, A. Borchers, J. Herlocker, B. Miller, and J.

Riedl, “Using filtering agents to improve prediction quality in the GroupLens

research collaborative filtering system,” Proceedings of the 1998 ACM

conference on Computer supported cooperative work - CSCW 98, 1998.

[52] M. Claypool, P. Le, M. Wased, and D. Brown, “Implicit interest

indicators,” Proceedings of the 6th international conference on Intelligent user

interfaces - IUI 01, 2001.

[53] H. Weinreich, H. Obendorf, E. Herder, and M. Mayer, “Off the beaten

tracks,” Proceedings of the 15th international conference on World Wide Web -

WWW 06, 2006.

[54] J. Goecks and J. Shavlik, “Learning users interests by unobtrusively

observing their normal behavior,” Proceedings of the 5th international

conference on Intelligent user interfaces - IUI 00, 2000.

[55] H. Lieberman, “Letizia, an agent that assists web browsing,” In:Burke, R., ed.

Proceedings of the International Joint Conference on Artificial Intelligence.

Menlo Park, CA: AAAI Press, 1995, pp. 924-929.

[56] X. Ying. The Research on User Modeling for Internet Personalized Services.

National University of Defense Technology, 2003.

140

[57] K. Xing, B. Zhang, B. Zhou, and Y. Liu, “Behavior Based User Interests

Extraction Algorithm,” 2011 International Conference on Internet of Things and

4th International Conference on Cyber, Physical and Social Computing, 2011.

[58] Z. Jingling, X. Wang, and Y. Zhou. "Study and implementation of user

behaviour analysis." Advanced Communication Technology (ICACT), 2010

The 12th International Conference on. Vol. 1. IEEE, 2010.

[59] Y. Qinghong, H. Hao, and X. Neng, “The research on user interest

model based on quantization browsing behavior,” 2012 7th International

Conference on Computer Science & Education (ICCSE), 2012.

[60] T. L. Saaty, Analytic Hierarchy process, McGraw Hill 1980.

[61] D. Punj and A. Dixit, “Design of an Efficient Migrating Crawler based

on Sitemaps,” International Journal of Advanced Science and Technology, vol.

83, pp. 1–12, 2015.

[62] D. Punj and A. Dixit, “Capturing User Browsing Behaviour

Indicators,” Electrical & Computer Engineering: An International Journal, vol.

4, no. 2, pp. 22–30, 2015.

[63] D. Punj & A. Dixit. Web Crawler Design Issues: A Review. International

Journal of Management, IT and Engineering, 2(8), 2012, pp394-404.

[64] A.K. Sharma, J.P. Gupta, D. P. Agarwal, PARCAHYD: An Architecture of a

Parallel Crawler based on Augmented Hypertext Documents. Ph.D. Thesis, HIT

& M, Gwalior, Aug. 2003.

[65] https://www.xml-sitemaps.com/

[66] H. Wang and Y. Zhang, “Web Data Extraction Based on Simple Tree

Matching,” 2010 WASE International Conference on Information Engineering,

2010.

[67] C. Y. Kang, “DOM-Based Web Pages to Determine the Structure of the

Similarity Algorithm,” 2009 Third International Symposium on Intelligent

Information Technology Application, 2009.

[68] The MD5 Message-Digest Algorithm, available at:

http://tools.ietf.org/html/rfc132.

[69] G. Jeh and J. Widom, “SimRank,” Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data mining -

KDD 02, 2002.

https://www.xml-sitemaps.com/

141

[70] S.-H. Liao, P.-H. Chu, and P.-Y. Hsiao, “Data mining techniques and

applications – A decade review from 2000 to 2011,” Expert Systems with

Applications, vol. 39, no. 12, pp. 11303–11311, 2012.

[71] S. Shinde, M. R Bidkar, M. N. Deore, M. N. Salunke & M. Neelay. Detection

of Distinct URL and Removing DUST Using Multiple Alignments of

Sequences. International Research Journal of Engineering and Technology

(IRJET), 03(1), 2016.

[72] Chandel, G. S., Patidar, K., & Mali, M. S. (2016). A Result Evolution

Approach for Web usage mining using Fuzzy C-Mean Clustering Algorithm.

International Journal of Computer Science and Network Security (IJCSNS),16

(1), 135.

[73] G. Wang, X. Zhang, S. Tang, H. Zheng, and B. Y. Zhao, “Unsupervised

Clickstream Clustering for User Behavior Analysis,” Proceedings of the 2016

CHI Conference on Human Factors in Computing Systems - CHI 16, 2016.

