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CHAPTER 1 

 INTRODUCTION 

1.1 GENERAL 

Human has assembled information into the greatest repository called World Wide Web 

having information resources even on unthinkable subjects. This information may be 

available instantly to anyone having Internet connection. As more and more people are 

learning its usage, they can add more content on the web. As a result of this web is 

growing exponentially and it is becoming difficult to locate useful information in such a 

sheer volume of information. Sometimes finding the relevant and correct information is 

like finding a needle in haystack. Moreover there may be requirement of collecting 

information from a series of web pages and integrate that information or perform some 

reasoning on that information. For making this procedure faster, the machine must 

understand the text and should be able to process that text.  

1.2 SEMANTIC WEB  

There is a proposal from Tim Berners-Lee to augment the existing web with information 

which makes the meaning of web pages explicit. He has devised the term Semantic Web 

and according to him “The Semantic Web is an extension of the current web in which 

information is given well-defined meaning, better enabling computers and people to work 

in cooperation” [1]. Whereas web 1.0 and web 2.0 contain minimal machine-processable 

information in the dumb links, Semantic Web is web 3.0 technology which is 

enhancement of the current web with more machine-processable information. It is a way 

of linking data between systems or entities that allows for rich, self-describing 

interrelations of data. Semantic Web has opened up the web of data to artificial 

intelligence processes. Figure 1.1 shows semantic web extending the current web by 

emphasizing on interoperable ontologies which are capable of processing high quality 

information so that the agents placed on top of semantic web can automate the work or 

curate the content for the user. 
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1.3 NEED AND APPLICATIONS OF SEMANTIC WEB 

Though many search engines are capable of indexing significant portions of the web, 

there are some major problems for users such as getting so many irrelevant results or 

getting no result at all. The first problem occurs because a word may have different 

meaning in different contexts, Moreover the search engines index information using 

keyword indices that do not preserve any relationship between words. Another problem 

may be that the searched term or terms may not appear on web. There is also possibility 

that the desired document is missed by search engine. 
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This lack of ability of search engines to understand the context of words and relationships 

between search terms may identify many false positives. If there is any likelihood for a 

search engine to understand the intended meaning of the words or find whether there are 

some semantic relationships between them, they will be capable of providing more 

accurate searches. This is one of the aims of the Semantic Web. 

Semantic Web has its major use in Knowledge Management, ease of information 

integration, more efficient searching, more effective reuse of information etc.  

1.4 KNOWLEDGE REPRESENTATION IN THE SEMANTIC WEB 

Knowledge representation is the formalisation of knowledge and how it is processed by 

machines. The goal of Semantic Web is to make information „understandable‟ or 

„knowledgeable‟ in true sense for multiple applications through semantic interoperability 

along with technological interoperability. This requires common understanding and good 

communication among them by resolving their difference of languages, different 

structures and methods and having non-overlapping and well mapped concepts or terms 

which is achieved by analysing the contents and providing the contexts to the 

information. This leads to using models which provide these specifications explicitly and 

in some formal way defining the terms and how they are related to each other. These 

models provide shared and common understanding of a domain that can be 

communicated across applications and people. 

For achieving technological interoperability Extensible Mark up Language (XML) is 

used. Semantic interoperability can be achieved using richer language such as RDF, 

OWL etc. These models can be used for inference and information exchange [2].  

XML-XML is used as a simple way to transfer documents across the Web. Anyone can 

design own document format and then write some document in that format. These 

formats can include “machine-readable” markup also to enhance the meaning of its 

content. By including these mark-ups in the documents, they become more powerful. 
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Resource Description Framework (RDF) - It is a format for defining the information 

on the web. RDF is also a markup language like XML but is used for describing the 

information and resources on the web. It makes easy for the web agents to search and 

process information from the web which has been put into rdf files. RDF describe web 

resources and provide a syntax such that individual parties can use and exchange 

information. It is not designed for being represented to human. Its motive is to be 

machine readable as well as machine understandable.  

RDF Schema - RDF Schema is a datatyping model for RDF. Using RDF Schema, it can 

be said that "Tom" is a "Cat", and that "Cat" is a sub class of animal. It can be used to 

create properties and classes and can provide ranges and domains for the properties. The 

most important concepts given by RDF and RDF Schema are the "Resource" 

(rdfs:Resource), the "Class" (rdfs:Class), and the "Property" (rdf:Property). 

Ontology - Ontologies are considered powerful tools for simulating the conceptual 

models because of their expressiveness, effective knowledge representation formalism 

and associated inference mechanisms [3], [4]. Now a days, ontology is used for 

knowledge representation in information retrieval, artificial intelligence and semantic 

web. Ontology has a great use in the web documents retrieval as keyword-based 

searching may retrieve information with some false matched results because there is only 

information retrieval by matching keywords and not extraction by matching the meaning 

of the keywords can be done by using ontology.  

Ontology is a structure made up of categories of objects or ideas in the world, along with 

certain relationships among them. In general, ontologies are knowledge structures that 

adopt a rich formal language aiming at classifying notions of interests like process, event, 

quality, object and so on. The task of representation of Ontology is a way of 

standardizing information for more flexibility, and to enable more rapid development of 

applications, and sharing of information. 

Following aspects are described by ontology as given by [5]: 
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Concepts:- A concept may represent a group of different individual objects in the mind 

sharing the same characteristics. These may also be called classes which are abstraction 

of objects. Concepts may be concrete (like people, countries), abstract (like fact, goal, 

belief), fundamental or complex. Generally these concept or classes are a part of 

hierarchical organisation to reduce the space requirements and are able to follow 

inheritance mechanism. 

Instances:- These are the individuals or things that are described by ontology and 

elements belonging to a specific class. These can be actual objects such as person‟s name, 

a location, a person‟s car etc. or an abstract entity. These are the base unit of ontology. 

Relations:-  The way in which individual classes or instances relate to each other is 

described by the relations. Relation may be considered as an attribute, the value of which 

is another object of the ontology. The whole semantic in a domain is described by these 

inter-related   relations. 

Attributes:- Specific information of an object is stored in the form of attributes. Ontology 

describes its objects by assigning at least one name and value to its attributes. 

Ontology Classification: Ontology is categorized according to the level of generality as 

follows:  

● Top-level ontology: This ontology is concerned with general concepts e.g.  time, event, 

action, matter, etc.  

● Domain ontology:  A common vocabulary is provided to a domain by this ontology, so 

various domain knowledge can be understood and exchanged. Domain ontology 

examples are: Music ontology, Geo ontology, Food ontology, Gene ontology, etc. 

● Application ontology: These ontologies are built for some specific purpose to share 

knowledge modeling among various domains. 
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 ● Task ontology: This ontology is based on task or activity e.g. buying or diagnosing. 

1.5 ONTOLOGY LEARNING AND CHALLENGES INVOLVED 

The task of automatic or semi-automatic construction of ontologies from domain data is 

called Ontology Learning [6]. A general process of ontology learning is shown in Figure 

1.2, given as follows:  

 

         

However, few other researchers have established their own methodologies for ontology 

learning. 

UPON-Lite [7] methodology includes six steps of ontology learning: 

a) listing of domain terminology 

b) lexicon terms associated with their synonyms 

c) is-a hierarchy generation 

d) predication 
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Figure 1.2: Ontology Learning 
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e) finding meronymy  

f) coding ontology formally 

GOSPL [8] has aimed at building hybrid ontology where concepts are defined both 

formally and informally. This methodology provides collaboration between the ontology 

engineers and domain experts and uses Glossary as a special linguistic resource. It 

includes the following steps: 

a)  Semantic Interoperability Requirements are defined 

b)  Glossary is built 

c)  Lexons are created 

d) Constraints are put over Lexons 

e) Hybrid Ontology is generated 

f) Co-evolution of Community and Semantic Interoperability Requirements  

NeOn [9]suggests multiple ways of building Ontology instead of giving any one 

methodology for different situations by re-engineering and reusing knowledge resources: 

Situation 1: From specification to implementation- Without reusing the available 

knowledge resources, ontology is generated from scratch 

Situation 2: Reusing and re-engineering non-ontological resources -Ontology engineers 

analyze non-ontological resources for their reuse according to the ontology requirements. 

 Situation 3: Reusing ontological resources –ontologies, ontology modules are used for 

building ontology by ontology engineers. 

Situation 4: Reusing and re-engineering ontological resources- ontology engineers both 

reuse and re-engineer ontological resources.  

Situation 5: Reusing and merging ontological resources- Here several ontological 

resources from the same domain are picked up for reuse. 
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 Situation 6: Reusing, merging, and re-engineering ontological resources- in this situation 

ontology engineers decide to re-engineer the available resources and merge them.  

Situation 7: Reusing ontology design patterns (ODPs) - These repositories are reused by 

ontology engineers 

 Situation 8: Restructuring ontological resources- Different restructuring techniques such 

as extending, pruning or modularizing the different ontological resources is used for 

building ontology 

Situation 9: Localizing ontological resource- one ontology is adapted in different 

cultures, language or community. 

However ontology learning or ontology generation is not an easy task. Following are few 

important challenges as observed in the process of learning ontology which are faced by 

researchers given as:  

 Unstructured texts: There is an open challenge according to S. Gillani Andleeb [10] 

to learn an effective personalised ontology from the critical information. This 

information may be scattered amongst various kinds of documents originating from 

various sources such as emails and web pages or user‟s local information repository 

that does not have meta data. For this reason, the results for discovery of relations 

between concepts are also not satisfactory [11]. 

 Ambiguity in English text/Multiple senses of a word: As there may be multiple 

senses of word each of these having a different meaning based on the context of 

the word's usage in a sentence, it has to be resolved. Producing inconsistent or 

duplicate entries and dealing with these inconsistencies is quite challenging. [12] 

Due to above inherent problems the ontology techniques earlier proposed have some 

deficiencies stated as follows: 
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i. Lack of fully automatic techniques for Ontology Development: Due to 

unstructuredness and ambiguity in texts, there are very less standard tools for 

developing ontology as explained by [13] [14]. Existing techniques use 

supervised learning which require large amount of data for training. 

ii. Ignoring other useful information from the texts: Existing techniques typically 

consider word frequencies, co-occurrence statistics, and syntactic patterns such as 

Hearst patterns [15] and cover only those terms or sentences, (by ignoring others) 

that satisfy these constraints. The ignored text may also contain useful 

information such as non-taxonomical relations (relations other than is-a, has-a or 

part-of etc.) or data properties. In general, the information in a text has multiple 

layers such as semantic roles denoting the context of a concept and semantic 

relations. Ideally all levels of information should be used to construct the 

ontology for a given text. 

1.6 PROBLEM DEFINITION 

After having a critical look over the work done in this field and considering the limitation 

of each, it has been observed that constructing ontology automatically is a challenging 

and important task. The work done till now in automated engineering of ontologies 

capture only taxonomical relationships such as is-a, part of etc. 

 Moreover only limited language constructs such as nouns are considered as the building 

blocks for ontologies ignoring other constituents (such as verbs and adverbs) of a 

language in the given text. Also larger texts and compound or complex sentence structure 

in the text imposes difficulty in exploring the semantic content of the text and 

constructing ontology.  In this work an ontology generation technique will be devised 

covering all important aspects missing in the existing works. Particularly semantic roles 

along with the other constituents such as nouns, verbs etc. will be used to build ontology 

without limitation of its size.  
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1.7  OBJECTIVES OF THE PROPOSED WORK 

To gain solution to the problem of developing ontology generating technique, considering 

the limitations of works done previously in this direction, we formulate the following 

research objectives: 

 Designing a framework for constructing an ontology 

There is a need for generating an ontology automatically eliciting taxonomic and non-

taxonomic relations from an unstructured and semi-structured document which is a 

tedious task. 

Solution: For generating ontology i) from unstructured documents ii) from sources that 

have some predefined structure, such as HTML a framework is designed which first pre-

processes the document to extract semantic roles of nouns in the sentence along with 

usual concepts and their relationships. The extracted information about different roles, 

concepts and relationships among the concepts from different documents are then merged 

to construct ontology for whole document. 

 Enriching the Ontology with classification of data properties 

Ontology gives annotations in the form of rdf or rdfs which are used for providing 

intelligent services like information retrieval, question answering etc. These services can 

perform better if ontologies being used contain extra information about the concepts. This 

information gives an idea about the context of the concept. While extracting ontology 

from unstructured text ontology can be extended with specific knowledge to provide 

more information. 

Solution: We have defined several classes the data properties of the ontology may belong 

to. These class labels are stored along with the data properties to enrich the ontology. 
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 Refining the Ontology by removing the un-necessary information and 

summarizing the documents 

Summarization of text is a necessity as there is a large amount of data on the web 

expressing the same ideas. It requires deciding which sentences or phrases are to be 

chosen such that they show the main ideas in the document. Even in the sentences chosen 

there may be redundant and un-necessary information. 

Solution: Information which is redundant and unnecessary in the documents is processed 

to be removed from this document by deleting the un-necessary transition words and then 

summarizing the documents by using machine learning technique Support Vector 

Machine (SVM) along with constructing the ontology for SVM processed document and 

further removing any redundancy in the text.  

1.8  ORGANIZATION OF THESIS 

The thesis has been organized in the following chapters: 

Chapter 1: This chapter starts with brief introduction of semantic web, ontology, 

challenges faced while learning ontology and also defines the problem which is tried to 

be resolved in our work by giving the objectives of our work. 

Chapter 2: This chapter contains the detailed literature survey done on ontology 

development techniques considering their strengths and weaknesses. Comparison of 

different techniques is also provided in the form of a table. This section also includes a 

brief introduction to the tools and knowledge structure used in our work. The problem 

definition is also revisited in the light of surveys conducted above.  

Chapter 3: In this chapter a novel architecture for automatic construction of ontological 

framework using conceptualization and semantic roles has been designed and proposed. 

The architecture depicts different functional modules that are proposed and discussed in 
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this chapter. This chapter also provides implementation details and the result analysis of 

the experiment conducted.  

Chapter 4: This chapter introduces a new technique for enriching the ontology by 

labeling the data properties extracted by the name of the class of data property to which it 

belongs. This chapter also provides implementation details of this technique. 

Chapter 5: This chapter proposes a new hybrid technique for summarizing the input text 

by first extracting some statistical features from the text followed by SVM classifier to 

generate extractive summary. This extractive summary is used to construct ontology 

using our proposed approach which later is used to generate the final summary of the 

input document. The final summary (an abstractive summary) generating step involves 

rewording or reconstructing sentences from the ontology. This chapter also provides 

implementation details of the system and the result analysis of the experimentation. 

Chapter 6:  This chapter gives a conclusion about the research work embodied in this 

thesis and provides insights for extending this work in future. 
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter presents a detailed survey of literature related to the proposed work. 

However, we will provide significant definitions and terminology related to semantic web 

in section 2.2.  

As this thesis deals with providing an ontological framework design for semantic web, 

section 2.3 dwells on how the methodological and theoretical contributions address the 

ontology building activities. This review frames the main goal of thesis to build ontology 

with unstructured text. 

We also propose a technique by which ontology can be extended with specific knowledge 

to provide more information about the constructs of ontology. Section 2.4 explores the 

approaches to enrich the ontology.  

The approach purposed to build ontology from unstructured text in this thesis is utilized 

to summarize text documents. Next section 2.5 offers insights of some works on text 

summarization. This section reviews the methodological works and approaches to 

address this activity. 

Section 2.6 reviews the tools used in our work. This section also focuses on the 

knowledge bases utilized in our work. 

Finally, section 2.7 ends the chapter with a conclusion on the analysis of reviewed works 

and summarises the problems encountered in these works.  
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2.2 SEMANTIC WEB LAYERED ARCHITECTURE  

While the earlier web is used to display the contents on a page using HTTP, the Semantic 

Web is trying to induce machine readability of content by semantically representing data 

or information resources. The semantic web addresses the shortcomings of earlier web 

using the descriptive technologies like Resource Description Framework (RDF) and Web 

Ontology Language (OWL) and customizable Extensible Mark-up Language (XML). 

These technologies are combined so as to provide descriptions that support or take the 

place of the content of Web documents. There are several formats and languages that 

form the building blocks of the semantic web as shown by the layered architecture of 

semantic web in Figure 2.1. These include the following components which provide a 

formal description of concept and relationships among them within a given knowledge 

domain. 

1. Unique Identification Mechanism 

Identifiers are used to identify things on the Web. A uniform system of identifiers is used 

where each thing identified is a "resource". These identifiers are called "Uniform 

Resource Identifiers" or URIs.                                               

 

 

Figure 2.1: Semantic Web Layered Architecture 
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2. Syntax Description Language 

This layer is instantiated by XML that is designed to send and receive documents around 

the web. It lets anyone to frame their own document format and write a document in the 

same format. These formats include “machine-readable” markup for enhancing the 

meaning of the document's content which also makes the documents more powerful. 

3. Meta-data Data Model 

RDF instantiates the meta-data data model. For achieving easy integration of highly 

distributed data of Semantic Web, the encoding scheme for description about resources is 

provided through Resource Description Framework. This is a graph structured data 

format in which things are denoted by resources that can be a concept or instance from a 

domain. A special kind of resources called predicate describes the relationships among 

other resources. These resources be it concepts, instances or predicates are assigned 

Universal Resource Identifier (URI) and are represented as a set of triples known as rdf 

statements. Here each triple contains a subject, predicate, and object in the form of 

<subject, predicate, object> (e.g. <person1, ownerOf, car1>). The subject is the source of 

an edge, the object is its target and the predicate is the edge itself. Resources which are 

subjects in some triples may appear as an object in other triples. An inverse predicate 

(e.g. hasCar) of the predicate (e.g. ownerOf), can exchange the subject and object of a 

triple. Unlike subjects and predicates which are always resources in a triplet, objects can 

either be a resource or it can be a literal. A literal could be a string, a number, a date, or 

some arbitrary sequence of characters. To define the same literal in different languages, a 

literal could also be given a language tag.  

4. Ontology  

Ontologies provide knowledge sharing and facilitate reusable web contents and web 

services as poor communication or lack of common understanding which occurs in web 

based applications due to mismatched or overlapping concepts or due to different 
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languages may lead to poor knowledge or software interoperability. Ontologies were 

majorly introduced to solve the problem of poor communication. Ontologies are 

described by several languages. Some of the ontology languages are OIL (Ontology 

Interference Layer), DAML (DARPA Agent Markup Language), and OWL (Web 

Ontology Language). Description Logic and DAML+OIL combined form OWL which is 

a set of XML elements and attributes having well-defined meaning, which is used to 

define terms and their relationships. 

5. Rules and Logic Framework 

For expressing complex mappings among ontologies rule languages are used. Several 

rule languages are proposed on the top of  RDF for example Semantic Web Rule 

language (SWRL), WRL etc. These languages may offer support for non-monotonic 

negation or provide rich sets of built-in functions.  A generic Rule Interchange Format 

(RIF) has been standardised by W3C working group in 2005 which now has reached a 

proposed recommendation status.  

6. Proof and Trust 

Logic statements written by people in the form of semantic links can be followed by 

machines to construct proofs. The trust part of semantic web is yet to be implemented. 

Digital signatures can be used here and own levels of trust can be set so that the computer 

can make decisions about what to believe and what to distrust. 

7. Encryption 

A secure version of HTTP known as HTTPs is developed for making sure that data 

remains unaltered during transmission. HTTPS uses a different server port and an 

encryption protocol to avoid the man-in-the-middle attacks and eavesdropping on the 

level of the transport layer. RDF graphs are digitally signed to ensure the authenticity of 
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content and the source that the content has been the same. RDF document signing 

consists of using standard digital signature methods. 

8. Identity Verification 

For a decentralized system the issue of identity is important in the context of the 

Semantic Web as people may use their own identifiers for resources leading to an excess 

of identifiers for the same entity.  Using instance URIs or class URIs already being used 

by other sources may help in creating a web where distributed discovery is possible. To 

be able to gather information from different sources the identity of URIs has to be 

established by performing a syntactic check to merge data when same URI are attached 

RDF descriptions by two sources.  

In the process of devising an effective knowledge representation system for Semantic 

Web we need to design an Ontological framework for the same for following reasons: 

i) For sharing common understanding of information among people or software agents. 

ii) Enabling reuse of domain knowledge. 

iii) Separating domain knowledge from operational knowledge 

iv) Analyzing domain knowledge. 

2.3 ONTOLOGY DEVELOPMENT METHODS  

To reduce the high cost of building ontologies manually, automatic construction of 

ontology has been the focus of recent research. [16] [12] [10] 

 Ontology building approaches can be classified according to the  type of knowledge 

resources i.e. fully structured text such as databases, dictionaries or existing ontologies, 

semi-structured text such as HTML or XML or unstructured text such as plain text in 

journals, books ,web. 
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This section includes a brief review of some approaches to generate ontology from 

structured and semi-structured text. As the main issue addressed in this thesis is to 

generate ontology from unstructured text, a detailed description of methodologies and 

approaches to address this activity is given, in the sub-section 2.3.3, in chronological 

order and a table summarizing these approaches along with the problems found in each 

approach is also presented in the same sub-section.   

2.3.1 Ontology from Structured Text   

Constructing ontology from fully structured text involves updating the existing ontology, 

extracting ontologies from existing knowledge bases or merging the existing ontologies 

to build a large ontology. A few approaches have been investigated for developing 

ontology from existing ontologies. 

Hairth Alani [17] gives an approach for constructing ontologies from existing ontologies 

automatically using ontology mapping and merging techniques. This approach is less 

costly as it doesn‟t start from scratch. This approach ranks the ontologies from a domain 

to get top ranked ontologies. These ontologies are then segmented and merged to form a 

detailed ontology. A number of technologies are intended to be used such as ontology 

searching, segmentation, ranking, matching, merging and evaluating the ontology. 

Problem in this system is that it cannot guarantee the retention of quality and consistency 

of the original ontologies in the extracted segments which are processed further to be 

joined as a big ontology. 

Junli Li et al. [18] presents a technique to construct geo-ontologies by merging 

ontologies from various sources. The formal semantics are extracted using Formal 

Concept Analysis. Information entropy along with deviance analysis is used as a basis for 

reducing the size of merged concept lattice as preferred by the user. A threshold can be 

applied for reducing the merged concept lattice in accordance with the user interest. The 

difficulty with this method is that human intervention is largely expected to maintain the 

accuracy of merged ontology. 
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C. P. Abinaya et al. [19] utilize semantic and syntactic measures for merging and 

identifying similar concepts. WordNet is used here for determining similarities among 

classes and instances from different ontologies and then merging ontologies. The 

difficulty with this method is that merging can be done only for the same domain 

ontologies. 

2.3.2 Ontology from Semi-Structured Text 

Semi-structured text means data organized into a database so constructing ontology from 

semi-structured text involves transforming a database into ontology. A few researchers 

have worked on constructing ontology from database. Overview of some works is given 

as follows: 

Andreia et al. [20] has introduced a transformation algorithm from a database into 

ontology. In Object-oriented databases have been used to be transformed by this 

algorithm. The main characteristics of such database types have been considered.  

Guntars Bumans [21]  shows relational databases can be processed to define a bridging 

mechanism between relational data and OWL ontology using SQL to generate RDF 

triples for OWL class and property instances. This technology provides the means to use 

relational database as a powerful tool to transform relational data to Semantic Web layer. 

Kgotatso Desmond [22] proposes two Protégé plug-ins DataMaster and OntoBase that 

are used to construct ontologies automatically from an Oracle relational database. In 

addition to this two visualization plug-ins including OntoGraf and OWLViz are used to 

analyse the semantic structures of the resulting ontologies. One more tool is used as well 

as an ontology documentation software, namely, Parrot. The performances of the plug-ins 

were further measured based on the database-to-ontology mapping rules/principles. The 

results revealed that both tools reasonably convert a relational database to ontology with 

slight deviations from the database-to-ontology mapping principles. 
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2.3.3 Ontology from Unstructured Text 

Constructing ontology from unstructured text is the process of identifying concepts, 

relations among these concepts and properties of concepts from textual information and 

using them to construct and maintain ontology.  

Few approaches by some researchers attempt to build ontology from unstructured text 

manually, semi-automatically or automatically by employing different ideas. We describe 

here some of the approaches as follows: 

i) Statistical Techniques And Hearst’s Patterns  

Khurshid Ahmad et al. [14] have worked on unstructured text to construct ontology 

which makes automatic identification of keywords used as concepts using statistical 

techniques and then using Hearst‟s patterns [23] to enhance the ontology. In this work 

domain expertise is needed to provide evidences. 

ii) Supervised Approach  

A supervised approach to automatic Ontology Population is given by Hristo Tanev et al. 

[24]. They have populated ontology of Named Entities in which geographical locations 

and person names are used as two high level categories and each category has ten sub-

classes. A syntactic model is learnt for each sub-class, using a list of training examples 

and given a syntactically parsed corpus. Unknown named Entities from the test set are 

classified using this model. As no annotated corpus is used in the learning process, this 

approach is weakly supervised. 

iii) Concept-Relation-Concept Tuple-Based Ontology Learning  

Abbreviated as CRCTOL [25] is an approach devised by Tan et al. for constructing 

ontologies from domain-specific documents. For performing ontology learning tasks it 

uses linguistics and statistics-based techniques. Documents of different formats such as 
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PDF, XML etc are converted into plain texts using data importer. For part of speech 

tagging and other syntactic information Stanford‟s part-of-speech tagger is used along 

with the Berkeley Parser. Nouns and noun phrases are extracted in the form of multi-

word terms using some predefined rules. Terms are identified whether they belong to 

specific domain using a manually built domain lexicon. Extracted terms are further 

cleansed by removing adjectives and articles associated with them. Each extracted term is 

weighed by using Domain Relevance Measure. To find is-a relations lexico-syntactic 

patterns are used.   

iv) Unsupervised Learning  

Drymonas et al. [26] from the Technical University of Crete designed OntoGain system 

for the unsupervised learning of ontologies from unstructured text in medical and 

computer science domains. OntoGain also uses linguistics and statistics-based techniques 

for acquisition of ontology. It uses The OpenNLP suite of tools and the WordNet Java 

Library for preprocessing of text such as tokenization, lemmatization, pos tagging, and 

parsing. To build a hierarchy agglomerative clustering and Formal Concept Analysis is 

implemented. For this initially each term is considered to be a cluster and these clusters 

are merged at each step based on the similarity measure. Then a formal context matrix is 

constructed which contains multiword terms and verbs. This matrix is given as input to 

Formal concept analysis algorithm. Association rule mining is used to extract the non- 

taxonomic relations. 

v) Document Based Ontology 

 Jizheng Wan et al. [6]  have proposed the concept of Document based Ontology (DbO) 

for constructing ontology from unstructured text which gives importance only to the 

properties of a document ignoring their context. The concept structure and entity 

instances are taken care of in this work. Statistical techniques such as Latent Semantic 

Analysis and Markov Model are used for detecting synonyms and to predict next word. 
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vi) Re-engineering and Reusing Resources 

 Mari Carmen et al. [9] suggests multiple ways of building ontology instead of giving 

any one methodology for different situations by re-engineering and reusing knowledge 

resources 

vii)  Glossary Based Approach  

GOSPL [8] given by Christophe Debruyne has aimed at building hybrid ontology where 

concepts are defined both formally and informally. This methodology provides 

collaboration between the ontology engineers and domain experts and uses Glossary as a 

special linguistic resource. Structural natural language is involved as a vehicle to extract 

all the relevant and useful concepts from communication among community and these 

social processes are mapped to the processes of evolution of the emerging ontology. The 

concept of “sameness” is explored in detail according to which different terms from 

different communities referring to same concept do not imply to be synonyms.Fact 

modelling by applying the principle of separation in conceptualization is used which is an 

interpretation process called reasoning. The approach provides only the setting in which 

ontologies can be built but they have not given the method how community can use it. 

viii) Probabilistic Modelling  

Hoifung Poon and Pedro Domingos [27]  have given an approach that overcomes the 

problem of inducing ontology from individual words by focusing on phrasal verbs etc. 

This approach is different from existing approaches as the ontology is induced 

probabilistic modelling to reduce uncertainty and noise. Also knowledge extraction and 

ontology population go hand in hand. Unsupervised Markov logic Network is used in this 

approach to form hierarchical clustering from logical expressions having is-a relations 

among them. The is-a relation among relation cluster can be found among relation 

clusters but it fails to do same for entity clusters. Active voice is well handled here but 
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they are not able to handle passive voice. Moreover semantic relations are not extracted 

nor can this approach scale up to large corpora. 

ix) Naῗve Bayes Classification  

G. Suresh Kumar [28]  has proposed an approach to extract concepts and relations  for a 

question answering system in which domain attributes and associations are extracted 

from relevant documents. A binary decision tree-based rule engine is proposed giving 

output as a triplet of candidate keyword, predicate and associated object. The triplet 

extracts feature data which is given as training set to Naῗve Bayes Classifier. The relation 

between the concepts is through the relation predicted by classifier. Lexico-syntactic 

probability and lexico-semantic probability are used here. But only pre-classified classes 

of relations can be there.  

Julia Hoxha et al. [29] also use Naῗve Bayes Classification for constructing ontology. 

The classifier is used for categorizing text to determine the label of document. SVM is 

used to cluster similar documents. In this method summarization is performed to shorten 

the text. Taxonomical relations such as synonyms, hypernyms and hyponyms are 

extracted here. Hearst‟s patterns are used for extracting hierarchies from text. At first 

candidate classes are extracted and then other hypernym, synonyms are extracted and 

represented in the form of taxonomy. 

x) Machine Reading And Lexico Semantic Method  

Bothma [13] gives a semi-automated approach for learning ontologies from Swedish 

text. Machine reading, statistical and lexico- semantic methods are used to extract 

concepts, a few taxonomic and a pre-defined set of non-taxonomic relations. This 

approach is also error prone as noun phrases are not taken into account to be extracted as 

concepts. Also no consideration is given to attributes of concepts.  
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xi) Rapid Prototyping  

UPON-Lite [7] by Missikoff et al. is an automatic ontology development methodology 

that insists there should be no intermediation of ontology engineers in the process of 

building ontology. The methodology which is user centric is based on an incremental 

process that constructs rapid prototypes of trial ontologies. The role of domain experts is 

emphasized while the ontology engineers only formalize the ontology at the time of its 

release before the users. Researchers suggest the use of supporting tools like gloss 

extractors and ontology editing tool like Protégé for producing OWL ontology. 

xii) Hierarchical Semi-Supervised Classification 

Bhawna Dalvi [30] have proposed a hierarchical semi-supervised classification approach 

completes the  incomplete class hierarchies by adding new instances to the existing ones 

or by discovering new classes and extending the existing ontology by placing them at 

appropriate places in the ontology using. This approach can be used for document 

classification task and entity classification into class hierarchy of a knowledge base also 

but is not applied to class-hierarchies that are non-tree structured.  

xiii) Statistical, Machine-Learning, And Custom Pattern-Based Method 

Open Calais [31] by Marius-Gabriel system by Thomson Reuter‟s which is linked to a 

market leading ontology extracting entities  (persons, events, places), relationships etc 

and gives results in rdf format. The semantic content of users‟ input files is analyzed 

using a combination of statistical, machine-learning, and custom pattern-based methods. 

It also maps the metadata-tags to Thomson Reuters unique Ids supporting disambiguation 

and linking of data across all the documents being processed by it. 
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xiv) Topic Modelling Algorithm 

Monika et al. [32] explores topic modelling algorithms such as LSI & SVD and Map 

Reduce LDA (Mr. LDA) for learning Ontology. The study and experimental result give 

enough proof of the effectiveness of using Mr. LDA topic modelling for learning 

ontology. Experimental results in the paper demonstrate the effectiveness of the proposed 

system in term of building richer topic-specific knowledge and semantic retrieval. 

Terminology ontology building is a preliminary step for semantic-based query (Topics 

and Words Detection) optimization for knowledge management. Their method is scalable 

but requires human intervention. 

xv)  User Centric Approach  

A methodology is proposed by Kenneth et al. [33] that performs user-centric ontology 

population that needs human intervention at each step as the user is required to assist in 

developing, linking and maintaining the conceptualization of that domain, making the use 

of some already available ontology. Three main steps are followed where the first one is 

to select the relevant ontologies, then aligning the concepts with the same of the target 

ontology using a new hierarchical classification approach and after that user is assisted to 

develop, replace or enhance their initial ontology by creating, splitting or merging the 

concepts or adding new instances to existing concepts by extracting new facts from 

unstructured data.   

LexOnt [34] by K. Arabshian is a system that also constructs the ontology semi-

automatically including user at each step. It uses Wikipedia, WordNet and Programmable 

Web directory of services. It also uses existing ontology to extract relevant terms. LexOnt 

constructs the ontology in iterations, by interacting with the user. The user has the ability 

to choose, add terms to the ontology and rank those terms. It is a plug-in tab for the 

Protégé ontology editor. The system accepts unstructured text as input and interacts with 

the user to facilitate the ontology creation process. 
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xvi) Morpho-Syntactic analysis  

Sourish Dasgupta and Jens Lehman [35] build initial ontology using the fundamental 

knowledge about the target domain. A corpus of text relating to that domain is analysed 

syntactically and semantically to perform semantic enrichment. Morpho-syntactic 

analysis of the text is done to extract concepts for building ontology. 

xvii) Concepts Maps  

OntoCmaps [36] by A. Zouaq is a domain independent ontology learning tool. It extracts 

deep semantic representations from corpora. It generates conceptual representations 

which are in the form of concept maps. This tool relies on the inner structure of graphs to 

extract the important elements that are identified as the important concepts. This system is 

not able to capture non-hierarchical relationships. 

All these discussed works are summarized in Table 2.1 along with their methodology and 

problems. 

Table 2.1: Methodology And Deficiencies In Existing Works 

Technique 

proposed by 

Methodology Used Source Text Level of 

Automation 

Deficiency 

Khurshid 

Ahmad et al. 

Statistical techniques 

and Hearst‟s patterns 

Unstructured 

Text 

Semi-Automatic as 

Human intervention 

required as domain 

expert to provide 

evidence 

Non-hierarchical 

relationships are not 

captured 

Marius et al. Open Calais Unstructured 

Text 

Automatic A fixed set of Non-

hierarchical 

relationships are  

captured 

Hristo Tanev 

et al.   

Weakly Supervised 

Approach 

Unstructured 

Text 

Semi-automatic Non-hierarchical 

relationships are not 

captured 

Jiang and 

Tan  

Concept-Relation-

Concept Tuple-Based 

Ontology Learning 

Unstructured 

Text 

Semi-automatic Domain specific, may 

extract erroneous 

concepts or relations 

Drymonas et 

al. 

agglomerative  

hierarchical clustering 

and formal concept 

analysis, association 

rules and conditional 

Unstructured 

Text 

Semi-automatic Ambiguous terms may 

get extracted, fixed set 

of non-hierarchical 

relations 
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probabilities 

Jizheng Wan 

et al. 

Document Based 

Ontology 

Unstructured 

Text 

Semi-automatic Context of the 

document is not 

considered. Only 

properties of the 

document are taken 

care of. 

Monika et  al. Topic Modelling Unstructured 

Text 

Semi-automatic Non-hierarchical 

relationships are not 

captured 

Bhavna Dalvi Hierarchical Semi-

Supervised 

Classification 

Unstructured 

Text 

Semi-automatic Non-tree structured 

class hierarchies not 

explored 

Christophe 

Debruyne 

Glossary  as  linguistic 

resource Based 

Approach 

Unstructured 

Text 

Semi-automatic No guidelines for 

communities to build 

the ontology, just a 

setting is provided. 

Mari Carmen 

Sua´rez-

Figueroa 

Re-engineering and 

Reusing Resources 

Unstructured 

Text 

Semi-automatic Methodologies and 

guidelines only are 

provided  

Hoifung 

Poon and 

Pedro 

Domingos 

Probabilistic Modelling 

(Markov Logic and 

Hierarchical Clustering) 

Unstructured 

Text 

Semi-automatic Passive voice not 

handled properly. 

Semantic relation not 

extracted, non-scalable 

to large corpora 

G. Suresh 

Kumar 

Naῗve Bayes 

Classification 

Unstructured 

Text 

Semi-automatic Non-hierarchical 

relationships are not 

captured 

De Nicola & 

Missikoff 

Rapid Prototyping Unstructured 

Text 

Semi-automatic as 

domain expert is 

needed at each step 

Non-hierarchical 

relationships are not 

captured 

Julia Hoxha 

et al. 

Naῗve Bayes 

Classification along 

with Hearst‟s Patterns 

Unstructured 

Text 

Semi-automatic Fixed set of 

relationships are 

captured 

  Kenneth 

Clarkson 

User Centric Approach Unstructured 

Text 

Semi-automatic Non-hierarchical 

relationships are not 

captured 

Sourish 

Dasgupta and 

Jens Lehman 

Morpho- Syntactic 

analysis 

Unstructured 

Text 

Semi-automatic Only is-a relations are 

extracted 

K. Arabshian User Centric Approach, 

plug-in for Protégé 

Unstructured 

Text 

Semi-automatic Non-hierarchical 

relationships are not 

captured 

A. Zouaq Concepts Maps Unstructured 

Text 

Automatic Non-hierarchical 

relationships are not 

captured 

Bothma  Machine Reading and 

lexico-semantic method  

Unstructured 

Text 

Semi-automatic Fixed set of non-

hierarchical 

relationships are 

captured, lacks in 

extracting the 

compound concepts. 
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 As evident through the Table 2.1, most contributions in ontology building are not able to 

fetch all the semantic relations present in the text and also compound concepts are not 

extracted. Also a few works are able to generate ontology from unstructured text 

automatically. 

2.4 ONTOLOGY ENRICHMENT APPROACHES 

PACTOLE (Property And Class Characterization from Text to OntoLogy Enrichment) is 

an approach proposed in [37]. A collection of astronomy texts are given as input for 

which ontology is constructed and a set of new concepts and instances are given as output 

to be inserted in the initial ontology. The process of enrichment process is based on 

Formal Concept Analysis (FCA).This work is not able to annotate object whose nature is 

unknown. 

Another approach to enrich ontology is given by Navigli et al. [38] that proposes to use 

online glossaries to enrich an existing ontology. The core ontology property 

specifications are provided with natural language definitions for each class and are 

converted  into web ontology language. 

 Castano et al. [39] has also proposed a methodology for enriching an existing ontology 

by matching new knowledge extracted from data with the existing ontology and 

annotating it.. 

Maria Teresa [40] gives an approach to make the ontology so expressive that the 

concepts and their intended roles can be understood so that the information present in the 

ontology may be reused easily. The technique used by the researchers is semi-automatic 

which uses WordNet.  
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2.5 TEXT SUMMARIZATION APPROACHES 

Summarization helps user to find meaningful and relevant information from large text 

documents as summary of a document may help readers to go through the most important 

aspects of the document instead of having to read the full-length document. Headlines, 

table of contents, abstracts, reviews, highlights etc. give the summarized view of a large 

text.  

This section reviews some significant achievements that have been obtained in the area of 

document summarization. Some approaches summarize by finding the salient information 

by finding pair wise similarity between all sentences or by clustering sentences using 

some similarity score.  

Different researchers have proposed many techniques to generate summary such as: using 

features, using graphs as a collection of sentences as nodes & the edges denoting the 

similarity among sentences or by using cluster as a similarity measure or by using 

knowledge base. These approaches may be divided into several categories: 

 Graph based approaches 

 Ontology based approaches 

 Machine learning based approaches 

In the following subsection, the details techniques related to these type are presented. 

2.5.1 Graph Based Approaches 

Graph-based approaches for sentence-based summarization generate a graph in which the 

document sentences are represented by nodes and weight on each of the edge is 

calculated by a similarity measure that has to be evaluated on each node pair. 

Leskove [41] generated document summary by using a semantic representation of the 

document and machine learning to create semantic sub-structure that can be used for 
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extracting summaries. This approach shows the importance of the document semantic 

structure attributes in the sentence selection process. This can be used for abstract 

summary creation for a single document as well as multi document where linguistic 

features optimize the performance when training data contains shorter summaries while 

semantic features do the same for longer summaries. 

 In [42]Archetypal analysis and weighted archetypal analysis is used by Canhasi, to 

compute the positive and negative sentences for a given graph representation of a 

document set. Clustering and matrix factorization is also used in this approach. 

Parveen et al. [43] features a method to extract single document summary by making 

bipartite graph consisting of sentence and entity nodes. Sentences are ranked using a 

graph based ranking algorithm. Redundancy is removed and the sentences are checked 

for their local coherence and summary is generated. Very little linguistic information is 

contained in the entity graph. In this method human subjects are included as judges to 

analyze the performance instead of domain experts that could give better judgment. 

Another approach discussed in [44] by  Siddhartha Banerjee takes the sentences from 

important documents and are aligned to sentences in other documents generating clusters 

of sentences that are similar. A word-graph structure is made from the sentences in each 

cluster and K-shortest paths are generated for this graph. Integer linear programming is 

used to select sentences having the shortest paths. 

2.5.2 Ontology Based Approaches 

Some researchers have made efforts to utilize ontology to make the process of 

summarization better. Documents related to same domain may share the same 

information and can use the same domain ontology for this purpose. Ontology helps to 

extract the entities and categorization of sentences. 
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Ragunath [45] presents an idea for ontology-based summarization to compute a set of 

features for each sentence based on the output of the hierarchical classifier. This is an 

extractive summarization approach in which existing sentences or phrases are selected 

from original text. In this approach a sentence is classified to a leaf node or to an internal 

node. Nodes sharing common sub trees are matched using the classifier. If a sentence is 

mapping to more than one sub tree in the hierarchy, all nodes from each sub tree is 

included. For each sentence confidence weights assigned by the classifier are used to 

compute a sub tree overlap measure. Only hierarchical ontology is used here for sentence 

mapping. 

Hennig [46] also use a hierarchical ontology to generate summaries. Their work maps the 

sentences of original document to the nodes of the ontology using an SVM classifier 

which is trained using search engines for sentence classification. The mapping of nodes 

to the ontology gives a semantic representation of content of document sentence which 

improves the quality of summaries. It computes structural properties of the hierarchy and 

category labels using sentence features to improve summarization. Only a small ontology 

instead of some bigger non-hierarchical ontology is utilized here.  

Ontological knowledge is used by Verma et al. [47] also to generate document summary. 

Query based summary is generated which utilizes WordNet or UMLS ontological 

knowledge to revise the query and then by calculating the distance of query from each 

sentence. The sentences having lesser distance than a threshold are included in set of 

candidate sentences to be included in summary. These sentences are again divided into 

groups by calculating the pair wise distances among them and then the highest ranked 

sentences are chosen for the final summary. Natural language programming techniques 

are not used here so in the absence of syntax analysis, grammatically incorrect sentences 

from original documents hamper the quality of summaries. It is an extractive approach as 

abstract statistical data is also not utilized for summarization. In this method redundancy 

reduction in the summary is also not up to mark as it covers same information from 

multiple documents.  
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Baralis [48] depends upon YAGO ontology to evaluate and select sentences from 

documents. Entity recognition and disambiguation steps in the process of generation of 

document summary are performed using YAGO which identifies the key concepts in the 

document and their significance is evaluated with respect to the context of the document. 

The problem with this method is that the summaries generated by this method are less 

compact. 

2.5.3 Machine Learning Based Approaches 

These approaches learn a model that determines importance of sentences using a training 

corpus of full texts and their summaries. Different models such as Naῗve Bayes, Decision 

trees, SVM, HMM, CRF can be used. These approaches operate at lexical level and 

provide good results for query based summaries. The features taken into account by these 

models can be Sentence length, presence of indicator phrases, Sentence position 

(first/medium/final), highly weighted content words, Containment of (important) named 

entities, Containment of specific topic words. A large amount of text is needed for 

earning purpose as human-generated summaries are required to train a classifier for the 

given text. These approaches are unable to manipulate information at abstract level.  

A.P.S et al. [49] give an approach for single document summarization that uses two 

measures to evaluate importance of a sentence: first is the frequency of the terms in the 

sentence and the other is the similarity to the other sentences. The sentences in the 

document are ranked according to their respective scores and the top ranked sentences are 

selected for summary. The statistical sentence selection measures include: Sentence 

position, Cue words, Document frequency, Inverse document frequency, Term frequency. 

Their approach uses nearest neighbor search technique to find the neighbor documents 

that are similar to the specified document. The sentences are scored using global affinity 

graph. The highest scored sentences are then checked for redundancy at the document 

level.  
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Patil et al. [50] shows that the choice of the classifier influences the performance of the 

trainable summarizer strongly. The procedure of automatic trainable summarization 

employs statistical and linguistic features which are extracted directly and automatically 

from the original text.  

Babara [51] uses latent semantic analysis and fuzzy logic system to extract the 

summaries from the original text. A set of features is used which includes the title 

sentence, sentence length, sentence position, numerical data, proper nouns etc. Each 

feature is given a score using fuzzy logic. Based on this score each sentence is classified 

into three classes of important, average and unimportant and are thus selected to create 

the summary. This approach is not applicable for multi document summary.  

Kaliappan [52] uses the Naïve Bayesian Classification and the timestamp concept. This 

summarizer may work on many domains as it does not uses knowledge base. The user 

can specify the compression rate so that amount of information to be extracted from the 

documents can be chosen.  

Singh et al. [53] have presented a technique using unsupervised deep learning approach 

to summarize documents from Hindi and English. A set of eleven features is extracted 

from each sentence of document to generate the feature matrix which is passed through 

Restricted Boltzmann Machine to increase accuracy of choosing relevant sentences.  

All these discussed works are summarized in Table 2.2 along with their methodology and 

problems. 

Table 2.2: Comparative Study of Text Summarization Approaches 

Approach Methodology Technique Used Type of Summary 

[42] Archetypal analysis and weighted 

archetypal analysis 

Graph Based Multi document extractive 

summary  

[41] Semantic substructure Graph based/machine 

learning 

Abstract summary/multi 

document summary 

[43] Bi-partite, ranking algorithms  Graph based Single document extractive 
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summary 

[44] Clustering of  Graph based Multi document extractive 

summary 

[51] Latent semantic analysis/fuzzy 

logic 

Machine learning Multi document extractive 

summary 

[48] Yago ontology Ontology based Multi document extractive 

summary 

[46] Hierarchical ontology Ontology based Multi document extractive 

summary 

[47] WordNet and UMLS Ontology based Multi document extractive 

summary 

[49] Nearest neighbour search Machine Learning Single document abstractive 

summary 

[45] Sentence features Ontology based Single document abstractive 

summary 

[50] Statistical and linguistic features Machine Learning  multi document extractive  

summary 

[52] Naïve Bayesian Classification and 

the timestamp concept 

Machine Learning  multi document extractive  

summary 

[53] unsupervised deep learning Machine Learning  Bi-lingual, multi extractive 

document summary 

As it can be seen from the Table 2.2, most of the contributions focus on extractive 

summarizations that are able to make the text concise but may contain redundant 

information. The techniques generating abstractive summaries that do not exploit the 

semantic structure of the sentence are prone to generate erroneous results.     

2.6 TECHNIQUES, TOOLS AND KNOWLEDGE STRUCTURES 

This section presents the introduction of key tools and platforms to support the designing 

and the development of the ontological framework and the other proposed techniques for 

ontology enrichment and text document summarization. Specifically, natural language 

processing tools such as dependency parser (Stanford Parser), name entity recognizer 

(SENNA), anaphora resolver (Java RAP) [54] and some other tools such as GraphViz, 

SVM Classifier are introduced. WordNet is presented here as the knowledge structure. 
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2.6.1 Dependency Parser 

In natural language parsing techniques, dependency based representations has found their 

potential use in disambiguation. The lexical elements form a syntactic structure having 

interlinks of binary asymmetrical relations between the words of sentence. These 

relations are called dependencies. In natural language processing systems, dependency 

structures are quite expressive to be convenient and restricted enough for allowing full 

parsing providing sufficiently high accuracy and efficiency.  

We have used Stanford Dependency Parser [55] in our work. A brief description of this 

parser is given in as follows: 

Stanford Dependency Parser  

To extract the textual relationships without the help of linguistic expertise, the Stanford 

typed dependencies representation were designed so as to provide a simple description of 

the grammatical relationships in a sentence so that people can easily understand and 

effectively utilize these relations. All the words in a sentence are connected to each other 

with some grammatical relations like „subject‟, „modifier‟, „determiner‟, and so on. These 

relations are known as dependency relations as they express how one word is dependent 

on another word. In a dependency relation between two words, one is called 

DEPENDENT, which generally acts as modifier, object or complement of the other 

word, known as HEAD. Figure 2.2 gives an example of a dependency tree (which is 

basically a directed acyclic graph with arcs pointing from the HEAD to the 

DEPENDENT). The arc-labels (also known as attachments) represent the dependency 

relations. The idea here is to parse the sentences of a document using Stanford 

dependency parser The parser provides dependency tags attached with each term which 

are used to generate new tags Roles, Properties and Hierarchy. 
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Figure 2.2: Dependency Tagged Sentence 

2.6.2 Named Entity Recogniser 

Named Entity Recognition is one of the very helpful information extraction techniques to 

recognize and classify named entities in text. These entities are categorised to some pre-

defined categories such names of persons, locations, organizations, time representations 

etc. There could be other specific terms also apart from these generic entities, which 

could be defined for a particular problem. These terms represent segments or elements 

having a unique context in the text. To categorize such custom entities, machine learning 

models could be trained. These entities are generally denoted by proper names so mostly 

noun phrases in text documents indicate them. 

NER Categories 

NER has three top-level categories: 

i) Entity names:- Entity Names represent the element‟s identity, for example name of a 

person, title, anything living or non-living etc. 

ii) Temporal expressions:- A temporal expression is where time related events are 

shown by some sequence of words for example times of day, durations, calendar 

dates etc. 

iii) Number expressions:- A mathematical sentence involving just numbers and/or 

operation symbols denotes number expression.  
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Approaches to NER 

There are two different approaches to implement NER chunker to tag specific elements in 

the text. One approach is knowledge/rule based and the other approach uses supervised 

machine learning. A combination of both approaches may give better results for some 

problems. 

 Knowledge/ rule based approaches 

A rule based NER system uses some predefined language dependent rules based on 

linguistics for identification of named entities in a document. These systems perform well 

but have limitations that these are not flexible to changes. The entities found by these 

systems generally are proper nouns or proper nouns in alliance with numbers. 

 Machine Learning approach 

 Machines can predict custom entities on a given text using supervised machine learning 

on labelled data. 

There are many named entity tagger available. We have utilized SENNA as name entity 

tagger in our framework as SENNA achieves close accuracy with Stanford pipeline twice 

the speed and less memory usage. 

To perform a number of NLP tasks accurately and speedily, SENNA (Semantic/syntactic 

Extraction using a Neural Network Architecture) [56] is employed which is a tool having 

multilayer neural network architecture. These tasks include part-of-speech tagging, 

chunking, named entity recognition, and semantic role labelling. SENNA extracts 

essential features from unlabelled text using deep learning. Auto-encoders and neural 

networks language models are used to perform the unsupervised learning phase. The 

pipeline maps words into other space of representation having lower dimensionality. 

SENNA has dictionary of 130 thousand words which is used to map every word to a 
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vector of 50 floating numbers. Convolutional networks are used to merge these vectors 

into a sentence structure. Different classifiers are generated by training the same 

architecture for different tasks using annotated text. The major advantage of this 

approach is that lesser amount of engineering is required to solve multiple problems. A 

lot of prior knowledge is not used by SENNA. The features used by the system were only 

pre-trained word embeddings, gazetteer list and uppercase information. 

IOBES tagging scheme  

To mark a noun phrase containing a single word, the tag “S-NP” is used. 

 “B-NP”, “I-NP”, and “E-NP” tags are used to mark the first, intermediate and last words 

of the noun phrase.  

“O” is an additional tag that marks words which  are not members of a chunk.  

Four different types are defined: 

 Person(PER), 

 Organization(ORG),  

 Location(LOC)  

 Miscellaneous(MISC) 

Example of NER tagging by SENNA is as follows in Figure 2.3: 

 

Figure 2.3: Annotated Text After NER 

Here in this example ORG, refers to the organization and LOC denotes the Location. 

 

 

Columbia/ORG is an American/Misc university located in New/LOC York/LOC. 
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2.6.3 Anaphora Resolution 

The Process of finding the antecedent for an Anaphor is Anaphora resolution. Here 

anaphor is the reference that points to some previous item and antecedent is the entity to 

which that anaphor refers. For example  

Mona Singh says she will always be grateful to Anu Malik. The actress revealed that the 

musician helped her calm down when she became scared by a thunderstorm while 

travelling by a plane. 

In the above given text anaphors and their antecedents will be as shown in Figure 2.4: 

 

 

 

 

Figure 2.4: Resolved Anaphora and Antecedent 

Anaphoric reference resolution is quite challenging task in Natural Language Processing 

field. It is very difficult to give a complete, reasonable and calculable description of the 

resolution process, because of the unawareness of the particularities. Anaphora resolution 

needs to be addressed in most of the applications dealing with natural language e.g. 

information extraction, machine translation systems or dialogue systems. There are 

following approaches to anaphora resolution namely 

 Rule Based 

 Machine Learning Based 

 Statistical Based 

Anaphor      Antecedent 

She => Mona Singh 

The actress => Mona Singh 

The musician => Anu Malik 

Her => Mona Singh 

She => Mona Singh 
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The context of the expressions define the interpretation of these expressions 

2.6.4 Jena API 

For creating and manipulating RDF graphs object classes called interfaces are provided 

by a Java ontology API known as Jena. The graph generated by Jena is called a Model 

having extension rdf and is represented with the Model interface. RDF statements are 

described by the resources, properties and literals given as the Resource, Property and 

Literal interfaces. Several methods are provided by Jena that allow RDF graphs to be 

saved and retrieved to and from files. Various database management systems are 

supported by Jena such as MySQL, PostgreSQL, Oracle etc. Also various tools including 

such as a parser and I/O modules for RDF/XML output are provided by Jena. 

2.6.5 GraphViz 

To generate a graphical presentation of the ontology generated by our system we have 

made use of graph visualization tool named as GraphViz [57]. In this section we will 

describe briefly the function of this tool. Graph visualization is used for representing 

structural information of abstract graphs and networks. Automatic graph drawing has 

many significant applications in various fields such as software engineering, web design, 

database, networking and in many other visual interfaces for different domains. 

GraphViz, which is an open source graph visualization software contains several main 

graph layout programs. It also contains other web and interactive graphical interfaces, 

some auxiliary tools and different libraries.  GraphViz makes diagrams by taking 

descriptions of graphs in a simple text language.  

The diagrams can be made in many formats such as images (png, jpg) or SVG for web 

pages, GraphViz has many useful features and options for colors, many fonts, tabular 

node layouts, different line styles, hyperlinks, and many other custom shapes. Graphs 
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may be created and edited manually or from external data sources either as raw text files 

or within a graphical editor. 

GraphViz follows a general hierarchical approach for drawing graphs. It works in four 

phases. The first phase breaks any cycle that occurs in the input graph. The second phase 

assigns nodes to discrete levels or ranks. In the next phase ordering of nodes is done 

within ranks so as to avoid crossings. The fourth phase sets X coordinates of nodes so 

that edges are short. GraphViz accepts input in the DOT language. Three major kinds of 

objects namely graphs, nodes and edges are described by this language. The main graph 

is a directed graph (digraph). The following program as shown in Figure 2.5 written in 

DOT language defines a directed graph. Nodes‟ shapes, labels, colors, styles are defined, 

Ranks of nodes, separation distance and their direction is also specified in this program.  

 

 

 

 

 

Figure 2.5: dot file for GraphViz 

The graph corresponding to this dot file will be generated by GraphViz using the 

command line or with a graphic visualization service that may be web based or other GUI 

based interface as shown in Figure 2.6. 

digraph mygraph{    

  passengers ->accommodated   

  passengers [shape=box,style=filled,color=Green];   

  passengers -> agent_S3 [style=bold,label="HAS ROLE"];    

  agent_S3 [shape=box,style=filled,color=Pink];   

  accommodated ->hotels   

{ rank= same rank sep=1.2  rankdir=LR; passengers hotels  } 

  hotels [shape=box,style=filled,color=Green];   

  hotels -> theme_S3  [style=bold , label="HAS ROLE"];    

 theme_S3 [shape=box , style=filled , color=Pink];  

} 
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Figure 2.6: Graph Generated for dot File 

2.6.6 SVM Classifier 

Support Vector Machines given by [58] are among the best supervised learning 

algorithms which provide a powerful approach even in case of high dimensional feature 

space. Joachims T. [59]  used SVM classifiers for text categorization. 

Considering its linear form for a binary problem with feature   and label     *     + 

Training data is represented as ( ⃗     )    ( ⃗     ) . We define the maximum margin 

hyperplane as  

 ⃗⃗⃗⃗  ⃗⃗⃗                                       Equation 2.1 

Where  ⃗⃗⃗ is the normal vector to the hyperplane. 

Two parallel hyperplanes are determined that separate the two classes of data, so that the 

distance between them is maximum. The region bounded by these two hyperplanes is 

called the "margin", and the maximum-margin hyperplane lies halfway between them as 

shown in Figure 2.7 . 

 ⃗⃗⃗⃗  ⃗⃗⃗                                                   Equation 2.2 

 ⃗⃗⃗⃗  ⃗⃗⃗                                                 Equation 2.3 
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Figure 2.7: SVM Classifier 

To make the algorithm work for non-linearly separable datasets, the optimization is 

explicated as:  

       
 

 
         ∑  

 

 

   

 

Such that 

   ( )(   ( )   )                                                                  Equation 2.4 

 
 
            

where ξi is called slack variable. 

The 
 

 
        specifies size of the margin and second   ∑  

 
 
     specifies 

misclassification. 

Training an SVM involves the reduction of above equation to a NP problem from which 

decision function can be derived.  

 ( )  ∑       
 
                                                                                    Equation 2.5 

�⃗⃗⃗� 

w.x + b = 0 

w.x + b = 1 

w.x + b = -1 

Positive Example e  

Negative Example  
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where the parameter   determines the trade-off between increasing the margin-size and 

ensuring that the lie on the correct side of the margin. 

Sentence Extraction using polynomial kernel  

For a non-linear decision surface, kernel trick is applied to maximum-margin hyperplane 

and the dot product is replaced by the kernel function.   

                          ( ⃗⃗⃗    )  ( ⃗⃗⃗    )                                                            Equation 2.6 

This polynomial kernel has been very effective when applied to several tasks of natural 

language processing of a second degree with a value of C as 0.0001. We have used the 

same for extracting summary from text. This extractive summary is further shortened by 

constructing ontology of this extractive summary using the proposed system for 

generating ontology and reconstructing the sentences using this ontology to generate 

abstractive summary.  

2.6.7 WordNet 

WordNet [60]is a general-purpose online lexical semantic electronic repository for the 

English language. Its structure, characteristics and potential usefulness is described here 

in this section.  

WordNet provides a thesaurus and lexicon, semantic bond among the majority of English 

terms. It classifies words into categories and inter-relates the meanings of those words. It  

organisation is in the form of synonym sets (synsets) which are set of words that are can 

be interchanged according to some context, as they share a commonly-agreed upon 

meaning having little or no variation. There may be different senses of each word in 

English in which the word may be interpreted and each of these distinct senses denotes 

different synsets. There is a pointer to at least one synset for every word. 
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The synsets can be thought of as nodes in a graph where a semantic pointer is a directed 

edge in the graph. The pointer has one end source and the other end a destination.  

Some semantic pointers which are useful are:  

 hyponym: if X is a (kind of) Y, X is a hyponym of Y  

 hypernym: if Y is a (kind of) X, X is a hypernym of Y  

 part meronym: if X is a part of Y, X is a part meronym of Y  

 member meronym: if X is a member of Y, X is a member meronym of Y  

 similar to: if the two synsets have meanings that are quite similar to each other, a 

synset is similar to the other one.  

Each synset also contains a description of its meaning which is expressed in natural 

language known as gloss. WordNet also contains example sentences of usage of that 

synset. The information provided gives summary of the meaning of a particular concept 

and gives knowledge for a particular domain. 

In our work, WordNet is used to link terms with its meaning (semantic annotation) in 

order to be able, for example, to extract similar terms for a given term exploiting its 

hyponyms, hypernyms, and synsets. 

2.7 CONCLUSION 

The analysis of the reviewed approaches allows us to conclude that these methodologies 

for building ontology from unstructured text are able to capture hierarchical relationships 

or some fixed set of non-hierarchical relationships among the concepts of the text but 

they fail to extract all the semantic relations present in the text. 

We reviewed some approached to enrich the ontology so that the ontology can be 

extended with specific knowledge to provide more information about the constructs of 

ontology.  
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We present the review and compare various techniques for summarization of documents 

to get a concise form of the information in this domain. This review opens up new 

challenges to be taken ahead in the field of document summarization such as text 

coherency must be ensured as sentences may have dangling co-references. Also 

summarizing non-textual data, handling text from multiple sources effectively and getting 

good reduction rates are needed. The most difficult challenge is to achieve human quality 

summarization. 
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CHAPTER 3 

 AUTOMATIC ONTOLOGY CONSTRUCTION USING 

CONCEPTUALIZATION AND SEMANTIC ROLES 

3.1 INTRODUCTION  

Semantic web is a major evolution in connecting information for effective information 

retrieval. The goal of semantic web is to make the web understandable by both human 

and machine. This task is done by using ontologies as it is the better way to represent 

knowledge [36]. In other words, constructing ontologies aim at capturing domain 

knowledge that gives a commonly agreed understanding of a domain, which may be 

reused, shared among applications and groups.  

In this chapter, we propose a new approach to build ontology automatically, based on 

extracting semantic roles present in the given sentences of a given text along with usual 

concepts and their relationships. The extracted information about different roles, concepts 

and relationships among the concepts from different sentences in the document are then 

merged to construct ontology for whole document. The proposed approach is 

implemented and the performance of the proposed technique is evaluated. Experiments 

show the ontology thus created captures most of the information given in the document. 

The present proposal may be important to understand the document as we have both 

syntactic and semantic information about a sentence or a text.  

In general, process of building ontology adopts following steps. Firstly the concepts are 

extracted then underlying semantic relations (hierarchical or non-hierarchical) among 

these concepts are extracted and then these relations and concepts are connected using 

suitable criteria. However, the work done till now in automated creation of ontologies 

from plain text mostly capture only hierarchal relationships such as car-(is-a)-vehicle or 

steering-(part-of)-car but non-hierarchical relations such as performed, begin etc as in 

Ghulam_Ali-(performed_at)-concert or music_festival-(begins)-tomorrow are not 
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captured accurately by the existing approaches [35] [14]. But the present approach uses 

semantic roles along with other components such as concepts and their relationships. The 

ontologies corresponding to each sentence in the given text is constructed and these 

ontologies are then merged by aligning the concepts in them to create a bigger ontology 

for complete document. More precisely, the semantic similarity technique is used to 

match and merge these structures related to semantic roles in addition to matching of 

relations and concepts. In particular, a set of ontology merging rules are designed and 

later used to merge the structures in the two different ontologies. The multiword concepts 

are also taken into account while identifying concepts and semantic roles. This way the 

limitations of the previous contributions are removed as those works were focusing 

mostly on single word concepts and taxonomical i.e. hierarchical relations. 

3.2 BASIC APPROACH  

The proposed technique takes unstructured text as input, applies natural language 

processing techniques to identify the concepts, roles etc. and utilises a new algorithms to 

merge them into an ontology. Therefore following textual components are playing key 

roles to design the present ontological framework. 

i) Semantic roles- Semantic roles information along with other information such as 

concept and relations to generate ontology. Semantic roles are representations that 

express the abstract role that arguments of a predicate (usually expressed by verb in 

the sentence) can take in the event [61] [62]. For example a concept can be an agent or 

accompanier or a location in a sentence. Attaching these semantic roles with each 

constituent not only help to merge sub-ontologies (ontologies created for each 

sentence in the given document)  but also contribute to deeper text understanding in 

the form of final ontology.  

ii) Concepts- All concepts instead of just key concepts (frequently used concepts) are 

identified and used. 
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iii)  Non-Taxonomical Relationships- Non-Taxonomical Relationships among concepts 

instead of just taxonomical relationships are used. 

All these constituents will be identified and used in the sequence as is given in the 

architecture of the system in the following section.  

3.3 ARCHITECTURE OF PROPOSED SYSTEM 

In order to realize the basic approach or model computationally, following is the 

proposed architecture of the system as shown in Figure 3.1. 

1. Natural language Processor 

In this system the input text documents are first processed by a natural language 

processor which uses Stanford dependency parser [55] that performs the tokenization at 

sentence level and dependency parsing. This component also performs name entity 

recognition tagging and anaphora resolution and transforms. 

2. Information Extractor 

These sentences are transformed into tagged structures that are used by the Information 

Extractor module. This module extracts the required information i.e. concepts, relations, 

properties and semantic roles of concepts.  

3. Sub-ontology Constructor 

The information i.e. concepts, relations, properties and semantic roles of concepts 

extracted in above module is used in constructing intermediate structures or sub-

ontologies for each sentence. 
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4. Sub-ontology Merger  

These sub-ontologies are further required to be merged to form the complete ontology of 

the document. In our proposed ontology mapping and merging scheme, process of 

merging takes into consideration not only the shared concepts and similar relations but 

also the semantic roles each concept is playing in a sentence. A set of rules is used which 

is designed specifically for this purpose.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Architecture of the Proposed System 
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5. Ontology Representer 

This module takes the bigger ontology, generated as result of above step, as input and 

represents it both graphically and as an rdf document. 

The following section 3.4 focuses on the detailed design of the proposed system and also 

includes the data design and algorithm design of each module. 

