(b) Show the Longest Common Subsequence table L for the two strings:

X = "skullandbones"

Y = "lullabybabies"

What is a Longest Common Subsequence between these strings? (8)

 (a) Differentiate between One-Dimensional and Two-Dimensional Range Search.

(b) What is Priority Search Tree (PST)? How a PST is constructed? Write the algorithm for construction of a PST.
(8)

Roll No.

Total Pages: 4

316102

December, 2019

M.Tech. (CN/IT/CE/CSE) 1st Semester Advanced Data Structures (MSC-18-102)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- Answer any four questions from Part-B in detail.
- Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

- (a) What do you mean by Ordered Dictionaries? (1.5)
 - (b) Derive the time complexity of Binary Search Trees. (1.5)
 - (c) Discuss the significance of Hash Functions. (1.5)
 - (d) What is Height-Balance property in AVL Tree? Discuss with example. (1.5)

1 -0

	(e)	Is there any correspondence between (2, 4) Tree and Red-Black Tree? Justify with suitable example. (1.5)		3. (a)	How removal is done in a Binary Search Tree?
a)	(f)	What is the significance of using randomization in data structures? How randomization is used in Skip Lists? (1.5)			How different cases for removal in Binary Search Tree are handled? (8) (b) How many Tri-node restructuring operations are needed to perform the zig-zig, zig-zag and zig update
	(g)	Derive the time complexity of Failure function in string matching? (1.5)		A	in splay trees? (7
	(h) (i) (j)	Why Compressed Tries are used for pattern matching? (1.5)	$\uparrow \uparrow$	((Consider the following sequence of keys: (5, 16, 22, 45, 2, 10, 18, 30, 50, 12, 1)
		Discuss the role of Range Search. (1.5) How k-d trees are used for Nearest Neighbor Search? (1.5)			Consider the insertion of items with tgis set of keys, in the order given, into: (a) An initially empty (2, 4) Tree T'.
		PART - B			(b) An initially empty red-black tree T". (15)
	2. (a)	Draw the 11-item hash table resulting from hashing the keys 11, 23, 33, 55, 73, 85, 111, 49, 41, 26 and 35, using the hash function $h(i) = (2i + 5) \mod 11$ and assuming collisions are handled by linear probing. (10)	10	5.	 (a) Show that at most one tri-node restructure operation is needed to restore balance after any insertion in an AVL tree. (5) Write and discuss Boyer-Moore algorithm, with suitable example and derive its time complexity. (10)
	(b)	What is Rehashing? In which situations rehashing is done, explain with suitable example. (5)		6.	(a) How Huffman Coding is used for text compression? Discuss with example.
	316102	/130/111/421 2		3161	02/130/111/421 3 [P.T.O.