

1

CHAPTER 1

 INTRODUCTION

1.1 GENERAL

Human has assembled information into the greatest repository called World Wide Web

having information resources even on unthinkable subjects. This information may be

available instantly to anyone having Internet connection. As more and more people are

learning its usage, they can add more content on the web. As a result of this web is

growing exponentially and it is becoming difficult to locate useful information in such a

sheer volume of information. Sometimes finding the relevant and correct information is

like finding a needle in haystack. Moreover there may be requirement of collecting

information from a series of web pages and integrate that information or perform some

reasoning on that information. For making this procedure faster, the machine must

understand the text and should be able to process that text.

1.2 SEMANTIC WEB

There is a proposal from Tim Berners-Lee to augment the existing web with information

which makes the meaning of web pages explicit. He has devised the term Semantic Web

and according to him “The Semantic Web is an extension of the current web in which

information is given well-defined meaning, better enabling computers and people to work

in cooperation” [1]. Whereas web 1.0 and web 2.0 contain minimal machine-processable

information in the dumb links, Semantic Web is web 3.0 technology which is

enhancement of the current web with more machine-processable information. It is a way

of linking data between systems or entities that allows for rich, self-describing

interrelations of data. Semantic Web has opened up the web of data to artificial

intelligence processes. Figure 1.1 shows semantic web extending the current web by

emphasizing on interoperable ontologies which are capable of processing high quality

information so that the agents placed on top of semantic web can automate the work or

curate the content for the user.

2

1.3 NEED AND APPLICATIONS OF SEMANTIC WEB

Though many search engines are capable of indexing significant portions of the web,

there are some major problems for users such as getting so many irrelevant results or

getting no result at all. The first problem occurs because a word may have different

meaning in different contexts, Moreover the search engines index information using

keyword indices that do not preserve any relationship between words. Another problem

may be that the searched term or terms may not appear on web. There is also possibility

that the desired document is missed by search engine.

Semantic Annotation

Languages

Tools

Ontologies

Logical Support

Applications/Services

Applications/ Agents

WWW Web Content

Semantic Web

User

Figure 1.1: Semantic Web

3

This lack of ability of search engines to understand the context of words and relationships

between search terms may identify many false positives. If there is any likelihood for a

search engine to understand the intended meaning of the words or find whether there are

some semantic relationships between them, they will be capable of providing more

accurate searches. This is one of the aims of the Semantic Web.

Semantic Web has its major use in Knowledge Management, ease of information

integration, more efficient searching, more effective reuse of information etc.

1.4 KNOWLEDGE REPRESENTATION IN THE SEMANTIC WEB

Knowledge representation is the formalisation of knowledge and how it is processed by

machines. The goal of Semantic Web is to make information „understandable‟ or

„knowledgeable‟ in true sense for multiple applications through semantic interoperability

along with technological interoperability. This requires common understanding and good

communication among them by resolving their difference of languages, different

structures and methods and having non-overlapping and well mapped concepts or terms

which is achieved by analysing the contents and providing the contexts to the

information. This leads to using models which provide these specifications explicitly and

in some formal way defining the terms and how they are related to each other. These

models provide shared and common understanding of a domain that can be

communicated across applications and people.

For achieving technological interoperability Extensible Mark up Language (XML) is

used. Semantic interoperability can be achieved using richer language such as RDF,

OWL etc. These models can be used for inference and information exchange [2].

XML-XML is used as a simple way to transfer documents across the Web. Anyone can

design own document format and then write some document in that format. These

formats can include “machine-readable” markup also to enhance the meaning of its

content. By including these mark-ups in the documents, they become more powerful.

4

Resource Description Framework (RDF) - It is a format for defining the information

on the web. RDF is also a markup language like XML but is used for describing the

information and resources on the web. It makes easy for the web agents to search and

process information from the web which has been put into rdf files. RDF describe web

resources and provide a syntax such that individual parties can use and exchange

information. It is not designed for being represented to human. Its motive is to be

machine readable as well as machine understandable.

RDF Schema - RDF Schema is a datatyping model for RDF. Using RDF Schema, it can

be said that "Tom" is a "Cat", and that "Cat" is a sub class of animal. It can be used to

create properties and classes and can provide ranges and domains for the properties. The

most important concepts given by RDF and RDF Schema are the "Resource"

(rdfs:Resource), the "Class" (rdfs:Class), and the "Property" (rdf:Property).

Ontology - Ontologies are considered powerful tools for simulating the conceptual

models because of their expressiveness, effective knowledge representation formalism

and associated inference mechanisms [3], [4]. Now a days, ontology is used for

knowledge representation in information retrieval, artificial intelligence and semantic

web. Ontology has a great use in the web documents retrieval as keyword-based

searching may retrieve information with some false matched results because there is only

information retrieval by matching keywords and not extraction by matching the meaning

of the keywords can be done by using ontology.

Ontology is a structure made up of categories of objects or ideas in the world, along with

certain relationships among them. In general, ontologies are knowledge structures that

adopt a rich formal language aiming at classifying notions of interests like process, event,

quality, object and so on. The task of representation of Ontology is a way of

standardizing information for more flexibility, and to enable more rapid development of

applications, and sharing of information.

Following aspects are described by ontology as given by [5]:

5

Concepts:- A concept may represent a group of different individual objects in the mind

sharing the same characteristics. These may also be called classes which are abstraction

of objects. Concepts may be concrete (like people, countries), abstract (like fact, goal,

belief), fundamental or complex. Generally these concept or classes are a part of

hierarchical organisation to reduce the space requirements and are able to follow

inheritance mechanism.

Instances:- These are the individuals or things that are described by ontology and

elements belonging to a specific class. These can be actual objects such as person‟s name,

a location, a person‟s car etc. or an abstract entity. These are the base unit of ontology.

Relations:- The way in which individual classes or instances relate to each other is

described by the relations. Relation may be considered as an attribute, the value of which

is another object of the ontology. The whole semantic in a domain is described by these

inter-related relations.

Attributes:- Specific information of an object is stored in the form of attributes. Ontology

describes its objects by assigning at least one name and value to its attributes.

Ontology Classification: Ontology is categorized according to the level of generality as

follows:

● Top-level ontology: This ontology is concerned with general concepts e.g. time, event,

action, matter, etc.

● Domain ontology: A common vocabulary is provided to a domain by this ontology, so

various domain knowledge can be understood and exchanged. Domain ontology

examples are: Music ontology, Geo ontology, Food ontology, Gene ontology, etc.

● Application ontology: These ontologies are built for some specific purpose to share

knowledge modeling among various domains.

6

 ● Task ontology: This ontology is based on task or activity e.g. buying or diagnosing.

1.5 ONTOLOGY LEARNING AND CHALLENGES INVOLVED

The task of automatic or semi-automatic construction of ontologies from domain data is

called Ontology Learning [6]. A general process of ontology learning is shown in Figure

1.2, given as follows:

However, few other researchers have established their own methodologies for ontology

learning.

UPON-Lite [7] methodology includes six steps of ontology learning:

a) listing of domain terminology

b) lexicon terms associated with their synonyms

c) is-a hierarchy generation

d) predication

Concept

Relationship Elicitation

Properties Elicitation

Instance Definition

Reasoning

Figure 1.2: Ontology Learning

7

e) finding meronymy

f) coding ontology formally

GOSPL [8] has aimed at building hybrid ontology where concepts are defined both

formally and informally. This methodology provides collaboration between the ontology

engineers and domain experts and uses Glossary as a special linguistic resource. It

includes the following steps:

a) Semantic Interoperability Requirements are defined

b) Glossary is built

c) Lexons are created

d) Constraints are put over Lexons

e) Hybrid Ontology is generated

f) Co-evolution of Community and Semantic Interoperability Requirements

NeOn [9]suggests multiple ways of building Ontology instead of giving any one

methodology for different situations by re-engineering and reusing knowledge resources:

Situation 1: From specification to implementation- Without reusing the available

knowledge resources, ontology is generated from scratch

Situation 2: Reusing and re-engineering non-ontological resources -Ontology engineers

analyze non-ontological resources for their reuse according to the ontology requirements.

 Situation 3: Reusing ontological resources –ontologies, ontology modules are used for

building ontology by ontology engineers.

Situation 4: Reusing and re-engineering ontological resources- ontology engineers both

reuse and re-engineer ontological resources.

Situation 5: Reusing and merging ontological resources- Here several ontological

resources from the same domain are picked up for reuse.

8

 Situation 6: Reusing, merging, and re-engineering ontological resources- in this situation

ontology engineers decide to re-engineer the available resources and merge them.

Situation 7: Reusing ontology design patterns (ODPs) - These repositories are reused by

ontology engineers

 Situation 8: Restructuring ontological resources- Different restructuring techniques such

as extending, pruning or modularizing the different ontological resources is used for

building ontology

Situation 9: Localizing ontological resource- one ontology is adapted in different

cultures, language or community.

However ontology learning or ontology generation is not an easy task. Following are few

important challenges as observed in the process of learning ontology which are faced by

researchers given as:

 Unstructured texts: There is an open challenge according to S. Gillani Andleeb [10]

to learn an effective personalised ontology from the critical information. This

information may be scattered amongst various kinds of documents originating from

various sources such as emails and web pages or user‟s local information repository

that does not have meta data. For this reason, the results for discovery of relations

between concepts are also not satisfactory [11].

 Ambiguity in English text/Multiple senses of a word: As there may be multiple

senses of word each of these having a different meaning based on the context of

the word's usage in a sentence, it has to be resolved. Producing inconsistent or

duplicate entries and dealing with these inconsistencies is quite challenging. [12]

Due to above inherent problems the ontology techniques earlier proposed have some

deficiencies stated as follows:

9

i. Lack of fully automatic techniques for Ontology Development: Due to

unstructuredness and ambiguity in texts, there are very less standard tools for

developing ontology as explained by [13] [14]. Existing techniques use

supervised learning which require large amount of data for training.

ii. Ignoring other useful information from the texts: Existing techniques typically

consider word frequencies, co-occurrence statistics, and syntactic patterns such as

Hearst patterns [15] and cover only those terms or sentences, (by ignoring others)

that satisfy these constraints. The ignored text may also contain useful

information such as non-taxonomical relations (relations other than is-a, has-a or

part-of etc.) or data properties. In general, the information in a text has multiple

layers such as semantic roles denoting the context of a concept and semantic

relations. Ideally all levels of information should be used to construct the

ontology for a given text.

1.6 PROBLEM DEFINITION

After having a critical look over the work done in this field and considering the limitation

of each, it has been observed that constructing ontology automatically is a challenging

and important task. The work done till now in automated engineering of ontologies

capture only taxonomical relationships such as is-a, part of etc.

 Moreover only limited language constructs such as nouns are considered as the building

blocks for ontologies ignoring other constituents (such as verbs and adverbs) of a

language in the given text. Also larger texts and compound or complex sentence structure

in the text imposes difficulty in exploring the semantic content of the text and

constructing ontology. In this work an ontology generation technique will be devised

covering all important aspects missing in the existing works. Particularly semantic roles

along with the other constituents such as nouns, verbs etc. will be used to build ontology

without limitation of its size.

10

1.7 OBJECTIVES OF THE PROPOSED WORK

To gain solution to the problem of developing ontology generating technique, considering

the limitations of works done previously in this direction, we formulate the following

research objectives:

 Designing a framework for constructing an ontology

There is a need for generating an ontology automatically eliciting taxonomic and non-

taxonomic relations from an unstructured and semi-structured document which is a

tedious task.

Solution: For generating ontology i) from unstructured documents ii) from sources that

have some predefined structure, such as HTML a framework is designed which first pre-

processes the document to extract semantic roles of nouns in the sentence along with

usual concepts and their relationships. The extracted information about different roles,

concepts and relationships among the concepts from different documents are then merged

to construct ontology for whole document.

 Enriching the Ontology with classification of data properties

Ontology gives annotations in the form of rdf or rdfs which are used for providing

intelligent services like information retrieval, question answering etc. These services can

perform better if ontologies being used contain extra information about the concepts. This

information gives an idea about the context of the concept. While extracting ontology

from unstructured text ontology can be extended with specific knowledge to provide

more information.

Solution: We have defined several classes the data properties of the ontology may belong

to. These class labels are stored along with the data properties to enrich the ontology.

11

 Refining the Ontology by removing the un-necessary information and

summarizing the documents

Summarization of text is a necessity as there is a large amount of data on the web

expressing the same ideas. It requires deciding which sentences or phrases are to be

chosen such that they show the main ideas in the document. Even in the sentences chosen

there may be redundant and un-necessary information.

Solution: Information which is redundant and unnecessary in the documents is processed

to be removed from this document by deleting the un-necessary transition words and then

summarizing the documents by using machine learning technique Support Vector

Machine (SVM) along with constructing the ontology for SVM processed document and

further removing any redundancy in the text.

1.8 ORGANIZATION OF THESIS

The thesis has been organized in the following chapters:

Chapter 1: This chapter starts with brief introduction of semantic web, ontology,

challenges faced while learning ontology and also defines the problem which is tried to

be resolved in our work by giving the objectives of our work.

Chapter 2: This chapter contains the detailed literature survey done on ontology

development techniques considering their strengths and weaknesses. Comparison of

different techniques is also provided in the form of a table. This section also includes a

brief introduction to the tools and knowledge structure used in our work. The problem

definition is also revisited in the light of surveys conducted above.

Chapter 3: In this chapter a novel architecture for automatic construction of ontological

framework using conceptualization and semantic roles has been designed and proposed.

The architecture depicts different functional modules that are proposed and discussed in

12

this chapter. This chapter also provides implementation details and the result analysis of

the experiment conducted.

Chapter 4: This chapter introduces a new technique for enriching the ontology by

labeling the data properties extracted by the name of the class of data property to which it

belongs. This chapter also provides implementation details of this technique.

Chapter 5: This chapter proposes a new hybrid technique for summarizing the input text

by first extracting some statistical features from the text followed by SVM classifier to

generate extractive summary. This extractive summary is used to construct ontology

using our proposed approach which later is used to generate the final summary of the

input document. The final summary (an abstractive summary) generating step involves

rewording or reconstructing sentences from the ontology. This chapter also provides

implementation details of the system and the result analysis of the experimentation.

Chapter 6: This chapter gives a conclusion about the research work embodied in this

thesis and provides insights for extending this work in future.

13

CHAPTER 2

 LITERATURE REVIEW

2.1 INTRODUCTION

This chapter presents a detailed survey of literature related to the proposed work.

However, we will provide significant definitions and terminology related to semantic web

in section 2.2.

As this thesis deals with providing an ontological framework design for semantic web,

section 2.3 dwells on how the methodological and theoretical contributions address the

ontology building activities. This review frames the main goal of thesis to build ontology

with unstructured text.

We also propose a technique by which ontology can be extended with specific knowledge

to provide more information about the constructs of ontology. Section 2.4 explores the

approaches to enrich the ontology.

The approach purposed to build ontology from unstructured text in this thesis is utilized

to summarize text documents. Next section 2.5 offers insights of some works on text

summarization. This section reviews the methodological works and approaches to

address this activity.

Section 2.6 reviews the tools used in our work. This section also focuses on the

knowledge bases utilized in our work.

Finally, section 2.7 ends the chapter with a conclusion on the analysis of reviewed works

and summarises the problems encountered in these works.

14

2.2 SEMANTIC WEB LAYERED ARCHITECTURE

While the earlier web is used to display the contents on a page using HTTP, the Semantic

Web is trying to induce machine readability of content by semantically representing data

or information resources. The semantic web addresses the shortcomings of earlier web

using the descriptive technologies like Resource Description Framework (RDF) and Web

Ontology Language (OWL) and customizable Extensible Mark-up Language (XML).

These technologies are combined so as to provide descriptions that support or take the

place of the content of Web documents. There are several formats and languages that

form the building blocks of the semantic web as shown by the layered architecture of

semantic web in Figure 2.1. These include the following components which provide a

formal description of concept and relationships among them within a given knowledge

domain.

1. Unique Identification Mechanism

Identifiers are used to identify things on the Web. A uniform system of identifiers is used

where each thing identified is a "resource". These identifiers are called "Uniform

Resource Identifiers" or URIs.

Figure 2.1: Semantic Web Layered Architecture

15

2. Syntax Description Language

This layer is instantiated by XML that is designed to send and receive documents around

the web. It lets anyone to frame their own document format and write a document in the

same format. These formats include “machine-readable” markup for enhancing the

meaning of the document's content which also makes the documents more powerful.

3. Meta-data Data Model

RDF instantiates the meta-data data model. For achieving easy integration of highly

distributed data of Semantic Web, the encoding scheme for description about resources is

provided through Resource Description Framework. This is a graph structured data

format in which things are denoted by resources that can be a concept or instance from a

domain. A special kind of resources called predicate describes the relationships among

other resources. These resources be it concepts, instances or predicates are assigned

Universal Resource Identifier (URI) and are represented as a set of triples known as rdf

statements. Here each triple contains a subject, predicate, and object in the form of

<subject, predicate, object> (e.g. <person1, ownerOf, car1>). The subject is the source of

an edge, the object is its target and the predicate is the edge itself. Resources which are

subjects in some triples may appear as an object in other triples. An inverse predicate

(e.g. hasCar) of the predicate (e.g. ownerOf), can exchange the subject and object of a

triple. Unlike subjects and predicates which are always resources in a triplet, objects can

either be a resource or it can be a literal. A literal could be a string, a number, a date, or

some arbitrary sequence of characters. To define the same literal in different languages, a

literal could also be given a language tag.

4. Ontology

Ontologies provide knowledge sharing and facilitate reusable web contents and web

services as poor communication or lack of common understanding which occurs in web

based applications due to mismatched or overlapping concepts or due to different

16

languages may lead to poor knowledge or software interoperability. Ontologies were

majorly introduced to solve the problem of poor communication. Ontologies are

described by several languages. Some of the ontology languages are OIL (Ontology

Interference Layer), DAML (DARPA Agent Markup Language), and OWL (Web

Ontology Language). Description Logic and DAML+OIL combined form OWL which is

a set of XML elements and attributes having well-defined meaning, which is used to

define terms and their relationships.

5. Rules and Logic Framework

For expressing complex mappings among ontologies rule languages are used. Several

rule languages are proposed on the top of RDF for example Semantic Web Rule

language (SWRL), WRL etc. These languages may offer support for non-monotonic

negation or provide rich sets of built-in functions. A generic Rule Interchange Format

(RIF) has been standardised by W3C working group in 2005 which now has reached a

proposed recommendation status.

6. Proof and Trust

Logic statements written by people in the form of semantic links can be followed by

machines to construct proofs. The trust part of semantic web is yet to be implemented.

Digital signatures can be used here and own levels of trust can be set so that the computer

can make decisions about what to believe and what to distrust.

7. Encryption

A secure version of HTTP known as HTTPs is developed for making sure that data

remains unaltered during transmission. HTTPS uses a different server port and an

encryption protocol to avoid the man-in-the-middle attacks and eavesdropping on the

level of the transport layer. RDF graphs are digitally signed to ensure the authenticity of

17

content and the source that the content has been the same. RDF document signing

consists of using standard digital signature methods.

8. Identity Verification

For a decentralized system the issue of identity is important in the context of the

Semantic Web as people may use their own identifiers for resources leading to an excess

of identifiers for the same entity. Using instance URIs or class URIs already being used

by other sources may help in creating a web where distributed discovery is possible. To

be able to gather information from different sources the identity of URIs has to be

established by performing a syntactic check to merge data when same URI are attached

RDF descriptions by two sources.

In the process of devising an effective knowledge representation system for Semantic

Web we need to design an Ontological framework for the same for following reasons:

i) For sharing common understanding of information among people or software agents.

ii) Enabling reuse of domain knowledge.

iii) Separating domain knowledge from operational knowledge

iv) Analyzing domain knowledge.

2.3 ONTOLOGY DEVELOPMENT METHODS

To reduce the high cost of building ontologies manually, automatic construction of

ontology has been the focus of recent research. [16] [12] [10]

 Ontology building approaches can be classified according to the type of knowledge

resources i.e. fully structured text such as databases, dictionaries or existing ontologies,

semi-structured text such as HTML or XML or unstructured text such as plain text in

journals, books ,web.

18

This section includes a brief review of some approaches to generate ontology from

structured and semi-structured text. As the main issue addressed in this thesis is to

generate ontology from unstructured text, a detailed description of methodologies and

approaches to address this activity is given, in the sub-section 2.3.3, in chronological

order and a table summarizing these approaches along with the problems found in each

approach is also presented in the same sub-section.

2.3.1 Ontology from Structured Text

Constructing ontology from fully structured text involves updating the existing ontology,

extracting ontologies from existing knowledge bases or merging the existing ontologies

to build a large ontology. A few approaches have been investigated for developing

ontology from existing ontologies.

Hairth Alani [17] gives an approach for constructing ontologies from existing ontologies

automatically using ontology mapping and merging techniques. This approach is less

costly as it doesn‟t start from scratch. This approach ranks the ontologies from a domain

to get top ranked ontologies. These ontologies are then segmented and merged to form a

detailed ontology. A number of technologies are intended to be used such as ontology

searching, segmentation, ranking, matching, merging and evaluating the ontology.

Problem in this system is that it cannot guarantee the retention of quality and consistency

of the original ontologies in the extracted segments which are processed further to be

joined as a big ontology.

Junli Li et al. [18] presents a technique to construct geo-ontologies by merging

ontologies from various sources. The formal semantics are extracted using Formal

Concept Analysis. Information entropy along with deviance analysis is used as a basis for

reducing the size of merged concept lattice as preferred by the user. A threshold can be

applied for reducing the merged concept lattice in accordance with the user interest. The

difficulty with this method is that human intervention is largely expected to maintain the

accuracy of merged ontology.

19

C. P. Abinaya et al. [19] utilize semantic and syntactic measures for merging and

identifying similar concepts. WordNet is used here for determining similarities among

classes and instances from different ontologies and then merging ontologies. The

difficulty with this method is that merging can be done only for the same domain

ontologies.

2.3.2 Ontology from Semi-Structured Text

Semi-structured text means data organized into a database so constructing ontology from

semi-structured text involves transforming a database into ontology. A few researchers

have worked on constructing ontology from database. Overview of some works is given

as follows:

Andreia et al. [20] has introduced a transformation algorithm from a database into

ontology. In Object-oriented databases have been used to be transformed by this

algorithm. The main characteristics of such database types have been considered.

Guntars Bumans [21] shows relational databases can be processed to define a bridging

mechanism between relational data and OWL ontology using SQL to generate RDF

triples for OWL class and property instances. This technology provides the means to use

relational database as a powerful tool to transform relational data to Semantic Web layer.

Kgotatso Desmond [22] proposes two Protégé plug-ins DataMaster and OntoBase that

are used to construct ontologies automatically from an Oracle relational database. In

addition to this two visualization plug-ins including OntoGraf and OWLViz are used to

analyse the semantic structures of the resulting ontologies. One more tool is used as well

as an ontology documentation software, namely, Parrot. The performances of the plug-ins

were further measured based on the database-to-ontology mapping rules/principles. The

results revealed that both tools reasonably convert a relational database to ontology with

slight deviations from the database-to-ontology mapping principles.

20

2.3.3 Ontology from Unstructured Text

Constructing ontology from unstructured text is the process of identifying concepts,

relations among these concepts and properties of concepts from textual information and

using them to construct and maintain ontology.

Few approaches by some researchers attempt to build ontology from unstructured text

manually, semi-automatically or automatically by employing different ideas. We describe

here some of the approaches as follows:

i) Statistical Techniques And Hearst’s Patterns

Khurshid Ahmad et al. [14] have worked on unstructured text to construct ontology

which makes automatic identification of keywords used as concepts using statistical

techniques and then using Hearst‟s patterns [23] to enhance the ontology. In this work

domain expertise is needed to provide evidences.

ii) Supervised Approach

A supervised approach to automatic Ontology Population is given by Hristo Tanev et al.