3.4 DETAILED DESIGN OF THE SYSTEM 

In this section, detailed design of the components of the proposed system is given by 

using the following subsection. It may be noted that in the process of designing a 

component following two issues are taken in to account. 

i. Input data or Information required and its representation- In the process of 

designing a component, first the data or information required is identified and then 

that data or information is represented using a suitable scheme by providing the format 

or structure of the data, storage of data and its utilization wherever required.  

ii. The algorithm- For each component their respective algorithms are given to express 

the way of utilizing structure of the data or information to achieve a particular 

intermediate (or final) result. 

In the coming subsections, we will give detailed design of each component of the system 

considering above two issues.  

3.4.1 Pre-processor 

The text documents being processed for constructing ontology may contain words, 

phrases or sentences which are redundant and unnecessary e.g. the phrases like “as a 

matter of fact”, “in all honesty”, “considering”  and many more do not contribute 

towards meaningful information of the text and may be processed to be removed from 

this document. The sentences being followed phrases like “namely”, “specifically”, 
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“thus”, “to put it another way” etc. just contain the redundant information and may be 

removed. To perform this task, different kind of transition words or phrases are first 

identified and then treated according to their type. The pre-processor takes the 

unstructured text as input and searches in the text for the transition words or phrases 

already stored in the dictionary. If a match is found in the text, it removes the transition 

word, or the transition phrase or the text following that word or phrase is removed. 

Action to be taken is decided according to the type of transition word or phrase e.g. for 

words like such as, for instance etc. which are Introductory type transition phrases, these 

words along with the text following these words is un-necessary and can be removed 

from the text without harming or distorting the information to be conveyed by the text.   

 Data Design for Pre-processor  

Since the present work is dealing with text written in English language, therefore, many 

types of transition words or phrases, found in the documents written using English 

language, are identified to take the appropriate action as stated below. These transition 

words are given in Table 3.1. The table also describes the type of these phrases or words 

and defines the action which can be taken if such types of transition words or phrases are 

identified by the pre-processor module.  

Data Storage: This table is stored in secondary memory and is brought to primary 

memory as the first step of removing these un-necessary words. 

Table 3.1: Transition Words Action Table 

Transition word/ 

phrase type 

Example words Action Taken 

Addition  indeed, further, as well (as this), either (neither), not 

only (this) but also (that) as well, also, moreover, what 

is more, as a matter of fact, in all honesty, and, 

furthermore, in addition (to this), besides (this), to tell 

the truth, or, in fact, actually, to say nothing of, etc.  

Transition 

word/phrase 

removed 
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Introduction 

 

 such as,  as,  particularly,  including,  as an 

illustration,  for example,  like,  in particular,  for one 

thing,  to illustrate, for instance,  especially, notably,  by 

way of example, etc.  

Transition 

word/phrase 

removed. Also 

the text 

following the 

transition 

word/phrase in 

the sentence is 

removed. 

Reference  speaking about (this),  considering (this),  regarding 

(this),  with regards to (this),  as for (this),  concerning 

(this), the fact that, on the subject of (this),  

Transition 

word/phrase 

removed 

Similarity   similarly,  in the same way,  by the same token,   in a 

like manner,  equally, likewise, etc 

Transition 

word/phrase 

removed 

Clarification that is (to say),  namely,  specifically,  thus, (to) put (it) 

another way, in other words, 

Transition 

word/phrase 

removed. Also 

the text 

following the 

transition 

word/phrase in 

the sentence is 

removed. 

Conflict  but,  by way of contrast,  while,  on the other 

hand,  however,  (and) yet,  whereas, though (final 

position),  in contrast,  when in fact,  conversely, etc. 

Transition 

word/phrase 

removed 

Emphasis  even more,  above all,  indeed,  more 

importantly, Besides, etc. 

Transition 

word/phrase 

removed 

Result  as a result (of this),  consequently,  hence,  for this 

reason,  thus,  because (of this),  in consequence,  so 

that, accordingly,  as a consequence,  so much (so) 

that,  so,  therefore, etc. 

Transition 

word/phrase 

removed 

Purpose  for the purpose of,  in the hope that,  for fear that,  so 

that, 

 with this intention,  to the end that,  in order 

to,  Lest, with this in mind,  in order that, so as to, so, 

etc. 

Transition 

word/phrase 

removed 

Consequence  under those circumstances,  then,  in that case,  if 

not,  that being the case, if so, otherwise  

Transition 

word/phrase 

removed 
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After deleting these transition words, the document contains lesser complex sentence 

structures and redundant information .  

Data Utilization: These simple sentences are given as input to natural language 

processor so that the necessary information can be extracted as illustrated in the next 

section. 

 Algorithm Design for Pre-processor  

The algorithm for pre-processing of text documents is shown in Figure 3.2. 

Sequential 

Transition 

in the (first, second, etc.) place, initially, to start with, 

first of all, thirdly, (&c.), to begin with, at first, for a 

start, secondly, etc. 

Transition 

word/phrase 

removed 

Continuation subsequently, previously, eventually, next, before (this), 

afterwards, after (this), then, etc. 

Transition 

word/phrase 

removed 

Conclusion to conclude (with), as a final point, eventually, at last, 

last but not least, in the end, finally, lastly, etc. 

Transition 

word/phrase 

removed 

Degression  to change the topic,  incidentally, by the way, etc. Transition 

word/phrase 

removed 

Resumption  to get back to the point,  to resume, anyhow, anyway, 

  at any rate, to return to the subject, etc.  

Transition 

word/phrase 

removed 

Concession  but even so,  nevertheless, even though, on the other 

hand,  admittedly, however,  nonetheless,  despite 

(this),  notwithstanding (this),  Albeit  (and) still, 

although, in spite of (this), regardless (of this),  (and) 

yet, though, granted (this), be that as it may, etc. 

Transition 

word/phrase 

removed 

Summation as was previously stated, so, consequently, in summary, 

all in all, to make a long story short, thus, as I have said, 

to sum up, overall, as has been mentioned, then, to 

summarize, to be brief, briefly, given these points, in 

all, on the whole, therefore, as has been noted, hence, in 

conclusion, in a word, to put it briefly, in sum, 

altogether, in short, etc. 

Transition 

word/phrase 

removed 
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Figure 3.2: Algorithm for Pre-processor 

The algorithm takes the text document as the input and begins by processing each 

sentence of the text document to check whether any of the phrases kept in Table have any 

occurrence in the sentence in step 1. If yes then step 2 finds the type of the phrase by 

looking into the table and takes the appropriate action like deleting the phrase or deleting 

the consequent sentence in step 3. The output of this algorithm is the pre-processed text 

document that is free from the un-necessary or redundant words or phrases. 

3.4.2 Natural Language Processor  

This section describes the processing of natural language processor which analyses input 

sentences from plain text documents syntactically and annotates the document with 

linguistic features that are needed by Information Extractor module. This module is 

having following components: 

  i) Anaphora Resolution  

ii) Dependency Parser 

iii) NER Tagging 

These components are described as follows: 

Algorithm pre_processor() 

Input:  text document, dictionary of transition words ,Table 3.1 

  Output: pre-processed text document 

  Begin 

for each sentence of the text document 

1. if any of the phrase from dictionary of transition words  is present in the 

sentence 

2. find the type of the phrase 

3. take action according to the Table 3.1 

     end for 

End 
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xviii) Anaphora Resolver 

For extracting the correct information from text it is necessary to replace the pronouns in 

a sentence to its mention as a noun in some previous sentence. This process called 

anaphora or co-reference resolution is performed here using Java RAP tool (Qiu, Kan & 

Chua, 2004) which takes plain text as input and gives output in the form of plain text with 

in-place substitution of anaphora with its antecedent.  

 Data Design for anaphora Resolver 

We get the anaphora resolved sentences as output of this tool. The details for data design 

for anaphora resolver is as follows: 

Output Data Format: As an example for the following sentence  “An Air India flight to 

HongKong was brought down at Kolkata late last night after some passengers 

complained of smoke in the cabin. The flight with passengers landed at the Kolkata 

airport. Under those circumstances, they were accommodated in nearby hotels.” 

 „they‟ will be replaced by “passengers” as 

“An Air India flight to HongKong was brought down at Kolkata late last night after some 

passengers complained of smoke in the cabin. The flight with passengers landed at the 

Kolkata airport. Under those circumstances, passengers were accommodated in nearby 

hotels.” 

Data Storage: The anaphora resolved sentences are stored in String in primary memory. 

Data Utilization: These anaphora resolved sentences are used by dependency parser 

module. 
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 Algorithm Design for Anaphora Resolver 

The algorithm for anaphora resolver is shown in  

Figure 3.3 as follows: 

 

 

 

 

 

 

Figure 3.3: Algorithm for Anaphora Resolver 

As shown in algorithm anaphora_resolver, we pass the preprocessed text document as 

input to the Java RAP tool. The tool processes it and gives the anaphora resolved text 

document as output.   

xix) Dependency Parser  

Documents as plain text are given to Stanford dependency parser [dep]  [55] which 

provides the result in the form of a part of speech tagged sentences of each document 

along with the dependencies among the constituents of each sentence. In this dependency 

graph vertices are the words in a sentence and an edge exists between each word and its 

syntactic head. The graph forms a tree rooted at the main verb. The edges are labelled 

with dependency types. These dependencies are utilized to find the concepts, relations 

and properties of concepts from the text.  

The Stanford dependency tagging for the first sentence will be given as in the Figure 3.4. 

Algorithm anaphora_resolver() 

   Input: pre processed text document  

   Output: anaphora resolved text document 

   Begin  

for each sentence of the text document 

call Java RAP 

end for 

End 
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Figure 3.4: Stanford Dependency Parser Output 

 Data Design for dependency parser 

The details for data design for dependency parser is as follows: 

Data Structure Used: Since the Stanford Dependency Parser is used to parse the 

sentences, we are not explicitly keeping the grammar rules used for parsing. However, 52 

grammatical relations which Stanford parser utilises in its final representation are 

identified and taken in to account while finding concepts etc. in the next phase. All 52 

relations used are given in Table 3.2. 

Table 3.2: Stanford Dependency Relations 

Sr. 

No. 

Dependency 

Relation 

Definition 

1 root   Root 

2 dep   Dependent 

3 aux   Auxiliary 

4 Auxpass  passive auxiliary 

5 cop   Copula 

6 arg   Argument 

7 agent   Agent 

8 comp   Complement 

9 acomp   adjectival complement 

10 ccomp   clausal complement with internal subject 

11 xcomp  clausal complement with external subject 

12 obj   Object 

13 Dobj  direct object 
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14 iobj   indirect object 

15 Pobj  object of preposition 

16 Subj  Subject 

17 nsubj  nominal subject 

18 nsubjpass   passive nominal subject 

19 csubj   clausal subject 

20 csubjpass   passive clausal subject 

21 cc   Coordination 

22 conj  Conjunct 

23 expl   expletive (expletive “there”) 

24 mod   Modifier 

25 amod   adjectival modifier 

26 appos  appositional modifier 

27 advcl   adverbial clause modifier 

28 det   Determiner 

29 predet   Predeterminer 

30 preconj  Preconjunct 

31 vmod   reduced, non-finite verbal modifier 

32 mwe   multi-word expression modifier 

33 mark   marker (word introducing an advcl or 

ccomp 

34 advmod   adverbial modifier 

35 neg   negation modifier 

36 rcmod   relative clause modifier 

37 quantmod   quantifier modifier 

38 nn   noun compound modifier 

39 npadvmod   noun phrase adverbial modifier 

40 tmod   temporal modifier 

41 num  numeric modifier 

42 number   element of compound number 

43 prep   prepositional modifier 

44 poss   possession modifier 

45 possessive   possessive modifier (‟s) 

46 prt   phrasal verb particle 

47 parataxis  parataxis  

48 goeswith  goeswith  

49 punct  punct  

50 ref  ref  

51 sdep  sdep  

52 xsubj  xsubj  
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Output Data Format: The sentence when parsed through the dependency parser has 

following format as shown in Figure 3.5. Here all the words are numbered and are given 

dependency tags in pairs. 

 

Figure 3.5: Dependency Tagged Sentence 

Output Data Storage: This tagged structure of the sentence is kept into primary memory 

in a String type data after removing the brackets, hyphens and numeric values provided 

by the tagger.  

Data Utilization This data is utilized by Information Extractor module.  

 Algorithm for Dependency Parser 

The algorithm for dependency parser is shown in Figure 3.6 as follows: 

 

 

 

             

Figure 3.6: Algorithm for Dependency Parser 

root ( ROOT-0 , brought-8 ) det ( flight-4 , An-1 ) compound ( flight-4 , Air-2 ) 

compound   (f light-4 , India-3 ) nsubjpass ( brought-8 , flight-4 ) case ( HongKong-6 

, to-5 ) nmod:to ( flight-4 , HongKong-6 ) auxpass ( brought-8 , was-7 ) 

compound:prt (  rought-8 , down-9 ) case ( Kolkata-11 , at-10 ) nmod:at ( brought-8 , 

Kolkata-11 ) advmod ( night-14 , late-12 ) amod ( night-14 , last-13 ) nmod:tmod ( 

brought-8 ,  ight-14 ) mark ( complained-18 , after-15 ) det ( passengers-17 , some-16 

) nsubj (  omplained-18 , passengers-17 ) advcl ( brought-8 , complained-18 ) case ( 

smoke- 0 , of-19 ) nmod:of ( complained-18 , smoke-20 ) case ( cabin-23 , in-21 )det ( 

cabin-23 , the-22 ) nmod:in ( complained-18 , cabin-23  

 

Algorithm dependency_parser() 

   Input: anaphora resolved text document 

   Output: text documents with dependency tags of each word 

   Begin  

for each sentence of the text document 

call Stanford Dependency parser 

end for 

End 
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The algorithm takes the anaphora resolved pre-processed  text document as the input to 

the Stanford Dependency Parser which parses the text and provides dependency tags to 

each word of each sentence of  the document.  

xx)  NER Tagging  

The nouns in the sentence are named entities. A noun in a sentence can refer to some 

person, location, organization or time. A natural language processing tool SENNA [56] is 

utilized here. SENNA is used in our work to provide NER tags to the nouns of the 

sentence.  

 Data Design for NER Tagger 

The details for data design for NER Tagger is as follows: 

Data Structure Used: SENNA has dictionary of 130 thousand words which is used to 

map every word to a vector of 50 floating numbers. SENNA also keeps Gazetteer list and 

uppercase information as mentioned earlier in Chapter 2. SENNA provides the following 

tags that can be extracted by it as shown in Table 3.3. 

Table 3.3: NER Tags 

NER Tag 

Person 

Location 

Organization 

Time 

Output Data Format: For the sentences of the example given above the following will 

be the NER tagged sentence shown pictorially in Figure 3.7. 

 S-PER, S-LOC, S-ORG and S-TIME tags may be given to the entities, B-NP,I-NP and 

E-NP specify the beginning, intermediate and end of the named entity.   
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Figure 3.7: NER Tagging of Sentence (Pictorial Representation)  

We get the sentences along with their tags associated with each word as shown in the  

Figure 3.8. 

 

 

 

 

 

 

 

 

            

            

  

Figure 3.8: NER Tagged Sentence 

Word                                                             Tag 

 

An                                                                  B-ORG  

Air                                                                  I-ORG 

India                                                               E-ORG  

Flight                                                                    O 

To                                                                         O  

HongKong                                                         S-LOC 

was                                                                        O 

brought                                                                  O 

down                                                                      O 

at                                                                            O 

Kolkata                                                              S-LOC 

late                                                                     S- TIME 

last                                                                     S- TIME 

night                                                                  S- TIME 

after                                                                       O 

some                                                                      O 

passengers                                                             O 

complained                                                            O 

of                                                                           O 

smoke                                                                    O 

in                                                                            O 

the                                                                          O 
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This structure of sentences shows the respective named entity tagged for individual words 

such as S-LOC for location, ORG for organisation; S-TIME for time and O stands for 

others. 

Data Storage The named entity tagged sentences are stored in a String in primary 

memory  

Data Utilization: These tagged sentences can be used further by information extractor 

module. 

 Algorithm Design for NER Tagger 

The algorithm for NER tagger shown in Figure 3.9 is as follows:    

 

 

 

 

Figure 3.9: Algorithm for NER Tagger 

The algorithm starts with passing the pre-processed document to SENNA which performs 

the tagging for each sentence of the document and gives the name entity tagged sentences 

of the document as output which are used by Information Extractor module as an input 

for further processing. 

3.4.3 Information Extractor  

The Information Extractor is designed here for extracting information from sentence 

structures. The information extracted is generally concepts, their semantic roles in the 

Algorithm ner_tagger() 

   Input:  pre-processed text document 

   Output: named entity tagged text document 

   Begin 

for each sentence of the text document 

              call SENNA for name entity tagging 

                end for 

End  
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sentence, properties and relations.  It takes the co-reference resolved sentences having 

dependency tags and NER tags attached to them. 

i) Concept, Relation and Role Extractor  

These are the concepts participating directly in a relation given by the verb in the 

sentence and concepts which are not directly related to the verb. Concepts may be 

existing in the text in the form of a single word or a multi word i.e. a single noun may be 

there representing the concept or a noun phrase is used in the sentence for a concept. 

Stanford parser takes into account of these multi word concepts very efficiently but to 

give these concepts a proper representation, these are combined to form a multiword 

concept. We analysed the dependency tags along with NER tags from SENNA and 

established whether the concept is performing an action or an action is being acted upon 

that concept. We further assigned semantic roles to these concepts depending upon 

whether they are actors or acted upon concepts and their NER tags e.g. a word is having 

dependency tag as nsubj and is having named entity tag as Person. This word will be 

framed as actor concept and the semantic role of this actor concept will be established as 

agent. If the dependency tag for a word is Tmod and the name entity tag is Time the 

concept will be having type acted upon and the semantic role Temporal. Table 3.4 shows 

the possible types of concepts and possible roles according to the NER and dependency 

tags.  

Table 3.4: Dependency Tags, Concepts, Possible Roles and Relations 

Dependency Tag Concept NER tag Role Relation 

Nsubj 

Nsubjpass 

actor concept None 

Person 

Organization 

Location 

Agent 

agent 

organization 

location 

Verb 

Rcmod 

Vmod 

actor concept None Agent Verb 

 

Dobj 

pobj 

iobj 

xcomp 

agent 

acted upon concept None Theme Verb 
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Tmod acted upon concept Time Temporal Verb 

Prep_ X 

 

X=with 

 

X=to 

 

 

X=in 

 

X=at 

 

 

X=after 

 

X=on 

acted upon 

concept/indirect concept 

 

 

 

 

 

none 

 

none 

location 

 

none 

location 

time 

 

none 

location 

time 

none 

 

 

accompanier 

 

 

location 

 

theme 

location 

temporal 

 

theme 

location 

temporal 

theme 

 

Poss actor concept 

acted upon concept 

None 

None 

Agent 

Possession 

Has 

 Data Design for concept_relation_role extractor 

The information thus extracted using Table 3.4 by this module needs to be stored in 

tables in a database. Following tables are created for this module:  

i) Concept Table 

The concept table contains the all the concepts extracted from all the documents with 

their respective document_id, sentence_ id and concept_ id assigned to each concept. 

This table is filled by the concept_extractor module and is stored in secondary memory. 

Data Format: The metadata for concept table in Java DB (Derby) database is as shown 

in Table 3.5.   

Table 3.5: Metadata for Concept Table 

Field Name Data Type 

Doc_id VARCHAR 

Sentence_id VARCHAR 

Concept_id VARCHAR 

Concept_Name VARCHAR 
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The metadata for Concept Table contains Document identification number Doc_id, 

Sentence identification number sentence_id, Concept identification number Concept_id 

and the name of the concept Concept_name.  

Data Storage: All these fields are stored as having VARCHAR as their datatype. 

Data Utilization: Concept table is utilized by Property_extractor and 

Hierarchy_extractor modules by bringing it into primary memory. 

ii) Object_Property_Table 

This table contains the extracted actor concepts denoting the subjects, Acted upon 

concepts denoting the objects, their semantic roles in the sentence and the relation 

between the subject and the object denoted by relation_name. 

Data Format: The metadata for Object_Property_Table in Java DB is shown in Table 

3.6. 

Table 3.6: Metadata for Object_Property_Table 

Field Name Data Type 

Doc_id VARCHAR 

Sentence_id VARCHAR 

Rel_id VARCHAR 

Actor_concept_id VARCHAR 

Ac_has_role VARCHAR 

Relation_Name VARCHAR 

Acted_upon_concept VARCHAR 

Au_has_role VARCHAR 

The metadata for Object Property Table contains Document identification number 

Doc_id, Sentence identification number sentence_id, Relation identification number, 

Actor Concept identification number Actor_concept_id, the semantic role of actor 
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concept, Acted upon Concept identification number Acted_upon_concept_id, the 

semantic role of acted upon concept, and the name of the object propertyrelation _name.  

Data Storage: All these fields are stored as having VARCHAR as their datatype. 

Data Utilization: This table is filled by object_property module and is stored in 

secondary memory. This table is drawn into primary memory so that it can be used by 

ontology_matcher_merger module. 

 Algorithm Design  for concept_relation_role_extractor() 

Concept extraction, relation extraction and role extraction go hand in hand. The concepts 

on which the action is being done and concepts doing action are captured along with the 

action i.e. the relation among these concepts and are stored in tables having concepts and 

relation associated with them. The algorithm for extracting concepts, their semantic role 

in the sentence and relations among the concepts takes the sentence token list, 

dependency tags and name entity tags from the output the natural language processing 

module. It also uses Table 3.4 which maps the concepts to their semantic roles according 

to their dependency tag and name entity tag. The algorithm is given in Figure 3.10. 

Here in this algorithm, the output of natural language processing module i.e. the sentence 

token list which is dependency parser tagged and the name entity tags from SENNA are 

given as input. Depending upon the dependency tags and name entity tags, concepts are 

extracted in step 1.The concepts are generalized as actor concepts or acted upon concepts 

in step 1.a and step1.b and provided their semantic roles according to their tags and Table 

3.4 in step 1.e. The algorithm also looks for the multiword concepts and extracts and 

stores them by adjoining them with an underscore in step 2.  Object properties (relations 

among these concepts) are also extracted by this algorithm in step 1.e. The concepts 

along with their semantic roles and the relations between them are stored in 

Object_Prop_Role_Table in step 3.      
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Figure 3.10: Algorithm for Concepts, Roles and Relation Extractor 

ii) Property Extractor   

The properties of the concepts participating in ontology may have some property 

associated with them given by the sentence. These properties are those that modify the 

concept in some manner .e.g. in the following sentence: 

                                       “This is a red book”. 

red which is an adjective in the sentence becomes data property for the concept book in 

the ontology. These properties are extracted by processing the dependency parsed 

structure of the sentence. 

