Sr. No
 YMCA UNIVERSITY OF SCIENCE\& TECHNOLOGY, FARIDABAD
 M.Tech. I' SEMESTER
 Mathematical Foundation of Computer Science (MTCE-16-103)

Time: 3 Homs

Max. Marks: 60
Note: 1. It is compulamy to answer the questions of Parl L. Limll your answers within 20 - 40 words in this
part.
\therefore Answer any for questons from Part \therefore In detail
\therefore Differemf parsof the same question are to be altempted adjacent to each other.

PART - 1

Q1 (a) What is meant by Regular Expression? Describe the language sets over \{a,b\} represented by the following regular expressions:

$$
\begin{equation*}
\text { (i) } b^{*}, a b^{*} a b^{*}+b^{*}, a b^{*} \quad \text { (ii) }(a a)^{*}+(a a a)^{*} \tag{2}
\end{equation*}
$$

(b) Find regula expressions wer the alphabet $\{0,1\}$ for the languages defined as:

$$
\begin{align*}
& 1.1-\{0 m 1 m: m>0\} \\
& 1.2=\{0: m 1: m=m \geq 0, n \geq 0\} \tag{2}
\end{align*}
$$

(c) What is meant by Ambiguty in CFG's, Explain by example.
(d) Let G be a Grimmar $S \rightarrow a B \mid$ ba, $A \rightarrow a|a S| b A A, B \rightarrow b|b S| a B B$. For the string aabbbabba, find
(i) leftmosst derivalton (ii) mghtmost derivation
(0) Commen on the shatomen A Turing manhe is more powerful than the PDA.
(1) Identaly the lypeol gramman by explaming, whose Production set is given below: $A \rightarrow B C D, B A \rightarrow B a C, a b \rightarrow b C, B \rightarrow B b$
(g) Detme the instamtaneous state of the PDA.
(h) What is halnong Prohlem of Turing machane?
(1) How is a Multi Thye luming machine different than a basio Turing machine?
(i) What is meant by equivalence of DFA's? What is the procedure to check the equivalence?

PABT-2

Q2 (a) What is basic difference between Deterministic and Non-deterministic Finite Automata? Construct DFA A for regular expression: $(11+10)^{*} 10$.
(b) What is the difternce between Moore and Mealy machine Convert the following Mealy mathine 10 Moore mathine with S_{0} as mitial state:

[^0](b) Let M1 and M2 be two finite automatd accepting languages L1 and L2 respectively as shown in the figure below. Construct the finite automata to accept the following languages:
(i) $\mathrm{L} 1 \cap \mathrm{~L} 2$
(ii) L1-1.2

Q4 (a) Construct a PDA accepting $\mathrm{L}=\left(\mathrm{wc} \mathrm{w}^{\mathrm{T}} \mid \mathrm{w} \in(\mathrm{a}, \mathrm{b})^{*}\right\}$ by final state.
(b) Prove that the regular sets are closed under Closure, complementation and intersection.

Q5 (a) Convert the following grammar to Chomsky's Normal Form (CNF):
$\mathrm{S} \rightarrow 1 \mathrm{~A}|0 \mathrm{~B}, \mathrm{~A} \rightarrow 1 \mathrm{AA}| 0 \mathrm{~S}|0, \mathrm{~B} \rightarrow 0 \mathrm{BB}| 1 \mathrm{~S} \mid 1$
(b) What is Arden Theorem? Use it to find the regular expression corresponding to the finite automata shown below.

Q6 (a) Define Turing machine. Design a Turing machine to accept the language given below: $L=\left\{x^{n} y^{n} \mid n \geq 1\right\}$.
(b) Describe in detail the concept of Universal Turing machine.

Q7 (a) Discuss the Post-Correspondence problem. Find the solution to the instance of PCP given below:

S.A.	List A	List B
1	10	101
2	011	11
3	101	011

(b) Write a short note on Primitive Recursive Functions.
(c) Convert the following CFG to GNF

$$
\begin{equation*}
S \rightarrow X Y, X \rightarrow Y S Y, X \rightarrow Y Y|1, Y \rightarrow 0 X 1| 1 \tag{3}
\end{equation*}
$$

[^0]:

