Sr. No..... YMCA UNIVERSITY OF SCIENCE& TECHNOLOGY, FARIDABAD MTECH 1st Semester (RE-APPEAR) Dec, 2017 Mathematical Foundations of Computer Science (MTCE-603)

Time: 3 H	fime: 3 Hours Max. Marks: 6					
Instructio	 It is compulsory to answer all the questions (2 marks each) of Part -A in short. Answer any four questions from Part -B in detail. 					
	PART A					
Q1 (a)	Differentiate between DFA, NFA and ϵ -NFA on the grounds of transition	(2)				
	function, ease of Construction, power and limitations					
(b)	For the following languages write the corresponding regular expressions:	(2)				
	L= {1,12,122, 1222,}					
	L=Set of all strings over {a, b} having exactly one a.					
(c)	Discuss Chomsky's Classification of grammars	(2)				
(d)	Differentiate between top down and bottom up parsing	(2)				
(e)	What are the demerits of Finite Automata when compared with PDA?	(2)				
(f)	From the following CFG G, remove unit production	(2)				
(I)	S \rightarrow ABCD A \rightarrow a B \rightarrow c b C \rightarrow D D \rightarrow c Can we simulate multi-tape turing machine using single tape turing machine?	(2)				
(g)	Fyplain					
(h)	What is left most derivation? Explain with a suitable example	(2)				
(i)	What is a Universal Turing Machine?	(2)				
(I)	Difftiste between Meore and Mealy Machine	(2)				
(j)	Differentiate between moore and meany machine					

<u>PART B</u>

Q2 (a) Find a regular expression corresponding to the following

- (b) Construct a DFA which accepts a string of 0's and 1's where the value of each (5) string is represented as a binary number. Only the strings representing zero modulo 5 should be accepted. For example 0000,0101,1010,1111 etc should be accepted
- Q3 (a) Construct a PDA accepting the language L= $\{a^{2n}b^n|n\geq 1\}$ by null store (5)
 - (b) Design a Turing Machine to compute m-n where m and n are positive integers (5) and m≥n.
- Q4 (a) Let M_1 and M_2 be two finite automata accepting the languages L_1 and L_2

respectively as shown in the following fig. Construct the finite automata to (5) accept the language $L_1 \prod L_2$

(b) Construct a 3-level equivalent FA for the following automata given in the table (5)and check if it is the universal equivalent of the original FA.

		Curre	Curre Input					
		nt	a	b				
		0	q2	q1				
		q1	q1	q3				
		q2	q1	q4				
		*q3	q3	q3				
		*q4	q4	q4				
		q5	q5	q3				
*represents the final state								
Q5 (a) Design the CFG G for the PDA M given by the following transitions $\partial(q_0, a, Z_0) \models (q_0, aZ_0)$ $\partial(q_0, a, a) \models (q_0, aa)$ $\partial(q_0, c, a) \models (q_1, a)$ $\partial(q_1, a, a) \models (q_2, \varepsilon)$ $\partial(q_2, a, a) \models (q_2, \varepsilon)$								
$\partial(\mathbf{q}_2, \boldsymbol{\varepsilon}, \mathbf{Z}_0) \vdash (\mathbf{q}_2, \boldsymbol{\varepsilon})$								
(b)	State and prove	Pumpin	ig nem					
Q6 (a) Convert the following CFG to GNF: $Y \rightarrow 0X111$								
								$S \rightarrow XY$ $X \rightarrow YSY$ $X \rightarrow TTTT$ $T \rightarrow TTTTT$ so that $X \rightarrow YSY$ $X \rightarrow TTTTT$ $T \rightarrow TTTTTTTTTTTTTTTTTTTTTTTTT$
(b)) Prove that the I	anguage	L- (t	11/10				
Q7	Write short not (i) Intractable F (ii) Halting Pro	e on foll Problem blem of '	owing s Turing	: Machi	nes	(5) (5)		