[24]. They have populated ontology of Named Entities in which geographical locations

and person names are used as two high level categories and each category has ten sub-

classes. A syntactic model is learnt for each sub-class, using a list of training examples

and given a syntactically parsed corpus. Unknown named Entities from the test set are

classified using this model. As no annotated corpus is used in the learning process, this

approach is weakly supervised.

iii) Concept-Relation-Concept Tuple-Based Ontology Learning

Abbreviated as CRCTOL [25] is an approach devised by Tan et al. for constructing

ontologies from domain-specific documents. For performing ontology learning tasks it

uses linguistics and statistics-based techniques. Documents of different formats such as

21

PDF, XML etc are converted into plain texts using data importer. For part of speech

tagging and other syntactic information Stanford‟s part-of-speech tagger is used along

with the Berkeley Parser. Nouns and noun phrases are extracted in the form of multi-

word terms using some predefined rules. Terms are identified whether they belong to

specific domain using a manually built domain lexicon. Extracted terms are further

cleansed by removing adjectives and articles associated with them. Each extracted term is

weighed by using Domain Relevance Measure. To find is-a relations lexico-syntactic

patterns are used.

iv) Unsupervised Learning

Drymonas et al. [26] from the Technical University of Crete designed OntoGain system

for the unsupervised learning of ontologies from unstructured text in medical and

computer science domains. OntoGain also uses linguistics and statistics-based techniques

for acquisition of ontology. It uses The OpenNLP suite of tools and the WordNet Java

Library for preprocessing of text such as tokenization, lemmatization, pos tagging, and

parsing. To build a hierarchy agglomerative clustering and Formal Concept Analysis is

implemented. For this initially each term is considered to be a cluster and these clusters

are merged at each step based on the similarity measure. Then a formal context matrix is

constructed which contains multiword terms and verbs. This matrix is given as input to

Formal concept analysis algorithm. Association rule mining is used to extract the non-

taxonomic relations.

v) Document Based Ontology

 Jizheng Wan et al. [6] have proposed the concept of Document based Ontology (DbO)

for constructing ontology from unstructured text which gives importance only to the

properties of a document ignoring their context. The concept structure and entity

instances are taken care of in this work. Statistical techniques such as Latent Semantic

Analysis and Markov Model are used for detecting synonyms and to predict next word.

22

vi) Re-engineering and Reusing Resources

 Mari Carmen et al. [9] suggests multiple ways of building ontology instead of giving

any one methodology for different situations by re-engineering and reusing knowledge

resources

vii) Glossary Based Approach

GOSPL [8] given by Christophe Debruyne has aimed at building hybrid ontology where

concepts are defined both formally and informally. This methodology provides

collaboration between the ontology engineers and domain experts and uses Glossary as a

special linguistic resource. Structural natural language is involved as a vehicle to extract

all the relevant and useful concepts from communication among community and these

social processes are mapped to the processes of evolution of the emerging ontology. The

concept of “sameness” is explored in detail according to which different terms from

different communities referring to same concept do not imply to be synonyms.Fact

modelling by applying the principle of separation in conceptualization is used which is an

interpretation process called reasoning. The approach provides only the setting in which

ontologies can be built but they have not given the method how community can use it.

viii) Probabilistic Modelling

Hoifung Poon and Pedro Domingos [27] have given an approach that overcomes the

problem of inducing ontology from individual words by focusing on phrasal verbs etc.

This approach is different from existing approaches as the ontology is induced

probabilistic modelling to reduce uncertainty and noise. Also knowledge extraction and

ontology population go hand in hand. Unsupervised Markov logic Network is used in this

approach to form hierarchical clustering from logical expressions having is-a relations

among them. The is-a relation among relation cluster can be found among relation

clusters but it fails to do same for entity clusters. Active voice is well handled here but

23

they are not able to handle passive voice. Moreover semantic relations are not extracted

nor can this approach scale up to large corpora.

ix) Naῗve Bayes Classification

G. Suresh Kumar [28] has proposed an approach to extract concepts and relations for a

question answering system in which domain attributes and associations are extracted

from relevant documents. A binary decision tree-based rule engine is proposed giving

output as a triplet of candidate keyword, predicate and associated object. The triplet

extracts feature data which is given as training set to Naῗve Bayes Classifier. The relation

between the concepts is through the relation predicted by classifier. Lexico-syntactic

probability and lexico-semantic probability are used here. But only pre-classified classes

of relations can be there.

Julia Hoxha et al. [29] also use Naῗve Bayes Classification for constructing ontology.

The classifier is used for categorizing text to determine the label of document. SVM is

used to cluster similar documents. In this method summarization is performed to shorten

the text. Taxonomical relations such as synonyms, hypernyms and hyponyms are

extracted here. Hearst‟s patterns are used for extracting hierarchies from text. At first

candidate classes are extracted and then other hypernym, synonyms are extracted and

represented in the form of taxonomy.

x) Machine Reading And Lexico Semantic Method

Bothma [13] gives a semi-automated approach for learning ontologies from Swedish

text. Machine reading, statistical and lexico- semantic methods are used to extract

concepts, a few taxonomic and a pre-defined set of non-taxonomic relations. This

approach is also error prone as noun phrases are not taken into account to be extracted as

concepts. Also no consideration is given to attributes of concepts.

24

xi) Rapid Prototyping

UPON-Lite [7] by Missikoff et al. is an automatic ontology development methodology

that insists there should be no intermediation of ontology engineers in the process of

building ontology. The methodology which is user centric is based on an incremental

process that constructs rapid prototypes of trial ontologies. The role of domain experts is

emphasized while the ontology engineers only formalize the ontology at the time of its

release before the users. Researchers suggest the use of supporting tools like gloss

extractors and ontology editing tool like Protégé for producing OWL ontology.

xii) Hierarchical Semi-Supervised Classification

Bhawna Dalvi [30] have proposed a hierarchical semi-supervised classification approach

completes the incomplete class hierarchies by adding new instances to the existing ones

or by discovering new classes and extending the existing ontology by placing them at

appropriate places in the ontology using. This approach can be used for document

classification task and entity classification into class hierarchy of a knowledge base also

but is not applied to class-hierarchies that are non-tree structured.

xiii) Statistical, Machine-Learning, And Custom Pattern-Based Method

Open Calais [31] by Marius-Gabriel system by Thomson Reuter‟s which is linked to a

market leading ontology extracting entities (persons, events, places), relationships etc

and gives results in rdf format. The semantic content of users‟ input files is analyzed

using a combination of statistical, machine-learning, and custom pattern-based methods.

It also maps the metadata-tags to Thomson Reuters unique Ids supporting disambiguation

and linking of data across all the documents being processed by it.

25

xiv) Topic Modelling Algorithm

Monika et al. [32] explores topic modelling algorithms such as LSI & SVD and Map

Reduce LDA (Mr. LDA) for learning Ontology. The study and experimental result give

enough proof of the effectiveness of using Mr. LDA topic modelling for learning

ontology. Experimental results in the paper demonstrate the effectiveness of the proposed

system in term of building richer topic-specific knowledge and semantic retrieval.

Terminology ontology building is a preliminary step for semantic-based query (Topics

and Words Detection) optimization for knowledge management. Their method is scalable

but requires human intervention.

xv) User Centric Approach

A methodology is proposed by Kenneth et al. [33] that performs user-centric ontology

population that needs human intervention at each step as the user is required to assist in

developing, linking and maintaining the conceptualization of that domain, making the use

of some already available ontology. Three main steps are followed where the first one is

to select the relevant ontologies, then aligning the concepts with the same of the target

ontology using a new hierarchical classification approach and after that user is assisted to

develop, replace or enhance their initial ontology by creating, splitting or merging the

concepts or adding new instances to existing concepts by extracting new facts from

unstructured data.

LexOnt [34] by K. Arabshian is a system that also constructs the ontology semi-

automatically including user at each step. It uses Wikipedia, WordNet and Programmable

Web directory of services. It also uses existing ontology to extract relevant terms. LexOnt

constructs the ontology in iterations, by interacting with the user. The user has the ability

to choose, add terms to the ontology and rank those terms. It is a plug-in tab for the

Protégé ontology editor. The system accepts unstructured text as input and interacts with

the user to facilitate the ontology creation process.

26

xvi) Morpho-Syntactic analysis

Sourish Dasgupta and Jens Lehman [35] build initial ontology using the fundamental

knowledge about the target domain. A corpus of text relating to that domain is analysed

syntactically and semantically to perform semantic enrichment. Morpho-syntactic

analysis of the text is done to extract concepts for building ontology.

xvii) Concepts Maps

OntoCmaps [36] by A. Zouaq is a domain independent ontology learning tool. It extracts

deep semantic representations from corpora. It generates conceptual representations

which are in the form of concept maps. This tool relies on the inner structure of graphs to

extract the important elements that are identified as the important concepts. This system is

not able to capture non-hierarchical relationships.

All these discussed works are summarized in Table 2.1 along with their methodology and

problems.

Table 2.1: Methodology And Deficiencies In Existing Works

Technique

proposed by

Methodology Used Source Text Level of

Automation

Deficiency

Khurshid

Ahmad et al.

Statistical techniques

and Hearst‟s patterns

Unstructured

Text

Semi-Automatic as

Human intervention

required as domain

expert to provide

evidence

Non-hierarchical

relationships are not

captured

Marius et al. Open Calais Unstructured

Text

Automatic A fixed set of Non-

hierarchical

relationships are

captured

Hristo Tanev

et al.

Weakly Supervised

Approach

Unstructured

Text

Semi-automatic Non-hierarchical

relationships are not

captured

Jiang and

Tan

Concept-Relation-

Concept Tuple-Based

Ontology Learning

Unstructured

Text

Semi-automatic Domain specific, may

extract erroneous

concepts or relations

Drymonas et

al.

agglomerative

hierarchical clustering

and formal concept

analysis, association

rules and conditional

Unstructured

Text

Semi-automatic Ambiguous terms may

get extracted, fixed set

of non-hierarchical

relations

27

probabilities

Jizheng Wan

et al.

Document Based

Ontology

Unstructured

Text

Semi-automatic Context of the

document is not

considered. Only

properties of the

document are taken

care of.

Monika et al. Topic Modelling Unstructured

Text

Semi-automatic Non-hierarchical

relationships are not

captured

Bhavna Dalvi Hierarchical Semi-

Supervised

Classification

Unstructured

Text

Semi-automatic Non-tree structured

class hierarchies not

explored

Christophe

Debruyne

Glossary as linguistic

resource Based

Approach

Unstructured

Text

Semi-automatic No guidelines for

communities to build

the ontology, just a

setting is provided.

Mari Carmen

Sua´rez-

Figueroa

Re-engineering and

Reusing Resources

Unstructured

Text

Semi-automatic Methodologies and

guidelines only are

provided

Hoifung

Poon and

Pedro

Domingos

Probabilistic Modelling

(Markov Logic and

Hierarchical Clustering)

Unstructured

Text

Semi-automatic Passive voice not

handled properly.

Semantic relation not

extracted, non-scalable

to large corpora

G. Suresh

Kumar

Naῗve Bayes

Classification

Unstructured

Text

Semi-automatic Non-hierarchical

relationships are not

captured

De Nicola &

Missikoff

Rapid Prototyping Unstructured

Text

Semi-automatic as

domain expert is

needed at each step

Non-hierarchical

relationships are not

captured

Julia Hoxha

et al.

Naῗve Bayes

Classification along

with Hearst‟s Patterns

Unstructured

Text

Semi-automatic Fixed set of

relationships are

captured

 Kenneth

Clarkson

User Centric Approach Unstructured

Text

Semi-automatic Non-hierarchical

relationships are not

captured

Sourish

Dasgupta and

Jens Lehman

Morpho- Syntactic

analysis

Unstructured

Text

Semi-automatic Only is-a relations are

extracted

K. Arabshian User Centric Approach,

plug-in for Protégé

Unstructured

Text

Semi-automatic Non-hierarchical

relationships are not

captured

A. Zouaq Concepts Maps Unstructured

Text

Automatic Non-hierarchical

relationships are not

captured

Bothma Machine Reading and

lexico-semantic method

Unstructured

Text

Semi-automatic Fixed set of non-

hierarchical

relationships are

captured, lacks in

extracting the

compound concepts.

28

 As evident through the Table 2.1, most contributions in ontology building are not able to

fetch all the semantic relations present in the text and also compound concepts are not

extracted. Also a few works are able to generate ontology from unstructured text

automatically.

2.4 ONTOLOGY ENRICHMENT APPROACHES

PACTOLE (Property And Class Characterization from Text to OntoLogy Enrichment) is

an approach proposed in [37]. A collection of astronomy texts are given as input for

which ontology is constructed and a set of new concepts and instances are given as output

to be inserted in the initial ontology. The process of enrichment process is based on

Formal Concept Analysis (FCA).This work is not able to annotate object whose nature is

unknown.

Another approach to enrich ontology is given by Navigli et al. [38] that proposes to use

online glossaries to enrich an existing ontology. The core ontology property

specifications are provided with natural language definitions for each class and are

converted into web ontology language.

 Castano et al. [39] has also proposed a methodology for enriching an existing ontology

by matching new knowledge extracted from data with the existing ontology and

annotating it..

Maria Teresa [40] gives an approach to make the ontology so expressive that the

concepts and their intended roles can be understood so that the information present in the

ontology may be reused easily. The technique used by the researchers is semi-automatic

which uses WordNet.

29

2.5 TEXT SUMMARIZATION APPROACHES

Summarization helps user to find meaningful and relevant information from large text

documents as summary of a document may help readers to go through the most important

aspects of the document instead of having to read the full-length document. Headlines,

table of contents, abstracts, reviews, highlights etc. give the summarized view of a large

text.

This section reviews some significant achievements that have been obtained in the area of

document summarization. Some approaches summarize by finding the salient information

by finding pair wise similarity between all sentences or by clustering sentences using

some similarity score.

Different researchers have proposed many techniques to generate summary such as: using

features, using graphs as a collection of sentences as nodes & the edges denoting the

similarity among sentences or by using cluster as a similarity measure or by using

knowledge base. These approaches may be divided into several categories:

 Graph based approaches

 Ontology based approaches

 Machine learning based approaches

In the following subsection, the details techniques related to these type are presented.

2.5.1 Graph Based Approaches

Graph-based approaches for sentence-based summarization generate a graph in which the

document sentences are represented by nodes and weight on each of the edge is

calculated by a similarity measure that has to be evaluated on each node pair.

Leskove [41] generated document summary by using a semantic representation of the

document and machine learning to create semantic sub-structure that can be used for

30

extracting summaries. This approach shows the importance of the document semantic

structure attributes in the sentence selection process. This can be used for abstract

summary creation for a single document as well as multi document where linguistic

features optimize the performance when training data contains shorter summaries while

semantic features do the same for longer summaries.

 In [42]Archetypal analysis and weighted archetypal analysis is used by Canhasi, to

compute the positive and negative sentences for a given graph representation of a

document set. Clustering and matrix factorization is also used in this approach.

Parveen et al. [43] features a method to extract single document summary by making

bipartite graph consisting of sentence and entity nodes. Sentences are ranked using a

graph based ranking algorithm. Redundancy is removed and the sentences are checked

for their local coherence and summary is generated. Very little linguistic information is

contained in the entity graph. In this method human subjects are included as judges to

analyze the performance instead of domain experts that could give better judgment.

Another approach discussed in [44] by Siddhartha Banerjee takes the sentences from

important documents and are aligned to sentences in other documents generating clusters

of sentences that are similar. A word-graph structure is made from the sentences in each

cluster and K-shortest paths are generated for this graph. Integer linear programming is

used to select sentences having the shortest paths.

2.5.2 Ontology Based Approaches

Some researchers have made efforts to utilize ontology to make the process of

summarization better. Documents related to same domain may share the same

information and can use the same domain ontology for this purpose. Ontology helps to

extract the entities and categorization of sentences.

31

Ragunath [45] presents an idea for ontology-based summarization to compute a set of

features for each sentence based on the output of the hierarchical classifier. This is an

extractive summarization approach in which existing sentences or phrases are selected

from original text. In this approach a sentence is classified to a leaf node or to an internal

node. Nodes sharing common sub trees are matched using the classifier. If a sentence is

mapping to more than one sub tree in the hierarchy, all nodes from each sub tree is

included. For each sentence confidence weights assigned by the classifier are used to

compute a sub tree overlap measure. Only hierarchical ontology is used here for sentence

mapping.

Hennig [46] also use a hierarchical ontology to generate summaries. Their work maps the

sentences of original document to the nodes of the ontology using an SVM classifier

which is trained using search engines for sentence classification. The mapping of nodes

to the ontology gives a semantic representation of content of document sentence which

improves the quality of summaries. It computes structural properties of the hierarchy and

category labels using sentence features to improve summarization. Only a small ontology

instead of some bigger non-hierarchical ontology is utilized here.

Ontological knowledge is used by Verma et al. [47] also to generate document summary.

Query based summary is generated which utilizes WordNet or UMLS ontological

knowledge to revise the query and then by calculating the distance of query from each

sentence. The sentences having lesser distance than a threshold are included in set of

candidate sentences to be included in summary. These sentences are again divided into

groups by calculating the pair wise distances among them and then the highest ranked

sentences are chosen for the final summary. Natural language programming techniques

are not used here so in the absence of syntax analysis, grammatically incorrect sentences

from original documents hamper the quality of summaries. It is an extractive approach as

abstract statistical data is also not utilized for summarization. In this method redundancy

reduction in the summary is also not up to mark as it covers same information from

multiple documents.

32

Baralis [48] depends upon YAGO ontology to evaluate and select sentences from

documents. Entity recognition and disambiguation steps in the process of generation of

document summary are performed using YAGO which identifies the key concepts in the

document and their significance is evaluated with respect to the context of the document.

The problem with this method is that the summaries generated by this method are less

compact.

2.5.3 Machine Learning Based Approaches

These approaches learn a model that determines importance of sentences using a training

corpus of full texts and their summaries. Different models such as Naῗve Bayes, Decision

trees, SVM, HMM, CRF can be used. These approaches operate at lexical level and

provide good results for query based summaries. The features taken into account by these

models can be Sentence length, presence of indicator phrases, Sentence position

(first/medium/final), highly weighted content words, Containment of (important) named

entities, Containment of specific topic words. A large amount of text is needed for

earning purpose as human-generated summaries are required to train a classifier for the

given text. These approaches are unable to manipulate information at abstract level.

A.P.S et al. [49] give an approach for single document summarization that uses two

measures to evaluate importance of a sentence: first is the frequency of the terms in the

sentence and the other is the similarity to the other sentences. The sentences in the

document are ranked according to their respective scores and the top ranked sentences are

selected for summary. The statistical sentence selection measures include: Sentence

position, Cue words, Document frequency, Inverse document frequency, Term frequency.

Their approach uses nearest neighbor search technique to find the neighbor documents

that are similar to the specified document. The sentences are scored using global affinity

graph. The highest scored sentences are then checked for redundancy at the document

level.

33

Patil et al. [50] shows that the choice of the classifier influences the performance of the

trainable summarizer strongly. The procedure of automatic trainable summarization

employs statistical and linguistic features which are extracted directly and automatically

from the original text.

Babara [51] uses latent semantic analysis and fuzzy logic system to extract the

summaries from the original text. A set of features is used which includes the title

sentence, sentence length, sentence position, numerical data, proper nouns etc. Each

feature is given a score using fuzzy logic. Based on this score each sentence is classified

into three classes of important, average and unimportant and are thus selected to create

the summary. This approach is not applicable for multi document summary.

Kaliappan [52] uses the Naïve Bayesian Classification and the timestamp concept. This

summarizer may work on many domains as it does not uses knowledge base. The user

can specify the compression rate so that amount of information to be extracted from the

documents can be chosen.

Singh et al. [53] have presented a technique using unsupervised deep learning approach

to summarize documents from Hindi and English. A set of eleven features is extracted

from each sentence of document to generate the feature matrix which is passed through

Restricted Boltzmann Machine to increase accuracy of choosing relevant sentences.

All these discussed works are summarized in Table 2.2 along with their methodology and

problems.

Table 2.2: Comparative Study of Text Summarization Approaches

Approach Methodology Technique Used Type of Summary

[42] Archetypal analysis and weighted

archetypal analysis

Graph Based Multi document extractive

summary

[41] Semantic substructure Graph based/machine

learning

Abstract summary/multi

document summary

[43] Bi-partite, ranking algorithms Graph based Single document extractive

34

summary

[44] Clustering of Graph based Multi document extractive

summary

[51] Latent semantic analysis/fuzzy

logic

Machine learning Multi document extractive

summary

[48] Yago ontology Ontology based Multi document extractive

summary

[46] Hierarchical ontology Ontology based Multi document extractive

summary

[47] WordNet and UMLS Ontology based Multi document extractive

summary

[49] Nearest neighbour search Machine Learning Single document abstractive

summary

[45] Sentence features Ontology based Single document abstractive

summary

[50] Statistical and linguistic features Machine Learning multi document extractive

summary

[52] Naïve Bayesian Classification and

the timestamp concept

Machine Learning multi document extractive

summary

[53] unsupervised deep learning Machine Learning Bi-lingual, multi extractive

document summary

As it can be seen from the Table 2.2, most of the contributions focus on extractive

summarizations that are able to make the text concise but may contain redundant

information. The techniques generating abstractive summaries that do not exploit the

semantic structure of the sentence are prone to generate erroneous results.

2.6 TECHNIQUES, TOOLS AND KNOWLEDGE STRUCTURES

This section presents the introduction of key tools and platforms to support the designing

and the development of the ontological framework and the other proposed techniques for

ontology enrichment and text document summarization. Specifically, natural language

processing tools such as dependency parser (Stanford Parser), name entity recognizer

(SENNA), anaphora resolver (Java RAP) [54] and some other tools such as GraphViz,

SVM Classifier are introduced. WordNet is presented here as the knowledge structure.

35

2.6.1 Dependency Parser

In natural language parsing techniques, dependency based representations has found their

potential use in disambiguation. The lexical elements form a syntactic structure having

interlinks of binary asymmetrical relations between the words of sentence. These

relations are called dependencies. In natural language processing systems, dependency

structures are quite expressive to be convenient and restricted enough for allowing full

parsing providing sufficiently high accuracy and efficiency.

We have used Stanford Dependency Parser [55] in our work. A brief description of this

parser is given in as follows:

Stanford Dependency Parser

To extract the textual relationships without the help of linguistic expertise, the Stanford

typed dependencies representation were designed so as to provide a simple description of

the grammatical relationships in a sentence so that people can easily understand and

effectively utilize these relations. All the words in a sentence are connected to each other

with some grammatical relations like „subject‟, „modifier‟, „determiner‟, and so on. These

relations are known as dependency relations as they express how one word is dependent

on another word. In a dependency relation between two words, one is called

DEPENDENT, which generally acts as modifier, object or complement of the other

word, known as HEAD. Figure 2.2 gives an example of a dependency tree (which is

basically a directed acyclic graph with arcs pointing from the HEAD to the

DEPENDENT). The arc-labels (also known as attachments) represent the dependency

relations. The idea here is to parse the sentences of a document using Stanford

dependency parser The parser provides dependency tags attached with each term which

are used to generate new tags Roles, Properties and Hierarchy.