[74] K. Rodrigues, M. Cristo, E. S. D. Moura, and A. D. Silva, “Removing

DUST Using Multiple Alignment of Sequences,” IEEE Transactions on

Knowledge and Data Engineering, vol. 27, no. 8, pp. 2261–2274, Jan. 2015.

[75] L. Pamulaparty, C. G. Rao, and M. S. Rao, “XNDDF: Towards a

Framework for Flexible Near-Duplicate Document Detection Using Supervised

and Unsupervised Learning,” Procedia Computer Science, vol. 48, pp. 228–235,

2015.

[76] Y. Yu, Z. Hu, and Y. Zhang, “Rearch on Large Scale Documents

Deduplication Technique based on Simhash Algorithm,” Proceedings of the

First International Conference on Information Sciences, Machinery, Materials

and Energy, 2015.

[77] M. Narvekar and S. S. Banu, “Predicting Users Web Navigation

Behavior Using Hybrid Approach,” Procedia Computer Science, vol. 45, pp. 3–

12, 2015.

[78] A. Ladekar, P. Pawar, D. Raikar, and J. Chaudhari, “Web Log based

Analysis of User's Browsing Behavior,” International Journal of Computer

Applications, vol. 115, no. 11, pp. 5–8, 2015.

[79] D. Anupama and S. D. Gowda, “Clustering of Web User Sessions to

Maintain Occurrence of Sequence in Navigation Pattern,” Procedia Computer

Science, vol. 58, pp. 558–564, 2015.

142

[80] K. Filipowski, “Comparison of Scheduling Algorithms for Domain

Specific Web Crawler,” 2014 European Network Intelligence Conference, 2014.

[81] W. R. Bhaginath, S. Shingade, and M. Shirole, “Virtualized dynamic

URL assignment web crawling model,” 2014 International Conference on

Advances in Engineering & Technology Research (ICAETR - 2014), 2014.

[82] G. H. Agre and N. V. Mahajan, “Keyword focused web crawler,” 2015

2nd International Conference on Electronics and Communication Systems

(ICECS), 2015.

[83] Q. Pu, “The Design and Implementation of a High-Efficiency

Distributed Web Crawler,” 2016 IEEE 14th Intl Conf on Dependable,

Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and

Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber

Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech),

2016.

[84] M. Kumar and R. Bhatia, “Design of a mobile Web crawler for hidden

Web,” 2016 3rd International Conference on Recent Advances in Information

Technology (RAIT), 2016.

[85] A. Lawankar and N. Mangrulkar, “A review on techniques for

optimizing web crawler results,” 2016 World Conference on Futuristic Trends

in Research and Innovation for Social Welfare (Startup Conclave), 2016.

[86] S. Gaikwad and N. Bogiri, “A survey analysis on duplicate detection in

Hierarchical Data,” 2015 International Conference on Pervasive Computing

(ICPC), 2015.

[87] P. E. D., P., P. Anandhakumar, G. D. Raj, and T. Rajendran, “Efficient

Priority Queue algorithm and Strainer mode Technique for identification and

eradication of duplications in XML records,” 2013 Fifth International

Conference on Advanced Computing (ICoAC), 2013.

[88] Y. Takano and R. Miura, “FARIS: Fast and Memory-Efficient URL

Filter by Domain Specific Machine,” 2016 6th International Conference on IT

Convergence and Security (ICITCS), 2016.

[89] C. Kumari, D. Joshi, and S. N. Singh, “Canonization rules for detecting

different URLs,” 2016 6th International Conference - Cloud System and Big

Data Engineering (Confluence), 2016.

143

[90] Y. Yang, L. Zhang, G. Liu, and E. Chen, “UPCA: An efficient URL-

Pattern based algorithm for accurate web page classification,” 2015 12th

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),

2015.

[91] B. Mehta and M. Narvekar, “DOM tree based approach for Web content

extraction,” 2015 International Conference on Communication, Information &

Computing Technology (ICCICT), 2015.

[92] P. Zeng, Q. Tan, W. Cao, and T. Huang, “High Efficient Multi-pattern

URL Matching Algorithm Based on HTTP Protocol,” 2015 Fifth International

Conference on Communication Systems and Network Technologies, 2015.

[93] D. Punj & A. Dixit. URL Ordering Policies for Distributed Crawlers: A

Review. Journal of Network Communications and Emerging Technologies

(JNCET) Volume 5, Special Issue 2.2015.

[94] L. Leitão, P. Calado, and M. Herschel, “Efficient and Effective

Duplicate Detection in Hierarchical Data,” IEEE Transactions on Knowledge

and Data Engineering, vol. 25, no. 5, pp. 1028–1041, 2013.

[95] G. Tummarello, “A sitemap extension to enable efficient interaction with large

Quantity of linked data”, Presented at W3C Workshop on RDF Access to

Relational Databases 2007.

[96] R. Cyganiak, H. Stenzhorn, R. Delbru, S. Decker, and G. Tummarello,

“Semantic Sitemaps: Efficient and Flexible Access to Datasets on the Semantic

Web,” Lecture Notes in Computer Science The Semantic Web: Research and

Applications, pp. 690–704, 2008.

[97] G. S. Bedi, A. Singh, “Analysis of Search Engine Optimization (SEO)

Techniques”, published in International Journal of Advanced Research in

Computer Science and Software Engineering in Vol; 4, March 2014.

[98] D. Punj and A. Dixit “Document structure based Filtering in Migrating

Crawler- A Review”, presented in International Conference Paradigms shift in

Management and Technology at Faridabad in 9-10 March 2015.

[99] D. Punj and A. Dixit “A Novel Approach for Document Structure based

Filtering in Migrating Crawler”, published in International Journal of YMCA

UST Faridabad in 2014.

144

[100] S.-H. Tan, M. Chen, and G.-H. Yang, “User behavior mining on large

scale web log data,” The 2010 International Conference on Apperceiving

Computing and Intelligence Analysis Proceeding, 2010.

[101] D. A. D’Mello and V. S. Ananthanarayana , “A Tree Structure for Efficient

Web Service Discovery” Department of Computer Science & Engineering, St.

Joseph Engineering College, Mangalore, INDIA – 575 028.

[102] D. Punj, S. Juneja and A. Dixit “Improving Search Results Based On Users’

Browsing Behaviour Using Apriori Algorithm”, 50th Golden jubilee

International annual convention of Computer Society of India (CSI-2015) theme

Digital Life, organised by BVICAM New Delhi, 2nd to 5th December 2015.

[103] D. Punj and A. Dixit, “Design of a Migrating Crawler Based on a Novel

URL Scheduling Mechanism using AHP,” International Journal of Rough Sets

and Data Analysis, vol. 4, no. 1, pp. 95–110, Jan. 2017.

[104] A. Dixit and A. K. Sharma "Self Adjusting Refresh Time Based Architecture

for Incremental Web Crawler" International Journal of Computer Science and

Network Security (IJCSNS) Korea. Vol. 8 No. 12 pp. 349-354. ISSN: 1738-

7906. 2008.

[105] Malav, M. Prasad, and A. Rasool. "Variations of Wu-Manber String

Matching Algorithm." International Journal of Engineering Research and

Technology. Vol. 3. No. 4. ESRSA Publications.2014.

[106] D. K. Sharma and A. K. Sharma, “Search Engine,” ICT Influences on

Human Development, Interaction, and Collaboration, pp. 117–131, 2012.

[107] D. K. Sharma and A. K. Sharma, “A Novel Architecture for Deep Web

Crawler,” Network and Communication Technology Innovations for Web and IT

Advancement, pp. 106–129.

[108] H. Agrawal and S. Yadav, “Search Engine Results Improvement -- A

Review,” 2015 IEEE International Conference on Computational Intelligence &

Communication Technology, 2015.

[109] J. A. Khan, “Comparative study of information retrieval models used in

search engine,” 2014 International Conference on Advances in Engineering &

Technology Research (ICAETR - 2014), 2014.

[110] D. K. Sharma and A. K. Sharma, “Search Engine: A Backbone for

Information,” ICT Influences on Human Development, Interaction, and

Collaboration, pp. 117–131, 2012.

145

[111] A. Surya and D. K. Sharma, “An approach for web page ordering using

user session,” 2013 Ieee Conference On Information And Communication

Technologies, 2013.

[112] A. Gupta, A. Dixit, and T. Kumari, “A Novel Link and Prospective

terms Based Page Ranking Technique,” International Journal of Engineering

Trends and Technology, vol. 27, no. 6, pp. 292–299, 2015.

[113] Manvi, K. K. Bhatia, and A. Dixit, “A Novel Design of Hidden Web

Crawler using Ontology,” International Journal of Engineering Trends and

Technology, vol. 26, no. 1, pp. 14–20, 2015.

