Sr. No
 YMCA UNIVERSITY OF SCIENCE\& TECHNOLOGY, FARIDABAD
 MTECH $1^{\text {st }}$ Semester (RE-APPEAR) Dec, 2017
 Mathematical Foundations of Computer Science (MTCE-603)

PART A

Q1 (a) Differentiate between DFA, NFA and ε-NFA on the grounds of transition function, ease of Construction, power and limitations
(b) For the following languages write the corresponding regular expressions: $\mathrm{L}=\{1,12,122,1222, \ldots \ldots\}$ $\mathrm{L}=$ Set of all strings over $\{\mathrm{a}, \mathrm{b}\}$ having exactly one a .
(c) Discuss Chomsky's Classification of grammars
(d) Differentiate between top down and bottom up parsing
(e) What are the demerits of Finite Automata when compared with PDA?
(f) From the following CFG G, remove unit production

$$
\begin{equation*}
\mathrm{S} \rightarrow \mathrm{ABCD} \quad \mathrm{~A} \rightarrow \mathrm{a} \quad \mathrm{~B} \rightarrow \mathrm{c} \mid \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{D} \quad \mathrm{D} \rightarrow \mathrm{C} \tag{2}
\end{equation*}
$$

(g) Can we simulate multi-tape turing machine using single tape turing machine? Explain
(h) What is left most derivation? Explan with a suitable example
(i) What is a Universal Turing Machine?
(j) Differentiate between Moore and Mealy Machine

PART B

Q2 (a) Find a regular expression corresponding to the following

(b) Construct a DFA which accepts a string of 0's and 1's where the value of each string is represented as a binary number. Only the strings representing zero modulo 5 should be accepted. For example $0000,0101,1010,1111$ etc should be accepted

Q3 (a) Construct a PDA accepting the language $L=\left\{a^{2} \cdot b^{n} \mid n \geq 1\right\}$ by null store
(b) Design a Turing Machine to compute $m-n$ where m and n are positive integers and $m \geq n$.

Q4 (a) Let M_{1} and M_{2} be two finite automata accepting the languages L_{1} and L_{2}
respectively as shown in the following fig. Construct the finite automata to accept the language $\mathrm{L}_{1} \Pi \mathrm{~L}_{2}$

(b) Construct a 3-level equivalent FA for the following automata given in the table and check if it is the universal equivalent of the original FA.

Curre nt	Input	
	a	b
व0	q2	q1
q1	q1	43
q2	q 1	91
* ${ }^{\text {a }}$	q3	q3
* q^{4}	q4	94
q5	q5	q3

*represents the final state
Q5 (a) Design the CFG G for the PDAM siven by the following transitions

$$
\begin{aligned}
& \partial\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{Z}_{0}\right)+\left(\mathrm{q}_{0}, a Z_{0}\right) \\
& \partial\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}\right)+\left(\mathrm{q}_{0}, a \mathrm{a}\right) \\
& \partial\left(\mathrm{q}_{0}, \mathrm{c}, \mathrm{a}\right)-\left(\mathrm{q}_{1}, \mathrm{a}\right) \\
& \partial\left(\mathrm{q}_{i}, a, a\right)+\left(\mathrm{q}_{2}, \varepsilon\right) \\
& \partial\left(\mathrm{q}_{2}, \mathrm{a}, \mathrm{a}\right)-\left(\mathrm{q}_{2}, \varepsilon\right) \\
& \partial\left(\mathrm{q}_{2}, \varepsilon, \mathrm{Z}_{0}\right) \mid\left(\mathrm{q}_{2}, \varepsilon\right)
\end{aligned}
$$

(b) State and prove Pumping femmator Regutar Sets

Q6 (a) Convert the following CFG to GNF:
$\mathrm{S} \rightarrow \mathrm{XY} \quad \mathrm{X} \rightarrow \mathrm{YSY} \quad \mathrm{X} \rightarrow \mathrm{YY}|1 \quad \mathrm{Y} \rightarrow 0 \mathrm{X} 1| 1$
(b) Prove that the language $L=\left\{a^{\prime} \mid p\right.$ is prime $\}$ is not context free

Q7 Write short note on following:
(i) Intractable Problems
(ii) Halting Problem of Turing Machines