36

Figure 2.2: Dependency Tagged Sentence

2.6.2 Named Entity Recogniser

Named Entity Recognition is one of the very helpful information extraction techniques to

recognize and classify named entities in text. These entities are categorised to some pre-

defined categories such names of persons, locations, organizations, time representations

etc. There could be other specific terms also apart from these generic entities, which

could be defined for a particular problem. These terms represent segments or elements

having a unique context in the text. To categorize such custom entities, machine learning

models could be trained. These entities are generally denoted by proper names so mostly

noun phrases in text documents indicate them.

NER Categories

NER has three top-level categories:

i) Entity names:- Entity Names represent the element‟s identity, for example name of a

person, title, anything living or non-living etc.

ii) Temporal expressions:- A temporal expression is where time related events are

shown by some sequence of words for example times of day, durations, calendar

dates etc.

iii) Number expressions:- A mathematical sentence involving just numbers and/or

operation symbols denotes number expression.

37

Approaches to NER

There are two different approaches to implement NER chunker to tag specific elements in

the text. One approach is knowledge/rule based and the other approach uses supervised

machine learning. A combination of both approaches may give better results for some

problems.

 Knowledge/ rule based approaches

A rule based NER system uses some predefined language dependent rules based on

linguistics for identification of named entities in a document. These systems perform well

but have limitations that these are not flexible to changes. The entities found by these

systems generally are proper nouns or proper nouns in alliance with numbers.

 Machine Learning approach

 Machines can predict custom entities on a given text using supervised machine learning

on labelled data.

There are many named entity tagger available. We have utilized SENNA as name entity

tagger in our framework as SENNA achieves close accuracy with Stanford pipeline twice

the speed and less memory usage.

To perform a number of NLP tasks accurately and speedily, SENNA (Semantic/syntactic

Extraction using a Neural Network Architecture) [56] is employed which is a tool having

multilayer neural network architecture. These tasks include part-of-speech tagging,

chunking, named entity recognition, and semantic role labelling. SENNA extracts

essential features from unlabelled text using deep learning. Auto-encoders and neural

networks language models are used to perform the unsupervised learning phase. The

pipeline maps words into other space of representation having lower dimensionality.

SENNA has dictionary of 130 thousand words which is used to map every word to a

38

vector of 50 floating numbers. Convolutional networks are used to merge these vectors

into a sentence structure. Different classifiers are generated by training the same

architecture for different tasks using annotated text. The major advantage of this

approach is that lesser amount of engineering is required to solve multiple problems. A

lot of prior knowledge is not used by SENNA. The features used by the system were only

pre-trained word embeddings, gazetteer list and uppercase information.

IOBES tagging scheme

To mark a noun phrase containing a single word, the tag “S-NP” is used.

 “B-NP”, “I-NP”, and “E-NP” tags are used to mark the first, intermediate and last words

of the noun phrase.

“O” is an additional tag that marks words which are not members of a chunk.

Four different types are defined:

 Person(PER),

 Organization(ORG),

 Location(LOC)

 Miscellaneous(MISC)

Example of NER tagging by SENNA is as follows in Figure 2.3:

Figure 2.3: Annotated Text After NER

Here in this example ORG, refers to the organization and LOC denotes the Location.

Columbia/ORG is an American/Misc university located in New/LOC York/LOC.

39

2.6.3 Anaphora Resolution

The Process of finding the antecedent for an Anaphor is Anaphora resolution. Here

anaphor is the reference that points to some previous item and antecedent is the entity to

which that anaphor refers. For example

Mona Singh says she will always be grateful to Anu Malik. The actress revealed that the

musician helped her calm down when she became scared by a thunderstorm while

travelling by a plane.

In the above given text anaphors and their antecedents will be as shown in Figure 2.4:

Figure 2.4: Resolved Anaphora and Antecedent

Anaphoric reference resolution is quite challenging task in Natural Language Processing

field. It is very difficult to give a complete, reasonable and calculable description of the

resolution process, because of the unawareness of the particularities. Anaphora resolution

needs to be addressed in most of the applications dealing with natural language e.g.

information extraction, machine translation systems or dialogue systems. There are

following approaches to anaphora resolution namely

 Rule Based

 Machine Learning Based

 Statistical Based

Anaphor Antecedent

She => Mona Singh

The actress => Mona Singh

The musician => Anu Malik

Her => Mona Singh

She => Mona Singh

40

The context of the expressions define the interpretation of these expressions

2.6.4 Jena API

For creating and manipulating RDF graphs object classes called interfaces are provided

by a Java ontology API known as Jena. The graph generated by Jena is called a Model

having extension rdf and is represented with the Model interface. RDF statements are

described by the resources, properties and literals given as the Resource, Property and

Literal interfaces. Several methods are provided by Jena that allow RDF graphs to be

saved and retrieved to and from files. Various database management systems are

supported by Jena such as MySQL, PostgreSQL, Oracle etc. Also various tools including

such as a parser and I/O modules for RDF/XML output are provided by Jena.

2.6.5 GraphViz

To generate a graphical presentation of the ontology generated by our system we have

made use of graph visualization tool named as GraphViz [57]. In this section we will

describe briefly the function of this tool. Graph visualization is used for representing

structural information of abstract graphs and networks. Automatic graph drawing has

many significant applications in various fields such as software engineering, web design,

database, networking and in many other visual interfaces for different domains.

GraphViz, which is an open source graph visualization software contains several main

graph layout programs. It also contains other web and interactive graphical interfaces,

some auxiliary tools and different libraries. GraphViz makes diagrams by taking

descriptions of graphs in a simple text language.

The diagrams can be made in many formats such as images (png, jpg) or SVG for web

pages, GraphViz has many useful features and options for colors, many fonts, tabular

node layouts, different line styles, hyperlinks, and many other custom shapes. Graphs

41

may be created and edited manually or from external data sources either as raw text files

or within a graphical editor.

GraphViz follows a general hierarchical approach for drawing graphs. It works in four

phases. The first phase breaks any cycle that occurs in the input graph. The second phase

assigns nodes to discrete levels or ranks. In the next phase ordering of nodes is done

within ranks so as to avoid crossings. The fourth phase sets X coordinates of nodes so

that edges are short. GraphViz accepts input in the DOT language. Three major kinds of

objects namely graphs, nodes and edges are described by this language. The main graph

is a directed graph (digraph). The following program as shown in Figure 2.5 written in

DOT language defines a directed graph. Nodes‟ shapes, labels, colors, styles are defined,

Ranks of nodes, separation distance and their direction is also specified in this program.

Figure 2.5: dot file for GraphViz

The graph corresponding to this dot file will be generated by GraphViz using the

command line or with a graphic visualization service that may be web based or other GUI

based interface as shown in Figure 2.6.

digraph mygraph{

 passengers ->accommodated

 passengers [shape=box,style=filled,color=Green];

 passengers -> agent_S3 [style=bold,label="HAS ROLE"];

 agent_S3 [shape=box,style=filled,color=Pink];

 accommodated ->hotels

{ rank= same rank sep=1.2 rankdir=LR; passengers hotels }

 hotels [shape=box,style=filled,color=Green];

 hotels -> theme_S3 [style=bold , label="HAS ROLE"];

 theme_S3 [shape=box , style=filled , color=Pink];

}

42

Figure 2.6: Graph Generated for dot File

2.6.6 SVM Classifier

Support Vector Machines given by [58] are among the best supervised learning

algorithms which provide a powerful approach even in case of high dimensional feature

space. Joachims T. [59] used SVM classifiers for text categorization.

Considering its linear form for a binary problem with feature and label * +

Training data is represented as (⃗) (⃗) . We define the maximum margin

hyperplane as

 ⃗⃗⃗⃗ ⃗⃗⃗ Equation 2.1

Where ⃗⃗⃗ is the normal vector to the hyperplane.

Two parallel hyperplanes are determined that separate the two classes of data, so that the

distance between them is maximum. The region bounded by these two hyperplanes is

called the "margin", and the maximum-margin hyperplane lies halfway between them as

shown in Figure 2.7 .

 ⃗⃗⃗⃗ ⃗⃗⃗ Equation 2.2

 ⃗⃗⃗⃗ ⃗⃗⃗ Equation 2.3

43

Figure 2.7: SVM Classifier

To make the algorithm work for non-linearly separable datasets, the optimization is

explicated as:

 ∑

Such that

 ()(()) Equation 2.4

where ξi is called slack variable.

The

 specifies size of the margin and second ∑

 specifies

misclassification.

Training an SVM involves the reduction of above equation to a NP problem from which

decision function can be derived.

 () ∑

 Equation 2.5

�⃗⃗⃗�

w.x + b = 0

w.x + b = 1

w.x + b = -1

Positive Example e

Negative Example

44

where the parameter determines the trade-off between increasing the margin-size and

ensuring that the lie on the correct side of the margin.

Sentence Extraction using polynomial kernel

For a non-linear decision surface, kernel trick is applied to maximum-margin hyperplane

and the dot product is replaced by the kernel function.

 (⃗⃗⃗) (⃗⃗⃗) Equation 2.6

This polynomial kernel has been very effective when applied to several tasks of natural

language processing of a second degree with a value of C as 0.0001. We have used the

same for extracting summary from text. This extractive summary is further shortened by

constructing ontology of this extractive summary using the proposed system for

generating ontology and reconstructing the sentences using this ontology to generate

abstractive summary.

2.6.7 WordNet

WordNet [60]is a general-purpose online lexical semantic electronic repository for the

English language. Its structure, characteristics and potential usefulness is described here

in this section.

WordNet provides a thesaurus and lexicon, semantic bond among the majority of English

terms. It classifies words into categories and inter-relates the meanings of those words. It

organisation is in the form of synonym sets (synsets) which are set of words that are can

be interchanged according to some context, as they share a commonly-agreed upon

meaning having little or no variation. There may be different senses of each word in

English in which the word may be interpreted and each of these distinct senses denotes

different synsets. There is a pointer to at least one synset for every word.

45

The synsets can be thought of as nodes in a graph where a semantic pointer is a directed

edge in the graph. The pointer has one end source and the other end a destination.

Some semantic pointers which are useful are:

 hyponym: if X is a (kind of) Y, X is a hyponym of Y

 hypernym: if Y is a (kind of) X, X is a hypernym of Y

 part meronym: if X is a part of Y, X is a part meronym of Y

 member meronym: if X is a member of Y, X is a member meronym of Y

 similar to: if the two synsets have meanings that are quite similar to each other, a

synset is similar to the other one.

Each synset also contains a description of its meaning which is expressed in natural

language known as gloss. WordNet also contains example sentences of usage of that

synset. The information provided gives summary of the meaning of a particular concept

and gives knowledge for a particular domain.

In our work, WordNet is used to link terms with its meaning (semantic annotation) in

order to be able, for example, to extract similar terms for a given term exploiting its

hyponyms, hypernyms, and synsets.

2.7 CONCLUSION

The analysis of the reviewed approaches allows us to conclude that these methodologies

for building ontology from unstructured text are able to capture hierarchical relationships

or some fixed set of non-hierarchical relationships among the concepts of the text but

they fail to extract all the semantic relations present in the text.

We reviewed some approached to enrich the ontology so that the ontology can be

extended with specific knowledge to provide more information about the constructs of

ontology.

46

We present the review and compare various techniques for summarization of documents

to get a concise form of the information in this domain. This review opens up new

challenges to be taken ahead in the field of document summarization such as text

coherency must be ensured as sentences may have dangling co-references. Also

summarizing non-textual data, handling text from multiple sources effectively and getting

good reduction rates are needed. The most difficult challenge is to achieve human quality

summarization.

47

CHAPTER 3

 AUTOMATIC ONTOLOGY CONSTRUCTION USING

CONCEPTUALIZATION AND SEMANTIC ROLES

3.1 INTRODUCTION

Semantic web is a major evolution in connecting information for effective information

retrieval. The goal of semantic web is to make the web understandable by both human

and machine. This task is done by using ontologies as it is the better way to represent

knowledge [36]. In other words, constructing ontologies aim at capturing domain

knowledge that gives a commonly agreed understanding of a domain, which may be

reused, shared among applications and groups.

In this chapter, we propose a new approach to build ontology automatically, based on

extracting semantic roles present in the given sentences of a given text along with usual

concepts and their relationships. The extracted information about different roles, concepts

and relationships among the concepts from different sentences in the document are then

merged to construct ontology for whole document. The proposed approach is

implemented and the performance of the proposed technique is evaluated. Experiments

show the ontology thus created captures most of the information given in the document.

The present proposal may be important to understand the document as we have both

syntactic and semantic information about a sentence or a text.

In general, process of building ontology adopts following steps. Firstly the concepts are

extracted then underlying semantic relations (hierarchical or non-hierarchical) among

these concepts are extracted and then these relations and concepts are connected using

suitable criteria. However, the work done till now in automated creation of ontologies

from plain text mostly capture only hierarchal relationships such as car-(is-a)-vehicle or

steering-(part-of)-car but non-hierarchical relations such as performed, begin etc as in

Ghulam_Ali-(performed_at)-concert or music_festival-(begins)-tomorrow are not

48

captured accurately by the existing approaches [35] [14]. But the present approach uses

semantic roles along with other components such as concepts and their relationships. The

ontologies corresponding to each sentence in the given text is constructed and these

ontologies are then merged by aligning the concepts in them to create a bigger ontology

for complete document. More precisely, the semantic similarity technique is used to

match and merge these structures related to semantic roles in addition to matching of

relations and concepts. In particular, a set of ontology merging rules are designed and

later used to merge the structures in the two different ontologies. The multiword concepts

are also taken into account while identifying concepts and semantic roles. This way the

limitations of the previous contributions are removed as those works were focusing

mostly on single word concepts and taxonomical i.e. hierarchical relations.

3.2 BASIC APPROACH

The proposed technique takes unstructured text as input, applies natural language

processing techniques to identify the concepts, roles etc. and utilises a new algorithms to

merge them into an ontology. Therefore following textual components are playing key

roles to design the present ontological framework.

i) Semantic roles- Semantic roles information along with other information such as

concept and relations to generate ontology. Semantic roles are representations that

express the abstract role that arguments of a predicate (usually expressed by verb in

the sentence) can take in the event [61] [62]. For example a concept can be an agent or

accompanier or a location in a sentence. Attaching these semantic roles with each

constituent not only help to merge sub-ontologies (ontologies created for each

sentence in the given document) but also contribute to deeper text understanding in

the form of final ontology.

ii) Concepts- All concepts instead of just key concepts (frequently used concepts) are

identified and used.

49

iii) Non-Taxonomical Relationships- Non-Taxonomical Relationships among concepts

instead of just taxonomical relationships are used.

All these constituents will be identified and used in the sequence as is given in the

architecture of the system in the following section.

3.3 ARCHITECTURE OF PROPOSED SYSTEM

In order to realize the basic approach or model computationally, following is the

proposed architecture of the system as shown in Figure 3.1.

1. Natural language Processor

In this system the input text documents are first processed by a natural language

processor which uses Stanford dependency parser [55] that performs the tokenization at

sentence level and dependency parsing. This component also performs name entity

recognition tagging and anaphora resolution and transforms.

2. Information Extractor

These sentences are transformed into tagged structures that are used by the Information

Extractor module. This module extracts the required information i.e. concepts, relations,

properties and semantic roles of concepts.

3. Sub-ontology Constructor

The information i.e. concepts, relations, properties and semantic roles of concepts

extracted in above module is used in constructing intermediate structures or sub-

ontologies for each sentence.

50

4. Sub-ontology Merger

These sub-ontologies are further required to be merged to form the complete ontology of

the document. In our proposed ontology mapping and merging scheme, process of

merging takes into consideration not only the shared concepts and similar relations but

also the semantic roles each concept is playing in a sentence. A set of rules is used which

is designed specifically for this purpose.

Figure 3.1: Architecture of the Proposed System

Natural Language Processor

Dependency Parser NER Tagger Anaphora Resolver

Transition Table

Pre-processor Plain Text Documents

NER Tags Dependency Tags

Hierarchy Extractor

Property Extractor

Relation Extractor

Role Extractor

Concept Extractor

Information Extractor

Ontology

Representer
Final Ontology Graph

To

Primary

Memory

Sub-Ontology Merger

WordNet

Sub-ontology Constructor

Hierarchy_Tablee

Data_Prop_Table

Object_Prop_Role_Table

Document

Ontology

Repository

Concept_Table

Concept Hierarchy

Data Properties

Concepts, Roles &

Relations

51

5. Ontology Representer

This module takes the bigger ontology, generated as result of above step, as input and

represents it both graphically and as an rdf document.

The following section 3.4 focuses on the detailed design of the proposed system and also

includes the data design and algorithm design of each module.

3.4 DETAILED DESIGN OF THE SYSTEM

In this section, detailed design of the components of the proposed system is given by

using the following subsection. It may be noted that in the process of designing a

component following two issues are taken in to account.

i. Input data or Information required and its representation- In the process of

designing a component, first the data or information required is identified and then

that data or information is represented using a suitable scheme by providing the format

or structure of the data, storage of data and its utilization wherever required.

ii. The algorithm- For each component their respective algorithms are given to express

the way of utilizing structure of the data or information to achieve a particular

intermediate (or final) result.

In the coming subsections, we will give detailed design of each component of the system

considering above two issues.

3.4.1 Pre-processor

The text documents being processed for constructing ontology may contain words,

phrases or sentences which are redundant and unnecessary e.g. the phrases like “as a

matter of fact”, “in all honesty”, “considering” and many more do not contribute

towards meaningful information of the text and may be processed to be removed from

this document. The sentences being followed phrases like “namely”, “specifically”,

52

“thus”, “to put it another way” etc. just contain the redundant information and may be

removed. To perform this task, different kind of transition words or phrases are first

identified and then treated according to their type. The pre-processor takes the

unstructured text as input and searches in the text for the transition words or phrases

already stored in the dictionary. If a match is found in the text, it removes the transition

word, or the transition phrase or the text following that word or phrase is removed.

Action to be taken is decided according to the type of transition word or phrase e.g. for

words like such as, for instance etc. which are Introductory type transition phrases, these

words along with the text following these words is un-necessary and can be removed

from the text without harming or distorting the information to be conveyed by the text.

 Data Design for Pre-processor

Since the present work is dealing with text written in English language, therefore, many

types of transition words or phrases, found in the documents written using English

language, are identified to take the appropriate action as stated below. These transition

words are given in Table 3.1. The table also describes the type of these phrases or words

and defines the action which can be taken if such types of transition words or phrases are

identified by the pre-processor module.

Data Storage: This table is stored in secondary memory and is brought to primary

memory as the first step of removing these un-necessary words.

Table 3.1: Transition Words Action Table

Transition word/

phrase type

Example words Action Taken

Addition indeed, further, as well (as this), either (neither), not

only (this) but also (that) as well, also, moreover, what

is more, as a matter of fact, in all honesty, and,

furthermore, in addition (to this), besides (this), to tell

the truth, or, in fact, actually, to say nothing of, etc.

Transition

word/phrase

removed

53

Introduction

 such as, as, particularly, including, as an

illustration, for example, like, in particular, for one

thing, to illustrate, for instance, especially, notably, by

way of example, etc.

Transition

word/phrase

removed. Also

the text

following the

transition

word/phrase in

the sentence is

removed.

Reference speaking about (this), considering (this), regarding

(this), with regards to (this), as for (this), concerning

(this), the fact that, on the subject of (this),

Transition

word/phrase

removed

Similarity similarly, in the same way, by the same token, in a

like manner, equally, likewise, etc

Transition

word/phrase

removed

Clarification that is (to say), namely, specifically, thus, (to) put (it)

another way, in other words,

Transition

word/phrase

removed. Also

the text

following the

transition

word/phrase in

the sentence is

removed.

Conflict but, by way of contrast, while, on the other

hand, however, (and) yet, whereas, though (final

position), in contrast, when in fact, conversely, etc.

Transition

word/phrase

removed

Emphasis even more, above all, indeed, more

importantly, Besides, etc.

Transition

word/phrase

removed

Result as a result (of this), consequently, hence, for this

reason, thus, because (of this), in consequence, so

that, accordingly, as a consequence, so much (so)

that, so, therefore, etc.

Transition

word/phrase

removed

Purpose for the purpose of, in the hope that, for fear that, so

that,

 with this intention, to the end that, in order

to, Lest, with this in mind, in order that, so as to, so,

etc.

Transition

word/phrase

removed

Consequence under those circumstances, then, in that case, if

not, that being the case, if so, otherwise

Transition

word/phrase

removed

54

After deleting these transition words, the document contains lesser complex sentence

structures and redundant information .

Data Utilization: These simple sentences are given as input to natural language

processor so that the necessary information can be extracted as illustrated in the next

section.

 Algorithm Design for Pre-processor

The algorithm for pre-processing of text documents is shown in Figure 3.2.

Sequential

Transition

in the (first, second, etc.) place, initially, to start with,

first of all, thirdly, (&c.), to begin with, at first, for a

start, secondly, etc.

Transition

word/phrase

removed

Continuation subsequently, previously, eventually, next, before (this),

afterwards, after (this), then, etc.

Transition

word/phrase

removed

Conclusion to conclude (with), as a final point, eventually, at last,

last but not least, in the end, finally, lastly, etc.

Transition

word/phrase

removed

Degression to change the topic, incidentally, by the way, etc. Transition

word/phrase

removed

Resumption to get back to the point, to resume, anyhow, anyway,

 at any rate, to return to the subject, etc.

Transition

word/phrase

removed

Concession but even so, nevertheless, even though, on the other

hand, admittedly, however, nonetheless, despite

(this), notwithstanding (this), Albeit (and) still,

although, in spite of (this), regardless (of this), (and)

yet, though, granted (this), be that as it may, etc.

Transition

word/phrase

removed

Summation as was previously stated, so, consequently, in summary,

all in all, to make a long story short, thus, as I have said,

to sum up, overall, as has been mentioned, then, to

summarize, to be brief, briefly, given these points, in

all, on the whole, therefore, as has been noted, hence, in

conclusion, in a word, to put it briefly, in sum,

altogether, in short, etc.

Transition

word/phrase

removed

55

Figure 3.2: Algorithm for Pre-processor

The algorithm takes the text document as the input and begins by processing each

sentence of the text document to check whether any of the phrases kept in Table have any

occurrence in the sentence in step 1. If yes then step 2 finds the type of the phrase by

looking into the table and takes the appropriate action like deleting the phrase or deleting

the consequent sentence in step 3. The output of this algorithm is the pre-processed text

document that is free from the un-necessary or redundant words or phrases.

3.4.2 Natural Language Processor

This section describes the processing of natural language processor which analyses input

sentences from plain text documents syntactically and annotates the document with

linguistic features that are needed by Information Extractor module. This module is

having following components:

 i) Anaphora Resolution

ii) Dependency Parser

iii) NER Tagging

These components are described as follows:

Algorithm pre_processor()

Input: text document, dictionary of transition words ,Table 3.1

 Output: pre-processed text document

 Begin

for each sentence of the text document

1. if any of the phrase from dictionary of transition words is present in the

sentence

2. find the type of the phrase

3. take action according to the Table 3.1

 end for

End

56

xviii) Anaphora Resolver

For extracting the correct information from text it is necessary to replace the pronouns in

a sentence to its mention as a noun in some previous sentence. This process called

anaphora or co-reference resolution is performed here using Java RAP tool (Qiu, Kan &

Chua, 2004) which takes plain text as input and gives output in the form of plain text with

in-place substitution of anaphora with its antecedent.

 Data Design for anaphora Resolver

We get the anaphora resolved sentences as output of this tool. The details for data design

for anaphora resolver is as follows:

Output Data Format: As an example for the following sentence “An Air India flight to

HongKong was brought down at Kolkata late last night after some passengers

complained of smoke in the cabin. The flight with passengers landed at the Kolkata

airport. Under those circumstances, they were accommodated in nearby hotels.”