[114] P. Devi, A. Gupta, A. Dixit, “Comparative Study of HITS and PageRank

Link Based Ranking Algorithms”, International Journal of Advanced Research

in Computer and Communication Engineering” , Vol-3,Issue 2. ISSN: 2278-

1021. Feb-2014.

[115] K. Sachdeva and A. Dixit, “Estimating Page Importance based on Page

Accessing Frequency,” International Journal of Computer Applications, vol. 86,

no. 5, pp. 1–6, 2014.

[116] N. Singhal, A. Dixit and R. P. Agarwal, (2012), “User Perception based

Inverted Index for Web Search Engines”, International Journal of Contemporary

Research in Engineering and Technology, ISSN: 2250-0510, Vol. 2, No. 2, pp.

39-44, 2012.

[117] N. Singhal, A. Dixit, A. K. Sharma, and R. P. Aggarwal “Regulating

Frequency of a Migrating Web Crawler based on Users Interest” International

Journal of Engineering and Technology (IJET) Vol 4 No 4 .ISSN: 2319-8613,

EISSN: 0975-4024 Impact Factor (IF)=.33) Aug-Sep 2012. pp 246-253.

[118] A. Dixit and U. C. Pant “A Novel and Efficient Mechanism for Securing

Migrating Crawler Data” International Journal of Contemporary Research in

Engineering & Technology (IJCREAT) Vol. 1, No. 1, ISSN: 2250-0510. July-

Dec 2011. pp. 1-8.

[119] N. Singhal, A. Dixit, and A. K. Sharma, “Design of a Priority Based

Frequency Regulated Incremental Crawler,” International Journal of Computer

Applications, vol. 1, no. 1, pp. 42–47, 2010.

[120] A. Dixit, and J. K. Seth “A migrating parallel exponential crawling approach

to search engine” International Journal of Computer Science & Emerging

146

Technologies (IJCSET) Volume 1. Issue 2. ISSN: 2044-6004.August, 2010. pp.

83-90.

[121] A. Dixit PhD thesis MDU Rohtak, 2010.

[122] A. Gupta, A. Dixit and A.K. Sharma, “A Novel Web Page Change Detection

Technique For Migrating Crawlers”, 50th Golden jubilee international annual

convention of Computer Society of India (CSI-2015) theme Digital Life,

organised by BVICAM New Delhi, 2nd to 5th December 2015.

[123] A. Gupta, A. Dixit, P. Devi, “A novel user preference and feedback based

Page Ranking technique”, IEEE 2nd International Conference on Computing for

Sustainable Global Development (INDIACom), Organised by BVICAM New

Delhi, Print ISBN: 978-9-3805-4415-1. Mar, 11-13 2015. pp 1335- 1340.

[124] A. Kaur, A. Dixit and P. S. Grover, “Quantitative evaluation of proposed

maintainability model using AHP method”, IEEE 2nd International Conference

on Computing for Sustainable Global Development (INDIACom), Organised by

BVICAM New Delhi.Print ISBN: 978-9-3805-4415-1. Mar 2015.pp 1367-

1371.

[125] A. Dixit and A. Sharma, “Security System for Migrating

Crawlers,” 2011 International Conference on Computational Intelligence and

Communication Networks, 2011.

[126] N. Singhal, R. Agarwal, A. Dixit, and A. Sharma, “Information Retrieval

from the Web and Application of Migrating Crawler,” 2011 International

Conference on Computational Intelligence and Communication Networks, 2011.

[127] A. Dixit and A. K. Sharma, “A mathematical model for crawler revisit

frequency,” 2010 IEEE 2nd International Advance Computing Conference

(IACC), 2010.

[128] A. K. Sharma, A. Dixit, and A. Arora “Relavance Improvement by Selective

Retrieval Strategies in Meta Search Engines” Accepted in National conference

on Recent Developments in Applicable Mathematics & Information Technology

JIET Guna Oct 2009.

[129] A. Dixit, N. Singhal, ''Need of Search Engines and Role of a Web

Crawler", National Conference on Recent Trends in Computer and Information

Technologies Century (RTCIT-2009), Panipat, Haryana, India, April 2009.

147

[130] A. Dixit, N. Singhal “Web Crawling Techniques: A Review” accepted in

National Conference at ITS MohanNagar, Ghaziabad on Information Security:

Emerging Threats and Innovations in the 21stCentury to be held on 4th Apr 2009.