Algorithm concept_relation_role_extractor() 

   Input: sentence token list, dependency tags, name entity tags from SENNA 

   Output: actor concepts, acted upon concepts, roles, relations 

   Begin  

1. for each token in the sentence list 

2. 1.  analyze the dependency tag and name entity tag for possible concepts, relations 

and role                     //refer columns Dependency tag and Concept from Table 

3.4. 

a) a) extract actor concepts        

b) b) extract acted upon concepts  

c) c) extract concepts not directly related to verb  

                                                       //refer columns NER tag and Role from Table 

3.4. 

d) d) extract roles   

                                                     //refer column Relation from Table 3.4. 

e) e) extract relations  

                                                    //refer column Dependency tag  from Table 3.4 

2. analyze the dependency tag  for  “nn” or “nnp”    

                                          // multiword concepts representation                   

      a)  concatenate the concepts using “_”        

      b) store all concepts in concept_table 

3. store concepts, roles, relations in  Object_Prop_Role_ Table 

end for 

End 
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 Data Design for property extractor 

These extracted properties are stored along with their concepts in a table in the database. 

 Data Format: We use data property table that contains the properties of the extracted 

concepts. The metadata for Data_Property table in Java DB is given as follows in Table 

3.7. 

Table 3.7: Metadata for Data_Property Table 

Field Name Data type 

Doc_id VARCHAR 

Sentence_id VARCHAR 

Concept_id VARCHAR 

Has_prop VARCHAR 

The metadata for Data_Property Table contains the Document identification number 

Doc_id, Sentence identification number Sentence_id, Concept identification number 

Concept_id and a property field has_prop to show the data property associated with the 

concept.  

Data Storage: This table is stored in secondary memory. 

Data Utilization: This table is brought into primary memory to be used by Ontology 

Generator and Ontology Enricher (Chapter 4). 

 Algorithm Design for property_extractor 

The properties that modify concepts in some manner are called data properties and are 

extracted from text according to their dependency tags given as input along with the 

sentence token list. The algorithm for extracting properties is given in Figure 3.11.  
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Figure 3.11:Algorithm for Property Extractor 

In this algorithm, the output of natural language processing module is given as input 

which is sentence token list along with their dependency tags. In step 1 and step 2.a,  this 

algorithm analyses the tokens of each sentence having „amod‟ dependency tag which 

identify the adjective associated with the concept determining its data property. These 

data properties are stored in a Data_Property Table along with their associated concept in 

step 2.b. 

iii)  Hierarchy Extractor  

From the list of concepts extracted in Concept_Table hierarchy of concepts is extracted. 

All the concepts from Concept_Table are brought to a concept list in primary memory. 

The concepts are syntactically matched to determine whether some concept matches 

partially with some other multiword concept (compound nouns). If a concept matches 

with head noun of the compound noun, it is added to the hierarchy table with relation 

“has_a”. Otherwise if a concept matches with other part of compound noun which is not 

head noun, it is added to hierarchy table with relation “has_ instance”. 

 

Algorithm property_extractor() 

Input: sentence tokens list with dependency tags next to each token in the 

list 

Output: concepts properties 

Begin 

  1. for each token in the sentence list 

    2. for each concept  from concept_ list 

     a) analyze the dependency tag “amod” for extracting properties of 

concepts 

    b) store the concept properties in data_prop_table 

          end for 

        end for 
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 Data Design for Hierarchy Extractor 

Hierarchy table is generated if concepts are related to each other with part-whole relation 

or is-a relation. This table captures the possible taxonomical relations among concepts.  

Data Format: The metadata for Hierarchy_Table is shown in Table 3.8 as follows: 

Table 3.8: Metadata for Hierarchy Table 

 

 

 

 

The metadata of this table contains the document identification number Doc_id, 

Hierarchy identification number H_id, name of the sub concept sub_concept and the 

name of super concept super_concept.  

Data Storage: This table is generated by Hierarchy_extractor module using the concept 

table and is stored in secondary memory.  

Data Utilization: This table is utilized by ontology_matcher_merger by bringing it into 

primary memory so that concepts having a hierarchy in the form of sub concepts and 

super concepts can be merged. 

 Algorithm for Hierarchy Extractor 

There may be a possibility that some concepts extracted from text possess a hierarchical 

relation to some other concepts. This relation can be an is-a relation or has-instance 

relation. The hierarchy extractor algorithm takes the concept list and finds the super 

concepts and their sub concepts and establishes the proper relation between them. The 

algorithm is given as in Figure 3.12.  

Field Name Data type 

Doc_id VARCHAR 

H_id VARCHAR 

Sub_concept VARCHAR 

Super_concept VARCHAR 
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The algorithm takes the list of concepts which include single word and multiword 

concepts and generalises them into a hierarchy if exist. The single word concept may be 

subsumed by some other multiword concept. The single word concept may be same as 

the head noun of the multiword concept or as the other part of the multiword concepts. 

This algorithm stores both of these concepts by establishing has_instance or has_a 

relation between them in hierarchy_Table.. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Algorithm for Hierarchy Extractor 

3.4.4 Sub-Ontology Generator   

For each sentence a sub-ontology is created using Jena API comprising of concepts along 

with their semantic roles, data properties, relations as their object properties, and 

hierarchy if exists. These sub-ontologies are shown graphically by using the GraphViz 

tool [57]. 

Algorithm hierarchy_extractor() 

Input:  concept_ list from concept_Table 

Output: super_ concept, sub_ concept 

 Begin 

               1. for each concept from concept_ list 

        compare concept with each multi word concept syntactically  for partial 

matching  

a) If concept matches with head noun of multi word concept 

              super_concept = concept  

              Relation = “has_a” 

              sub_concept= multiword concept      

b) If concept matches with other part of multi word concept except head noun 

              super_concept = concept  

              Relation = “has_instance” 

              sub_concept= multiword concept      

   2.   store in Hierarchy_Table 

       end for 

 End                        
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 Data Design for sub-ontology generator 

The contents of Object_Property_Role_Table, Properties_Table and Hierarchy_Table are 

brought into lists in the primary memory. These lists are used to create sub-ontology for 

each sentence using Jena API. 

Data Format and Storage: The sub-ontologies are stored in rdf structures in the 

memory. 

Data Utilization: These sub-ontologies are used further by sub-ontology merger to 

construct the final ontology.   

3.4.5 Sub-Ontology Merger  

The sub-ontologies thus created for each sentence are merged to form a single ontology. 

This process starts with merging the very first ontology with a NULL ontology. For 

merging ontologies relations and concepts of different ontologies are matched for their 

syntactic and semantic similarity using WordNet [60] and the Hierarchy_Table. The 

semantic roles of concept nodes are also used in the matching process. These are also 

matched for similarity wherever there are similar concepts..  

This module considers all cases where relation or concept nodes of an ontology may or 

may not be matching to concept or relation node of other ontology. Also there may be 

dissimilarity in matching concept nodes.  

 Data Design for sub-ontology merger 

To tackle these cases we have purposed some rules here that are stored in primary 

memory according to which nodes in sub-ontology are merged with their corresponding 

semantic similar nodes of other ontologies.  

Data Structure Used: Following rules are designed in our work which are being applied 

in the algorithm for merging sub-ontologies  
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Rule 1: Relations in both sub ontologies are semantically same. Also their respective 

concepts and the roles of concepts in these relations are matching semantically. In 

addition to this hierarchies of concepts are taken into consideration for merging the 

concepts as shown in Figure 3.13. 

Ontology1  Ontology2                                          Ontology3 

 

Figure 3.13: Rule 1 

Rule 2: The dangling non-matching concept node in sub-ontology. In this case relations 

R1 of Ontology1 and R2 of Ontology2 are semantically similar and their related concept 

nodes i.e. N1 is semantically matched with N3 and N2 is semantically matched with N4. 

Here N5 is a non-matched concept, which will be aligned as shown in Figure 3.14. 

Ontology1  Ontology2                                          Ontology3 

 

Figure 3.14: Rule 2 

Rule 3: Some concept nodes are semantically matching, but corresponding relation is 

semantically dissimilar in both sub-ontologies. In this case relations R1 of ontology1 and 

R1 

N1 N2 

R2 

N3 N4 

R1 

N1 N2 

= + 

Role1 Role2 Role1 Role2 Role1 Role2 

R1 

N1 N2 

R2 

N3 N4 
N5 

R1 

N1 N2 
N5 

= + 

Role1 Role2 Role1 Role2 

Role3 

Role1 Role2 

Role3 
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R2 of ontology2 do not match while the concept N1 and N3 are similar. These will be 

aligned as shown I Figure 3.15. 

Ontology1  Ontology2                                          Ontology3

 

Figure 3.15: Rule 3 

Rule 4: Concept nodes are matching semantically excluding their semantic roles and their 

corresponding relations are also semantically dissimilar in both ontologies. The matching 

concepts are merged to be a single concept keeping their respective semantic roles in 

each sentence intact. In this case relations R1 of ontology1 and R2 of ontology2 do not 

match while the concept N1 and N3 are semantically similar having roles Role1 and 

Role3 respectively. These will be aligned as shown in Figure 3.16. 

Ontology1  Ontology2                                          Ontology3

 

Figure 3.16: Rule 4 

Data Utilization: These rules are used by ontology matcher merger to construct the final 

ontology. 

 

R1 

N1 N2 

R2 

N3 N4 
   N5 

R1 

N1 N4 
N2 

= + 
R2 

N5 
Role1 Role2 

Role1 Role3 

Role4 

Role1 Role3 Role4 

Role2 

R1 

N1 N2 

R2 

N3 N4 

R1 

N1 N4 
N2 

= + 
R2 

Role1 Role2 
Role3 Role4 

Role1 

Role4 

Role2 

Role2 
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 Algorithm for ontology matcher merger  

In the process of ontology construction here sub ontologies are created for each sentence 

after extracting the concepts, their semantic roles and establishing the correct hierarchy 

among them and extracting their object and data properties. These sub-ontologies are 

matched and merged to form the whole ontology. Some rules have been crafted for the 

purpose of matching and merging these sub-ontologies which are utilized by the 

ontology_matcher_merger algorithm which takes two different sentence sub-ontologies 

as input, uses WordNet in the process of matching and merges the ontologies according 

to these rules to produce a merged ontology. The algorithm for matching and merging 

ontologies is given as follows in Figure 3.17. 

   

 

 

 

 

 

 

 

             

 

 

 

Figure 3.17: Algorithm for Ontology Matcher Merger 

Algorithm ontology_matcher_merger() 

Input: Ontology O1, Ontology O2, WordNet 

Output: Merged ontology O3 

Begin 

1. Check if O1 is NULL then assign O3= O2; 

2. Analyze relation in both ontologies for equality 

a) analyze actor concepts and acted upon concepts of both ontologies for equality 

// Rule 1  (Figure 3.13) 

b) analyze actor concepts role and acted upon concepts role of both ontologies for 

equality 

3. integrate the two ontologies by merging the sub-ontologies where the matching is  

found and store in O3. 

4. align the non-matching dangling concepts // Rule 2 (Figure 3.14) 

5. align non matching relations pairs with non-matching concepts    // Rule 3 (Figure 

3.15) 

6. align non matching relations pairs with matching concepts      // Rule 4 (Figure 3.16) 

End 
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This algorithm applies the devised rules by us for merging the ontologies in a manner 

such that all the concept pairs, relation pairs are aligned while integrating these 

ontologies. In step 1, there is a check to ascertain that any of the ontologies to be merged 

are not null otherwise the merged ontology will be the not null ontology itself. Then in 

step 2 and 3, the relation pairs from both ontologies are analysed to find the matching 

concept pairs or matching relation names. The rule devised are applied here in step 4, 5 

and 6 to integrate these ontologies and assure that all the matching concept pairs or 

matching  relation pairs are merged well and the non-matching relations or non-matching 

concepts are aligned well in the integrated ontology. Ontology Representer 

The sentence ontologies are merged in the ontology matcher merger and regenerated to 

form complete text document ontology using Jena API.  The merged final ontology can 

be converted into dot file which is further shown graphically by GraphViz tool [57].  

iv) Data Design for ontology representer 

The document ontologies are stored in secondary memory in .rdf or .owl form.  

The above described algorithms of different modules are used by ontology generator 

algorithm. This algorithm takes plain text documents as input. The process for generating 

complete ontology from a set of documents is given in the algorithm as shown in Figure 

3.18.  

 Algorithm Design of Ontology_ Generator  

This algorithm generates the overall ontology for a given text document by calling the 

methods defined for the all the modules of the system as shown in Figure 3.18. The 

algorithm takes the unstructured text document as input and processes it sequentially 

through these methods and gives a final ontology of that text document. 
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Figure 3.18: Algorithm for Ontology Generator 

The algorithm first starts with processing each sentence of each document. Each sentence 

is preprocessed by the module pre_processer to remove transition words or phrases and 

then anaphora_resolver() is called in step 2 which resolves the coreferences. Dependency 

tagging is carried out in step 3 followed by named entity recognition in step 4. After 

performing all the natural language processing on the document, this is passed for further 

Algorithm Ontology_ Generator  

Software Tools Used: Stanford Dependency Parser, Senna, JavaRAP,  

Input: A set of text documents,  WordNet  

Output: Ontology of documents 

Begin 

for each document 

        for each sentence 

1. pre_processor(); 

2. anaphora_resolver();   

//output is pronouns resolved to their                                                                                                                    

noun mentions 

3. dependency_parser(); 

//output is part of speech tagged sentences along with                                                                                                          

//their dependencies    

4. ner_tagger(); 

                                                               // output is named entity tagged nouns 

5. concept_relation_role_extractor();          

                                                               //output is concept, roles, object properties 

6. property_extractor();                              //output is data properties of concepts 

7. hierarchy_extractor();                           // output is hierarchies of concepts if 

exist 

8. Generate sentence ontologies using Jena API for ontology                                                                                                                                                                  

                                                     // generate sentence   ontologies       

end for 

                                                       

9. ontology_matcher_merger();   // match and merge ontologies to generate full 

ontology 

10. Generate the ontology in .rdf  format using Jena API and GraphViz 

end for  

End 
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processing to the Information Extractor. In step 5 concepts, relations and semantic roles 

are extracted by calling concept_relation_role_extractor(). 

In step 6 data properties of the concepts are extracted by calling property_extractor. In 

step 7 hierarchies are established by calling hierarchy_extractor(). Step 8 generates the 

sentence ontologies. In step 9,  these ontologies are merged to form the final ontology by 

calling ontology_matcher_merger(). Step 10 generates and shows the final ontology 

using Jena API and also shows the ontology graphically through GraphViz tool.  

3.5 WORKING OF SYSTEM THROUGH EXAMPLE 

The process of constructing ontology takes place in two steps. First step is to form the 

sub-ontological structures from the sentences of the document and in second step the full 

document ontology is built using the previously formed sentence sub-ontologies. It is 

assumed here that the inputs are correct.  

For a sample text document having following three sentences:  

Sentence1: An Air India flight to HongKong was brought down at Kolkata late last night 

after some passengers complained of smoke in the cabin. 

Sentence 2: The flight with passengers landed at the Kolkata airport. 

Sentence 3: Under those circumstances, Passengers were accommodated in nearby 

hotels 

 

After processing the sentences from all the extractors except following tables are 

obtained. The Concept_Table contains the concepts retrieved from all sentences in all 

documents as shown in Table 3.9. 

Table 3.9: Concept_Table 

Doc_id Sentence_id Concept_id Concept_Name 

D0 S0 Cid0 Air_India_Flight 

D0 S0 Cid1 HongKong 

D0 S0 Cid2 Kolkata 
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Table 3.10 contains the object properties i.e. relations among the concepts and role each 

concept is playing. As mentioned above some concepts are directly related to the verb in 

the sentence. These concepts are stored in table with the relation name.  

Other concepts which are not directly related to the verb directly are stored without 

relation name and their relation is identified by the name of label and role each concept is 

playing in relation with the other concept. 

Table 3.10: Object_Property_Role_Table 

D0 S0 Cid3 Passengers 

D0 S0 Cid4 Smoke 

D0 S0 Cid5 Cabin 

D0 S1 Cid6 Flight 

D0 S1 Cid7 Passengers 

D0 S1 Cid8 Kolkata_airport 

D0 S2 Cid9 Passengers 

D0 S2 Cid10 Night 

D0 S2 Cid11 Hotels 
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D0 S0 Rel_id0 Cid0 Agent Brought_down Cid2 Location 

D0 S0 Rel_id1 Cid3 Agent Complained Cid4 Theme 

D0 S1 Rel_id2 Cid6 Agent Landed Cid8 Location 

D0 S2 Rel_id3 Cid9 Agent Accommodated Cid11 Theme 

D0 S0 Rel_id0 Cid10 Temporal Brought_down Cid0 Agent 

D0 S0 Rel_id1 Cid5 Location Complained Cid3 Agent 

D0 S0 Rel_id4 Cid1 Location To Cid0 Agent 

D0 S1 Rel_id5 Cid7 Accompanier With Cid7 Agent 
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Table 3.11 stores the data properties of the concepts extracted from each sentence in the 

document by the property extractor module. 

Table 3.11:Property_Table 

 

 

Hierarchy extractor module finds the hierarchy among the concepts from the Concept_ 

Table and stores in Hierarhcy_Table as shown in Table 3.12. 

Table 3.12:Hierarchy_Table 

 

 

 

For each of these three sentences, ontologies are generated in the first step (Figure 3.19). 

 

Figure 3.19: Sentence Sub-ontologies (Cont. on next page) 

Doc_id Sentence_id Prop_id Concept_id Has_prop 

D0 S1 Pid0 Night Last 

D0 S2 Pid1 Hotels Nearby 

Doc_id H_id Sub_concept Super_concept 

D0 H_id1 Air_india_flight Flight 

D0 H_id2 Kolkata_airport Kolkata 
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Here  green boxes show the concepts, ellipses show the object properties, yellow boxes 

show the data properties and the pink boxes show the roles of the concepts. The second 

step here is to apply ontology matching and merging algorithm on these ontologies. Here 

relations (object properties) as shown by the ellipses in the sentence ontologies are 

considered at first. All possible base forms from WordNet [60] are taken for each relation 

and used for matching similarity. Table 3.13 shows the possible base forms of the 

relations identified in the document. 

Table 3.13: Base Forms of Relational Words 

Relation 

Name 

Possible base form of the word in WordNet 

brought down lower, take down, let down, get down, bring down: move something or somebody to a 

lower position, overthrow, subvert, overturn,  cause the downfall of, impose something 

unpleasant, land, put down, cause to come to the ground, reduce, cut down, cut back, 

trim, trim down, trim back, cut, cut down on; make a reduction in 

Landed set down: reach or come to rest,  put down, bring down: cause to come to the ground, 

bring down, bring into a different state, bring ashore, deliver (a blow), set ashore, shore: 

arrive on shore, shoot down, land: shoot at and force to come down, landed: owning or 

consisting of land or real estate 

Accommodate suit,  fit: be agreeable or acceptable to, adapt, make fit for, or change to suit a new 

purpose, provide with something desired or needed,  hold, admit: have room for; hold 

without crowding, lodge, accommodate: provide housing for, oblige, accommodate: 

provide a service or favour for someone, reconcile, conciliate: make (one thing) 

compatible with (another) 

Complain kick, plain, sound off, quetch, kvetch: express complaints, discontent, displeasure, or 

unhappiness, make a formal accusation; bring a formal charge 
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There can be different cases while applying the ontology_matcher_merger algorithm. 

Each case is considered separately and the purposed rules are applied to match and merge 

different constituents of the ontology.  

Case 1 Applying the Rule 1(Figure 3.13) 

Each base form of the word or phrase representing the relation in one sentence is matched 

with -the all possible base forms of the relations in other sentences for applying the Rule 

1. As evident from the above table the relations brought_down and landed match as the 

relation brought_down has base form land and also landed has base form bring down so 

borught-down in ontology1 replaces landed in the merged ontology. Air_india_flight and 

Flight are matched using hierarchy_Table and their respective roles are also matched. In 

the similar manner Kolkata and Kolkata_airport  are matched using Hierarchy_Table and 

by matching their respective semantic roles as shown in Figure 3.20. 

 

Figure 3.20: Similarity Matching in Case 1 

Case 2  HongKong is a dangling non matching concept in Ontology1 and is merged with 

Ontology2 according to Rule2 (Figure 3.14). 

Case 3 The concept “passengers” has role “agent” in first ontology and is in relation with 

“complained” while in second ontology it‟s role is “accompanier_with” with no matching 
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relation in Ontology2. In the merged ontology there is just one node for “passengers” 

and has three roles agent_s0, accompanier_with_s1, and agent_s2  which is obtained by 

applying Rule4 (Figure 3.16 ) again while merging this with Ontology3. 

The rdf file generated corresponding to this sample document is shown in Figure 3.21. 