 „they‟ will be replaced by “passengers” as

“An Air India flight to HongKong was brought down at Kolkata late last night after some

passengers complained of smoke in the cabin. The flight with passengers landed at the

Kolkata airport. Under those circumstances, passengers were accommodated in nearby

hotels.”

Data Storage: The anaphora resolved sentences are stored in String in primary memory.

Data Utilization: These anaphora resolved sentences are used by dependency parser

module.

57

 Algorithm Design for Anaphora Resolver

The algorithm for anaphora resolver is shown in

Figure 3.3 as follows:

Figure 3.3: Algorithm for Anaphora Resolver

As shown in algorithm anaphora_resolver, we pass the preprocessed text document as

input to the Java RAP tool. The tool processes it and gives the anaphora resolved text

document as output.

xix) Dependency Parser

Documents as plain text are given to Stanford dependency parser [dep] [55] which

provides the result in the form of a part of speech tagged sentences of each document

along with the dependencies among the constituents of each sentence. In this dependency

graph vertices are the words in a sentence and an edge exists between each word and its

syntactic head. The graph forms a tree rooted at the main verb. The edges are labelled

with dependency types. These dependencies are utilized to find the concepts, relations

and properties of concepts from the text.

The Stanford dependency tagging for the first sentence will be given as in the Figure 3.4.

Algorithm anaphora_resolver()

 Input: pre processed text document

 Output: anaphora resolved text document

 Begin

for each sentence of the text document

call Java RAP

end for

End

58

Figure 3.4: Stanford Dependency Parser Output

 Data Design for dependency parser

The details for data design for dependency parser is as follows:

Data Structure Used: Since the Stanford Dependency Parser is used to parse the

sentences, we are not explicitly keeping the grammar rules used for parsing. However, 52

grammatical relations which Stanford parser utilises in its final representation are

identified and taken in to account while finding concepts etc. in the next phase. All 52

relations used are given in Table 3.2.

Table 3.2: Stanford Dependency Relations

Sr.

No.

Dependency

Relation

Definition

1 root Root

2 dep Dependent

3 aux Auxiliary

4 Auxpass passive auxiliary

5 cop Copula

6 arg Argument

7 agent Agent

8 comp Complement

9 acomp adjectival complement

10 ccomp clausal complement with internal subject

11 xcomp clausal complement with external subject

12 obj Object

13 Dobj direct object

59

14 iobj indirect object

15 Pobj object of preposition

16 Subj Subject

17 nsubj nominal subject

18 nsubjpass passive nominal subject

19 csubj clausal subject

20 csubjpass passive clausal subject

21 cc Coordination

22 conj Conjunct

23 expl expletive (expletive “there”)

24 mod Modifier

25 amod adjectival modifier

26 appos appositional modifier

27 advcl adverbial clause modifier

28 det Determiner

29 predet Predeterminer

30 preconj Preconjunct

31 vmod reduced, non-finite verbal modifier

32 mwe multi-word expression modifier

33 mark marker (word introducing an advcl or

ccomp

34 advmod adverbial modifier

35 neg negation modifier

36 rcmod relative clause modifier

37 quantmod quantifier modifier

38 nn noun compound modifier

39 npadvmod noun phrase adverbial modifier

40 tmod temporal modifier

41 num numeric modifier

42 number element of compound number

43 prep prepositional modifier

44 poss possession modifier

45 possessive possessive modifier (‟s)

46 prt phrasal verb particle

47 parataxis parataxis

48 goeswith goeswith

49 punct punct

50 ref ref

51 sdep sdep

52 xsubj xsubj

60

Output Data Format: The sentence when parsed through the dependency parser has

following format as shown in Figure 3.5. Here all the words are numbered and are given

dependency tags in pairs.

Figure 3.5: Dependency Tagged Sentence

Output Data Storage: This tagged structure of the sentence is kept into primary memory

in a String type data after removing the brackets, hyphens and numeric values provided

by the tagger.

Data Utilization This data is utilized by Information Extractor module.

 Algorithm for Dependency Parser

The algorithm for dependency parser is shown in Figure 3.6 as follows:

Figure 3.6: Algorithm for Dependency Parser

root (ROOT-0 , brought-8) det (flight-4 , An-1) compound (flight-4 , Air-2)

compound (f light-4 , India-3) nsubjpass (brought-8 , flight-4) case (HongKong-6

, to-5) nmod:to (flight-4 , HongKong-6) auxpass (brought-8 , was-7)

compound:prt (rought-8 , down-9) case (Kolkata-11 , at-10) nmod:at (brought-8 ,

Kolkata-11) advmod (night-14 , late-12) amod (night-14 , last-13) nmod:tmod (

brought-8 , ight-14) mark (complained-18 , after-15) det (passengers-17 , some-16

) nsubj (omplained-18 , passengers-17) advcl (brought-8 , complained-18) case (

smoke- 0 , of-19) nmod:of (complained-18 , smoke-20) case (cabin-23 , in-21)det (

cabin-23 , the-22) nmod:in (complained-18 , cabin-23

Algorithm dependency_parser()

 Input: anaphora resolved text document

 Output: text documents with dependency tags of each word

 Begin

for each sentence of the text document

call Stanford Dependency parser

end for

End

61

The algorithm takes the anaphora resolved pre-processed text document as the input to

the Stanford Dependency Parser which parses the text and provides dependency tags to

each word of each sentence of the document.

xx) NER Tagging

The nouns in the sentence are named entities. A noun in a sentence can refer to some

person, location, organization or time. A natural language processing tool SENNA [56] is

utilized here. SENNA is used in our work to provide NER tags to the nouns of the

sentence.

 Data Design for NER Tagger

The details for data design for NER Tagger is as follows:

Data Structure Used: SENNA has dictionary of 130 thousand words which is used to

map every word to a vector of 50 floating numbers. SENNA also keeps Gazetteer list and

uppercase information as mentioned earlier in Chapter 2. SENNA provides the following

tags that can be extracted by it as shown in Table 3.3.

Table 3.3: NER Tags

NER Tag

Person

Location

Organization

Time

Output Data Format: For the sentences of the example given above the following will

be the NER tagged sentence shown pictorially in Figure 3.7.

 S-PER, S-LOC, S-ORG and S-TIME tags may be given to the entities, B-NP,I-NP and

E-NP specify the beginning, intermediate and end of the named entity.

62

Figure 3.7: NER Tagging of Sentence (Pictorial Representation)

We get the sentences along with their tags associated with each word as shown in the

Figure 3.8.

Figure 3.8: NER Tagged Sentence

Word Tag

An B-ORG

Air I-ORG

India E-ORG

Flight O

To O

HongKong S-LOC

was O

brought O

down O

at O

Kolkata S-LOC

late S- TIME

last S- TIME

night S- TIME

after O

some O

passengers O

complained O

of O

smoke O

in O

the O

63

This structure of sentences shows the respective named entity tagged for individual words

such as S-LOC for location, ORG for organisation; S-TIME for time and O stands for

others.

Data Storage The named entity tagged sentences are stored in a String in primary

memory

Data Utilization: These tagged sentences can be used further by information extractor

module.

 Algorithm Design for NER Tagger

The algorithm for NER tagger shown in Figure 3.9 is as follows:

Figure 3.9: Algorithm for NER Tagger

The algorithm starts with passing the pre-processed document to SENNA which performs

the tagging for each sentence of the document and gives the name entity tagged sentences

of the document as output which are used by Information Extractor module as an input

for further processing.

3.4.3 Information Extractor

The Information Extractor is designed here for extracting information from sentence

structures. The information extracted is generally concepts, their semantic roles in the

Algorithm ner_tagger()

 Input: pre-processed text document

 Output: named entity tagged text document

 Begin

for each sentence of the text document

 call SENNA for name entity tagging

 end for

End

64

sentence, properties and relations. It takes the co-reference resolved sentences having

dependency tags and NER tags attached to them.

i) Concept, Relation and Role Extractor

These are the concepts participating directly in a relation given by the verb in the

sentence and concepts which are not directly related to the verb. Concepts may be

existing in the text in the form of a single word or a multi word i.e. a single noun may be

there representing the concept or a noun phrase is used in the sentence for a concept.

Stanford parser takes into account of these multi word concepts very efficiently but to

give these concepts a proper representation, these are combined to form a multiword

concept. We analysed the dependency tags along with NER tags from SENNA and

established whether the concept is performing an action or an action is being acted upon

that concept. We further assigned semantic roles to these concepts depending upon

whether they are actors or acted upon concepts and their NER tags e.g. a word is having

dependency tag as nsubj and is having named entity tag as Person. This word will be

framed as actor concept and the semantic role of this actor concept will be established as

agent. If the dependency tag for a word is Tmod and the name entity tag is Time the

concept will be having type acted upon and the semantic role Temporal. Table 3.4 shows

the possible types of concepts and possible roles according to the NER and dependency

tags.

Table 3.4: Dependency Tags, Concepts, Possible Roles and Relations

Dependency Tag Concept NER tag Role Relation

Nsubj

Nsubjpass

actor concept None

Person

Organization

Location

Agent

agent

organization

location

Verb

Rcmod

Vmod

actor concept None Agent Verb

Dobj

pobj

iobj

xcomp

agent

acted upon concept None Theme Verb

65

Tmod acted upon concept Time Temporal Verb

Prep_ X

X=with

X=to

X=in

X=at

X=after

X=on

acted upon

concept/indirect concept

none

none

location

none

location

time

none

location

time

none

accompanier

location

theme

location

temporal

theme

location

temporal

theme

Poss actor concept

acted upon concept

None

None

Agent

Possession

Has

 Data Design for concept_relation_role extractor

The information thus extracted using Table 3.4 by this module needs to be stored in

tables in a database. Following tables are created for this module:

i) Concept Table

The concept table contains the all the concepts extracted from all the documents with

their respective document_id, sentence_ id and concept_ id assigned to each concept.

This table is filled by the concept_extractor module and is stored in secondary memory.

Data Format: The metadata for concept table in Java DB (Derby) database is as shown

in Table 3.5.

Table 3.5: Metadata for Concept Table

Field Name Data Type

Doc_id VARCHAR

Sentence_id VARCHAR

Concept_id VARCHAR

Concept_Name VARCHAR

66

The metadata for Concept Table contains Document identification number Doc_id,

Sentence identification number sentence_id, Concept identification number Concept_id

and the name of the concept Concept_name.

Data Storage: All these fields are stored as having VARCHAR as their datatype.

Data Utilization: Concept table is utilized by Property_extractor and

Hierarchy_extractor modules by bringing it into primary memory.

ii) Object_Property_Table

This table contains the extracted actor concepts denoting the subjects, Acted upon

concepts denoting the objects, their semantic roles in the sentence and the relation

between the subject and the object denoted by relation_name.

Data Format: The metadata for Object_Property_Table in Java DB is shown in Table

3.6.

Table 3.6: Metadata for Object_Property_Table

Field Name Data Type

Doc_id VARCHAR

Sentence_id VARCHAR

Rel_id VARCHAR

Actor_concept_id VARCHAR

Ac_has_role VARCHAR

Relation_Name VARCHAR

Acted_upon_concept VARCHAR

Au_has_role VARCHAR

The metadata for Object Property Table contains Document identification number

Doc_id, Sentence identification number sentence_id, Relation identification number,

Actor Concept identification number Actor_concept_id, the semantic role of actor

67

concept, Acted upon Concept identification number Acted_upon_concept_id, the

semantic role of acted upon concept, and the name of the object propertyrelation _name.

Data Storage: All these fields are stored as having VARCHAR as their datatype.

Data Utilization: This table is filled by object_property module and is stored in

secondary memory. This table is drawn into primary memory so that it can be used by

ontology_matcher_merger module.

 Algorithm Design for concept_relation_role_extractor()

Concept extraction, relation extraction and role extraction go hand in hand. The concepts

on which the action is being done and concepts doing action are captured along with the

action i.e. the relation among these concepts and are stored in tables having concepts and

relation associated with them. The algorithm for extracting concepts, their semantic role

in the sentence and relations among the concepts takes the sentence token list,

dependency tags and name entity tags from the output the natural language processing

module. It also uses Table 3.4 which maps the concepts to their semantic roles according

to their dependency tag and name entity tag. The algorithm is given in Figure 3.10.

Here in this algorithm, the output of natural language processing module i.e. the sentence

token list which is dependency parser tagged and the name entity tags from SENNA are

given as input. Depending upon the dependency tags and name entity tags, concepts are

extracted in step 1.The concepts are generalized as actor concepts or acted upon concepts

in step 1.a and step1.b and provided their semantic roles according to their tags and Table

3.4 in step 1.e. The algorithm also looks for the multiword concepts and extracts and

stores them by adjoining them with an underscore in step 2. Object properties (relations

among these concepts) are also extracted by this algorithm in step 1.e. The concepts

along with their semantic roles and the relations between them are stored in

Object_Prop_Role_Table in step 3.

68

Figure 3.10: Algorithm for Concepts, Roles and Relation Extractor

ii) Property Extractor

The properties of the concepts participating in ontology may have some property

associated with them given by the sentence. These properties are those that modify the

concept in some manner .e.g. in the following sentence:

 “This is a red book”.

red which is an adjective in the sentence becomes data property for the concept book in

the ontology. These properties are extracted by processing the dependency parsed

structure of the sentence.

Algorithm concept_relation_role_extractor()

 Input: sentence token list, dependency tags, name entity tags from SENNA

 Output: actor concepts, acted upon concepts, roles, relations

 Begin

1. for each token in the sentence list

2. 1. analyze the dependency tag and name entity tag for possible concepts, relations

and role //refer columns Dependency tag and Concept from Table

3.4.

a) a) extract actor concepts

b) b) extract acted upon concepts

c) c) extract concepts not directly related to verb

 //refer columns NER tag and Role from Table

3.4.

d) d) extract roles

 //refer column Relation from Table 3.4.

e) e) extract relations

 //refer column Dependency tag from Table 3.4

2. analyze the dependency tag for “nn” or “nnp”

 // multiword concepts representation

 a) concatenate the concepts using “_”

 b) store all concepts in concept_table

3. store concepts, roles, relations in Object_Prop_Role_ Table

end for

End

69

 Data Design for property extractor

These extracted properties are stored along with their concepts in a table in the database.

 Data Format: We use data property table that contains the properties of the extracted

concepts. The metadata for Data_Property table in Java DB is given as follows in Table

3.7.

Table 3.7: Metadata for Data_Property Table

Field Name Data type

Doc_id VARCHAR

Sentence_id VARCHAR

Concept_id VARCHAR

Has_prop VARCHAR

The metadata for Data_Property Table contains the Document identification number

Doc_id, Sentence identification number Sentence_id, Concept identification number

Concept_id and a property field has_prop to show the data property associated with the

concept.

Data Storage: This table is stored in secondary memory.

Data Utilization: This table is brought into primary memory to be used by Ontology

Generator and Ontology Enricher (Chapter 4).

 Algorithm Design for property_extractor

The properties that modify concepts in some manner are called data properties and are

extracted from text according to their dependency tags given as input along with the

sentence token list. The algorithm for extracting properties is given in Figure 3.11.

70

Figure 3.11:Algorithm for Property Extractor

In this algorithm, the output of natural language processing module is given as input

which is sentence token list along with their dependency tags. In step 1 and step 2.a, this

algorithm analyses the tokens of each sentence having „amod‟ dependency tag which

identify the adjective associated with the concept determining its data property. These

data properties are stored in a Data_Property Table along with their associated concept in

step 2.b.

iii) Hierarchy Extractor

From the list of concepts extracted in Concept_Table hierarchy of concepts is extracted.

All the concepts from Concept_Table are brought to a concept list in primary memory.

The concepts are syntactically matched to determine whether some concept matches

partially with some other multiword concept (compound nouns). If a concept matches

with head noun of the compound noun, it is added to the hierarchy table with relation

“has_a”. Otherwise if a concept matches with other part of compound noun which is not

head noun, it is added to hierarchy table with relation “has_ instance”.

Algorithm property_extractor()

Input: sentence tokens list with dependency tags next to each token in the

list

Output: concepts properties

Begin

 1. for each token in the sentence list

 2. for each concept from concept_ list

 a) analyze the dependency tag “amod” for extracting properties of

concepts

 b) store the concept properties in data_prop_table

 end for

 end for

71

 Data Design for Hierarchy Extractor

Hierarchy table is generated if concepts are related to each other with part-whole relation

or is-a relation. This table captures the possible taxonomical relations among concepts.

Data Format: The metadata for Hierarchy_Table is shown in Table 3.8 as follows:

Table 3.8: Metadata for Hierarchy Table

The metadata of this table contains the document identification number Doc_id,

Hierarchy identification number H_id, name of the sub concept sub_concept and the

name of super concept super_concept.

Data Storage: This table is generated by Hierarchy_extractor module using the concept

table and is stored in secondary memory.

Data Utilization: This table is utilized by ontology_matcher_merger by bringing it into

primary memory so that concepts having a hierarchy in the form of sub concepts and

super concepts can be merged.

 Algorithm for Hierarchy Extractor

There may be a possibility that some concepts extracted from text possess a hierarchical

relation to some other concepts. This relation can be an is-a relation or has-instance

relation. The hierarchy extractor algorithm takes the concept list and finds the super

concepts and their sub concepts and establishes the proper relation between them. The

algorithm is given as in Figure 3.12.

Field Name Data type

Doc_id VARCHAR

H_id VARCHAR

Sub_concept VARCHAR

Super_concept VARCHAR

72

The algorithm takes the list of concepts which include single word and multiword

concepts and generalises them into a hierarchy if exist. The single word concept may be

subsumed by some other multiword concept. The single word concept may be same as

the head noun of the multiword concept or as the other part of the multiword concepts.

This algorithm stores both of these concepts by establishing has_instance or has_a

relation between them in hierarchy_Table..

Figure 3.12: Algorithm for Hierarchy Extractor

3.4.4 Sub-Ontology Generator

For each sentence a sub-ontology is created using Jena API comprising of concepts along

with their semantic roles, data properties, relations as their object properties, and

hierarchy if exists. These sub-ontologies are shown graphically by using the GraphViz

tool [57].

Algorithm hierarchy_extractor()

Input: concept_ list from concept_Table

Output: super_ concept, sub_ concept

 Begin

 1. for each concept from concept_ list

 compare concept with each multi word concept syntactically for partial

matching

a) If concept matches with head noun of multi word concept

 super_concept = concept

 Relation = “has_a”

 sub_concept= multiword concept

b) If concept matches with other part of multi word concept except head noun

 super_concept = concept

 Relation = “has_instance”

 sub_concept= multiword concept

 2. store in Hierarchy_Table

 end for

 End

73

 Data Design for sub-ontology generator

The contents of Object_Property_Role_Table, Properties_Table and Hierarchy_Table are

brought into lists in the primary memory. These lists are used to create sub-ontology for

each sentence using Jena API.

Data Format and Storage: The sub-ontologies are stored in rdf structures in the

memory.

Data Utilization: These sub-ontologies are used further by sub-ontology merger to

construct the final ontology.

3.4.5 Sub-Ontology Merger

The sub-ontologies thus created for each sentence are merged to form a single ontology.

This process starts with merging the very first ontology with a NULL ontology. For

merging ontologies relations and concepts of different ontologies are matched for their

syntactic and semantic similarity using WordNet [60] and the Hierarchy_Table. The

semantic roles of concept nodes are also used in the matching process. These are also

matched for similarity wherever there are similar concepts..

This module considers all cases where relation or concept nodes of an ontology may or

may not be matching to concept or relation node of other ontology. Also there may be

dissimilarity in matching concept nodes.

 Data Design for sub-ontology merger

To tackle these cases we have purposed some rules here that are stored in primary

memory according to which nodes in sub-ontology are merged with their corresponding

semantic similar nodes of other ontologies.

Data Structure Used: Following rules are designed in our work which are being applied

in the algorithm for merging sub-ontologies

74

Rule 1: Relations in both sub ontologies are semantically same. Also their respective

concepts and the roles of concepts in these relations are matching semantically. In

addition to this hierarchies of concepts are taken into consideration for merging the

concepts as shown in Figure 3.13.

Ontology1 Ontology2 Ontology3

Figure 3.13: Rule 1

Rule 2: The dangling non-matching concept node in sub-ontology. In this case relations

R1 of Ontology1 and R2 of Ontology2 are semantically similar and their related concept

nodes i.e. N1 is semantically matched with N3 and N2 is semantically matched with N4.

Here N5 is a non-matched concept, which will be aligned as shown in Figure 3.14.

Ontology1 Ontology2 Ontology3

Figure 3.14: Rule 2

Rule 3: Some concept nodes are semantically matching, but corresponding relation is

semantically dissimilar in both sub-ontologies. In this case relations R1 of ontology1 and

R1

N1 N2

R2

N3 N4

R1

N1 N2

= +

Role1 Role2 Role1 Role2 Role1 Role2

R1

N1 N2

R2

N3 N4
N5

R1

N1 N2
N5

= +

Role1 Role2 Role1 Role2

Role3

Role1 Role2

Role3

75

R2 of ontology2 do not match while the concept N1 and N3 are similar. These will be

aligned as shown I Figure 3.15.

Ontology1 Ontology2 Ontology3

Figure 3.15: Rule 3

Rule 4: Concept nodes are matching semantically excluding their semantic roles and their

corresponding relations are also semantically dissimilar in both ontologies. The matching

concepts are merged to be a single concept keeping their respective semantic roles in

each sentence intact. In this case relations R1 of ontology1 and R2 of ontology2 do not

match while the concept N1 and N3 are semantically similar having roles Role1 and

Role3 respectively. These will be aligned as shown in Figure 3.16.

Ontology1 Ontology2 Ontology3

Figure 3.16: Rule 4

Data Utilization: These rules are used by ontology matcher merger to construct the final

ontology.

R1

N1 N2

R2

N3 N4
 N5

R1

N1 N4
N2

= +
R2

N5
Role1 Role2

Role1 Role3

Role4

Role1 Role3 Role4

Role2

R1

N1 N2

R2

N3 N4

R1

N1 N4
N2

= +
R2

Role1 Role2
Role3 Role4

Role1

Role4

Role2

Role2

76

 Algorithm for ontology matcher merger

In the process of ontology construction here sub ontologies are created for each sentence

after extracting the concepts, their semantic roles and establishing the correct hierarchy

among them and extracting their object and data properties. These sub-ontologies are

matched and merged to form the whole ontology. Some rules have been crafted for the

purpose of matching and merging these sub-ontologies which are utilized by the

ontology_matcher_merger algorithm which takes two different sentence sub-ontologies

as input, uses WordNet in the process of matching and merges the ontologies according

to these rules to produce a merged ontology. The algorithm for matching and merging

ontologies is given as follows in Figure 3.17.

Figure 3.17: Algorithm for Ontology Matcher Merger

Algorithm ontology_matcher_merger()

Input: Ontology O1, Ontology O2, WordNet

Output: Merged ontology O3

Begin

1. Check if O1 is NULL then assign O3= O2;

2. Analyze relation in both ontologies for equality

a) analyze actor concepts and acted upon concepts of both ontologies for equality

// Rule 1 (Figure 3.13)

b) analyze actor concepts role and acted upon concepts role of both ontologies for

equality

3. integrate the two ontologies by merging the sub-ontologies where the matching is

found and store in O3.