[131] Z.-K. Wei and J.-P. Du, “Research on several key issues about Search

Engines,” 2008 International Conference on Machine Learning and

Cybernetics, 2008.

148

149

APPENDIX I

The following figures show the snapshots of implementation of the proposed URL

Organizer. An example of www.google.com is taken here:-

Web Browser Interface

Figure A1.1: Google Home page and its links

http://www.google.com/

150

Link Extraction by Proposed Crawler

Figure A1.2: Extracted Links

URL Normalization Step

Figure A1.3: Normalized URL

151

After Normalization, duplicate matching result

Figure A1.4: URL Matching Process

URL Ordering on the basis of embedded links

Figure A1.5: URL Ordering Process

152

153

APPENDIX II

Snapshots of URL Scheduling Process

Scheduling Criterions and their relative importance

Figure A2.1: Criterions Comparison

Migrants comparison w.r.t Agent Load

Figure A2.2: Migrants Comparison

154

Migrants comparison w.r.t URL Capacity

Figure A2.3: Alternative Comparison

Migrants comparison w.r.t URL Parent Rank

Figure A2.4: Alternative Comparison

155

Migrants comparison w.r.t N/W Bandwidth

Figure A2.5: Alternative Comparison

Migrants comparison w.r.t Loading Rate

Fi

gure A2.6: Alternative Comparison

156

Migrants comparison w.r.t Agent Capacity

Figure A2.7: Alternative Comparison

Migrants comparison w.r.t Network Latency

Figure A2.8: N/W latency

157

Overall Priority of each Criterion

CRITERIONS Priority Rank

1 Agent_Load 7.4% 4

2 URL_Capacity 27.3% 2

3 URL_Prank 37.3% 1

4 N/W_Bandwidth 5.6% 6

5 Loading_Rate 11.6% 3

6 Agent_Capacity 6.2% 5

7 N/W_Latency 4.7% 7

Figure A2.9: Overall Priority

Consolidated Weights and Rank of each Migrant

Participants MA1 MA2 MA3 MA4

Weights 16.4% 35.0% 31.5% 17.1%

Rank 4 1 2 3

Figure A2.10: Migrant’s Rank

158

Graphical Representation of Alternatives Weights

Figure A2.11: Consolidated Weights

159

APPENDIX III

Snapshots of duplicate URLs and elimination of such URLs

For example, Input URL: - https://www.wikipedia.org

List of Duplicate URLs

Figure A3.1: Snapshot of duplicate URLs

160

 List of Different Link_name pointed to same page

Figure A3.2: Snapshots of Different Link_Name point to same page

Eliminate Duplicate Entries

Figure A3.3: Snapshot of Eliminator Module

161

APPENDIX IV

Snapshots of Users’ Browsing Behaviour Based Ranking

Web Browser

Figure A4.1: Web Browser Interface

Actions performed by users

Figf

Figure A4.2: Save As action

162

Save As Action

Figure A4.3: Save As action in Database

Copy Action

Figure A4.4: Copy action

163

Copy Action Stored in Database

Figure A4.5: Copy action in Database

Add to Favourite Action

Figure A4.6: Add to Favourite action

164

Favourite Action stored in Database

Figure A4.7: Add to Favorites action in database

Print Action

Figure A4.8: Print action

165

Print Action with printer window

Figure A4.9: Print action

Print Action in Database

Figure A4.10: Print action in user statistics

166

Refresh Action

Figure A4.11: Refresh action

Refresh Action in Database

Figure A4.12: Refresh action in user statistics

167

Stop Action

Figure A4.13: Stop Loading action

Stop Action in Database

Figure A4.14: Stop loading action in user statistics

168

Back Action

Figure A4.15: Back action

Back Action in Database

Figure A4.16: Back action in user statistics

169

Forward Action

Figure A4.17: Forward action

Forward Action in Database

Figure A4.18: Forward action in user statistics

170

Scroll Action

Figure A4.19: Scroll action

Scroll Action in Database

Figure A4.20: Scroll action in user statistics

171

HyperLink Action

Figure A4.21: HyperLink action

HyperLink Action in Database

Figure A4.22: Hyperlink action in user statistics

172

Search Action

Figure A4.23: Search action

Search Action in Database

Figure 4.24: Search action in user statistics

173

Applying Apriori Algorithm

Figure A4.25: Applying Apriori algorithm

Summary of user’s actions with frequency

Figure A4.26: Frequency of actions performed by users

174