 

Figure 3.21: .rdf File of Sample Document 

The final ontology can be shown graphically using GraphViz in which the dot file is 

generated first as shown in Figure 3.22.  
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Figure 3.22: dot File for sample document 

This dot file is then converted by the GraphViz software to a graph depicting the final 

merged ontology as shown in Figure 3.23. 

digraph mygraph{    

  complained ->brought_down   

{  ranksep=1.2  rankdir=LR; complained brought_down  } 

  brought_down ->accommodated   

{  ranksep=1.2  rankdir=LR; brought_down accommodated  } 

  passengers ->complained   

  passengers [shape=box,style=filled,color=Green];   

  passengers -> agent_0 [style=bold,label="HAS ROLE"];    

  agent_0 [shape=box,style=filled,color=Pink];   

  complained ->cabin   

{ rank= same rankdir=TB passengers cabin  } 

  cabin [shape=box,style=filled,color=Green];   

  cabin -> location_0  [style=bold , label="HAS ROLE"];    

  location_0 [shape=box , style=filled , color=Pink];   

  hotels ->nearby 

  nearby [shape=box,style=filled,color=Yellow];   

  Air_India_flight ->brought_down   

  Air_India_flight [shape=box,style=filled,color=Green];   

  Air_India_flight -> agent_1 [style=bold,label="HAS ROLE"];    

  agent_1 [shape=box,style=filled,color=Pink];   

  brought_down ->Kolkata_airport   

{ rank= same rankdir=TB Air_India_flight Kolkata_airport  } 

  Kolkata_airport [shape=box,style=filled,color=Green];   

  Kolkata_airport -> location_1  [style=bold , label="HAS ROLE"];    

  location_1 [shape=box , style=filled , color=Pink];   

    agent_2 [shape=box,style=filled,color=Pink];   

  brought_down ->Kolkata_airport   

{ rank= same rankdir=TB Air_India_flight Kolkata_airport  } 

    location_2 [shape=box , style=filled , color=Pink];   

  Passengers ->accommodated   

  Passengers -> agent_3 [style=bold,label="HAS ROLE"];    

  agent_3 [shape=box,style=filled,color=Pink];   

  accommodated ->hotels   

{ rank= same rankdir=TB Passengers hotels  } 

  hotels [shape=box,style=filled,color=Green];   

  hotels -> location_3  [style=bold , label="HAS ROLE"];    

  location_3 [shape=box , style=filled , color=Pink];   

  night [shape=box,style=filled,color=Green];   

  night ->brought_down[style=bold,label="time"];   

  night ->temporal_0[style=bold,label="HAS ROLE"];   

  temporal_0 [shape=box,style=filled,color=Pink];   

  night ->last 

  last [shape=box,style=filled,color=Yellow];   

  Hongkong [shape=box,style=filled,color=Green];   

  Hongkong ->Air_India_flight[style=bold,label="to"];   

  Hongkong ->location_1[style=bold,label="HAS ROLE"];   

  location_1 [shape=box,style=filled,color=Pink];   

  passengers [shape=box,style=filled,color=Green];   

  passengers ->Air_India_flight[style=bold,label="with"];   

  passengers ->accompanier_2[style=bold,label="HAS ROLE"];   

  accompanier_2 [shape=box,style=filled,color=Pink];   

} 

 



 

86 

 

 

Figure 3.23: Merged Ontology of the Document 

In the merged ontology redundant concepts are represented by a single node having 

multiple edges. Hence the merged concepts of the documents are represented in the 

ontology with the roles they are playing in each sentence.   

3.6 IMPLEMENTATION DETAILS 

 We have implemented our work on Intel Core i3 with 4GB RAM using  Windows 7 

Operating System. We have used NetBeans 8.0.2 which is using Apache Derby as 

relational database which is bundled with NetBeans 8.0.2. Apache Derby is based on 

Java, JDBC and SQL standards. We have used Stanford Dependency Parser for 

annotating the sentences of text documents. The corpus on which Stanford Dependency 

Parser has been trained by [63] contains about 250,000 words of unedited web text. 

SENNA tool is used here for name entity tagging. We have used  JavaRAP tool for 

anaphora resolution. WordNet [64] is used here for finding synonyms for matching and 

merging the concepts. GraphViz tool is used for showing the ontology pictorially.  We 

have used Jena API to construct and store our ontology in the form of .rdf files.  

Dataset-A set of 50 random news articles in English language has been taken for 

experimentation. These news articles are assumed to be grammatically correct.   
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As it is not convenient to show the ontologies for each news article in the set, 

implementation of a few news articles is displayed as follows: 

Document1: Prime minister Narendra Modi will leave for the Belgium capital tomorrow 

night. He will attend the Nuclear Security Summit in Washington and visit Saudi Arabia. 

Prime minister will take part in the long-pending Summit for the first time. 

The final ontology will be shown graphically in the Figure 3.24 

 

Figure 3.24: Ontology of Document 1 

Document 2 : Sania Mirza was born in Mumbai and settled at Hydrabad. She began 

playing tennis at early age. She became a great tennis player and she defeated top player 

Nadia. 

The ontology for Document 2 will be shown graphically in the Figure 3.25 
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Figure 3.25: Ontology of Document 2 

For Document 3: “The Mayor and water supply officials of Mangaluru City Corporation 

have been claiming that there is enough water at a vented dam at Shambhoor, on the 

upstream of the Thumbe dam. They are exposed as a reality check on Sunday revealed 

that the dam of a hydro power project at Shambhoor is empty”. The ontology will be 

shown graphically in the Figure 3.26. 
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Figure 3.26: Ontology of Document 3 

3.7 PERFORMANCE EVALUATION 

The set of 50 news articles taken for experimentation is used also as test data set for 

performance analysis. We have compared our system with Open Calais [31] system by 

Thomson Reuter‟s which is linked to a market leading ontology extracting entities  

(persons, events, places), relationships etc and gives results in rdf format.  

As shown in the Table 3.14,  our system has scored similar precision as the other system. 

But our system outscores in recall and F-measures to Open Calais system in extracting 

the correct entities and relations. 
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Table 3.14: Result Comparison 

System Precision Recall F-measure 

  C
o

n
cep

t 

R
ela

tio
n

 

D
a

ta
 

P
ro

p
erties 

C
o

n
cep

t 

R
ela

tio
n

 

D
a

ta
 

P
ro

p
erties 

C
o

n
cep

t 

R
ela

tio
n

 

D
a

ta
 

P
ro

p
erties 

Open-

Calais 

100% 100% 100% 56% 25% 69.20% 71.79 40.4 81.79 

Proposed 

System 

100% 97.10% 100% 87.28% 82% 86.80% 93.2 88.9 92.9 

The evaluation results indicate that our system provides good results in constructing 

ontology. The reason for the better performance of our system is its ability to extract all 

the non-taxonomical relation as compared to the other system which works on a specified 

set of taxonomical and non-taxonomical relations. 

The reason for low recall in extracting relations in our system is that while pre-processing 

we remove some transition words(Table 3.1) to reduce the complexity of sentence e.g. as 

was previously stated, speaking about, that being the case, to summarize etc. The verbs in 

these transition words are not taken as relations in the ontology. Moreover the system is 

dependent on the accuracy of the parser used for extracting dependency. Stanford 

dependency parser has an F-score of 85.78 [65] for attaching noun phrase, modifier, 

clause etc.  

We can show the performance analysis of our system and Open Calias graphically as 

shown in Figure 3.27. 

 



 

91 

 

  

Figure 3.27: Performance Analysis of Proposed System and Open Calais System 

As stated earlier our system extracts all the concepts not only the key concepts as are 

drawn from the text by the other system.   

To improve the results with extracted relations, other ontologies or a thesaurus besides 

WordNet can be used for semantic similarity matching to avoid wrong matching of 

relations and concepts. 

3.8 CONCLUSION 

Ontologies have become a powerful tool for text understanding. In this chapter a novel 

scheme for building ontologies from unstructured text is proposed based on considering 

semantic roles. Matching the semantic roles of concepts gives an additional feature for 

efficient merging of sub-ontologies leading to efficient construction of final ontology for 

better and more correct understanding of text. The rules required for various modules are 
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designed and represented and the approach has been implemented using Java technology. 

The performance of the system is evaluated by looking coverage of concepts and 

relationships in the final ontology. The experiment shows that the ontology of the 

documents obtained by this scheme achieve F-score of 93.2 for concepts and 88.9 for 

relationships indicating good results. 
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CHAPTER 4 

 DESIGN OF ONTOLOGY ENRICHER 

4.1 INTRODUCTION  

Ontology gives annotations in rdf or rdfs formats which are used for providing intelligent 

services like information retrieval, question answering etc. These services can perform 

better if ontologies being used contain extra information about the concepts. This extra 

information gives an idea about the context of the concept and for this different levels of 

details can be added to ontology. But enriching the ontology is tedious and time-

consuming task  [37] 

In this chapter, we propose a technique by which ontology can be extended with specific 

knowledge to provide more information about the constructs of ontology. Specifically, in 

this proposal, the ontology is enriched by providing the class labels for data properties 

extracted during the generation of ontology. For example in a sentence “The red car 

belongs to Zoe”. The concept car has a data property red. This data property will be 

labelled with a tag “colour” which is the name of the class label we have defined for red.   

4.2 BASIC APPROACH 

We pursue the following steps to enrich ontology:  

i) A dictionary of adjectives is formed and labels for the adjectives in the 

dictionary are gathered which organize these adjectives into different classes 

such as colour, condition, personality etc. 

ii) We construct ontology for a text document by our proposed technique as given 

in Chapter 3 where the adjectives in sentences are extracted as data properties of 

the concepts.  

iii) These data properties are mapped to the class labels from the dictionary of 

adjectives.    
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4.3 ARCHITECTURE OF ONTOLOGY ENRICHER 

The architecture of the proposed ontology enricher depicted in Figure 4.1 has following 

components: 

1. Ontology Generator 

2. Mapping Tables 

3. Data Property Classifier 

 

Figure 4.1: Architecture of Ontology Enricher 

The description of each component is given as follows: 

1. Ontology Generator 

In this module, a basic ontology is generated by using our proposed approach as given in 

chapter 3 of this thesis.   

2. Mapping Table 

 Following Categories are defined for extracted data properties in the mapping table: 

i) Colour 

ii) Taste 

iii) Touch 

Plain Text 

Data_Property_Classificier Enriched Ontology  

Ontology 

Generator 

Mapping Tables 
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iv) Relation 

v) Quantity 

vi) Personality 

vii) Feel good 

viii) Feel bad 

ix) Condition 

x) Appearance 

xi) Numbers 

xii) Size 

xiii) Shape 

xiv) Evaluation 

xv) Sound 

xvi) Nation 

A total of 2360 adjectives belonging to these classes are extracted from dictionaries and 

stored in database in the tables named by these classes. A few data properties are shown 

in Table 4.1 along with their class and total number of data properties belonging to that 

class. 

Table 4.1: Mapping Table 

Data Property 

Class 

Data_Properties Total  

Number 

Color Red, maroon, cyan, Blond, Antique_Bronze, Celadon_Green, Tan, 

Canary_Yellow, Bondi_Blue, Blizzard_Blue, Brown_Sugar, 

Cadmium_Green, Dark_Byzantium, Blue, Magenta_Violet, 

Mikado_Yellow, Sinopia, Powder_Blue, Falu_Red, 

Sacramento_State_Green, Carmine,  Heliotrope_ Magenta, Cerise, 

Roast_Coffee, Red-Brown, Pink-Orang, Cocoa_Brown, 

Palatinate_Purple, Red,Mystic_Maroon, Light_Moss_Green, 

Old_Moss_Green, Lapis_Lazuli,Nickel, Dark_Magenta etc. 

1201 

Quantity Abundant, bountiful, cumbersome, Empty, just, enceinte, ending, 

extra, terminal, myriad, good, big, safe, break, closely, declamatory, 

prominent, tumid, large, turgid, Heavy, numerous, stopping point, 

full, penny-pinching, cheeseparing, confessedly, great, last, many, 

estimable, bountiful, a few, gravid, few,  empty, lowest, bombastic, 

32 
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orotund,  magnanimous,  utmost, effective,  a couple of,  substantial, 

light,  fill up, well etc. 

Personality secluded, brave, truculent, life-threatening, mystic, abusive, 

Arcanum, private, loner, unbiased, bright, naughty, buck private, 

sober, unplayful, aggressive, determined, cowardly, selfish, 

renowned, presumptuous, clandestine, unavowed, witty, secret, ole-

and-corner, zany,  thrifty,  ambitious, knowledgeable, mysterious, 

hidden, pleasing, hush-hush, sincere, mystical, disagreeable, , good, 

grievous, , confidential, hesitant, successful, fearless, punctual, 

combative, generous, evil, voracious, underground, mystery, warm, 

placid, surreptitious, jealous, instinctive, closed_book, grave, helpful, 

occult, , severe, wise, talented, diligent,  dangerous, frank, gifted, 

privy, hugger-mugger, amused, cruel, individual, sedate, orphic, 

serious, harmonious, cloak-and-dagger, undercover, enigma etc. 

44 

Feel good  cheerful, fine, ager, obedient, friendly, good, safe, lucky, delighted, 

break, courageous, elated, fill_up, respectable, admittedly, true_up, 

trustful, delightful, beneficial, right, cooperative, nigh, dear, close, 

leery, stuffy, avowedly, expert, proficient, unspoiled, hilarious,  

honourable, net, full, penny-pinching, cheeseparing, confessedly, 

adept, trade_good, last, healthy, estimable, unspoilt, honest,  glorious, 

fantastic, secure,  well-disposed, unfeigned, encouraging, , thankful, 

snug, lively, lawful, sober, lastly, salutary, life-threatening, joyous, 

live, victorious, dependable, calm, agreeable, rightful , happy, wary, 

relieved, finis,  charming, favourable, survive ,upright, true, sound,  

kind, utmost, reliable, excited, zealous, endure, , comfortable, 

confining, goodness, funny, genuine, faithful, skillful, soundly, 

,truthful, playful, nice,  energetic,  enchanting, effective, enthusiastic, 

well,  skilful, thoroughly etc. 

46 

Feel bad  envious, tired, confused, defeated, hungry, embarrassed, fierce, 

abashed, dizzy, frantic, homeless, helpless, obnoxious, frightened, 

arrogant, anxious, thoughtless, angry, defiant, abhorrent, nutty, itchy, 

bored, wicked, lazy, lonely, foolish, testy, disgusted, sore, uptight, 

repulsive, ashamed, awful, weary, condemned, scary, troubled, 

depressed, ill, terrible, worried, outrageous, bad, disturbed, jittery, 

grumpy, grieving, annoyed, panicky etc. 

49 

Condition uninterested, real, crazy, tough, outstanding, abnormal, alive, 

doubtful, wandering, inquisitive, sometime, impossible, curious, 

careful, annoying, open, aberrant, expensive, previous, better, 

different, busy, erstwhile, abiding, authoritative, odd, concerned, 

crucial, one-time, tame, late, occupy, aberrational, other, worry, easy, 

frail, abeyant, brainy, concern, ablated, interested, difficult, poor, 

clever, innocent, puzzled, powerful, horrible, quondam etc. 

54 

Appearance alluring, beautiful, fair, cute, alien, dynamic, fancy, bloody, cheerful, 

elegant, thoughtful, spotless, gleaming, long, blushing, graceful, 

smiling, ugly, perfect, unusual, zaftig, stormy, crowded, distinct, 

nervous, muddy, grotesque, cultured, jolly, confident, wonderful, 

extraneous, attractive, snobbish, gorgeous, poised, lovely, adorable, 

excited, timid, colorful, magnificent, alamode, homely, alert, 

pleasant, motionless, tense, vivacious, drab, dark, precious, hurt, 

filthy, dull, plucky, handsome, gentle, misty, glamorous, etc. 

79 



 

97 

 

number  one, two, three, four…fifty three.. , hundred, thousand, million, 

billion etc. 
 

Size  massive, initiative, tiny, lowly,  thick, minuscule, small-scale, 

low_gear, huge, little, first_gear, gravid, number_one, pocket-sized, 

inaugural, long, belittled, immense, showtime, low, mammoth, 

scrawny, minor, thin, bombastic, maiden, petite, big,  fat, small, 

modest, tall, magnanimous, offset, declamatory, orotund, foremost 

etc.. 

21 

Shape cylindrical, oval, first_base, narrow, three-dimensional, helix, flat, 

crested, anguilliform, serriform,  pisiform, soliform, minuscule, two-

dimensional, pisciform, ,patelliform, acinaciform, cymbiform, 

wraparound, pyriform, caudiform, muriform, tubiform,small, round, 

forked, calcariform, crescent, etc.  

537 

Evaluation  yearly, up-to-date, old, modern, one-year, brief, raw, sometime, one-

time, yearbook, weekly, slow, new fangled, erstwhile, monthly, 

young, fast, late, brand-new, ancient, freshly, quarterly, new, newly, 

previous, abbreviated, quondam, onetime, rapid, second-hand, early, 

recent_epoch, swift, former, recent, fortnightly, novel, annual, 

unexampled, annually, quick, fresh, latest, other, etc. 

30 

Sound mute, dumb, unsounded, hissing, harsh, voiceless, hushed, faint, 

silent, calm, thundering, noisy, shrill, cooing, whispering, melodic, 

squealing, blaring, squeaking, tacit, mum, purring,  husky, resonant, 

sonorous, soundless, melancholic, understood, soft, raspy, quiet, 

screeching, deafening, moaning, loud etc. 

31 

Nationality Malagasy, Estonian, North Korean, South Korean, Chadian, 

Grenadian, Palauan, Kyrgyz, Kenyan, Belgian, New Zealander, 

Surinamer, Bulgarianm swiss_people, Indian, Pakistani, 

Herzegovinianm, Turkish, French, Fijian, Liberian, Armenian, 

SaoTomean, Eritrean, Qatari, Haitian, Mauritanian, East Timorese, 

Finnish, Canadian, Kittianand, Nevisian, Argentinean, Albanian, 

Omani, Comoran, Lebanese, Maltese, North African, Bahraini, 

Serbian, Middle Eastern, Emirian, Italian, Malian, Ivorian, Icelander, 

Panamanian, Zambian, Moroccan, Guinea-Bissauan, Burundian, 

Tajik, Dutchman, Scottish, Senegalese, Austrian, Beninese, Tongan, 

Gabonese, Marshallese, Kuwaiti, Guinean, Slovenian, Rwandan, 

Azerbaijani, Bruneian, Nauruan, San Marinese, Bahamian, 

Indonesian, Peruvian, Leonean, Burkinabe, Norwegian, Slovakian, 

Monacan, Malawian, Ugandan, Thai, European, Ghanaian, 

Kazakhstani etc. 

236 

3. Data Property Classifier 

This component takes ontology as input and works on data properties of the ontology. 

Naῗve string matching is used to match each extracted data property with some adjective 

stored tables in the database. If a match is found, that data property is related to the name 
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of the table in which the match is found. The label of this relation is named as „has class‟.  

The algorithm for the same is shown in Figure 4.2 as follows: 

 

 

 

 

 

 

 

 

 

Figure 4.2: Algorithm for Data Property Classifier 

The algorithm takes as input the sentence tokens list with dependency tags next to each 

token in the list, adjective database and mapping table we defined. It begins by 

processing each token of the sentence and the concepts extracted already. In step 2 data 

property is extracted by analysing the dependency tag “amod”. The extracted data 

property is checked for its occurrence in the adjective database. If a match is found in 

step 4, the data property is mapped to the name of the table where the property was found 

and stored with a label “has class” in step 5. 

4.4 WORKING EXAMPLE OF ONTOLOGY ENRICHER 

For a text document given as: 

Algorithm data_property_classifier() 

Input: sentence tokens list with dependency tags next to each token in the list, 

adjective database, mapping table 

Output: concepts properties with class labels 

Begin 

1. 1. for each token in the sentence list 

2.   2. for each concept  from concept_ list 

3.      a) analyze the dependency tag “amod” for extracting properties of concepts 

4.      b)extract the concept property  

5.  3. look for a match of  the extracted data_property in the adjective_database 

 4. If match found, extract the name of table in which match is found 

5. store the data property along with the name of table with label “has_class”  

  end for 

end for 

End      
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Pakistani singer Ghulam will perform at famous musical festival that begins at 

Sankatmochan temple.  

We will construct an ontology for this text document using the technique proposed by us 

in Chapter 3 as shown in Figure 4.3. We will extract concepts along with their semantic 

roles and data properties of these concepts and object properties. 

 

Figure 4.3: Ontology of Text Document 

Here, extracted data properties will be Pakistani and famous. These data properties are 

given as input to the data property classifier that process it using the mapping table and 

allots their respective classes which are Nation and Condition respectively. We get the 

following output as shown in Figure 4.4. 
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Figure 4.4 : Enriched Ontology of Text Document 

4.5 IMPLEMENTATION DETAILS 

We have implemented this work using NetBeans 8.0.2 which is using Apache Derby as 

relational database which is bundled with NetBeans. Apache Derby is based on Java, 

JDBC and SQL standards.  

4.6 CONCLUSION 

We propose a technique in this chapter that extends and enriches ontology with explicit 

knowledge so that the intended meaning of the concepts is more expressive. This process 

is performed during the course of constructing the ontology in which the ontology is 

enriched by providing the class labels for data properties extracted. 
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CHAPTER 5 

AUTOMATIC DOCUMENT SUMMARIZATION USING 

ONTOLOGY 

5.1 INTRODUCTION  

Summarization of text is a necessity as there is a large amount of data on the web 

expressing the same ideas. It requires deciding which sentences or phrases are to be 

chosen such that they show the main ideas in the document. Summarizing large texts 

manually is both costly and time consuming. Automatic text summarization is a process 

of making a coherent summary that retains the most important points of original 

document using a computer program. It is a method for data reduction which enables 

users to reduce the amount of text that must be read to gather the essential information 

[53].     

In previous contributions Ramanujam and Kaliappan [52]  use the Naïve Bayesian 

Classification and the timestamp concept, [53] have presented a technique using 

unsupervised deep learning approach using Restricted Boltzmann Machine, [51] use 

latent semantic analysis and fuzzy logic system. TextRank [66] creates a graph where 

nodes represent sentences and edges are added between nodes and they specify the 

similarity value between the two nodes (sentences) it connects. Top ranked sentences are 

then chosen to form the summary. Some researchers have used ontology in the process of 

summarization such as [46] use a hierarchical ontology to generate summaries. 

Ontological knowledge is used by [47] also to generate document summary. [48] depend 

upon YAGO ontology to evaluate and select sentences from documents. [45] Ragunath 

and Sivaranjani present an idea for ontology-based summarization to compute a set of 

features for each sentence based on the output of the hierarchical classifier.  
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5.2 PROBLEMS IN EXISTING APPROACHES 

The work proposed in this chapter attempts to resolve the following problems which have 

been found in previously done work by other researchers, as is also mentioned in the 

Chapter 2. 