4. align the non-matching dangling concepts // Rule 2 (Figure 3.14)

5. align non matching relations pairs with non-matching concepts // Rule 3 (Figure

3.15)

6. align non matching relations pairs with matching concepts // Rule 4 (Figure 3.16)

End

77

This algorithm applies the devised rules by us for merging the ontologies in a manner

such that all the concept pairs, relation pairs are aligned while integrating these

ontologies. In step 1, there is a check to ascertain that any of the ontologies to be merged

are not null otherwise the merged ontology will be the not null ontology itself. Then in

step 2 and 3, the relation pairs from both ontologies are analysed to find the matching

concept pairs or matching relation names. The rule devised are applied here in step 4, 5

and 6 to integrate these ontologies and assure that all the matching concept pairs or

matching relation pairs are merged well and the non-matching relations or non-matching

concepts are aligned well in the integrated ontology. Ontology Representer

The sentence ontologies are merged in the ontology matcher merger and regenerated to

form complete text document ontology using Jena API. The merged final ontology can

be converted into dot file which is further shown graphically by GraphViz tool [57].

iv) Data Design for ontology representer

The document ontologies are stored in secondary memory in .rdf or .owl form.

The above described algorithms of different modules are used by ontology generator

algorithm. This algorithm takes plain text documents as input. The process for generating

complete ontology from a set of documents is given in the algorithm as shown in Figure

3.18.

 Algorithm Design of Ontology_ Generator

This algorithm generates the overall ontology for a given text document by calling the

methods defined for the all the modules of the system as shown in Figure 3.18. The

algorithm takes the unstructured text document as input and processes it sequentially

through these methods and gives a final ontology of that text document.

78

Figure 3.18: Algorithm for Ontology Generator

The algorithm first starts with processing each sentence of each document. Each sentence

is preprocessed by the module pre_processer to remove transition words or phrases and

then anaphora_resolver() is called in step 2 which resolves the coreferences. Dependency

tagging is carried out in step 3 followed by named entity recognition in step 4. After

performing all the natural language processing on the document, this is passed for further

Algorithm Ontology_ Generator

Software Tools Used: Stanford Dependency Parser, Senna, JavaRAP,

Input: A set of text documents, WordNet

Output: Ontology of documents

Begin

for each document

 for each sentence

1. pre_processor();

2. anaphora_resolver();

//output is pronouns resolved to their

noun mentions

3. dependency_parser();

//output is part of speech tagged sentences along with

//their dependencies

4. ner_tagger();

 // output is named entity tagged nouns

5. concept_relation_role_extractor();

 //output is concept, roles, object properties

6. property_extractor(); //output is data properties of concepts

7. hierarchy_extractor(); // output is hierarchies of concepts if

exist

8. Generate sentence ontologies using Jena API for ontology

 // generate sentence ontologies

end for

9. ontology_matcher_merger(); // match and merge ontologies to generate full

ontology

10. Generate the ontology in .rdf format using Jena API and GraphViz

end for

End

79

processing to the Information Extractor. In step 5 concepts, relations and semantic roles

are extracted by calling concept_relation_role_extractor().

In step 6 data properties of the concepts are extracted by calling property_extractor. In

step 7 hierarchies are established by calling hierarchy_extractor(). Step 8 generates the

sentence ontologies. In step 9, these ontologies are merged to form the final ontology by

calling ontology_matcher_merger(). Step 10 generates and shows the final ontology

using Jena API and also shows the ontology graphically through GraphViz tool.

3.5 WORKING OF SYSTEM THROUGH EXAMPLE

The process of constructing ontology takes place in two steps. First step is to form the

sub-ontological structures from the sentences of the document and in second step the full

document ontology is built using the previously formed sentence sub-ontologies. It is

assumed here that the inputs are correct.

For a sample text document having following three sentences:

Sentence1: An Air India flight to HongKong was brought down at Kolkata late last night

after some passengers complained of smoke in the cabin.

Sentence 2: The flight with passengers landed at the Kolkata airport.

Sentence 3: Under those circumstances, Passengers were accommodated in nearby

hotels

After processing the sentences from all the extractors except following tables are

obtained. The Concept_Table contains the concepts retrieved from all sentences in all

documents as shown in Table 3.9.

Table 3.9: Concept_Table

Doc_id Sentence_id Concept_id Concept_Name

D0 S0 Cid0 Air_India_Flight

D0 S0 Cid1 HongKong

D0 S0 Cid2 Kolkata

80

Table 3.10 contains the object properties i.e. relations among the concepts and role each

concept is playing. As mentioned above some concepts are directly related to the verb in

the sentence. These concepts are stored in table with the relation name.

Other concepts which are not directly related to the verb directly are stored without

relation name and their relation is identified by the name of label and role each concept is

playing in relation with the other concept.

Table 3.10: Object_Property_Role_Table

D0 S0 Cid3 Passengers

D0 S0 Cid4 Smoke

D0 S0 Cid5 Cabin

D0 S1 Cid6 Flight

D0 S1 Cid7 Passengers

D0 S1 Cid8 Kolkata_airport

D0 S2 Cid9 Passengers

D0 S2 Cid10 Night

D0 S2 Cid11 Hotels

D
o

c_
id

S
en

te
n

ce
_

id

R
el

_
id

A
ct

o
r_

co
n

ce
p

t_
id

A
c_

h
a

s_
ro

le

R
el

a
ti

o
n

_
N

a
m

e

A
ct

ed
_

u
p

o
n

_
co

n
ce

p
t_

id

A
u

_
h

a
s_

ro
le

D0 S0 Rel_id0 Cid0 Agent Brought_down Cid2 Location

D0 S0 Rel_id1 Cid3 Agent Complained Cid4 Theme

D0 S1 Rel_id2 Cid6 Agent Landed Cid8 Location

D0 S2 Rel_id3 Cid9 Agent Accommodated Cid11 Theme

D0 S0 Rel_id0 Cid10 Temporal Brought_down Cid0 Agent

D0 S0 Rel_id1 Cid5 Location Complained Cid3 Agent

D0 S0 Rel_id4 Cid1 Location To Cid0 Agent

D0 S1 Rel_id5 Cid7 Accompanier With Cid7 Agent

81

Table 3.11 stores the data properties of the concepts extracted from each sentence in the

document by the property extractor module.

Table 3.11:Property_Table

Hierarchy extractor module finds the hierarchy among the concepts from the Concept_

Table and stores in Hierarhcy_Table as shown in Table 3.12.

Table 3.12:Hierarchy_Table

For each of these three sentences, ontologies are generated in the first step (Figure 3.19).

Figure 3.19: Sentence Sub-ontologies (Cont. on next page)

Doc_id Sentence_id Prop_id Concept_id Has_prop

D0 S1 Pid0 Night Last

D0 S2 Pid1 Hotels Nearby

Doc_id H_id Sub_concept Super_concept

D0 H_id1 Air_india_flight Flight

D0 H_id2 Kolkata_airport Kolkata

82

Here green boxes show the concepts, ellipses show the object properties, yellow boxes

show the data properties and the pink boxes show the roles of the concepts. The second

step here is to apply ontology matching and merging algorithm on these ontologies. Here

relations (object properties) as shown by the ellipses in the sentence ontologies are

considered at first. All possible base forms from WordNet [60] are taken for each relation

and used for matching similarity. Table 3.13 shows the possible base forms of the

relations identified in the document.

Table 3.13: Base Forms of Relational Words

Relation

Name

Possible base form of the word in WordNet

brought down lower, take down, let down, get down, bring down: move something or somebody to a

lower position, overthrow, subvert, overturn, cause the downfall of, impose something

unpleasant, land, put down, cause to come to the ground, reduce, cut down, cut back,

trim, trim down, trim back, cut, cut down on; make a reduction in

Landed set down: reach or come to rest, put down, bring down: cause to come to the ground,

bring down, bring into a different state, bring ashore, deliver (a blow), set ashore, shore:

arrive on shore, shoot down, land: shoot at and force to come down, landed: owning or

consisting of land or real estate

Accommodate suit, fit: be agreeable or acceptable to, adapt, make fit for, or change to suit a new

purpose, provide with something desired or needed, hold, admit: have room for; hold

without crowding, lodge, accommodate: provide housing for, oblige, accommodate:

provide a service or favour for someone, reconcile, conciliate: make (one thing)

compatible with (another)

Complain kick, plain, sound off, quetch, kvetch: express complaints, discontent, displeasure, or

unhappiness, make a formal accusation; bring a formal charge

83

There can be different cases while applying the ontology_matcher_merger algorithm.

Each case is considered separately and the purposed rules are applied to match and merge

different constituents of the ontology.

Case 1 Applying the Rule 1(Figure 3.13)

Each base form of the word or phrase representing the relation in one sentence is matched

with -the all possible base forms of the relations in other sentences for applying the Rule

1. As evident from the above table the relations brought_down and landed match as the

relation brought_down has base form land and also landed has base form bring down so

borught-down in ontology1 replaces landed in the merged ontology. Air_india_flight and

Flight are matched using hierarchy_Table and their respective roles are also matched. In

the similar manner Kolkata and Kolkata_airport are matched using Hierarchy_Table and

by matching their respective semantic roles as shown in Figure 3.20.

Figure 3.20: Similarity Matching in Case 1

Case 2 HongKong is a dangling non matching concept in Ontology1 and is merged with

Ontology2 according to Rule2 (Figure 3.14).

Case 3 The concept “passengers” has role “agent” in first ontology and is in relation with

“complained” while in second ontology it‟s role is “accompanier_with” with no matching

84

relation in Ontology2. In the merged ontology there is just one node for “passengers”

and has three roles agent_s0, accompanier_with_s1, and agent_s2 which is obtained by

applying Rule4 (Figure 3.16) again while merging this with Ontology3.

The rdf file generated corresponding to this sample document is shown in Figure 3.21.

Figure 3.21: .rdf File of Sample Document

The final ontology can be shown graphically using GraphViz in which the dot file is

generated first as shown in Figure 3.22.

85

Figure 3.22: dot File for sample document

This dot file is then converted by the GraphViz software to a graph depicting the final

merged ontology as shown in Figure 3.23.

digraph mygraph{

 complained ->brought_down

{ ranksep=1.2 rankdir=LR; complained brought_down }

 brought_down ->accommodated

{ ranksep=1.2 rankdir=LR; brought_down accommodated }

 passengers ->complained

 passengers [shape=box,style=filled,color=Green];

 passengers -> agent_0 [style=bold,label="HAS ROLE"];

 agent_0 [shape=box,style=filled,color=Pink];

 complained ->cabin

{ rank= same rankdir=TB passengers cabin }

 cabin [shape=box,style=filled,color=Green];

 cabin -> location_0 [style=bold , label="HAS ROLE"];

 location_0 [shape=box , style=filled , color=Pink];

 hotels ->nearby

 nearby [shape=box,style=filled,color=Yellow];

 Air_India_flight ->brought_down

 Air_India_flight [shape=box,style=filled,color=Green];

 Air_India_flight -> agent_1 [style=bold,label="HAS ROLE"];

 agent_1 [shape=box,style=filled,color=Pink];

 brought_down ->Kolkata_airport

{ rank= same rankdir=TB Air_India_flight Kolkata_airport }

 Kolkata_airport [shape=box,style=filled,color=Green];

 Kolkata_airport -> location_1 [style=bold , label="HAS ROLE"];

 location_1 [shape=box , style=filled , color=Pink];

 agent_2 [shape=box,style=filled,color=Pink];

 brought_down ->Kolkata_airport

{ rank= same rankdir=TB Air_India_flight Kolkata_airport }

 location_2 [shape=box , style=filled , color=Pink];

 Passengers ->accommodated

 Passengers -> agent_3 [style=bold,label="HAS ROLE"];

 agent_3 [shape=box,style=filled,color=Pink];

 accommodated ->hotels

{ rank= same rankdir=TB Passengers hotels }

 hotels [shape=box,style=filled,color=Green];

 hotels -> location_3 [style=bold , label="HAS ROLE"];

 location_3 [shape=box , style=filled , color=Pink];

 night [shape=box,style=filled,color=Green];

 night ->brought_down[style=bold,label="time"];

 night ->temporal_0[style=bold,label="HAS ROLE"];

 temporal_0 [shape=box,style=filled,color=Pink];

 night ->last

 last [shape=box,style=filled,color=Yellow];

 Hongkong [shape=box,style=filled,color=Green];

 Hongkong ->Air_India_flight[style=bold,label="to"];

 Hongkong ->location_1[style=bold,label="HAS ROLE"];

 location_1 [shape=box,style=filled,color=Pink];

 passengers [shape=box,style=filled,color=Green];

 passengers ->Air_India_flight[style=bold,label="with"];

 passengers ->accompanier_2[style=bold,label="HAS ROLE"];

 accompanier_2 [shape=box,style=filled,color=Pink];

}

86

Figure 3.23: Merged Ontology of the Document

In the merged ontology redundant concepts are represented by a single node having

multiple edges. Hence the merged concepts of the documents are represented in the

ontology with the roles they are playing in each sentence.

3.6 IMPLEMENTATION DETAILS

 We have implemented our work on Intel Core i3 with 4GB RAM using Windows 7

Operating System. We have used NetBeans 8.0.2 which is using Apache Derby as

relational database which is bundled with NetBeans 8.0.2. Apache Derby is based on

Java, JDBC and SQL standards. We have used Stanford Dependency Parser for

annotating the sentences of text documents. The corpus on which Stanford Dependency

Parser has been trained by [63] contains about 250,000 words of unedited web text.

SENNA tool is used here for name entity tagging. We have used JavaRAP tool for

anaphora resolution. WordNet [64] is used here for finding synonyms for matching and

merging the concepts. GraphViz tool is used for showing the ontology pictorially. We

have used Jena API to construct and store our ontology in the form of .rdf files.

Dataset-A set of 50 random news articles in English language has been taken for

experimentation. These news articles are assumed to be grammatically correct.

87

As it is not convenient to show the ontologies for each news article in the set,

implementation of a few news articles is displayed as follows:

Document1: Prime minister Narendra Modi will leave for the Belgium capital tomorrow

night. He will attend the Nuclear Security Summit in Washington and visit Saudi Arabia.

Prime minister will take part in the long-pending Summit for the first time.

The final ontology will be shown graphically in the Figure 3.24

Figure 3.24: Ontology of Document 1

Document 2 : Sania Mirza was born in Mumbai and settled at Hydrabad. She began

playing tennis at early age. She became a great tennis player and she defeated top player

Nadia.

The ontology for Document 2 will be shown graphically in the Figure 3.25

88

Figure 3.25: Ontology of Document 2

For Document 3: “The Mayor and water supply officials of Mangaluru City Corporation

have been claiming that there is enough water at a vented dam at Shambhoor, on the

upstream of the Thumbe dam. They are exposed as a reality check on Sunday revealed

that the dam of a hydro power project at Shambhoor is empty”. The ontology will be

shown graphically in the Figure 3.26.

89

Figure 3.26: Ontology of Document 3

3.7 PERFORMANCE EVALUATION

The set of 50 news articles taken for experimentation is used also as test data set for

performance analysis. We have compared our system with Open Calais [31] system by

Thomson Reuter‟s which is linked to a market leading ontology extracting entities

(persons, events, places), relationships etc and gives results in rdf format.

As shown in the Table 3.14, our system has scored similar precision as the other system.

But our system outscores in recall and F-measures to Open Calais system in extracting

the correct entities and relations.

90

Table 3.14: Result Comparison

System Precision Recall F-measure

 C
o

n
cep

t

R
ela

tio
n

D
a

ta

P
ro

p
erties

C
o

n
cep

t

R
ela

tio
n

D
a

ta

P
ro

p
erties

C
o

n
cep

t

R
ela

tio
n

D
a

ta

P
ro

p
erties

Open-

Calais

100% 100% 100% 56% 25% 69.20% 71.79 40.4 81.79

Proposed

System

100% 97.10% 100% 87.28% 82% 86.80% 93.2 88.9 92.9

The evaluation results indicate that our system provides good results in constructing

ontology. The reason for the better performance of our system is its ability to extract all

the non-taxonomical relation as compared to the other system which works on a specified

set of taxonomical and non-taxonomical relations.

The reason for low recall in extracting relations in our system is that while pre-processing

we remove some transition words(Table 3.1) to reduce the complexity of sentence e.g. as

was previously stated, speaking about, that being the case, to summarize etc. The verbs in

these transition words are not taken as relations in the ontology. Moreover the system is

dependent on the accuracy of the parser used for extracting dependency. Stanford

dependency parser has an F-score of 85.78 [65] for attaching noun phrase, modifier,

clause etc.

We can show the performance analysis of our system and Open Calias graphically as

shown in Figure 3.27.

91

Figure 3.27: Performance Analysis of Proposed System and Open Calais System

As stated earlier our system extracts all the concepts not only the key concepts as are

drawn from the text by the other system.

To improve the results with extracted relations, other ontologies or a thesaurus besides

WordNet can be used for semantic similarity matching to avoid wrong matching of

relations and concepts.

3.8 CONCLUSION

Ontologies have become a powerful tool for text understanding. In this chapter a novel

scheme for building ontologies from unstructured text is proposed based on considering

semantic roles. Matching the semantic roles of concepts gives an additional feature for

efficient merging of sub-ontologies leading to efficient construction of final ontology for

better and more correct understanding of text. The rules required for various modules are

0%

20%

40%

60%

80%

100%

120%

C
o

n
ce

p
t

R
e

la
ti

o
n

D
at

a
P

ro
p

er
ti

e
s

C
o

n
ce

p
t

R
e

la
ti

o
n

D
at

a
P

ro
p

er
ti

e
s

C
o

n
ce

p
t

R
e

la
ti

o
n

D
at

a
P

ro
p

er
ti

e
s

Precision Recall F-measure

Open-Calais

Proposed System

92

designed and represented and the approach has been implemented using Java technology.

The performance of the system is evaluated by looking coverage of concepts and

relationships in the final ontology. The experiment shows that the ontology of the

documents obtained by this scheme achieve F-score of 93.2 for concepts and 88.9 for

relationships indicating good results.

93

CHAPTER 4

 DESIGN OF ONTOLOGY ENRICHER

4.1 INTRODUCTION

Ontology gives annotations in rdf or rdfs formats which are used for providing intelligent

services like information retrieval, question answering etc. These services can perform

better if ontologies being used contain extra information about the concepts. This extra

information gives an idea about the context of the concept and for this different levels of

details can be added to ontology. But enriching the ontology is tedious and time-

consuming task [37]

In this chapter, we propose a technique by which ontology can be extended with specific

knowledge to provide more information about the constructs of ontology. Specifically, in

this proposal, the ontology is enriched by providing the class labels for data properties

extracted during the generation of ontology. For example in a sentence “The red car

belongs to Zoe”. The concept car has a data property red. This data property will be

labelled with a tag “colour” which is the name of the class label we have defined for red.

4.2 BASIC APPROACH

We pursue the following steps to enrich ontology:

i) A dictionary of adjectives is formed and labels for the adjectives in the

dictionary are gathered which organize these adjectives into different classes

such as colour, condition, personality etc.

ii) We construct ontology for a text document by our proposed technique as given

in Chapter 3 where the adjectives in sentences are extracted as data properties of

the concepts.

iii) These data properties are mapped to the class labels from the dictionary of

adjectives.

94

4.3 ARCHITECTURE OF ONTOLOGY ENRICHER

The architecture of the proposed ontology enricher depicted in Figure 4.1 has following

components:

1. Ontology Generator

2. Mapping Tables

3. Data Property Classifier

Figure 4.1: Architecture of Ontology Enricher

The description of each component is given as follows:

1. Ontology Generator

In this module, a basic ontology is generated by using our proposed approach as given in

chapter 3 of this thesis.

2. Mapping Table

 Following Categories are defined for extracted data properties in the mapping table:

i) Colour

ii) Taste

iii) Touch

Plain Text

Data_Property_Classificier Enriched Ontology

Ontology

Generator

Mapping Tables

95

iv) Relation

v) Quantity

vi) Personality

vii) Feel good

viii) Feel bad

ix) Condition

x) Appearance

xi) Numbers

xii) Size

xiii) Shape

xiv) Evaluation

xv) Sound

xvi) Nation

A total of 2360 adjectives belonging to these classes are extracted from dictionaries and

stored in database in the tables named by these classes. A few data properties are shown

in Table 4.1 along with their class and total number of data properties belonging to that

class.

Table 4.1: Mapping Table

Data Property

Class

Data_Properties Total

Number

Color Red, maroon, cyan, Blond, Antique_Bronze, Celadon_Green, Tan,

Canary_Yellow, Bondi_Blue, Blizzard_Blue, Brown_Sugar,

Cadmium_Green, Dark_Byzantium, Blue, Magenta_Violet,

Mikado_Yellow, Sinopia, Powder_Blue, Falu_Red,

Sacramento_State_Green, Carmine, Heliotrope_ Magenta, Cerise,

Roast_Coffee, Red-Brown, Pink-Orang, Cocoa_Brown,

Palatinate_Purple, Red,Mystic_Maroon, Light_Moss_Green,

Old_Moss_Green, Lapis_Lazuli,Nickel, Dark_Magenta etc.

1201

Quantity Abundant, bountiful, cumbersome, Empty, just, enceinte, ending,

extra, terminal, myriad, good, big, safe, break, closely, declamatory,

prominent, tumid, large, turgid, Heavy, numerous, stopping point,

full, penny-pinching, cheeseparing, confessedly, great, last, many,

estimable, bountiful, a few, gravid, few, empty, lowest, bombastic,

32

96

orotund, magnanimous, utmost, effective, a couple of, substantial,

light, fill up, well etc.

Personality secluded, brave, truculent, life-threatening, mystic, abusive,

Arcanum, private, loner, unbiased, bright, naughty, buck private,

sober, unplayful, aggressive, determined, cowardly, selfish,

renowned, presumptuous, clandestine, unavowed, witty, secret, ole-

and-corner, zany, thrifty, ambitious, knowledgeable, mysterious,

hidden, pleasing, hush-hush, sincere, mystical, disagreeable, , good,

grievous, , confidential, hesitant, successful, fearless, punctual,

combative, generous, evil, voracious, underground, mystery, warm,

placid, surreptitious, jealous, instinctive, closed_book, grave, helpful,

occult, , severe, wise, talented, diligent, dangerous, frank, gifted,

privy, hugger-mugger, amused, cruel, individual, sedate, orphic,

serious, harmonious, cloak-and-dagger, undercover, enigma etc.

44

Feel good cheerful, fine, ager, obedient, friendly, good, safe, lucky, delighted,

break, courageous, elated, fill_up, respectable, admittedly, true_up,

trustful, delightful, beneficial, right, cooperative, nigh, dear, close,

leery, stuffy, avowedly, expert, proficient, unspoiled, hilarious,

honourable, net, full, penny-pinching, cheeseparing, confessedly,

adept, trade_good, last, healthy, estimable, unspoilt, honest, glorious,

fantastic, secure, well-disposed, unfeigned, encouraging, , thankful,

snug, lively, lawful, sober, lastly, salutary, life-threatening, joyous,

live, victorious, dependable, calm, agreeable, rightful , happy, wary,

relieved, finis, charming, favourable, survive ,upright, true, sound,

kind, utmost, reliable, excited, zealous, endure, , comfortable,

confining, goodness, funny, genuine, faithful, skillful, soundly,

,truthful, playful, nice, energetic, enchanting, effective, enthusiastic,

well, skilful, thoroughly etc.

46

Feel bad envious, tired, confused, defeated, hungry, embarrassed, fierce,

abashed, dizzy, frantic, homeless, helpless, obnoxious, frightened,

arrogant, anxious, thoughtless, angry, defiant, abhorrent, nutty, itchy,

bored, wicked, lazy, lonely, foolish, testy, disgusted, sore, uptight,

repulsive, ashamed, awful, weary, condemned, scary, troubled,

depressed, ill, terrible, worried, outrageous, bad, disturbed, jittery,

grumpy, grieving, annoyed, panicky etc.

49

Condition uninterested, real, crazy, tough, outstanding, abnormal, alive,

doubtful, wandering, inquisitive, sometime, impossible, curious,

careful, annoying, open, aberrant, expensive, previous, better,

different, busy, erstwhile, abiding, authoritative, odd, concerned,

crucial, one-time, tame, late, occupy, aberrational, other, worry, easy,

frail, abeyant, brainy, concern, ablated, interested, difficult, poor,

clever, innocent, puzzled, powerful, horrible, quondam etc.

54

Appearance alluring, beautiful, fair, cute, alien, dynamic, fancy, bloody, cheerful,

elegant, thoughtful, spotless, gleaming, long, blushing, graceful,

smiling, ugly, perfect, unusual, zaftig, stormy, crowded, distinct,

nervous, muddy, grotesque, cultured, jolly, confident, wonderful,

extraneous, attractive, snobbish, gorgeous, poised, lovely, adorable,

excited, timid, colorful, magnificent, alamode, homely, alert,

pleasant, motionless, tense, vivacious, drab, dark, precious, hurt,

filthy, dull, plucky, handsome, gentle, misty, glamorous, etc.

79

97

number one, two, three, four…fifty three.. , hundred, thousand, million,

billion etc.

Size massive, initiative, tiny, lowly, thick, minuscule, small-scale,

low_gear, huge, little, first_gear, gravid, number_one, pocket-sized,

inaugural, long, belittled, immense, showtime, low, mammoth,

scrawny, minor, thin, bombastic, maiden, petite, big, fat, small,

modest, tall, magnanimous, offset, declamatory, orotund, foremost

etc..

21

Shape cylindrical, oval, first_base, narrow, three-dimensional, helix, flat,

crested, anguilliform, serriform, pisiform, soliform, minuscule, two-

dimensional, pisciform, ,patelliform, acinaciform, cymbiform,

wraparound, pyriform, caudiform, muriform, tubiform,small, round,

forked, calcariform, crescent, etc.

537

Evaluation yearly, up-to-date, old, modern, one-year, brief, raw, sometime, one-

time, yearbook, weekly, slow, new fangled, erstwhile, monthly,

young, fast, late, brand-new, ancient, freshly, quarterly, new, newly,

previous, abbreviated, quondam, onetime, rapid, second-hand, early,

recent_epoch, swift, former, recent, fortnightly, novel, annual,

unexampled, annually, quick, fresh, latest, other, etc.

30

Sound mute, dumb, unsounded, hissing, harsh, voiceless, hushed, faint,

silent, calm, thundering, noisy, shrill, cooing, whispering, melodic,

squealing, blaring, squeaking, tacit, mum, purring, husky, resonant,

sonorous, soundless, melancholic, understood, soft, raspy, quiet,

screeching, deafening, moaning, loud etc.

31

Nationality Malagasy, Estonian, North Korean, South Korean, Chadian,

Grenadian, Palauan, Kyrgyz, Kenyan, Belgian, New Zealander,

Surinamer, Bulgarianm swiss_people, Indian, Pakistani,

Herzegovinianm, Turkish, French, Fijian, Liberian, Armenian,

SaoTomean, Eritrean, Qatari, Haitian, Mauritanian, East Timorese,

Finnish, Canadian, Kittianand, Nevisian, Argentinean, Albanian,

Omani, Comoran, Lebanese, Maltese, North African, Bahraini,

Serbian, Middle Eastern, Emirian, Italian, Malian, Ivorian, Icelander,

Panamanian, Zambian, Moroccan, Guinea-Bissauan, Burundian,

Tajik, Dutchman, Scottish, Senegalese, Austrian, Beninese, Tongan,

Gabonese, Marshallese, Kuwaiti, Guinean, Slovenian, Rwandan,

Azerbaijani, Bruneian, Nauruan, San Marinese, Bahamian,

Indonesian, Peruvian, Leonean, Burkinabe, Norwegian, Slovakian,

Monacan, Malawian, Ugandan, Thai, European, Ghanaian,

Kazakhstani etc.

236

3. Data Property Classifier

This component takes ontology as input and works on data properties of the ontology.

Naῗve string matching is used to match each extracted data property with some adjective

stored tables in the database. If a match is found, that data property is related to the name

98

of the table in which the match is found. The label of this relation is named as „has class‟.

The algorithm for the same is shown in Figure 4.2 as follows:

Figure 4.2: Algorithm for Data Property Classifier

The algorithm takes as input the sentence tokens list with dependency tags next to each

token in the list, adjective database and mapping table we defined. It begins by

processing each token of the sentence and the concepts extracted already. In step 2 data

property is extracted by analysing the dependency tag “amod”. The extracted data

property is checked for its occurrence in the adjective database. If a match is found in

step 4, the data property is mapped to the name of the table where the property was found

and stored with a label “has class” in step 5.

4.4 WORKING EXAMPLE OF ONTOLOGY ENRICHER

For a text document given as:

Algorithm data_property_classifier()

Input: sentence tokens list with dependency tags next to each token in the list,

adjective database, mapping table

Output: concepts properties with class labels

Begin

1. 1. for each token in the sentence list

2. 2. for each concept from concept_ list

3. a) analyze the dependency tag “amod” for extracting properties of concepts

4. b)extract the concept property

5. 3. look for a match of the extracted data_property in the adjective_database

 4. If match found, extract the name of table in which match is found

5. store the data property along with the name of table with label “has_class”

 end for

end for

End

99

Pakistani singer Ghulam will perform at famous musical festival that begins at

Sankatmochan temple.

We will construct an ontology for this text document using the technique proposed by us

in Chapter 3 as shown in Figure 4.3. We will extract concepts along with their semantic

roles and data properties of these concepts and object properties.

Figure 4.3: Ontology of Text Document

Here, extracted data properties will be Pakistani and famous. These data properties are

given as input to the data property classifier that process it using the mapping table and

allots their respective classes which are Nation and Condition respectively. We get the

following output as shown in Figure 4.4.

100

Figure 4.4 : Enriched Ontology of Text Document

4.5 IMPLEMENTATION DETAILS

We have implemented this work using NetBeans 8.0.2 which is using Apache Derby as

relational database which is bundled with NetBeans. Apache Derby is based on Java,

JDBC and SQL standards.

4.6 CONCLUSION

We propose a technique in this chapter that extends and enriches ontology with explicit

knowledge so that the intended meaning of the concepts is more expressive. This process

is performed during the course of constructing the ontology in which the ontology is

enriched by providing the class labels for data properties extracted.

101

CHAPTER 5

AUTOMATIC DOCUMENT SUMMARIZATION USING

ONTOLOGY

5.1 INTRODUCTION

Summarization of text is a necessity as there is a large amount of data on the web

expressing the same ideas. It requires deciding which sentences or phrases are to be

chosen such that they show the main ideas in the document. Summarizing large texts

manually is both costly and time consuming. Automatic text summarization is a process

of making a coherent summary that retains the most important points of original

document using a computer program. It is a method for data reduction which enables

users to reduce the amount of text that must be read to gather the essential information

[53].

In previous contributions Ramanujam and Kaliappan [52] use the Naïve Bayesian

Classification and the timestamp concept, [53] have presented a technique using

unsupervised deep learning approach using Restricted Boltzmann Machine, [51] use

latent semantic analysis and fuzzy logic system. TextRank [66] creates a graph where

nodes represent sentences and edges are added between nodes and they specify the

similarity value between the two nodes (sentences) it connects. Top ranked sentences are

then chosen to form the summary. Some researchers have used ontology in the process of

summarization such as [46] use a hierarchical ontology to generate summaries.

Ontological knowledge is used by [47] also to generate document summary. [48] depend

upon YAGO ontology to evaluate and select sentences from documents. [45] Ragunath

and Sivaranjani present an idea for ontology-based summarization to compute a set of

features for each sentence based on the output of the hierarchical classifier.

102

5.2 PROBLEMS IN EXISTING APPROACHES

The work proposed in this chapter attempts to resolve the following problems which have

been found in previously done work by other researchers, as is also mentioned in the

Chapter 2.

5.2.1 Overlapped Information

In most of the contributions focusing on extractive summarization where whole sentences

are included in summary may lead to overlapped information in summary. As semantic

structure of sentence and semantic relationships between sentences is not taken into

account, these methods may not be able to identify sentences which are semantically

equivalent. Thus, the final summary would contain redundant information. [67] [68]

5.2.2 Dangling Co-references

Moreover there may be problem of „dangling co-references‟ as sentences containing

pronouns may lose their relevance if extracted out of context. [69]

5.2.3 Ignoring The Semantic Structure Of Sentence

Aforementioned methods also treat sentences as bag of words and are unable to

understand text deeply. Ontology based approaches are also unable to capture the full

semantic structure of the sentence as they use only hierarchical ontologies as discussed

by Hennig, Umbrath & Wetzker [46] or hierarchical classifiers for mappings as used by

Ragunath and Sivaranjani [45] ignoring the non-hierarchical ontologies.

5.3 BASIC APPROACH

The goal of summarization is to achieve high similarity of the summary information to

the original document and lesser redundancy. Two major categories of text

summarization are (i) extractive and (ii) abstractive summarization [67]. Extractive

103

summarization techniques select important sentences from the text to be extracted for

generating summary. Importance of sentences is calculated on the basis of some features

such as position of the sentence in the document, term frequency, lexical chains etc. For

contents such as news articles and reviews about a product, there is a lot of redundancy.

Using extractive summarization for this kind of content may not be a good idea as

extractive summaries may contain unnecessary information. For this kind of content

abstractive summaries provide a concise and compact idea of the content. Abstractive

summarization is able to generate sentences other than the original sentences in the given

text. These new sentences have to be grammatically correct and able to convey the

summarized information in a consistent way. This technique requires deeper text

understanding to build some representation of text before generating the summary.

The approach proposed by us combines both methods to generate summary by first

extracting features of the text documents to obtain an extractive summary and then

creating ontology for the extractive summary document and rephrasing the sentences

using this ontology. The proposed technique is novel because this technique gets success

in removing the redundant information from the extractive summary of the text giving

semantically correct yet more concise information.

Specifically, our approach of summarizing a document is a hybrid technique that involves

few sub-steps:

i) Extracting some statistical features from the text and using SVM classifier to

generate extractive summary.

ii) Generating text document ontology for this extractive summary keeping into

account the hierarchical and non-hierarchical relationships among the constituents

of sentences in the extractive summary document. This is done by identifying and

merging semantically similar sentences and concepts.

iii) Afterwards the sentences are reworded or reconstructed from the ontology to

attain an abstractive summary.

104

5.4 ARCHITECTURE OF THE PROPOSED SYSTEM

The architecture of the proposed system to generate the abstractive summary as shown in

Figure 5.1.

1. Pre-proccesor

The text document is prepared to be processed for summarization by performing some

pre-processing of the document such as tokenization, stop words removal, punctuation

removal etc.

Plain Text Documents

Pre processor

Sentence Demarcation Tokenizati Stop Word Punctuation Removal POS Tagging

Feature vector Calculator

Feature Extractor

Sentence Position Feature

Numeric Token Feature

Sentence Weight Feature

Proper Noun Feature

Sentence Length

Unique Term Feature

SVM Classifier Extractive summary

Document

Abstractive summary

Document

 Ontology Constructor

Sentence Reconstructor

Sentence Extraction

using polynomial Kernel

Unnecessary Information Removal

 Ontology Generation

Case 1: No overlapping of sentences

Case2:Sentence subsuming other sentence

Case 3: Partial overlapping of concepts among different

sentences

Case 4: Overlapping semantic chunks in different

sentences

Ontology Generation

Figure 5.1: Architecture of the Proposed Text Summarizer

105

2. Feature Extractor

Feature extraction is the process of transforming the input data (sentences) into a set of

features [70] . This is done here to perform the desired task of summarization using the

reduced representation instead of the full size input. The preprocessed text document is

processed further by Feature extractor so that some sentence specific features can be

extracted from the text documents which are given as input to the next module SVM

classifier. These features are: Sentence Position Feature, Numeric Token Feature,

Sentence Weight Feature and Proper Noun Feature.

3. SVM classifier

The SVM classifier extracts the sentences to be included in summary. The feature set

extracted in the previous module for the document is used to train the classifier and then

extract the important sentences from the document and thus generate the extractive

summary.

4. Ontology Constructor

The extractive summary generated by SVM classifier may contain overlapped

information such as different sentences but containing semantically similar information.

This extractive summary document is further processed to construct an ontology. For

constructing ontology from that extractive summary document we identify the concepts

in the document, their properties and relations among concepts. Some additional

information i.e. semantic roles these concepts are playing in each sentence of the text is

also attached while constructing ontology. For this, the sentences of extractive summery

document are parsed using Stanford dependency parser that provides dependency tags

attached with each term. By utilizing these dependency tags new tags are formed which

specify the concepts, relations, semantic roles and properties. The concepts and relations

are represented in an ontological structure with additional information such as semantic

roles and properties of concepts in the sentence.

106

5. Sentence Reconstructor

The ontology thus built in previous module is used to reconstruct the sentences to

generate an abstractive summary of the text document in Sentence Reconstructor module.

As the ontology of the extractive summary document removes the un-necessary and

redundant phrases or sentences, the sentences reframed by this module constitute the

concise representation of the text document. The Sentence reconstruction process may

also use additional words such as “then” and “and” to join two sentences or parts of

sentences. Inverse co-reference resolution is also performed in this module so that

interpretation of the sentences in summary is in consistency with their interpretation in

the original text.

5.5 DETAILED DESIGN OF SYSTEM

This subsection describes the methodology of components designed for generating the

summary along with the type of data and the data structures each component uses and

also gives the flow and process of generating the ontology by providing the algorithms

designed for modules of the system. The detail of each module of the system is as

follows:

5.5.1 Pre-processor

The text to be summarized has to go through some pre processing steps so that this text

can be used for extracting features given as follows:

i) Sentence demarcation

ii) Tokenization

iii) Stop Word Removal

iv) Punctuation Removal

107

v) Part Of Speech Tagging

A brief explanation of each step is given as follows:

i) Sentence demarcation

In this step the complete text is divided into sentences using NLTK python library.

ii) Tokenization

This step tokenizes the sentences to generate tokens using NLTK python library. These

tokens are used to detect keywords and key phrases in the text.

iii) Stop Word Removal

Stop word are highly frequent words that do not carry any information. These are filtered

out before processing the text. We have filtered out stop words list from the NLTK

corpus.

iv) Punctuation Removal

Punctuation marks are also removed to be not included in text features count.

v) Part Of Speech Tagging

In part of speech tagging according to the category of words i.e. noun, verb, adjective etc.

words are tagged. We have used Stanford Parser to perform the part of speech tagging.

 Data Design for pre-processor

The pre-processed text is stored in primary memory for further processing by next

modules in the system.

108

 Algorithm Design for Pre-processor

The algorithm for pre-processing the text document to be summarized is given in Figure

5.2.

Figure 5.2: Algorithm for Sum_pre_processor

The algorithm takes the text document as input and uses NLTK python library for its

processing. In step 1, the sentence is marked for its beginning and ending. Step 2

tokenizes the sentence. Stop words and punctuation marks are removed from the sentence

in step 3 and 4 respectively. Each token identified in step 2 of the algorithm is provided

part of speech tag in step 5. The output of the algorithm is the pre-processed document

which is given to the Feature Extractor module.

Algorithm sum_pre_processor()

Input: text document, NLTK python library

Output: pre-processed text document

 Begin

for each sentence of the text document

1. demarcate sentence

2. tokenize

3. remove stop words

4. remove punctuation

5. perform part of speech tagging to each token

 end for

End

109

5.5.2 Feature Extractor

The pre-processed text is given to the next module which is Feature vector calculator.

Feature vectors are generated for each sentence in the pre-processed text document. The

value of each feature lies between 0 and 1. These feature vectors are used to form the

feature matrix. Following features are extracted from the text. [53]

i) Sentence Position Feature

The position of the sentence in the document determines its relevance. As the first

sentence of text document is supposed to contain important information, it is given a

score 1. Also last sentence of the sentence is the concluding sentence, it is also given

score 1.

Sentence_Pos = 1, for the first or last sentence of text document.

Sentence_Pos = cos((Sentence_Pos -min)*((1/max)-min)), for the rest of the

 sentences.

Where, Sentence_Pos is the position of sentence in the given text.

min is calculated as (threshold*N)

max is calculated as (threshold*2*N)

N is total number of sentences in document.

threshold is calculated as (0.2*N)

ii) Numeral Token Feature

This feature is calculated for the sentences containing numeral tokens by dividing total

number of numeral tokens in that sentence with total number of words in that sentence.

Numeral_token_feature
S
i = num_numeral

S
i /Slength Equation 5.1

110

 where, num_numeral
S
i is number of numeric tokens in ith sentence.

 Slength is total number of words in sentence

iii) Weight of the sentence

This feature is calculated by summing the frequencies of all words in sentence and

dividing it by the length of sentence.

Freq_word = Freq_word/Maximum Frequency Value Equation 5.2

 where, Freq_word is the frequency of a word occurring in a sentence.

 Maximum Frequency Value is the frequency of the word occurring the maximum times

in the document

Sentence_Weight= Sum(Freq_word of all words in the sentence)/length of sentence

Equation 5.3

iv) Proper Noun Feature

Proper nouns refer to the named entity. Part-of speech tagging of each sentence

performed by pre-processor help determine proper nouns. This feature gives significance

to those sentences, which contain more proper nouns.

v) Sentence Length Feature

Sentence length can help to determine the amount of content in the sentence.

Sentence_length = Number of words/len_max

Where, len_max = Length of biggest sentence in the document

111

vi) Unique Term Feature

This feature is used to calculate the number of unique terms in a sentence. It gives

weightage to those sentences that contain new information.

Unique_Term = number of unique term in that sentence/Length of the sentence

 Data Design for Feature Extractor

Output Data Format

The output of this module will be a set of feature sets. The format of a feature set

corresponding to a sentence will contains numeric values calculated as discussed. For

example, if we take following sentence which is first sentence of the text document taken

in section 5.6:

The highest flood peaks on the Xijiang and Beijiang Rivers have passed, said Zhu Senlin,

governor of south China's Guangdong Province.

The feature set for this sentence will be calculated by this module is as follows:

X=[1.0, 0.0, 0.32, 0.5102040816326531, 0.1366666666666667, 0.24]

Here, sentence position feature=1, for being the first sentence of text.

Numeric token Feature = num_numeric /length

 = 0/25=0

Proper noun Feature = number of terms tagged as nouns/length

 = 8/25=0 .32

Sentence length Feature = length of sentence/length of the longest sentence

 =25/49=0.5102040816326531

Weight of the sentence =sum (Freq_word of all words in the sentence)/length of sentence

= 3.41/25 = 0.1366666666666667

112

Unique term Feature= number of unique terms/length= 6/25= 0.24

 For each document having N sentences in total, feature data will be having N feature

sets. This feature sets are stored in a text file in secondary memory.

 Algorithm Design for Feature Extractor

The algorithm for extracting features as shown in Figure 5.3 begins with processing

each sentence in the text document to extract the features.

Figure 5.3: Algorithm for Feature Extractor

𝑆𝑒𝑛𝑃𝑜𝑠 cos*(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑖𝑛𝑇ℎ) ∗

𝑚𝑎𝑥𝑇ℎ
 𝑚𝑖𝑛𝑇ℎ +

𝑁𝑢𝑚_𝑣𝑎𝑙
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑡𝑒𝑟𝑚𝑠

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝐹𝑟𝑒𝑞𝑡𝑒𝑟𝑚
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑡𝑒𝑟𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑁𝑜𝑢𝑛𝑡𝑒𝑟𝑚
𝑁𝑢𝑚𝑏𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑡𝑎𝑔𝑔𝑒𝑑 𝑎𝑠 𝑛𝑜𝑢𝑛𝑠

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝑆𝑒𝑛𝑙𝑒𝑛
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝑁𝑒𝑤𝑡𝑒𝑟𝑚
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

Algorithm Feature_Extractor

Input sentences from text files

Output feature vector matrix

Begin

for each sentence in text files

Step1: //compute the position of sentence

Step 2: //check for numeric enteries

Step 3: //compute frequencies of each word

Step 4: // look for proper noun tags

Step 5:// calculate the length of each sentence

Step 6://find the unique terms

 Step 7: //feature vector matrix preparation

 Feature_matrix[i] = [Senpos[i], Num_val[i], 𝐹𝑟𝑒𝑞𝑡𝑒𝑟𝑚 [i], 𝑁𝑜𝑢𝑛𝑡𝑒𝑟𝑚[i],

𝑆𝑒𝑛𝑙𝑒𝑛,𝑖-, 𝑁𝑒𝑤𝑡𝑒𝑟𝑚 [i]]

 end for

End

113

Step 1 extracts the position of the sentence. Step 2 checks the sentence for any numeric

value and normalizes its value by dividing it to the length of the sentence. Step 3

computes the frequency of each word of the sentence in the document and normalizes

this value by dividing it to the highest term frequency. Step 4 checks for the number of

terms which are proper nouns. This value is normalized by dividing it to the length of

the sentence. Step 5 calculates the length of the sentence and normalizes its value by

dividing it to the longest sentence in the document.. Step 6 finds the terms which are

having frequency no more than one in the document. Step 7 generates the feature matrix

using all above calculated values of features. These feature vector matrices are given to

SVM classifier so that the extractive summary can be obtained as shown in the

following sub-section.

5.5.3 SVM Classifier

As discussed in section of Chapter 2, Support Vector Machines given by Vapnik, V. [58]

are supervised learning algorithms which show good performance for text categorization

tasks [71] and can also be used for text summarization [72] [73] [74] [50]. We have used

SVM classifier in our work to extract the important sentences from the text. We train the

SVM to classify the sentences from the text document for summarization. The process of

generating the extractive summary using SVM is done in following steps.

i) Training the SVM classifier

ii) Sentence Extraction

These steps are explained in detail as follows:

i) Training the SVM classifier

 We take some text documents as training documents from DUC2002 dataset [75] which

are pre-processed initially and the feature extraction for each sentence of the documents

is performed generating the feature vectors of each sentence. Then we label feature

114

vectors as positive or negative. Positive label is given to a feature vector if the sentence

corresponding to that vector is present in the reference summary of that text document.

Otherwise the label given to that feature vector is negative label.

We have used 500 random positive and negative example sentences from our dataset to

train our SVM classifier. This trained classifier is used for extracting the important

sentences for summarization.

ii) Sentence Extraction using Polynomial Kernel

The test document is then fed to this trained SVM classifier as input. For this non-linear

decision surface of sentence extraction, kernel trick is applied to maximum-margin

hyperplane and the dot product is replaced by the kernel function.

 (⃗⃗) (⃗⃗) Equation 5.4

This polynomial kernel have been very effective when applied to several tasks of natural

language processing of a second degree with a value of C as 0.0001 [53]. We have used

the same for extracting summary from text. The documents classified as positive are

ranked according to their distance from the maximum margin hyper-plane. They will be

assigned Y=+1 if the sentence and the output are the sentences corresponding to the top

35% sentences in the rankings.

This extractive summary is further shortened by constructing ontology of this extractive

summary using the proposed system for generating ontology and reconstructing the

sentences using this ontology to generate abstractive summary as explained in the next

sub-section.

vi) Algorithm Design for SVM Classifier

The algorithm as shown in Figure 5.4 begins with generating the training data file by

labeling the 500 sentences as positive by providing them label +1 or negative by

115

providing them label -1 in Step 1. This is training file is used to train to the SVM

classifier in Step 2.

 Figure 5.4: Algorithm for SVM Classifier

The test text file whose summary is to be generated is loaded in step 3. In the next step

SVM polynomial kernel of degree 2 is applied with value of C=0.0001. Step 5 ranks the

sentences according to their distance from maximum margin hyperplane. We pick the top

7 sentences as extractive summary in step 6.

To remove redundancy among sentences in extractive summary we construct an ontology

for the same by Document Ontology Constructor.

5.5.4 Document Ontology Constructor

The extractive summary is given to ontology generation module which further reduces

the text by removing the transition words and unnecessary information during

preprocessing. Ontology is generated for this reduced text by constructing sub ontologies

for each sentence and then by merging these sub ontologies by using the rules proposed

Algorithm svm_classifier()

Input: feature vectors of Trainfile , ManualSumFile, test text file

Output: extractive summary of test text documents

Begin

Step1: //generate training text file train-500.txt

for each sentence S having feature vector x[i] of TrainFile in

ManualSumFile

y=+1,corresponding to feature vector x[i]

else

y= -1,corresponding to feature vector x[i]

Step 2: // train the svm classifier

X_train, y_train = load_svmlight_file("train-500.txt")

Step 3: load test text file

Step 4: Call svm.SVC(kernel='poly', C=0.0001, degree=2, probability=False)

Step 5: Rank sentences according to their distance from hyperplane

Step 6: Take top one third of ranked sentences

End

116

in ontology mapping and merging module in section 3.4. Here, relationships among

sentences are described by the semantically similar concepts and object properties that

are common in different sentences.

This is shown in the ontology using GraphViz [57] in Figure 5.6 having multiple edges

among semantic chunks from different sentences or having same concept but different or

same roles in multiple sentences. By generating the ontology from extractive text

summary, we further merged the semantically similar sentences (fully or in some

measure). This information is utilized in reconstructing the sentences by Sentence

Reconstructor.

 Data Design for Ontology Constructor

The ontology constructed for the text of extractive summary will be stored in rdf format

in the ontology repository.

 Algorithm Design for Ontology Constructor

The algorithm used for constructing ontology is same as given in section of Chapter 3.

The only difference is the input text file which is extractive text summary document.

5.5.5 Sentence Reconstructor

The ontology thus constructed after removing unnecessary words or phrases or parts of

sentences gives further concise representation of the extractive summary. In this

ontology, similar sentences or parts of sentences are merged by finding the semantic and

syntactic similarity among different sentences based on hierarchy and roles of the

concepts in the sentences. This ontology is used now to reframe the sentences to obtain

the abstractive summary. There can be following cases while rewording the sentences:

Case 1: No overlapping of sentences

117

Sentences are taken as such in the summary.

Case 2: Sentence subsuming other sentence

The longer sentence is taken into summary and the subsumed sentence is discarded.

Case 3: Partial overlapping of concepts among different sentences

This can be the case where a concept is having same role in different sentences but is part

of different semantic chunks (concept-verb-concept). Connector such as and or then is

used.

Case 4: Overlapping semantic chunks in different sentences

A semantic chunk can be overlapping in two sentences and can be used as a connector for

merging two sentences.

The abstractive summary thus obtained is further processed to perform inverse co

reference resolution as the final step of sentence reconstruction to get the final abstractive

summary.

Inverse Co reference Resolution

If a merged sentence contains entity name more than once in same or consecutive

sentences, the later one is converted to the relevant pronoun. This process is inverse co

reference resolution. The output of this module is the final coherent abstractive summary

also resolving the problem of “Dangling Co-references”.

 Algorithm Design for Sentence Reconstructor

The algorithm designed for reconstructing or reframing the sentences shows the process

of constructing abstractive summary from the extractive summary and the ontology of

that extractive summary as shown in Figure 5.5.

118

Figure 5.5: Algorithm for Sentence Constructor

This algorithm takes the extractive summary of the text document, the object property

tables of each sentence of the document and the object property table of the final

ontology of the document. The algorithm begins by processing the object property table

of each sentence as the step 1. Step 2 ensures if all rows of object property table of a

sentence are matching with those of final object property table then this sentence is being

subsumed by another longer sentence and is not taken in final summary. Step 3 checks If

there is no overlapping of sentences then the sentence is kept as such in the summary.

Step 4 finds whether there is overlapping among sentences. Step 5 merges the parts of

sentences which are matching. Step 6 merges the sentences by using the connector word

“and”. Step 7 performs the inverse co reference resolution to convert repeated entity

names in consecutive sentences to suitable pronoun.

Algorithm sentence_reconstructor()

Input object property table of each sentence of extractive summary, object property

table of final ontology , extractive summary

Output reframed sentences for abstractive summarization

Begin

1: for each sentence Si of object property table

 match each row to object property table of final ontology

2: if all rows are matched //case 1:subsumption

• discard the sentence Si from summary

• 3: if no rows are matched // case 2: no overlapping

 keep the sentence in summary

• 4: if some rows have matching concept –verb-concept triplets //case 3

 merge the sentences by keeping overlapped concept-verb- concept triplet

5: if concepts are matching in but relations and semantic roles are different

 merge the sentences by keeping that sentence and using connector “and”

with the other matched sentence //case 4

 6 : perform inverse co reference resolution

End

119

5.6 IMPLEMENTATION EXAMPLE

We have implemented our proposed system using python. We trained our SVM classifier

over DUC2002 [75] dataset for summarization. For a text document shown below, pre-

processing is performed on it in which stop words and punctuation marks are removed

after tokenization of the words of sentences and these words are tagged with part-of-

speech tags. This preprocessed text is processed further for extracting features as

described in section 5.5.2.

Input Text Document

The highest flood peaks on the Xijiang and Beijiang Rivers have passed, said Zhu Senlin,

governor of south China's Guangdong Province. While inspecting flood control and

relief work in Qingyuan city on the Beijiang River yesterday, he attributed Guangdong's

success in combating this flood -- almost the biggest in 100 years -- to concerted efforts

by the armymen stationed in Guangdong and local residents. More than 200 people lost

their lives in the natural disaster, which destroyed 189,000 rooms and ruined crops on

1.2 million hectares. The flood was caused by successive torrential rainstorms in the

Xijiang and Beijiang River valleys in early and middle June. Major flood monitoring

stations on the two rivers recorded their highest water levels, all four meters above the

danger mark. Local governments at various levels in the province have paid close

attention to flood control work, and leading government and communist party officials of

different localities have gone to the flood-fighting front. No breaches of major

embankments or reservoirs were reported despite the most serious flood in a hundred

years, effectively protecting the safety of the provincial capital, Guangzhou, and the

Pearl (Zhujiang) River Delta. But the losses caused by the flood were quite serious, said

the governor. According to him, 11 million people in the province's nine cities and 55

counties were affected, and more than 200 people died in the natural disaster, with

189,000 rooms destroyed and 1.2 million hectares of crops ruined. The direct economic

losses were set at 10.2 billion yuan. The governor warned that though the flood danger

120

had receded, the determination to fight possible further floods could not slacken, as this

is just the beginning: the main flood season, which usually begins in late July and early

August, has not yet arrived. He urged local officials to be on constant alert against

further possible floods and be meticulous about flood prevention and control measures,

while doing their utmost to help flood victims, assisting them to resume production as

soon as possible and maintaining social stability.

This feature set obtained from Feature Extractor is given as input to the trained SVM

classifier which ranks these sentences according to their distance from the hyper-plane.

The farther the sentence from hyper-plane, more confidently the classifier predicts it a

positive example.

 From the sentences which were labeled positive we have taken top 35% of ranked

sentences as extractive summary as shown here.

Extractive Text Document

But the losses caused by the flood were quite serious, said the governor. The flood was

caused by successive torrential rainstorms in the Xijiang and Beijiang River valleys in

early and middle June. More than 200 people lost their lives in the natural disaster,

which destroyed 189,000 rooms and ruined crops on 1.2 million hectares. Local

governments at various levels in the province have paid close attention to flood control

work, and leading government and communist party officials of different localities have

gone to the flood-fighting front. According to the governor, 11 million people in the

province's nine cities and 55 counties were affected, and more than 200 people died in

the natural disaster, with 189,000 rooms destroyed and 1.2 million hectares of crops

ruined. The direct economic losses were set at 10.2 billion yuan. The governor warned

that though the flood danger had receded, the determination to fight possible further

floods could not slacken, as this is just the beginning: the main flood season, which

usually begins in late July and early August, has not yet arrived.

121

This extractive summary document is converted into document ontology using technique

discussed in the chapter 3 and due to space constraints, a small part of that ontology is

shown using GraphViz tool in Figure 5.6.

After applying the cases on the obtained ontology, as discussed in sentence rewording

section we get the Final summary as shown below.

Final Summary

The flood was caused by successive torrential rainstorms in the Xijiang and Beijiang

River valleys in early and middle June. Local governments at various levels in the

province have paid close attention to flood control work, and leading government and

communist party officials of different localities have gone to the flood-fighting front. 11

million people in the province's nine cities and 55 counties were affected, and more than

200 people died in the natural disaster, with 189,000 rooms destroyed and 1.2 million

hectares of crops ruined. The direct economic losses were set at 10.2 billion yuan. The

governor said the losses caused by the flood were quite serious and warned that though

the flood danger had receded, the determination to fight possible further floods could not

slacken as this is just the beginning the main flood season which usually begins in late

July and early August has not yet arrived.

122

F
ig

u
re 5

.6
: E

x
tractiv

e T
ex

t D
o

cu
m

en
t O

n
to

lo
g

y

123

Once our system has generated the summary, we want to know if this resembles the

manually created summary for the same document. The manual (reference) summary as

given in the DUC2002 dataset for the given document is shown as follows:

Manual/Reference Summary

The highest flood peaks on the Xijiang and Beijiang Rivers have passed, said Zhu Senlin,

governor of south China's Guangdong Province. No breaches of major embankments or

reservoirs were reported despite the most serious flood in a hundred years. Eleven

million people in the province's nine cities and 55 counties were affected, more than 200

people died, 189,000 rooms were destroyed and 1.2 million hectares of crops were ruined

in this natural disaster. Economic losses were set at 10.2 billion yuan. The really bad

news is that this is just the beginning. The main flood season has not yet started.

We can analyze here that our system generated summary contains most of the sentences

that are present in the manual summary.

5.7 EXPERIMENTS AND PERFORMANCE ANALYSIS

Evaluating an automatically generated summary is quite difficult task. We have used the

ROUGE method (the measure adopted by DUC [76] as the standard for assessing the

summary coverage) that calculates the intersection of n-gram, word pairs and word

sequences between candidate summaries and the reference or human-generated

summaries. ROUGE is recall-oriented, based on n-gram overlap, and correlates well with

human evaluations as discussed by [77] Lin and Hovy. It is a widely used method for

assessing quality of automatically generated summaries because it gives high correlation

with scores assigned by humans in manually generated summaries..

The evaluation method, in which an automatic summary compared with a

reference/manual summary, is based on the n-grams of words of the automatic summary

coinciding in the manual summary. [78]. We get a score of recall if the number of co-

124

occurrences are divided by the total n-grams of the manual summary, whereas we get a

score of precision, if the number of co-occurrences are divided by the total n-grams of the

automatic summary. These two scores can be further combined to obtain an F-score for

the automatically generated summary. We can say that the recall tells how much relevant

information is obtained from the manual summary, and the precision depicts how much

relevant information we get in the automatically generated summary. ROUGE scores

range between 0 and 1, where 1 is better.

We calculate the scores for ROUGE-N as follows:

 ()

 Equation 5.5

 ()

Equation 5.6

Equation 5.7

We have chosen ROUGE-1 as according to Lin [77], for concise summaries ROUGE-1

may suffice.

We have used the DUC 2002 corpus for the evaluation of our approach. The corpus

contains different sets of newspaper articles. This data set provides us the test text

documents as well as their manual summaries which we use as reference summaries for

evaluation. The manually-created extracts are used to train SVM classifier using python

on DUC 2002 dataset. We have used polynomial kernel of second degree with a value of

125

C as 0.0001. We have taken 500 random positive and negative example sentences from

these datasets with positive examples indicating the presence of sentence in the extractive

summary and negative sentence indicate absence of sentence in the extractive summary.

We have used a random collection of documents apart from the training dataset from this

corpus to evaluate our results.

We have compared our system to the baseline summaries which are first ten sentences of

the text document whose summary is to be generated, reference summaries (human

generated), extractive summaries generated by our system without using ontology and the

abstractive summaries which are generated after using ontology. We have tested our

dataset also on another automatic summarization tool TextRank as given by [66]. We

present the evaluation of each system in for each document in our test set in Table 5.1:

Table 5.1: Evaluation of Four Systems on ROUGE

ROUGE-

Type

Task

Name System Name Recall Precision F-Score

Num

Reference

Summaries

ROUGE-1

D103-

022

SYSTEM3.T

XT 0.4955 0.51402 0.50459 1

ROUGE-1

D103-

022

SYSTEM4.T

XT 0.41441 0.40351 0.40889 1

ROUGE-1

D103-

022

SYSTEM2.T

XT 0.56757 0.58333 0.57534 1

ROUGE-1

D103-

022

SYSTEM1.T

XT 0.63063 0.33333 0.43614 1

ROUGE-1

D105-

5959

SYSTEM1.T

XT 0.47253 0.43434 0.45263 1

ROUGE-1

D105-

5959

SYSTEM4.T

XT 0.37363 0.46575 0.41463 1

ROUGE-1

D105-

5959

SYSTEM3.T

XT 0.34066 0.49206 0.4026 1

ROUGE-1

D105-

5959

SYSTEM2.T

XT 0.48352 0.43564 0.45833 1

ROUGE-1

D108-

111

SYSTEM1.T

XT 0.48148 0.33121 0.39245 1

ROUGE-1

D108-

111

SYSTEM4.T

XT 0.48148 0.34437 0.40154 1

ROUGE-1

D108-

111

SYSTEM3.T

XT 0.37963 0.41 0.39423 1

ROUGE-1

D108-

111

SYSTEM2.T

XT 0.35185 0.40426 0.37624 1

126

ROUGE-1

D114-

625-090

SYSTEM1.T

XT 0.57843 0.472 0.51982 1

ROUGE-1

D114-

625-090

SYSTEM3.T

XT 0.35294 0.76596 0.48322 1

ROUGE-1

D114-

625-090

SYSTEM2.T

XT 0.51961 0.52475 0.52217 1

ROUGE-1

D114-

625-090

SYSTEM4.T

XT 0.58824 0.5 0.54054 1

ROUGE-1

D109-

604

SYSTEM1.T

XT 0.69524 0.39891 0.50694 1

ROUGE-1

D109-

604

SYSTEM2.T

XT 0.52381 0.47009 0.4955 1

ROUGE-1

D109-

604

SYSTEM4.T

XT 0.68571 0.46452 0.55385 1

ROUGE-1

D109-

604

SYSTEM3.T

XT 0.34286 0.54545 0.42105 1

ROUGE-1

D102-

160

SYSTEM1.T

XT 0.56 0.31285 0.40143 1

ROUGE-1

D102-

160

SYSTEM3.T

XT 0.27 0.25714 0.26341 1

ROUGE-1

D102-

160

SYSTEM2.T

XT 0.27 0.28421 0.27692 1

ROUGE-1

D102-

160

SYSTEM4.T

XT 0.43 0.43434 0.43216 1

ROUGE-1

D108-

093

SYSTEM3.T

XT 0.36364 0.48193 0.41451 1

ROUGE-1

D108-

093

SYSTEM4.T

XT 0.57273 0.49606 0.53165 1

ROUGE-1

D108-

093

SYSTEM2.T

XT 0.37273 0.37615 0.37443 1

ROUGE-1

D108-

093

SYSTEM1.T

XT 0.56364 0.47692 0.51667 1

ROUGE-1

D109-

769

SYSTEM4.T

XT 0.60784 0.33333 0.43056 1

ROUGE-1

D109-

769

SYSTEM2.T

XT 0.27451 0.32184 0.2963 1

ROUGE-1

D109-

769

SYSTEM3.T

XT 0.47059 0.38095 0.42105 1

ROUGE-1

D109-

769

SYSTEM1.T

XT 0.59804 0.31606 0.41356 1

ROUGE-1

D110-

023

SYSTEM1.T

XT 0.50495 0.65385 0.56983 1

ROUGE-1

D110-

023

SYSTEM2.T

XT 0.58416 0.5514 0.56731 1

ROUGE-1

D110-

023

SYSTEM4.T

XT 0.91089 0.98925 0.94845 1

ROUGE-1

D110-

023

SYSTEM3.T

XT 0.08911 0.5 0.15126 1

ROUGE-1

D103-

119

SYSTEM1.T

XT 0.58879 0.33158 0.42424 1

ROUGE-1 D103- SYSTEM3.T 0.51402 0.33742 0.40741 1

127

119 XT

ROUGE-1

D103-

119

SYSTEM2.T

XT 0.54206 0.53704 0.53953 1

ROUGE-1

D103-

119

SYSTEM4.T

XT 0.56075 0.42553 0.48387 1

ROUGE-1

D102-

126

SYSTEM1.T

XT 0.66981 0.29461 0.40922 1

ROUGE-1

D102-

126

SYSTEM4.T

XT 0.37736 0.53333 0.44199 1

ROUGE-1

D102-

126

SYSTEM2.T

XT 0.5 0.5 0.5 1

ROUGE-1

D102-

126

SYSTEM3.T

XT 0.48113 0.6 0.53403 1

ROUGE-1

D106-

070

SYSTEM3.T

XT 0.42991 0.66667 0.52273 1

ROUGE-1

D106-

070

SYSTEM4.T

XT 0.66355 0.58678 0.62281 1

ROUGE-1

D106-

070

SYSTEM2.T

XT 0.59813 0.60377 0.60094 1

ROUGE-1

D106-

070

SYSTEM1.T

XT 0.76636 0.36771 0.49697 1

ROUGE-1

D110-

095

SYSTEM4.T

XT 0.45192 0.4087 0.42922 1

ROUGE-1

D110-

095

SYSTEM2.T

XT 0.42308 0.36975 0.39462 1

ROUGE-1

D110-

095

SYSTEM1.T

XT 0.54808 0.43846 0.48718 1

ROUGE-1

D110-

095

SYSTEM3.T

XT 0.51923 0.34177 0.41221 1

ROUGE-1

D101-

185

SYSTEM4.T

XT 0.45192 0.39496 0.42152 1

ROUGE-1

D101-

185

SYSTEM1.T

XT 0.61538 0.27948 0.38438 1

ROUGE-1

D101-

185

SYSTEM2.T

XT 0.44231 0.40708 0.42396 1

ROUGE-1

D101-

185

SYSTEM3.T

XT 0.55769 0.41429 0.47541 1

ROUGE-1

D105-

244

SYSTEM4.T

XT 0.45652 0.30435 0.36522 1

ROUGE-1

D105-

244

SYSTEM2.T

XT 0.27174 0.30864 0.28902 1

ROUGE-1

D105-

244

SYSTEM1.T

XT 0.65217 0.30303 0.41379 1

ROUGE-1

D105-

244

SYSTEM3.T

XT 0.48913 0.48913 0.48913 1

ROUGE-1

D113-

981

SYSTEM1.T

XT 0.625 0.38462 0.47619 1

ROUGE-1

D113-

981

SYSTEM4.T

XT 0.625 0.38462 0.47619 1

ROUGE-1

D113-

981

SYSTEM3.T

XT 0.44231 0.58974 0.50549 1

128

ROUGE-1

D113-

981

SYSTEM2.T

XT 0.53846 0.5045 0.52093 1

ROUGE-1

D107-

065

SYSTEM1.T

XT 0.51515 0.19392 0.28177 1

ROUGE-1

D107-

065

SYSTEM2.T

XT 0.34343 0.30357 0.32227 1

ROUGE-1

D107-

065

SYSTEM3.T

XT 0.31313 0.31633 0.31472 1

ROUGE-1

D107-

065

SYSTEM4.T

XT 0.47475 0.32639 0.38683 1

ROUGE-1

D111-

068

SYSTEM4.T

XT 0.49515 0.4322 0.46154 1

ROUGE-1

D111-

068

SYSTEM2.T

XT 0.52427 0.52941 0.52683 1

ROUGE-1

D111-

068

SYSTEM3.T

XT 0.57282 0.5463 0.55924 1

ROUGE-1

D111-

068

SYSTEM1.T

XT 0.53398 0.36424 0.43307 1

ROUGE-1

D111-

189

SYSTEM3.T

XT 0.5567 0.51923 0.53731 1

ROUGE-1

D111-

189

SYSTEM4.T

XT 0.4433 0.51807 0.47778 1

ROUGE-1

D111-

189

SYSTEM2.T

XT 0.58763 0.51351 0.54808 1

ROUGE-1

D111-

189

SYSTEM1.T

XT 0.45361 0.48889 0.47059 1

Here System1.txt denotes extractive summary from our SVM classifier, System2.txt

denotes Baseline summaries, System3.txt denotes the summaries generated by TextRank

summarizer and System4.txt denotes summaries generated by our proposed system.

Number of reference summaries used by each comparison is one here. These scores can

be averaged to be shown in the following Table 5.2 for comparison as:

Table 5.2: Comparison of Different Systems

System Recall Precision F-score

Baseline 45.8888 44.8892 45.3091

Textrank 42.0053 48.2547 45.2295

Extractive Summarization by our system 58.1751 37.7685 44.6677

Abstractive summarization our System 52.9745 46.0319 48.5749

129

As shown in the Table 5.2 our system that generates abstractive summary using

ontological structures has higher precision than Baseline summaries. Recall for our

system is also higher than both TextRank and Baseline summaries. Using ontological

structure with our system generated extractive summaries improves the precision but

lowers recall. F-score of our system generating abstractive summaries is highest among

baseline, TextRank and extractive summaries. The same is shown using bar graph as in

Figure 5.7.

Figure 5.7: Result Analysis of Four Approaches

 5.7 CONCLUSION

Summarization of text automatically is a complex task. In our approach, we divided this

task into several subtasks. We first extracted the important sentences using SVM

classifier trained on DUC 2002 dataset [75] and then condensed the information

contained in this extracted sentences further by constructing the ontological graph which

0

10

20

30

40

50

60

70

Baseline Textrank Extractive
Summarization
by our System

Abstractive
summarization
by our System

Recall

Precision

F-score

130

relates the sentences from extractive summary semantically and leaves the unnecessary

information. This ontology is reworded generating the abstractive summary. We have

evaluated our system on news articles from DUC 2002 dataset and compared this system

to other systems where competitive performance is shown by our system with better

recall than TextRank produced and BaseLine summaries and a better F-score among all

four summarization methods.

131

CHAPTER 6

 CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSIONS

We commenced our research with exploring the prospects of text understanding so that

we can enhance the current web with machine processable capabilities. This kind of

enhancement requires intensification of the current web with more machine processable

information. This information is a way of linking data between systems or entities that

allows for rich, self-describing interrelations of data. Our work is motivated by the need

of generating ontologies, as these have become a powerful tool for inter-relating

information and hence better text understanding. The in-depth study of literature pointed

some glitches (such as unstructured text and fixed set of object properties) in constructing

the ontology. We have tried to resolve these issues by proposing and implementing

approaches to generate ontology from text and further enriching this ontology.

Generation of ontology led to removal of redundancy which further motivated us to

propose and implement an approach that uses this ontology for summarizing that text.

Specifically, following are the major contributions by our research work.

Contribution 1: The main challenges involved in constructing ontology from

unstructured text has been addressed and resolved as our first contribution. Ontology is

generated here using conceptualization and considering semantic roles. Matching the

semantic roles of concepts gives an additional feature for efficient merging of sub-

ontologies leading to efficient construction of final ontology for better and more correct

understanding of text. The rules required for various modules are designed and

represented and the approach has been implemented. We evaluated the performance of

the system by looking at the coverage of concepts, their properties and relationships in

the final ontology and comparing it to Open Calais system by Thomson Reuter‟s which is

linked to a market leading ontology extracting entities and for generating rdf tagging. It is

observed that our system gives better performance than Open Calais as only a fixed set of

132

relationships or object properties are explored by Open Calais. In contrast to that we

consider all the non-taxonomical and taxonomical relationships while constructing our

ontology.

