Application and Effectiveness of Quality Tools & Techniques in Select Manufacturing Industries

THESIS

submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSOPHY

to

J. C. BOSE UNIVERSITY OF SCIENCE & TECHNOLOGY, YMCA,

FARIDABAD

by

VIVEK SHARMA

Registration No: YMCAUST/Ph28/2012

Under the Supervision of

Dr. SANDEEP GROVER PROFESSOR, JCBUST YMCA, FARIDABAD Dr. S.K. SHARMA PROFESSOR (retd), NIT, KURUKSHETRA

Department of Mechanical Engineering Faculty of Engineering & Technology J. C. Bose University of Science & Technology, YMCA Sector-6, Mathura Road, Faridabad, Haryana, India JULY, 2020

CANDIDATE'S DECLARATION

I hereby declare that this thesis entitled **APPLICATION AND EFFECTIVENESS OF QUALITY TOOLS AND TECHNIQUES IN SELECT MANUFACTURING INDUSTRIES** by **VIVEK SHARMA**, being submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy in MECHANICAL ENGINEERING under Faculty of Engineering & Technology of J.C. Bose University of Science & Technology, YMCA, Faridabad during the academic year 2020-2021, is a bonafide record of my original work carried out under guidance and supervision of **Dr. SANDEEP GROVER, PROFESSOR, DEPARTMENT OF MECHANICAL ENGINEERING, JCBUST, YMCA, FARIDABAD & Dr. S.K.SHARMA, PROFESSOR (retd.), DEPARTMENT OF MECHANICAL ENGINEERING, NIT, KURUKSHETRA** and has not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been submitted for the award of any degree either in this university or in any other university.

VIVEK SHARMA

Registration No.: YMCAUST/Ph28/2012

CERTIFICATE OF THE SUPERVISOR

This is to certify that this Thesis entitled **APPLICATION AND EFFECTIVENESS OF QUALITY TOOLS AND TECHNIQUES IN SELECT MANUFACTURING INDUSTRIES** by **VIVEK SHARMA**, submitted in fulfillment of the requirement for the Degree of Doctor of Philosophy in **MECHANICAL ENGINEERING** under Faculty of Engineering & Technology of J.C. Bose University of Science & Technology, YMCA, Faridabad, during the academic year 2020-2021, is a bonafide record of work carried out under my guidance and supervision.

I further declare that to the best of my knowledge, the thesis does not contain any part of any work which has been submitted for the award of any degree either in this university or in any other university.

Dr. SANDEEP GROVER

Dr. S.K. SHARMA

PROFESSOR	PROFESSOR (retd.)
Department of Mechanical Engineering	Department of Mechanical Engineering
Faculty of Engineering & Technology	Faculty of Engineering & Technology
J.C. Bose University of Science & Technolog	y, NIT, KURUKSHETRA
YMCA, Faridabad,	

Dated:

ACKNOWLEDGEMENT

I express my deep sense of gratitude and indebtedness to my supervisor Dr. Sandeep Grover, Professor, Department of Mechanical Engineering, J.C. Bose University of Science and Technology, YMCA Faridabad, & Dr. S.K. Sharma, Professor (retd.), Department of Mechanical Engineering, NIT, Kurukshetra for providing unreserved guidance, inspiring discussions and constant supervision throughout this research work. Their timely help, constructive criticism, and conscientious efforts made it possible to improve the quality of my research work. I will carry out their guidance throughout my life.

I wish to thank respondents who helped me by providing their invaluable time in filling the survey questionnaires.

I also cannot close these prefatory remarks without expressing my deep sense of gratitude and reverence to my dear father (Dr. B.S Sharma), mother (Padma Sharma) & sister (Yasha Sharma) for their blessings and endeavour to keep my moral high throughout the period of my work. I feel extremely happy to express my sincere appreciation to my wife Sapna Sharma & daughter Pihu for their support and encouragement. This thesis would not have been possible without the continuous and unconditional support of my cousin (Nem singh) who gave me strength and will to succeed.

Ultimately, i want to express my sincere thanks to all those who directly or indirectly helped me at various stages of this work.

Above all, I express my indebtedness to the "ALMIGHTY" for all His blessing and kindness.

VIVEK SHARMA

Registration No.: YMCAUST/Ph28/2012

ABSTRACT

In present scenario, manufacturing organizations leads to the development and innovation of accelerating product in worldwide competition for their quality, functionality and versatility. In other words, it defines the detailed specification and phase development of manufacturing organizations for achieving desired outcomes. The important step to get ahead in this competition is to find a new devastating product which meets the existing customer requirements in today's manufacturing arena; consequently, effective utilization of certain quality tools and techniques (QT&T) becomes highly reliant to overcome the anticipated results in terms of high product quality and variety. Therefore, a total of 152 distinctive QT&T are identified and categorized into 16 groups based on their characteristics of applications, suitability and usages.

Thus, various QT&T have sustained symbolic effect on distinctive quality outcomes. As a result, implementation of QT&T in various manufacturing organizations is not an easy task to accomplished and requires a methodology to evaluate the effectiveness and intensity of individual QT&T in particular organization. A large number of tools, techniques and systematic methodologies are being used in industries for enhancing their performance. In the present exertion, various QT&T are grouped into six different categories namely, new product development tools (NPDT), decision making tools (DMT), data representation and analysis tools (DRAT), lean tools (LT), performance measurement tools (PMT) and software tools (ST) which have been analyzed by using integrated multi-criteria decision making approach based on graph theoretic approach (GTA) and Analytic hierarchy process (AHP) to measure the effectiveness of QT&T in manufacturing organizations.