5.2.1 Overlapped Information  

In most of the contributions focusing on extractive summarization where whole sentences 

are included in summary may lead to overlapped information in summary. As semantic 

structure of sentence and semantic relationships between sentences is not taken into 

account, these methods may not be able to identify sentences which are semantically 

equivalent. Thus, the final summary would contain redundant information. [67] [68] 

5.2.2 Dangling Co-references  

Moreover there may be problem of „dangling co-references‟ as sentences containing 

pronouns may lose their relevance if extracted out of context. [69]   

5.2.3 Ignoring The Semantic Structure Of Sentence 

Aforementioned methods also treat sentences as bag of words and are unable to 

understand text deeply. Ontology based approaches are also unable to capture the full 

semantic structure of the sentence as they use only hierarchical ontologies as discussed 

by Hennig, Umbrath & Wetzker [46] or hierarchical classifiers for mappings as used by 

Ragunath and Sivaranjani [45] ignoring the non-hierarchical ontologies. 

5.3   BASIC APPROACH 

The goal of summarization is to achieve high similarity of the summary information to 

the original document and lesser redundancy. Two major categories of text 

summarization are (i) extractive and (ii) abstractive summarization [67]. Extractive 
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summarization techniques select important sentences from the text to be extracted for 

generating summary. Importance of sentences is calculated on the basis of some features 

such as position of the sentence in the document, term frequency, lexical chains etc. For 

contents such as news articles and reviews about a product, there is a lot of redundancy. 

Using extractive summarization for this kind of content may not be a good idea as 

extractive summaries may contain unnecessary information. For this kind of content 

abstractive summaries provide a concise and compact idea of the content. Abstractive 

summarization is able to generate sentences other than the original sentences in the given 

text. These new sentences have to be grammatically correct and able to convey the 

summarized information in a consistent way. This technique requires deeper text 

understanding to build some representation of text before generating the summary. 

The approach proposed by us combines both methods to generate summary by first 

extracting features of the text documents to obtain an extractive summary and then 

creating ontology for the extractive summary document and rephrasing the sentences 

using this ontology. The proposed technique is novel because this technique gets success 

in removing the redundant information from the extractive summary of the text giving 

semantically correct yet more concise information. 

Specifically, our approach of summarizing a document is a hybrid technique that involves 

few sub-steps: 

i) Extracting some statistical features from the text and using SVM classifier to 

generate extractive summary. 

ii) Generating text document ontology for this extractive summary keeping into 

account the hierarchical and non-hierarchical relationships among the constituents 

of sentences in the extractive summary document. This is done by identifying and 

merging semantically similar sentences and concepts. 

iii) Afterwards the sentences are reworded or reconstructed from the ontology to   

attain an abstractive summary. 
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5.4 ARCHITECTURE OF THE PROPOSED SYSTEM 

The architecture of the proposed system to generate the abstractive summary as shown in 

Figure 5.1. 

 

1. Pre-proccesor 

The text document is prepared to be processed for summarization by performing some 

pre-processing of the document such as tokenization, stop words removal, punctuation 

removal etc.  

Plain Text Documents 

Pre processor 

Sentence Demarcation Tokenizati Stop Word Punctuation Removal  POS Tagging 

Feature vector Calculator 

 

 

 

 

 

 

 

Feature Extractor 

Sentence Position Feature 

Numeric Token Feature 

Sentence Weight Feature 

Proper Noun Feature 

Sentence Length 

Unique Term Feature 

SVM  Classifier Extractive summary 

Document 

Abstractive summary 

Document 

  Ontology Constructor 

Sentence Reconstructor 

 

 

Sentence Extraction 

using polynomial Kernel 

 

Unnecessary Information Removal 

 Ontology Generation 

Case 1: No overlapping of sentences 
 

Case2:Sentence subsuming other sentence 

 
Case 3: Partial overlapping of concepts among different 

sentences 

 
Case 4: Overlapping semantic chunks in different 

sentences 

Ontology Generation 

Figure 5.1: Architecture of the Proposed Text Summarizer 
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2. Feature Extractor 

Feature extraction is the process of transforming the input data (sentences) into a set of 

features [70] . This is done here to perform the desired task of summarization using the 

reduced representation instead of the full size input. The preprocessed text document is 

processed further by Feature extractor so that some sentence specific features can be 

extracted from the text documents which are given as input to the next module SVM 

classifier. These features are: Sentence Position Feature, Numeric Token Feature, 

Sentence Weight Feature and Proper Noun Feature. 

3. SVM classifier  

The SVM classifier extracts the sentences to be included in summary. The feature set 

extracted in the previous module for the document is used to train the classifier and then 

extract the important sentences from the document and thus generate the extractive 

summary.  

4. Ontology Constructor  

The extractive summary generated by SVM classifier may contain overlapped 

information such as different sentences but containing semantically similar information. 

This extractive summary document is further processed to construct an ontology.  For 

constructing ontology from that extractive summary document we identify the concepts 

in the document, their properties and relations among concepts. Some additional 

information i.e. semantic roles these concepts are playing in each sentence of the text is 

also attached while constructing ontology.   For this, the sentences of extractive summery 

document are parsed using Stanford dependency parser that provides dependency tags 

attached with each term. By utilizing these dependency tags new tags are formed which 

specify the concepts, relations, semantic roles and properties. The concepts and relations 

are represented in an ontological structure with additional information such as semantic 

roles and properties of concepts in the sentence.  
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5. Sentence Reconstructor 

The ontology thus built in previous module is used to reconstruct the sentences to 

generate an abstractive summary of the text document in Sentence Reconstructor module. 

As the ontology of the extractive summary document removes the un-necessary and 

redundant phrases or sentences, the sentences reframed by this module constitute the 

concise representation of the text document. The Sentence reconstruction process may 

also use additional words such as “then” and “and” to join two sentences or parts of 

sentences. Inverse co-reference resolution is also performed in this module so that 

interpretation of the sentences in summary is in consistency with their interpretation in 

the original text. 

5.5 DETAILED DESIGN OF SYSTEM  

This subsection describes the methodology of components designed for generating the 

summary along with the type of data and the data structures each component uses and 

also gives the flow and process of generating the ontology by providing the algorithms 

designed for modules of the system. The detail of each module of the system is as 

follows: 

5.5.1 Pre-processor  

The text to be summarized has to go through some pre processing steps so that this text 

can be used for extracting features given as follows:  

i) Sentence demarcation 

ii) Tokenization   

iii) Stop Word Removal 

iv) Punctuation Removal 
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v) Part Of Speech Tagging 

A brief explanation of each step is given as follows: 

i) Sentence demarcation    

In this step the complete text is divided into sentences using NLTK python library. 

ii) Tokenization   

This step tokenizes the sentences to generate tokens using NLTK python library. These 

tokens are used to detect keywords and key phrases in the text.   

iii) Stop Word Removal 

Stop word are highly frequent words that do not carry any information. These are filtered 

out before processing the text. We have filtered out stop words list from the NLTK 

corpus. 

iv) Punctuation Removal 

Punctuation marks are also removed to be not included in text features count. 

v)  Part Of Speech Tagging 

In part of speech tagging according to the category of words i.e. noun, verb, adjective etc. 

words are tagged. We have used Stanford Parser to perform the part of speech tagging.  

 Data Design for pre-processor 

The pre-processed text is stored in primary memory for further processing by next 

modules in the system. 
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 Algorithm Design for Pre-processor 

The algorithm for pre-processing the text document to be summarized is given in Figure 

5.2. 

 

 

 

 

 

 

 

 

Figure 5.2: Algorithm for Sum_pre_processor 

The algorithm takes the text document as input and uses NLTK python library for its 

processing. In step 1, the sentence is marked for its beginning and ending. Step 2 

tokenizes the sentence. Stop words and punctuation marks are removed from the sentence 

in step 3 and 4 respectively. Each token identified in step 2 of the algorithm is provided 

part of speech tag in step 5. The output of the algorithm is the pre-processed document 

which is given to the Feature Extractor module. 

 

 

Algorithm sum_pre_processor() 

Input:  text document, NLTK python library 

Output: pre-processed text document 

  Begin 

for each sentence of the text document 

1. demarcate sentence 

2. tokenize 

3. remove stop words 

4. remove punctuation 

5. perform part of speech tagging to each token 

          end for 

End 
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5.5.2 Feature Extractor 

The pre-processed text is given to the next module which is Feature vector calculator. 

Feature vectors are generated for each sentence in the pre-processed text document. The 

value of each feature lies between 0 and 1. These feature vectors are used to form the 

feature matrix. Following features are extracted from the text. [53] 

i) Sentence Position Feature 

The position of the sentence in the document determines its relevance. As the first 

sentence of text document is supposed to contain important information, it is given a 

score 1. Also last sentence of the sentence is the concluding sentence, it is also given 

score 1. 

Sentence_Pos = 1, for the first or last sentence of text document. 

Sentence_Pos = cos((Sentence_Pos -min)*((1/max)-min)), for the rest of the        

                    sentences.  

Where, Sentence_Pos is the position of sentence in the given text.   

min is calculated as (threshold*N)  

max is calculated as (threshold*2*N)  

N is total number of sentences in document.  

threshold is calculated as (0.2*N)  

ii) Numeral Token Feature 

This feature is calculated for the sentences containing numeral tokens by dividing total 

number of numeral tokens in that sentence with total number of words in that sentence. 

Numeral_token_feature
S
i = num_numeral

S
i /Slength                    Equation 5.1                                                   
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                                  where, num_numeral
S
i is number of numeric tokens in ith sentence. 

                                           Slength is total number of words in sentence 

iii) Weight of the sentence 

This feature is calculated by summing the frequencies of all words in sentence and 

dividing it by the length of sentence.  

Freq_word = Freq_word/Maximum Frequency Value                        Equation 5.2                         

                               where, Freq_word is the frequency of a word occurring in a sentence. 

                                         Maximum Frequency Value is the frequency of the word   occurring  the maximum times 

in the document 

Sentence_Weight= Sum(Freq_word of all words in the sentence)/length of sentence 

Equation  5.3 

iv) Proper Noun Feature 

Proper nouns refer to the named entity. Part-of speech tagging of each sentence 

performed by pre-processor help determine proper nouns.  This feature gives significance 

to those sentences, which contain more proper nouns. 

v) Sentence Length Feature  

Sentence length can help to determine the amount of content in the sentence. 

Sentence_length = Number of words/len_max 

Where, len_max = Length of biggest sentence in the document 
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vi) Unique Term Feature  

This feature is used to calculate the number of unique terms in a sentence. It gives 

weightage to those sentences that contain new information. 

Unique_Term =  number of unique term in that sentence/Length of the sentence 

 Data Design for Feature Extractor 

Output Data Format  

The output of this module will be a set of feature sets. The format of a feature set 

corresponding to a sentence will contains numeric values calculated as discussed. For 

example, if we take following sentence which is first sentence of the text document taken 

in section 5.6: 

The highest flood peaks on the Xijiang and Beijiang Rivers have passed, said Zhu Senlin, 

governor of south China's Guangdong Province. 

The feature set for this sentence will be calculated by this module is as follows: 

X=[1.0, 0.0, 0.32, 0.5102040816326531, 0.1366666666666667, 0.24] 

Here, sentence position feature=1, for being the first sentence of text. 

Numeric token Feature = num_numeric /length  

                                    =   0/25=0  

Proper noun Feature = number of terms tagged as nouns/length 

                                       = 8/25=0 .32 

Sentence length Feature = length of sentence/length of the longest sentence 

                                       =25/49=0.5102040816326531 

Weight of the sentence =sum (Freq_word of all words in the sentence)/length of sentence      

= 3.41/25  = 0.1366666666666667 
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Unique term Feature=  number of unique terms/length= 6/25= 0.24 

 For each document having N sentences in total, feature data will be having N feature 

sets. This feature sets are stored in a text file in secondary memory.  

 Algorithm Design for Feature Extractor 

The algorithm for extracting features as shown in Figure 5.3 begins with processing 

each sentence in the text document to extract the features.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Algorithm for Feature Extractor 

𝑆𝑒𝑛𝑃𝑜𝑠  cos*(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑚𝑖𝑛𝑇ℎ) ∗  
 

𝑚𝑎𝑥𝑇ℎ
 𝑚𝑖𝑛𝑇ℎ + 

𝑁𝑢𝑚_𝑣𝑎𝑙  
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑡𝑒𝑟𝑚𝑠

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 

𝐹𝑟𝑒𝑞𝑡𝑒𝑟𝑚  
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑡𝑒𝑟𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

𝑁𝑜𝑢𝑛𝑡𝑒𝑟𝑚  
𝑁𝑢𝑚𝑏𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑡𝑎𝑔𝑔𝑒𝑑 𝑎𝑠 𝑛𝑜𝑢𝑛𝑠

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 

𝑆𝑒𝑛𝑙𝑒𝑛  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 

𝑁𝑒𝑤𝑡𝑒𝑟𝑚   
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 

Algorithm Feature_Extractor 

Input sentences from text files 

Output feature vector matrix 

Begin 

for each sentence in text files 

Step1:  //compute the position of sentence 

Step 2:  //check for numeric enteries 

Step 3: //compute frequencies of each word 

 

Step 4: // look for proper noun tags 

Step  5:// calculate the length of each  sentence 

Step 6://find the unique terms 

     Step 7:  //feature vector matrix preparation 

      Feature_matrix[i] = [Senpos[i], Num_val[i], 𝐹𝑟𝑒𝑞𝑡𝑒𝑟𝑚 [i], 𝑁𝑜𝑢𝑛𝑡𝑒𝑟𝑚[i], 

𝑆𝑒𝑛𝑙𝑒𝑛,𝑖-, 𝑁𝑒𝑤𝑡𝑒𝑟𝑚 [i]] 

  end for                 

End 
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Step 1 extracts the position of the sentence. Step 2 checks the sentence for any numeric 

value and normalizes its value by dividing it to the length of the sentence. Step 3 

computes the frequency of each word of the sentence in the document and normalizes 

this value by dividing it to the highest term frequency. Step 4 checks for the number of 

terms which are proper nouns. This value is normalized by dividing it to the length of 

the sentence. Step 5 calculates the length of the sentence and normalizes its value by 

dividing it to the longest sentence in the document.. Step 6 finds the terms which are 

having frequency no more than one in the document. Step 7 generates the feature matrix 

using all above calculated values of features. These feature vector matrices are given to 

SVM classifier so that the extractive summary can be obtained as shown in the 

following sub-section. 

5.5.3 SVM Classifier 

As discussed in section of Chapter 2, Support Vector Machines given by Vapnik, V. [58] 

are supervised learning algorithms which show good performance for text categorization 

tasks [71] and can also be used for text summarization [72] [73] [74] [50]. We have used 

SVM classifier in our work to extract the important sentences from the text.  We train the 

SVM to classify the sentences from the text document for summarization. The process of 

generating the extractive summary using SVM is done in following steps. 

i) Training the SVM classifier  

ii) Sentence Extraction 

These steps are explained in detail as follows: 

i) Training the SVM classifier 

 We take some text documents as training documents from DUC2002 dataset [75] which 

are pre-processed initially and the feature extraction for each sentence of the documents 

is performed generating the feature vectors of each sentence. Then we label feature 
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vectors as positive or negative. Positive label is given to a feature vector if the sentence 

corresponding to that vector is present in the reference summary of that text document. 

Otherwise the label given to that feature vector is negative label.   

We have used 500 random positive and negative example sentences from our dataset to 

train our SVM classifier. This trained classifier is used for extracting the important 

sentences for summarization. 

ii) Sentence Extraction using Polynomial Kernel  

The test document is then fed to this trained SVM classifier as input. For this non-linear 

decision surface of sentence extraction, kernel trick is applied to maximum-margin 

hyperplane and the dot product is replaced by the kernel function.   

 ( ⃗⃗    )  ( ⃗⃗    )                                        Equation  5.4 

This polynomial kernel have been very effective when applied to several tasks of natural 

language processing of a second degree with a value of C as 0.0001 [53]. We have used 

the same for extracting summary from text. The documents classified as positive are 

ranked according to their distance from the maximum margin hyper-plane. They will be 

assigned Y=+1 if the sentence and the output are the sentences corresponding to the top 

35% sentences in the rankings. 

This extractive summary is further shortened by constructing ontology of this extractive 

summary using the proposed system for generating ontology and reconstructing the 

sentences using this ontology to generate abstractive summary as explained in the next 

sub-section.  

vi) Algorithm Design for SVM Classifier 

The algorithm as shown in Figure 5.4 begins with generating the training data file by 

labeling the 500 sentences as positive by providing them label +1 or negative by 
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providing them label -1 in Step 1. This is training file is used to train to the SVM 

classifier in Step 2. 

 

 

 

 

 

 

 

            
 Figure 5.4: Algorithm for SVM Classifier 

The test text file whose summary is to be generated is loaded in step 3. In the next step 

SVM polynomial kernel of degree 2 is applied with value of C=0.0001. Step 5 ranks the 

sentences according to their distance from maximum margin hyperplane. We pick the top 

7 sentences as extractive summary in step 6.   

To remove redundancy among sentences in extractive summary we construct an ontology 

for the same by Document Ontology Constructor. 

5.5.4 Document Ontology Constructor 

The extractive summary is given to ontology generation module which further reduces 

the text by removing the transition words and unnecessary information during 

preprocessing. Ontology is generated for this reduced text by constructing sub ontologies 

for each sentence and then by merging these sub ontologies by using the rules proposed 

Algorithm svm_classifier() 

Input: feature vectors of Trainfile , ManualSumFile, test text file 

Output: extractive summary of test text documents 

Begin 

Step1:  //generate training text file  train-500.txt 

for each sentence S having feature vector x[i] of TrainFile in 

ManualSumFile 

y=+1,corresponding to feature vector x[i] 

else 

y= -1,corresponding to feature vector x[i] 

 

Step 2: // train the svm classifier 

X_train, y_train = load_svmlight_file("train-500.txt") 

Step 3: load test text file 

Step 4: Call  svm.SVC(kernel='poly', C=0.0001, degree=2, probability=False) 

Step 5: Rank sentences according to their distance from hyperplane 

Step 6: Take top one third of ranked sentences 

End 
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in ontology mapping and merging module in section 3.4. Here, relationships among 

sentences are described by the semantically similar concepts and object properties that 

are common in different sentences. 

This is shown in the ontology using GraphViz [57] in Figure 5.6 having multiple edges 

among semantic chunks from different sentences or having same concept but different or 

same roles in multiple sentences. By generating the ontology from extractive text 

summary, we further merged the semantically similar sentences (fully or in some 

measure). This information is utilized in reconstructing the sentences by Sentence 

Reconstructor.   

 Data Design for Ontology Constructor 

The ontology constructed for the text of extractive summary will be stored in rdf format 

in the ontology repository.  

 Algorithm Design for Ontology Constructor 

The algorithm used for constructing ontology is same as given in section of Chapter 3. 

The only difference is the input text file which is extractive text summary document. 

5.5.5 Sentence Reconstructor 

The ontology thus constructed after removing unnecessary words or phrases or parts of 

sentences gives further concise representation of the extractive summary. In this 

ontology, similar sentences or parts of sentences are merged by finding the semantic and 

syntactic similarity among different sentences based on hierarchy and roles of the 

concepts in the sentences. This ontology is used now to reframe the sentences to obtain 

the abstractive summary. There can be following cases while rewording the sentences: 

Case 1: No overlapping of sentences 
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Sentences are taken as such in the summary. 

Case 2: Sentence subsuming other sentence 

The longer sentence is taken into summary and the subsumed sentence is discarded. 

Case 3: Partial overlapping of concepts among different sentences 

This can be the case where a concept is having same role in different sentences but is part 

of different semantic chunks (concept-verb-concept). Connector such as and or then is 

used. 

Case 4: Overlapping semantic chunks in different sentences 

A semantic chunk can be overlapping in two sentences and can be used as a connector for 

merging two sentences. 

The abstractive summary thus obtained is further processed to perform inverse co 

reference resolution as the final step of sentence reconstruction to get the final abstractive 

summary. 

Inverse Co reference Resolution 

If a merged sentence contains entity name more than once in same or consecutive 

sentences, the later one is converted to the relevant pronoun. This process is inverse co 

reference resolution. The output of this module is the final coherent abstractive summary 

also resolving the problem of “Dangling Co-references”. 

 Algorithm  Design for Sentence Reconstructor  

The algorithm designed for reconstructing or reframing the sentences shows the process 

of constructing abstractive summary from the extractive summary and the ontology of 

that extractive summary as shown in Figure 5.5.  
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Figure 5.5: Algorithm for Sentence Constructor 

This algorithm takes the extractive summary of the text document, the object property 

tables of each sentence of the document and the object property table of the final 

ontology of the document. The algorithm begins by processing the object property table 

of each sentence as the step 1. Step 2 ensures if all rows of object property table of a 

sentence are matching with those of final object property table then this sentence is being 

subsumed by another longer sentence and is not taken in final summary. Step 3 checks If 

there is no overlapping of sentences then the sentence is kept as such in the summary. 

Step 4 finds whether there is overlapping among sentences. Step 5 merges the parts of 

sentences which are matching. Step 6 merges the sentences by using the connector word 

“and”. Step 7 performs the inverse co reference resolution to convert repeated entity 

names in consecutive sentences to suitable pronoun.  

Algorithm sentence_reconstructor() 

Input  object property table of each sentence of extractive summary, object property 

table of final ontology , extractive summary  

Output reframed sentences for abstractive summarization 

Begin 

1:   for each sentence Si of object property table 

             match each row to object property table of final ontology  

2:      if all rows are matched                                      //case 1:subsumption 

•                        discard the sentence Si from summary 

• 3:      if no rows are matched                              // case 2: no overlapping 

                        keep the sentence in summary 

• 4:     if some rows have  matching concept –verb-concept triplets //case 3 

                 merge the sentences by keeping overlapped concept-verb- concept triplet   

5:       if concepts are matching in but relations and semantic roles are different 

                   merge the sentences by keeping that sentence and using connector “and”        

with the  other matched sentence                                                           //case 4 

 6 : perform inverse co reference resolution 

End 
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5.6 IMPLEMENTATION EXAMPLE 

We have implemented our proposed system using python. We trained our SVM classifier 

over DUC2002 [75] dataset for summarization. For a text document shown below, pre-

processing is performed on it in which stop words and punctuation marks are removed 

after tokenization of the words of sentences and these words are tagged with part-of-

speech tags. This preprocessed text is processed further for extracting features as 

described in section 5.5.2.   