Contribution 2: The next contribution is the proposal of a technique of enriching

ontology by providing extra information to it. The ontology is enriched by providing the

class labels for data properties extracted during the generation of ontology. The proposed

technique forms a dictionary of adjectives and identifies labels for these adjectives. A

total of 16 labels are identified that can be given to the data properties, which are

extracted during the process of construction of ontology. These labels are associated with

the data properties using a link which is labelled as „has_class’. We have implemented

this approach and the shown the resulting ontology using GraphViz tool.

Contribution 3: Our ontology is capable of removing redundancy and concision of

information as we have removed the un-necessary and redundant words/phrases in the

course of construction of ontology. So we have used our ontology to summarize the text

as our third contribution. To ease the process of summarization we proposed and

implemented a novel approach that used a machine learning tool SVM first and got an

extractive summary from a text document. This extractive summary is further used to

construct ontology by our proposed and implemented technique. We used this ontology

to generate the abstractive summary of the text document. Our approach shows better

performance when compared to baseline and another summarizer named as TextRank.

We get better recall for our extractive summarization and abstractive summarization. F-

score of our system that generates abstractive summary by using ontology is better than

Baseline system, TextRank system and the extractive summarization.

6.2 SCOPE FOR FUTURE WORK

Though the present work proposes the complete design of framework to develop the

automatic ontology, still no research work is closed solution; means every research work

133

can be further explored and extended. Therefore, following are some of the possible lines

in which the present work can further explored or extended in future:

1. Considering Other Semantic Information

The understanding of semantic of a text is vast and complex task involving many aspects

that contribute in it. The present work is taking care of semantic roles along with

concepts, relations and properties. The proposed system can be further enriched by

identifying other semantic aspects in the text such as context of the event occurred and

the objects participating.

2. Ontology Integration to Linked data

The proposed Ontological framework can be integrated to Linked data such as DBpedia

for providing context to concepts so that it can be improved further.

3. Ontology Driven Information System

The proposed system is providing enriched information; this can be further used into an

information system for increasing the quality of search results. This information can also

be used for opinion mining.

4. Cross Validating Labels of Data Properties

 The labels given to data properties during enrichment of ontology (in our current

proposal) can be cross verified using some additional mechanism based on standard

lexical database such as WordNet.

134

135

REFERENCES

[1] Tim Berners-Lee, James Hendler And Ora Lassila, "The Semantic Web"., Scientific

American: Feature Article, May 2001.

[2] Na Xue, Suling Jia, Jinxing Hao and Qiang Wang "Scientific ontology construction

based on interval valued fuzzy theory under Web 2.0," Journal of Software, 8(8),

pp.1835-1842. , 2013.

[3] Ivana Luksova, "Ontology Enrichment Based on Unstructured Text Data," Masters

Thesis, 2013.

[4] Silvia Calegari and Gabriella Pasi, "Personal ontologies: Generation of user profiles

based on the yago ontology," Generation of Information processing & management,

vol. 49, no. 3, pp. 640–658, 2013.

[5] Sun Yu, Li Zhipping, "Ontology-based domain knowledge representation,",

“Ontology-base 4th International Conference on Computer Science and Eucation,

pp. 174-177, 2009

[6] John Barnden, Jizheng Wan, "A New Semantic Model for Domain-Ontology

Learning, ," Springer-Verlag Berlin Heidelberg, 2011.

[7] Antonio De Nicola and Michele Missikoff, "A Lightweight Methodology for Rapid

Ontology Engineering," ACM VOL. 59 , NO. 3 , pp. 79-86, 2016.

[8] Trung-Kien Tran, Robert Meersman and Christophe Debruyne, "Grounding

Ontologies with Social Processes and Natural Language," Springer-Verlag Berlin

Heidelberg, J Data Semant 2, pp. 89–118, 2013.

[9] Asuncio´n Go´mez-Pe´rez, Mariano Ferna´ndez-Lo´pez, Mari Carmen Sua´rez-

Figueroa, "The NeOn Methodology for Ontology," Ontology Engineering in a

Networked World,Springer-Verlag Berlin Heidelberg, 2012.

[10] Saira Andleeb Gillani, "From text mining to knowledge mining: An integrated

framework of concept extraction and categorization for domain ontology," Budapesti

136

Corvinus Egyetem, 2015.

[11] Abel Browarnik, Oded Maimon, "Ontology Learning from Text: Why the Ontology

Learning Layer Cake is not Viable," Int. J. Signs Semiot. Syst 4(2), pp. 1-14, 2015.

[12] Abdul Malik, Al-Salman Abeer Al-Arfaj, "Ontology Construction from Text:

Challenges and Trends," International Journal of Artificial Intelligence and Expert

Systems (IJAE), Volume (6) : Issue (2), 2015.

[13] Jan Daniel Bothma, "Ontology learning from Swedish text," in International

Conference on Computer Science and Education, 2010.

[14] Khurshid Ahmad and Lee Gillam, "Automatic Ontology Extraction from

Unstructured Texts," in On the move to meaningful Internet, 2005.

[15] Douwe Kiela, and Maximilian Nickel Stephen Roller, "Hearst Patterns

Revisited:Automatic Hypernym Detection from Large Text Corpora," in

Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Short Papers), Melbourne, Australia, pp. 358–363, 2018.

[16] Kidane Woldemariyam, Fekade Getahun, "Integrated Ontology Learner: Towards

Generic Semantic Annotation Framework," in MEDES’17, Bangkok, Thailand.,

November 7–10, 2017.

[17] Harith Alani, "Position Paper: Ontology Construction from Online Ontologies,"

WWW2006, May 22–26, 2006.

[18] Junli Li, Zongyi He and Qiaoli Zhu, "An Entropy-Based Weighted Concept Lattice

for Merging Multi-Source Geo-Ontologies," doi:10.3390/e15062303, pp. 2303-

2318, 2013.

[19] C.P., & Sumathi, V.P. Abinaya, "Semi-Automatic Ontology Merging of Domain

Specific Ontologies," International Journal of Science and Research (IJSR) ISSN

(Online): 2319-7064 , 2013.

[20] Andreia Dal Ponte Novelli and José Maria Parente de Oliveira, "Simple Method for

Ontology Automatic Extraction from Documents," International Journal of

137

Advanced Computer Science and Applications(IJACSA), Volume 3 Issue 12, pp.

DOI: 10.14569/IJACSA.2012.031206, 2012.

[21] Guntars Bumans, "Mapping between Relational Databases and OWL Ontologies: an

Example," Computer Science and Information Technologies, Scientific Papers,

University of Latvia, p. Vol. 756, 2010.

[22] Jean Vincent Fonou-Dombeu Kgotatso Desmond Mogotlane, "Automatic

Conversion of Relational Databases into Ontologies: A Comparative Analysis of

Protégé Plug-ins Performances," International Journal of Web and Semantic

Technology (IJWesT), vol. arXiv:1611.02816, 2016.

[23] Marti A. Hearst, "Automatic Acquisition of Hypernyms from Large Text Corpora,"

in PRoc. of Collins, Nantes, 1992.

[24] Bernardo Magnini Hristo Tanev Tanev, "Weakly Supervised Approaches for

Ontology Population," 2008.

[25] Xing Jiang and Ah-Hwee Tan, "CRCTOL: A semantic-based domain ontology

learning system," Journal of the American Society for Information Science and

Technology, Volume 61, Issue 1, pp. 150–168, January 2010.

[26] Kalliopi Zervanou2, and Euripides G.M. Petrakis, C.J. Hopfe et al. (Eds.)

Drymonas1, "Unsupervised Ontology Acquisition from Plain Texts: The OntoGain

System ," NLDB 2010, LNCS 6177, Springer-Verlag Berlin Heidelberg, pp. 277–

287, 2010.

[27] Hoifung Poon and Pedro Domingos, "Unsupervised Ontology Induction from Text,".

[28] G. Zayaraz G. Suresh kumar, "Concept relation extraction using Naῗve Bayes

classifier for ontology-based question answering systems," Journal of King Saud

University – Computer and Information Sciences, pp. 13–24, 2015.

[29] Andreas Scheuermann, Stephan Bloehdorn Julia Hoxha, "An Approach to Formal

and Semantic Representation of Logistics Services," in In Proceedings of the

ECAI’10 Workshop on Artificial Intelligence and Logistics pp. 73-78, 2010.

138

[30] Aditya Mishra, William W. Cohen Bhavana Dalvi, "Hierarchical Semi-supervised

Classification with Incomplete Class Hierarchies," in WSDM’16, San Francisco, CA,

USA, 2016.

[31] Marius-Gabriel, "Semantically Enriching Content Using OpenCalais ," Thomsan

Reuters, 2016.

[32] Amit Kumar Dhar and O. P. Vyas Monika Rani, "Ontology Learning Based on

Topic Modeling," Semi-Automatic Terminology, 2017.

[33] Anna Lisa Gentile, Daniel Gruhl, Kenneth Clarkson, "User-Centric Ontology

Population," in eswc-conferences, 2018.

[34] P. Danielsen and S. Afroz K. Arabshian, "LexOnt: A Semi-Automatic Ontology

Creation Tool for Programmable Web," in AAAI Spring Symposium: Intelligent Web

Services Meet Social Computing, pp.2-8, 2012.

[35] Ankur Padia, Gaurav Maheshwari, Priyansh Trivedi, Jens Lehmann and Sourish

Dasgupta, "Formal Ontology Learning from English IS-A Sentences,"

arXiv:1802.03701v1 [cs.AI] , 11 Feb 2018.

[36] D. Gasevic, M. Hatala. A. Zouaq, "Towards open ontology learning and filtering ,"

Information Systems, vol. 36, no.7, pp. 1064–1081, 2011.

[37] Yannick Toussaint, Amedeo Napoli. Rokia Bendaoud, "PACTOLE: A methodology

and a system for semi-automatically enriching an ontology from a collection of

texts," in 16th International Conference on Conceptual Structures ICCS’08 ,

Toulouse, France, pp. 203-216, 2008.

[38] R. Navigli and P. Velardi., "Ontology enrichment through automatic semantic

annotation of on-line glossaries.," in In 15th International Conference in Knowlegde

Engineering and knowledge Management (EKAW 2006), Czech Re-public, pages

126–140, 2006.

[39] A. Ferrara, and G.N. Hess S. Castano, "Discovery-driven ontology evolution," in 3rd

Italian Semantic Web Workshop, Pisa, Italy, 2006.

139

[40] Armando Stellato Maria Teresa Pazienza, "Linguistic Enrichment Of Ontologies: a

methodological framework," in AI Research Group, DISP, University of Rome, Tor

Vergata, 2006

[41] J., Milic-Frayling, N., Grobelnik, M Leskovec, "Extracting Summary Sentences

Based on the Document Semantic Graph," in MSR-TR-2005-07, January 31, 2005.

[42] E. Canhasi, Graph-based models for multi-document summarization. Ljubljana: PhD

thesis, 2014.

[43] D., & Strube M Parveen, "Integrating Importance, Non-Redundancy and Coherence

in Graph-Based Extractive Summarization," in on”, Proceedings of the Twenty-

Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

[44] Prasenjit Mitra, Kazunari Sugiyama Siddhartha Banerjee, "Multi-Document

Abstractive Summarization Using ILP Based Multi-Sentence Compression," in

Proceedings of the Twenty-Fourth International Joint Conference on Artificial

Intelligence (IJCAI 2015), 2015.

[45] R. & Sivaranjani, N Ragunath, "Ontology Based Text Document Summarization

System,Using Concept Terms," ARPN Journal of Engineering and Applied Sciences

, 2006.

[46] L.,Umbrath, W., & Wetzker, R Hennig, "An Ontology-based Approach to Text

Summarization.," in Proceedings of the 2008 IEEE/WIC/ACM International

Conference on Web Intelligence and International Conference on Intelligent Agent

Technology - Workshops, Sydney, NSW, Australia, 9-12 December, 2008.

[47] R., Chen, P.,& Lu, W. Verma, "A Semantic Free-text Summarization System Using

Ontology Knowledge," IEEE Transactions on Information Technology in

Biomedicine. Vol. 5, No. 4, pp. 261- 270, 2009.

[48] E., Cagliero, L., & Jabeen, S Baralis, "Multi-document summarization based on the

Yago ontology," Expert Systems with Applications 40(17), 2013.

[49] Reddy Y.S.& Kumar A.P.S, "An Efficient Approach for Web document

140

summarization by Sentence Ranking," International Journal of Advanced Research

in Computer Science and Software Engineering, Volume 2, Issue 7, July 2012.

[50] M. S., Bewoor, M. S., & Patil, S. H Patil, "A Hybrid Approach for Extractive

Document Summarization Using Machine Learning and Clustering Technique.

(IJCSIT) ," International Journal of Computer Science and Information

Technologies, Vol. 5 (2) , 2014.

[51] S.,& Patilb, P Babara, "Improving Performance of Text Summarization," Procedia

Computer Science 46, ScienceDirect, pp. 354 – 363, 2015.

[52] Nedunchelian Ramanujam and Manivannan Kaliappan, "An Automatic

Multidocument Text Summarization Approach Based on Naïve Bayesian Classifier

Using Timestamp Strategy," The Scientific World Journal, Volume 2016.

[53] S., Kumar, A., Mangal, A., Singhal, S Singh, "Bilingual Automatic Text

Summarization Using Unsupervised Deep Learning. ," in International Conference

on Electrical, Electronics, and Optimization Techniques (ICEEOT) , 2016.

[54] Min-Yen Kan, Tat-Seng Chua Long Qiu, "A Public Reference Implementation of

the RAP Anaphora Resolution Algorithm", 2004

[55] M.C.D., & Manning, C.D Marneffe, "Stanford dependency parser," [Computer

Software] Retrieved from nlp.stanford.edu/software/stanford-dependencies, 2015.

[56] Pavel Kuksa Ronan Collobert, "Natural Language Processing (Almost) from

Scratch," Journal of Machine Learning Research 12 , pp. 2461-2505, 2011.

[57] Eleftherios Koutsofios & Stephen North Emden Gansner, "Drawing graphs with

dot," ,Technical Report, AT&T Research. URL http://www.graphviz.org/

Documentation/dotguide.pdf, 2010.

[58] C. Cortes and V. Vapnik, "Support vector networks.," Machine Learning, pp.

20:273–297, 1995.

[59] Joachims T., "Text categorization with Support Vector Machines: Learning with

many relevant features," Nédellec C., Rouveirol C. (eds) Machine Learning: ECML-

141

98. ECML Lecture Notes in Artificial Intelligen, pp. vol 1398. Springer, Berlin,

Heidelberg, 1998.

[60] S. Patwardhan & J. Michelizzi T. Pedersen, "WordNet:Similarity - Measuring the

Relatedness of Concepts," in In Human Language Technology Conference of the

North American Chapter of the Association for Computational Linguistics

Demonstrations, Boston, 2004.

[61] Daniel Jurafsky & James H. Martin, "Speech and Language Processing," Book

chapters, 2015.

[62] Krzysztof Janowicz, "Extending Semantic Similarity Measurement with Thematic

Roles GeoS'05," in Proceedings of the First international conference on GeoSpatial

Semantics, 2005.

[63] Miriam Connor, Natalia Silveira, Samuel R. Bowman, Timothy Dozat and

Christopher D. Manning Marie-Catherine de Marneffe, "More constructions, more

genres: Extending Stanford Dependencies," 2013.

[64] Geotge A. Miller, "WordNet: A Lexical Database for English," Communication of

the ACM Vol. 38, No. 11:39-41. 1995

[65] David Hall, James R. Curran and Dan Klein Jonathan K. Kummerfeld, "Parser

Showdown at the Wall Street Corral: An Empirical Investigation of Error Types in

Parser Output," in Proceedings of the 2012 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language Learning,

Jeju Island, Korea, 12–14 July 2012.

[66] R., & Tarau, P Mihalcea, "Textrank: Bringing order into text," in Proceedings of

EMNLP , Barcelona, Spain, pp. 404–411, 2004

[67] Naomie Salim, Haleem Farman Atif Khan, "Clustered genetic semantic graph

approach for multi-document abstractive summarization," in International

Conference on Intelligent Systems Engineering (9ICISE), Los Angeles, USA, 2016.

[68] I. F. Moawad and M. Aref, "Semantic graph reduction approach for abstractive Text

142

Summarization," in Seventh International Conference on Computer Engineering &

Systems (ICCES), Cairo, Egypt, 2012.

[69] Henrik Danielsson, Arne Jönsson Christian Smith, "A More Cohesive Summarizer,"

in Proceedings of COLING 2012: Posters, Mumbai, December 2012.

[70] Mridusmita Sharma and Kandarpa Kumar Sarma, Soft-Computational Techniques

and Spectro-Temporal Features for Telephonic Speech Recognition: An Overview

and Review of Current State of the Art. Gauhati University, India: Handbook of

Research on Advanced Hybrid Intelligent Techniques and Applications, 2016.

[71] Thorsten Joachims, "Text Categorization with Support Vector Machines: Learning

with Many Relevant Features," in LS VIII Number 23, University of Dortmund, ,

1997.

[72] Mohamed Fattah,Fuji Ren Nadira Begum, "Automatic text summarization using

support vector machine," in International journal of innovative computing,

information & control: IJICIC 5(7), july 2009.

[73] Shivakumar. Soumya, "Text summarization using clustering technique and SVM

technique," International Journal of Applied Engineering Research, ISSN 0973-

4562, Volume 10, no. 12 , pp. 28873-28881, 2015.

[74] Hideki Isozaki, Eisaku Maeda Tsutomu Hirao, "Extracting Important Sentences with

Support Vector Machines," Proceedings of the 19
th

 intenational conference on

Computational Liguistics- Volume 1, 1-7, 2002

[75] P. Over, W. Liggett " Introduction to DUC: An Intrinsic Evaluation of Generic

News Text Summarization Systems ", In Conjunction with the ACL 2002

and including the DARPA/NIST sponsored DUC 2002 Meeting on Text

Summarization, National Institute of Standards and Technology, 2002

[76] Dang H., and Harman D Over P., "DUC in Context," Information Processing and

Enhanced Graph Based Approach for Multi Document Summarization 341

Management, vol. 43, no. 6, pp. 1506-1520, 2007.

143

[77] C.-Y., Hovy, E. Lin, "Automatic evaluation of summaries using n-gram co-

occurrence statistics," in NAACLHLT-2003, 2003.

[78] Socorro Gama-Castro, Citlalli Mejía-Almonte, Marco-Polo Castillo-Villalba, Luis-

José Muñiz-Rascado, Julio Collado-Vides Carlos-Francisco Méndez-Cruz, "First

steps in automatic summarization of transcription factor properties for RegulonDB:

classification of sentences about structural domains and regulated processes," 2017.

[79] U M Fayyad, A Wierse, and G G Grinstein, Information visualization in data mining

and knowledge discove,: Morgan Kaufmann, 2002.

[80] Garcia-Molina, Junghoo Cho, and Hector, "Estimating frequency of change," VLDB

2000, Research track, 2000.

[81] Staab, Marc Ehrig, and Steffen, "QOM - Quick Ontology Mapping," In: McIlraith

S.A, The Semantic Web – ISWC 2004. Lecture Notes in Computer Science, vol 3298.

Springer, Berlin, Heidelberg, 2004

[82] W., W. Liu, and M. Bennamoun Wong, "Ontology learning from text: A look back

and into the future ," ACM Computing Surveys (CSUR),pp. 44(4) , 2012.

[83] Abel Browarnik and Oded Maimon, "Ontology Learning from Text Departing the

Ontology Layer Cake," in ALLDATA 2015 : The First International Conference on

Big Data, Small Data, Linked Data and Open Data, 2015.

[84] M. Shamsfard and A. Barforoush, "Learning ontologies from natural language

texts," Int. J. Human-Computer Studies, pp.17–63, 2014.

[85] S. Saad, R. Abood, M. Shakir M. Sheker, "Domain-Specific Ontology-Based

Approach For Arabic Question Answering," Journal of Theoretical And Applied

Information, E-ISSN 1817-3195 / ISSN 1992-8645). Vol 83, 2016.

[86] N.A. and D.Y. Turdakov Astrakhantsev, "Automatic construction and enrichment of

informal ontologies: A survey," Programming and Computer Software 39(1), pp.

34-42, 2013.

[87] J., J. Liu, and X. Wang Zhang, "Simultaneous Entities and Relationship Extraction

144

from Unstructured Text," International Journal of Database Theory and

Application, 2016. 9(6), 151-160, 2016.

[88] Jose Camacho-Collados, "Why we have switched from building full-fledged

taxonomies to simply detecting hypernymy relations," arXiv, 2017.

[89] Michael Cochez, Usman Qamar Bushra Zafar, "Using Distributional Semantics for

Automatic Taxonomy Induction," in Proceedings of semeval task 13, pp. 1320–

1327, 2016.

[90] Horacio Saggion, Francesco Ronzano and Roberto Navigli Luis Espinosa-Anke,

"ExTaSem! Extending, Taxonomizing and Semantifying Domain Terminologies,"

Association for the Advancement of Artificial, 2016.

[91] Jin Liu, Xiaofeng Wang, Jin Wang Qiuxia Song, "A Novel Automatic Ontology

Construction Method Based on Web Data," in Tenth International Conference on

Intelligent Information Hiding and Multimedia Signal Processing, 2014.

[92] Rosario Girardi, Carla Faria Jone Correia, "Extracting Ontology Hierarchies From

Text" Conference: Proceedings of the 23rd International Conference on Software

Engineering & Knowledge Engineering (SEKE'2011), Eden Roc Renaissance,

Miami Beach, USA, July 7-9, 2011

.

145

BRIEF PROFILE OF RESEARCH SCHOLAR

Amita Arora is pursuing her Ph.D in Computer Engineering from J.C. Bose

University of Science and Technology YMCA, Faridabad. She did her M.Tech.

(Computer Engineering) from YMCA University of Science and Technology in

year 2008, and B.Tech.(Information Technology) from Kurukshetra University,

Kurukshetra in 2003. Ms. Amita Arora has over 13 years of experience in

teaching B.Tech, MCA and M.Tech courses. Her area of interests includes

Analysis and Design of Algorithms, Computer Graphics, Programming

Languages (C, C++, .Net etc.), Data Structures and Internet & Web Technologies.

She has published research papers in various journals and conferences of

international fame. Currently, she is working as Assistant Professor in the

Department of Computer Engineering at J.C. Bose University of Science and

Technology YMCA, Faridabad.

146

LIST OF PUBLICATIONS

Sr.

No

Title of the

Paper

Journal/Conference Year

Month

Vol(

Issue)

Page

No.

ISSN

No.

Indexing

Listing

1 Automatic

Ontology

Construction

using

Conceptualization

and Semantic

Roles

International Journal

of Information

Retrieval Research

2017/

Sept.

7(3)

62-80 2155-

6377

ESCI,

UGC

2 Machine Learning

Approach for

Text

Summarization

International Journal

of Database Theory

and Application

2017/

April

10(8)

83-90 2005-

4270

Scopus/

UGC

3 A Novel Hybrid

Approach for

Extracting

Relations from

National Conference

on Role of Science

and Technology

Towards, Make In

2016/

March

147

Plain Text India, YMCAUST

4 Document

Summarization

Techniques: A

Review

Recent Trends in

Computing and

Communication

technologies (RCCT-

2016), DCRUST

 2016/

Sept.

98-

101

ISBN:

978-

93-

86256

-02-7

5 Extractive

Summarization

using Support

Vector Machines

National Conference

on Advances In

Mathematics &

Computing (AMC-

2017)

 2017/

March