Calculation of weight

Figure A4.27: Weight Calculation

Page Rank

Figure A4.28: Page Rank

175

APPENDIX V

Snapshots of implementation Migrating Crawler using Aglets

Server Starts

Figure A5.1: Server Starts

Client 1 Creation at Server End

Figure A5.2: Client 1 Created

176

Client 1 running

Figure A5.3: Client 1 Interface

Client 2 Creation at port 4436

Figure A5.4: Client 2 Created

177

Client 3 Creation at port 4437

Figure A5.5: Client 3 Created

Client 4 Creation at Port 4438

Figure A5.6: Client 4 Created

178

Downloading at Client 1

Figure A5.7: URL Downloaded

179

BRIEF PROFILE OF THE RESEARCH SCHOLAR

Deepika Punj did her B.Tech (Computer Science & Engineering) from Maharashi

Dayananad University, Rohtak in 2004 and M.Tech (Computer Engineering) in 2008.

Currently, She is working as Assistant Professor in Department of Computer

Engineering at YMCA University of Science and Technology, Faridabad, India. She is

having total 11 years of experience in teaching. Her areas of interest are Programming

Language C, Operating System and Internet technologies. She has authored papers in

various national and international journals.

180

181

LIST OF PUBLISHED PAPERS

International Journals:

S.

N

o

Title of the paper along with

volume, Issue No, year of

publication

Publisher

Imp

act

fact

or

Refereed

or Non-

Referred

Whether

you paid

any

money or

not for

the

publicati

on

Remarks

1.

Design of a Migrating Crawler

Based on a Novel URL Scheduling

Mechanism using AHP.

IJRSDA: Volume 4, Issue 1, Article

6

IGI

GLOBAL
Refereed No

ACM,

DBLP,

Google

Scholar

2.

Capturing User Browsing

Behaviour Indicators.

Electrical & Computer Engineering:

An International Journal (ECIJ)

Volume 4, Number 2, 2015

Wireilla

Scientific

Publication

s, Australia

Refereed No

CiteSeer,

Google

Scholar,

Scibd

3.

Design of an Efficient Migrating

Crawler based on Sitemaps.

International Journal of Advanced

Science and Technology Vol.83,

2015

SERSC,

Australia
Refereed No

EBSCO,

ProQuest,

DOAJ,

J-Gate

4.

URL Ordering Policies for

Distributed Crawlers: A Review.

International Journal of Journal of

Network Communications and

Emerging Technologies (JNCET)

Volume 4, Special Issue 1, 2015.

EverScienc

e
Refereed No

Google

Scholar, Cite

Factor

5.

A Novel Approach for Document

Structure based Filtering in

Migrating Crawler.

YMCAUST International Journal of

Research, Vol. 2, Issue 2, 2014

YMCAUS

T
Refereed No

6.

Web Crawler Design Issues: A

Review. International Journal of

Management, IT and

Engineering, Vol. 2, Issue 8, 2012

IJMRA Refereed YES

Google

Scholar,

Cornell

University

Library, Pro

Quest,

EBSCO

7.

Document structure similarity

methods: a review. Published

in International Journal

of Multidisciplinary

Research Studies (IJMRS) in 2012.

IJMRS Refereed YES

DOAJ,

CiteSeer,

Google

Scholar

182

International & National Conferences

S.No

Title of the paper

along with volume,

Issue No, year of

publication

Publisher
Impact

factor

Refereed

or Non-

Refereed

Whether you paid

any money or not

for the publication

Remarks

1.

Improving Search

Results Based On

Users’ Browsing

Behaviour Using

Apriori Algorithm”.

Presented in

International

Conference CSI-2015

SPRINGER

 YES

CSI

Sponsored

2.

Document structure

based Filtering in

Migrating Crawler- A

Review. Presented in

International

Conference Paradigms

shift in Management

and Technology at

Faridabad in 9-10

March 2015

YES

Best Paper

Award

3.

Design of an User

Browsing Behaviour

Tracking Tool”.

Presented in

International

Conference on

Advanced Information

Communication

Technologies in

Engineering

(ICAICTE-2K13) in

2013

YES

AICTE &

CSI

Sponsored

4.

Security issues in

mobile agent system:

A review. Presented in

National Conference

NEIET-2012 in April

2012.

YES

	DEEPIKA
	Under the Supervision of
	1.4 RESEARCH OBJECTIVES OF THE THESIS 6
	1.5 ORGANIZATION OF THE THESIS 8

	6.1 INTRODUCTION 107
	6.1 INTRODUCTION
	6.2.3 Example