Input Text Document 

The highest flood peaks on the Xijiang and Beijiang Rivers have passed, said Zhu Senlin, 

governor of south China's Guangdong Province.   While inspecting flood control and 

relief work in Qingyuan city on the Beijiang River yesterday, he attributed Guangdong's 

success in combating this flood -- almost the biggest in 100 years -- to concerted efforts 

by the armymen stationed in Guangdong and local residents.   More than 200 people lost 

their lives in the natural disaster, which destroyed 189,000 rooms and ruined crops on 

1.2 million hectares.   The flood was caused by successive torrential rainstorms in the 

Xijiang and Beijiang River valleys in early and middle June. Major flood monitoring 

stations on the two rivers recorded their highest water levels, all four meters above the 

danger mark.   Local governments at various levels in the province have paid close 

attention to flood control work, and leading government and communist party officials of 

different localities have gone to the flood-fighting front.   No breaches of major 

embankments or reservoirs were reported despite the most serious flood in a hundred 

years, effectively protecting the safety of the provincial capital, Guangzhou, and the 

Pearl (Zhujiang) River Delta.   But the losses caused by the flood were quite serious, said 

the governor.   According to him, 11 million people in the province's nine cities and 55 

counties were affected, and more than 200 people died in the natural disaster, with 

189,000 rooms destroyed and 1.2 million hectares of crops ruined. The direct economic 

losses were set at 10.2 billion yuan.   The governor warned that though the flood danger 
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had receded, the determination to fight possible further floods could not slacken, as this 

is just the beginning: the main flood season, which usually begins in late July and early 

August, has not yet arrived.   He urged local officials to be on constant alert against 

further possible floods and be meticulous about flood prevention and control measures, 

while doing their utmost to help flood victims, assisting them to resume production as 

soon as possible and maintaining social stability. 

This feature set obtained from Feature Extractor is given as input to the trained SVM 

classifier which ranks these sentences according to their distance from the hyper-plane. 

The farther the sentence from hyper-plane, more confidently the classifier predicts it a 

positive example. 

 From the sentences which were labeled positive we have taken top 35% of ranked 

sentences as extractive summary as shown here. 

Extractive Text Document 

But the losses caused by the flood were quite serious, said the governor. The flood was 

caused by successive torrential rainstorms in the Xijiang and Beijiang River valleys in 

early and middle June. More than 200 people lost their lives in the natural disaster, 

which destroyed 189,000 rooms and ruined crops on 1.2 million hectares. Local 

governments at various levels in the province have paid close attention to flood control 

work, and leading government and communist party officials of different localities have 

gone to the flood-fighting front. According to the governor, 11 million people in the 

province's nine cities and 55 counties were affected, and more than 200 people died in 

the natural disaster, with 189,000 rooms destroyed and 1.2 million hectares of crops 

ruined. The direct economic losses were set at 10.2 billion yuan. The governor warned 

that though the flood danger had receded, the determination to fight possible further 

floods could not slacken, as this is just the beginning: the main flood season, which 

usually begins in late July and early August, has not yet arrived. 
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This extractive summary document is converted into document ontology using technique 

discussed in the chapter 3 and due to space constraints, a small part of that ontology is 

shown using GraphViz tool in Figure 5.6. 

After applying the cases on the obtained ontology, as discussed in sentence rewording 

section we get the Final summary as shown below. 

Final Summary 

The flood was caused by successive torrential rainstorms in the Xijiang and Beijiang 

River valleys in early and middle June. Local governments at various levels in the 

province have paid close attention to flood control work, and leading government and 

communist party officials of different localities have gone to the flood-fighting front. 11 

million people in the province's nine cities and 55 counties were affected, and more than 

200 people died in the natural disaster, with 189,000 rooms destroyed and 1.2 million 

hectares of crops ruined. The direct economic losses were set at 10.2 billion yuan. The 

governor said the losses caused by the flood were quite serious and warned that though 

the flood danger had receded, the determination to fight possible further floods could not 

slacken as this is just the beginning the main flood season which usually begins in late 

July and early August has not yet arrived. 
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Once our system has generated the summary, we want to know if this resembles the 

manually created summary for the same document. The manual (reference) summary as 

given in the DUC2002 dataset for the given document is shown as follows: 

Manual/Reference Summary 

The highest flood peaks on the Xijiang and Beijiang Rivers have passed, said Zhu Senlin, 

governor of south China's Guangdong Province.  No breaches of major embankments or 

reservoirs were reported despite the most serious flood in a hundred years.  Eleven 

million people in the province's nine cities and 55 counties were affected, more than 200 

people died, 189,000 rooms were destroyed and 1.2 million hectares of crops were ruined 

in this natural disaster. Economic losses were set at 10.2 billion yuan. The really bad 

news is that this is just the beginning. The main flood season has not yet started. 

We can analyze here that our system generated summary contains most of the sentences 

that are present in the manual summary. 

5.7 EXPERIMENTS AND PERFORMANCE ANALYSIS 

Evaluating an automatically generated summary is quite difficult task. We have used the 

ROUGE method (the measure adopted by DUC [76] as the standard for assessing the 

summary coverage) that calculates the intersection of n-gram, word pairs and word 

sequences between candidate summaries and the reference or human-generated 

summaries. ROUGE is recall-oriented, based on n-gram overlap, and correlates well with 

human evaluations as discussed by [77] Lin and Hovy. It is a widely used method for 

assessing quality of automatically generated summaries because it gives high correlation 

with scores assigned by humans in manually generated summaries.. 

The evaluation method, in which an automatic summary compared with a 

reference/manual summary, is based on the n-grams of words of the automatic summary 

coinciding in the manual summary. [78]. We get a score of recall if the number of co-



 

124 

 

occurrences are divided by the total n-grams of the manual summary, whereas we get a 

score of precision, if the number of co-occurrences are divided by the total n-grams of the 

automatic summary. These two scores can be further combined to obtain an F-score for 

the automatically generated summary. We can say that the recall tells how much relevant 

information is obtained from the manual summary, and the precision depicts how much 

relevant information we get in the automatically generated summary. ROUGE scores 

range between 0 and 1, where 1 is better. 

We calculate the scores for ROUGE-N as follows: 

        
      (                                          )

                                     
 

        Equation 5.5 

           
      (                                          )

                                            
 

Equation 5.6 

         
                

                
 

Equation 5.7 

We have chosen ROUGE-1 as according to Lin [77], for concise summaries ROUGE-1 

may suffice. 

We have used the DUC 2002 corpus for the evaluation of our approach. The corpus 

contains different sets of newspaper articles. This data set provides us the test text 

documents as well as their manual summaries which we use as reference summaries for 

evaluation. The manually-created extracts are used to train SVM classifier using python 

on DUC 2002 dataset. We have used polynomial kernel of second degree with a value of 



 

125 

 

C as 0.0001. We have taken 500 random positive and negative example sentences from 

these datasets with positive examples indicating the presence of sentence in the extractive 

summary and negative sentence indicate absence of sentence in the extractive summary. 

We have used a random collection of documents apart from the training dataset from this 

corpus to evaluate our results.  

We have compared our system to the baseline summaries which are first ten sentences of 

the text document whose summary is to be generated, reference summaries (human 

generated), extractive summaries generated by our system without using ontology and the 

abstractive summaries which are generated after using ontology. We have tested our 

dataset also on another automatic summarization tool TextRank as given by [66]. We 

present the evaluation of each system in for each document in our test set in Table 5.1:  

Table 5.1: Evaluation of Four Systems on ROUGE 

ROUGE-

Type 

Task 

Name System Name  Recall Precision  F-Score 

Num 

Reference 

Summaries 

ROUGE-1 

D103-

022 

SYSTEM3.T

XT 0.4955 0.51402 0.50459 1 

ROUGE-1 

D103-

022 

SYSTEM4.T

XT 0.41441 0.40351 0.40889 1 

ROUGE-1 

D103-

022 

SYSTEM2.T

XT 0.56757 0.58333 0.57534 1 

ROUGE-1 

D103-

022 

SYSTEM1.T

XT 0.63063 0.33333 0.43614 1 

ROUGE-1 

D105-

5959 

SYSTEM1.T

XT 0.47253 0.43434 0.45263 1 

ROUGE-1 

D105-

5959 

SYSTEM4.T

XT 0.37363 0.46575 0.41463 1 

ROUGE-1 

D105-

5959 

SYSTEM3.T

XT 0.34066 0.49206 0.4026 1 

ROUGE-1 

D105-

5959 

SYSTEM2.T

XT 0.48352 0.43564 0.45833 1 

ROUGE-1 

D108-

111 

SYSTEM1.T

XT 0.48148 0.33121 0.39245 1 

ROUGE-1 

D108-

111 

SYSTEM4.T

XT 0.48148 0.34437 0.40154 1 

ROUGE-1 

D108-

111 

SYSTEM3.T

XT 0.37963 0.41 0.39423 1 

ROUGE-1 

D108-

111 

SYSTEM2.T

XT 0.35185 0.40426 0.37624 1 
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ROUGE-1 

D114-

625-090 

SYSTEM1.T

XT 0.57843 0.472 0.51982 1 

ROUGE-1 

D114-

625-090 

SYSTEM3.T

XT 0.35294 0.76596 0.48322 1 

ROUGE-1 

D114-

625-090 

SYSTEM2.T

XT 0.51961 0.52475 0.52217 1 

ROUGE-1 

D114-

625-090 

SYSTEM4.T

XT 0.58824 0.5 0.54054 1 

ROUGE-1 

D109-

604 

SYSTEM1.T

XT 0.69524 0.39891 0.50694 1 

ROUGE-1 

D109-

604 

SYSTEM2.T

XT 0.52381 0.47009 0.4955 1 

ROUGE-1 

D109-

604 

SYSTEM4.T

XT 0.68571 0.46452 0.55385 1 

ROUGE-1 

D109-

604 

SYSTEM3.T

XT 0.34286 0.54545 0.42105 1 

ROUGE-1 

D102-

160 

SYSTEM1.T

XT 0.56 0.31285 0.40143 1 

ROUGE-1 

D102-

160 

SYSTEM3.T

XT 0.27 0.25714 0.26341 1 

ROUGE-1 

D102-

160 

SYSTEM2.T

XT 0.27 0.28421 0.27692 1 

ROUGE-1 

D102-

160 

SYSTEM4.T

XT 0.43 0.43434 0.43216 1 

ROUGE-1 

D108-

093 

SYSTEM3.T

XT 0.36364 0.48193 0.41451 1 

ROUGE-1 

D108-

093 

SYSTEM4.T

XT 0.57273 0.49606 0.53165 1 

ROUGE-1 

D108-

093 

SYSTEM2.T

XT 0.37273 0.37615 0.37443 1 

ROUGE-1 

D108-

093 

SYSTEM1.T

XT 0.56364 0.47692 0.51667 1 

ROUGE-1 

D109-

769 

SYSTEM4.T

XT 0.60784 0.33333 0.43056 1 

ROUGE-1 

D109-

769 

SYSTEM2.T

XT 0.27451 0.32184 0.2963 1 

ROUGE-1 

D109-

769 

SYSTEM3.T

XT 0.47059 0.38095 0.42105 1 

ROUGE-1 

D109-

769 

SYSTEM1.T

XT 0.59804 0.31606 0.41356 1 

ROUGE-1 

D110-

023 

SYSTEM1.T

XT 0.50495 0.65385 0.56983 1 

ROUGE-1 

D110-

023 

SYSTEM2.T

XT 0.58416 0.5514 0.56731 1 

ROUGE-1 

D110-

023 

SYSTEM4.T

XT 0.91089 0.98925 0.94845 1 

ROUGE-1 

D110-

023 

SYSTEM3.T

XT 0.08911 0.5 0.15126 1 

ROUGE-1 

D103-

119 

SYSTEM1.T

XT 0.58879 0.33158 0.42424 1 

ROUGE-1 D103- SYSTEM3.T 0.51402 0.33742 0.40741 1 
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119 XT 

ROUGE-1 

D103-

119 

SYSTEM2.T

XT 0.54206 0.53704 0.53953 1 

ROUGE-1 

D103-

119 

SYSTEM4.T

XT 0.56075 0.42553 0.48387 1 

ROUGE-1 

D102-

126 

SYSTEM1.T

XT 0.66981 0.29461 0.40922 1 

ROUGE-1 

D102-

126 

SYSTEM4.T

XT 0.37736 0.53333 0.44199 1 

ROUGE-1 

D102-

126 

SYSTEM2.T

XT 0.5 0.5 0.5 1 

ROUGE-1 

D102-

126 

SYSTEM3.T

XT 0.48113 0.6 0.53403 1 

ROUGE-1 

D106-

070 

SYSTEM3.T

XT 0.42991 0.66667 0.52273 1 

ROUGE-1 

D106-

070 

SYSTEM4.T

XT 0.66355 0.58678 0.62281 1 

ROUGE-1 

D106-

070 

SYSTEM2.T

XT 0.59813 0.60377 0.60094 1 

ROUGE-1 

D106-

070 

SYSTEM1.T

XT 0.76636 0.36771 0.49697 1 

ROUGE-1 

D110-

095 

SYSTEM4.T

XT 0.45192 0.4087 0.42922 1 

ROUGE-1 

D110-

095 

SYSTEM2.T

XT 0.42308 0.36975 0.39462 1 

ROUGE-1 

D110-

095 

SYSTEM1.T

XT 0.54808 0.43846 0.48718 1 

ROUGE-1 

D110-

095 

SYSTEM3.T

XT 0.51923 0.34177 0.41221 1 

ROUGE-1 

D101-

185 

SYSTEM4.T

XT 0.45192 0.39496 0.42152 1 

ROUGE-1 

D101-

185 

SYSTEM1.T

XT 0.61538 0.27948 0.38438 1 

ROUGE-1 

D101-

185 

SYSTEM2.T

XT 0.44231 0.40708 0.42396 1 

ROUGE-1 

D101-

185 

SYSTEM3.T

XT 0.55769 0.41429 0.47541 1 

ROUGE-1 

D105-

244 

SYSTEM4.T

XT 0.45652 0.30435 0.36522 1 

ROUGE-1 

D105-

244 

SYSTEM2.T

XT 0.27174 0.30864 0.28902 1 

ROUGE-1 

D105-

244 

SYSTEM1.T

XT 0.65217 0.30303 0.41379 1 

ROUGE-1 

D105-

244 

SYSTEM3.T

XT 0.48913 0.48913 0.48913 1 

ROUGE-1 

D113-

981 

SYSTEM1.T

XT 0.625 0.38462 0.47619 1 

ROUGE-1 

D113-

981 

SYSTEM4.T

XT 0.625 0.38462 0.47619 1 

ROUGE-1 

D113-

981 

SYSTEM3.T

XT 0.44231 0.58974 0.50549 1 
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ROUGE-1 

D113-

981 

SYSTEM2.T

XT 0.53846 0.5045 0.52093 1 

ROUGE-1 

D107-

065 

SYSTEM1.T

XT 0.51515 0.19392 0.28177 1 

ROUGE-1 

D107-

065 

SYSTEM2.T

XT 0.34343 0.30357 0.32227 1 

ROUGE-1 

D107-

065 

SYSTEM3.T

XT 0.31313 0.31633 0.31472 1 

ROUGE-1 

D107-

065 

SYSTEM4.T

XT 0.47475 0.32639 0.38683 1 

ROUGE-1 

D111-

068 

SYSTEM4.T

XT 0.49515 0.4322 0.46154 1 

ROUGE-1 

D111-

068 

SYSTEM2.T

XT 0.52427 0.52941 0.52683 1 

ROUGE-1 

D111-

068 

SYSTEM3.T

XT 0.57282 0.5463 0.55924 1 

ROUGE-1 

D111-

068 

SYSTEM1.T

XT 0.53398 0.36424 0.43307 1 

ROUGE-1 

D111-

189 

SYSTEM3.T

XT 0.5567 0.51923 0.53731 1 

ROUGE-1 

D111-

189 

SYSTEM4.T

XT 0.4433 0.51807 0.47778 1 

ROUGE-1 

D111-

189 

SYSTEM2.T

XT 0.58763 0.51351 0.54808 1 

ROUGE-1 

D111-

189 

SYSTEM1.T

XT 0.45361 0.48889 0.47059 1 

 

Here System1.txt denotes extractive summary from our SVM classifier, System2.txt 

denotes Baseline summaries, System3.txt denotes the summaries generated by TextRank 

summarizer and System4.txt denotes summaries generated by our proposed system. 

Number of reference summaries used by each comparison is one here. These scores can 

be averaged to be shown in the following Table 5.2 for comparison as: 

Table 5.2: Comparison of Different Systems 

System Recall Precision F-score 

Baseline 45.8888 44.8892 45.3091 

Textrank 42.0053 48.2547 45.2295 

Extractive  Summarization by our system 58.1751 37.7685 44.6677 

Abstractive summarization our System 52.9745 46.0319 48.5749 
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As shown in the Table 5.2 our system that generates abstractive summary using 

ontological structures has higher precision than Baseline summaries. Recall for our 

system is also higher than both TextRank and Baseline summaries. Using ontological 

structure with our system generated extractive summaries improves the precision but 

lowers recall. F-score of our system generating abstractive summaries is highest among 

baseline, TextRank and extractive summaries. The same is shown using bar graph as in 

Figure 5.7. 

 

Figure 5.7: Result Analysis of Four Approaches 

 5.7 CONCLUSION 

Summarization of text automatically is a complex task. In our approach, we divided this 

task into several subtasks. We first extracted the important sentences using SVM 

classifier trained on DUC 2002 dataset [75] and then condensed the information 

contained in this extracted sentences further by constructing the ontological graph which 
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relates the sentences from extractive summary semantically and leaves the unnecessary 

information. This ontology is reworded generating the abstractive summary. We have 

evaluated our system on news articles from DUC 2002 dataset and compared this system 

to other systems where competitive performance is shown by our system with better 

recall than TextRank produced and BaseLine summaries and a better F-score among all 

four summarization methods. 
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CHAPTER 6 

 CONCLUSION AND FUTURE SCOPE 

6.1 CONCLUSIONS 

We commenced our research with exploring the prospects of text understanding so that 

we can enhance the current web with machine processable capabilities. This kind of 

enhancement requires intensification of the current web with more machine processable 

information. This information is a way of linking data between systems or entities that 

allows for rich, self-describing interrelations of data.  Our work is motivated by the need 

of generating ontologies, as these have become a powerful tool for inter-relating 

information and hence better text understanding. The in-depth study of literature pointed 

some glitches (such as unstructured text and fixed set of object properties) in constructing 

the ontology. We have tried to resolve these issues by proposing and implementing 

approaches to generate ontology from text and further enriching this ontology. 

Generation of ontology led to removal of redundancy which further motivated us to 

propose and implement an approach that uses this ontology for summarizing that text.  

Specifically, following are the major contributions by our research work.  

Contribution 1: The main challenges involved in constructing ontology from 

unstructured text has been addressed and resolved as our first contribution. Ontology is 

generated here using conceptualization and considering semantic roles. Matching the 

semantic roles of concepts gives an additional feature for efficient merging of sub-

ontologies leading to efficient construction of final ontology for better and more correct 

understanding of text. The rules required for various modules are designed and 

represented and the approach has been implemented. We evaluated the performance of 

the system by looking at the coverage of concepts, their properties and relationships in 

the final ontology and comparing it to Open Calais system by Thomson Reuter‟s which is 

linked to a market leading ontology extracting entities and for generating rdf tagging. It is 

observed that our system gives better performance than Open Calais as only a fixed set of 
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relationships or object properties are explored by Open Calais. In contrast to that we 

consider all the non-taxonomical and taxonomical relationships while constructing our 

ontology. 

Contribution 2: The next contribution is the proposal of a technique of enriching 

ontology by providing extra information to it. The ontology is enriched by providing the 

class labels for data properties extracted during the generation of ontology. The proposed 

technique forms a dictionary of adjectives and identifies labels for these adjectives. A 

total of 16 labels are identified that can be given to the data properties, which are 

extracted during the process of construction of ontology. These labels are associated with 

the data properties using a link which is labelled as „has_class’. We have implemented 

this approach and the shown the resulting ontology using GraphViz tool. 

Contribution 3: Our ontology is capable of removing redundancy and concision of 

information as we have removed the un-necessary and redundant words/phrases in the 

course of construction of ontology. So we have used our ontology to summarize the text 

as our third contribution. To ease the process of summarization we proposed and 

implemented a novel approach that used a machine learning tool SVM first and got an 

extractive summary from a text document. This extractive summary is further used to 

construct ontology by our proposed and implemented technique. We used this ontology 

to generate the abstractive summary of the text document.  Our approach shows better 

performance when compared to baseline and another summarizer named as TextRank. 

We get better recall for our extractive summarization and abstractive summarization.  F-

score of our system that generates abstractive summary by using ontology is better than 

Baseline system, TextRank system and the extractive summarization. 

6.2 SCOPE FOR FUTURE WORK  

Though the present work proposes the complete design of framework to develop the 

automatic ontology, still no research work is closed solution; means every research work 
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can be further explored and extended. Therefore, following are some of the possible lines 

in which the present work can further explored or extended in future: 

1. Considering Other Semantic Information 

The understanding of semantic of a text is vast and complex task involving many aspects 

that contribute in it. The present work is taking care of semantic roles along with 

concepts, relations and properties. The proposed system can be further enriched by 

identifying other semantic aspects in the text such as context of the event occurred and 

the objects participating. 

2. Ontology Integration to Linked data  

The proposed Ontological framework can be integrated to Linked data such as DBpedia 

for providing context to concepts so that it can be improved further. 

3. Ontology Driven Information System 

The proposed system is providing enriched information; this can be further used into an 

information system for increasing the quality of search results. This information can also 

be used for opinion mining. 

4. Cross Validating Labels of Data Properties 

    The labels given to data properties during enrichment of ontology (in our current 

proposal) can be cross verified using some additional mechanism based on standard 

lexical database such as WordNet.  
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