Afterwards, an integrated model of QT&T has been developed by using interpretive structural Modelling (ISM) and Matriced Impacts Croisés Multiplication Appliquée á un Classement (MICMAC) approach. For this purpose, twelve barriers affecting the execution of QT&T in manufacturing organizations have been identified from literature analysis and expert's opinion (academicians and industrial). This outcome gives an apparent depiction to identify and handle the barriers by computing the effectiveness of each barrier. Barriers like accessibility of time and space, Inability to change organizational Culture and Inadequate coordination and teamwork are found to be the key barriers for utilization of QT&T in manufacturing organizations.

Then, to accomplish the implementation status of QT&T, administration of survey questionnaire has been done in manufacturing and service organizations. Previous surveys on QT&T emphasized mainly upon performance of products, processes and services of the organizations and have not addressed about implications and

adaptability of QT&T categories. The purpose of this survey research is to scrutinize different categories of QT&T and to examine the level of adoption, applicability, benefits and challenges faced by various organizations in NCR region and industrial town Bhiwadi (Rajasthan) India. An exploratory questionnaire survey consisting of three parts was distributed out among 398 organizations. A total of 26.63 percent response rate was received out of 106 organizations. The collected data has been analyzed by using statistical package for social sciences (SPSS 18) software to validate multi-dimensional unfolding test. Categories like problem solving tools, productivity tools and performance measurement tools retain to be most dominant for improving efficiency of organizations contributed by transformational shepard plot.

At last, Exploratory Factor Analysis (EFA) and Confirmatory factor analysis (CFA) have been done to access the effect of QT&T in distinctive organizations. It is evident from the analysis that Performance measurement tools (PMT) retains to be most prevailing category irrespective of the other categorizations. EFA has been deployed for extracting PMT category into three principal components contributed by Statistical Package for Social Sciences (SPSS 18) software. By accommodating extracted components, Analysis of Moment Structures (AMOS) software has been carried out to validate the proposed model through CFA. The three principal components pertaining eight different QT&T formed structured model required to validate PMT category in manufacturing and service organizations.

Keywords: Quality Tool & Techniques, adoption; implementation, Classification, AHP, GTA, Integrated interpretive structural modelling (IISM), MICMAC, QT&T barriers, EFA; CFA and model validation.

TABLE OF CONTENTS

Candidate's declaration	i
Certificate of the supervisor	ii
Acknowledgement	iii
Abstract	iv
Table of contents	vi
List of Tables	xi
List of Figures	XV

CHAPTER

Page No.

Ι	INTRODUCTION	1-10
	1.1 THEORETICAL BACKGROUND	1
	1.2 Progression of Quality tools and techniques (QT&T) in manufacturing	g 3
	organizations.	
	1.2.1 Execution of QT&T in manufacturing organizations	4
	1.3 Benefits of QT&T in manufacturing organizations	6
	1.4 Applications of QT&T in manufacturing organizations	6
	1.5 Objectives of the research	7
	1.6 Methodology adopted for present work	8
	1.7 Organization of the proposed thesis	9
Π	LITERATURE REVIEW	11-25
	2.1 LITERATURE REVIEW ON IMPLEMENTATION	12
	STATUS OF QT&T IN MANUFACTURING ORGANIZATIONS	
	2.1.1 New product introduction	12
	2.2.2 In stage of production	13
	2.2.3 Assessing process or product	13
	2.2.4 Stage of data collection	14
	2.2 LITERATURE REVIEW ON APPLICATIONS	16

TO CHOOSE MADM APPROACHES	
2.2.1 Graph theoretic approach (GTA)	16
2.2.2 Analytic hierarchy process (AHP)	17
2.2.3 Interpretive structural Modelling (ISM)	17
2.2.4 Topsis approach	18
2.2.5 Structural equation modelling (SEM)	19
2.3 SURVEY RESPONSE	21
2.3.1 Status of QT&T in manufacturing organizations	21
2.3.2 Status of QT&T in service organizations	23
2.4 GAPS ACKNOWLEDGED FROM LITERATURE	25
ANALYSIS	
III QT&T: AN INTROSPECTION AND	27-72
DETAILED CLASSIFICATION	
3.1 RECOGNITION OF QT&T	27
3.2 CLASSIFICATION OF QUALITY TOOLS	28
AND TECHNIQUES	
3.2.1 Seven basic quality tools (7QT)	28
3.2.2 Management tools (7MT)	28
3.2.3 Problem solving tools (PST)	33
3.2.4 Software tools (SWT)	33
3.2.5 Statistical tools (ST)	33
3.2.6 Graphical tools (GT)	33
3.2.7 New product development tools (NPDT)	33
3.2.8 Decision making tools (DMT)	48
3.2.9 Productivity tools (PT)	48
3.2.10 Specific analysis/assessment tools (AT)	48
3.2.11 Combinational tools (CT)	48
3.2.12 Communicational tools (CMT)	48
3.2.13 Relationship tools (RT)	48
3.2.14 Performance measurement tools (PMT)	64
3.2.15 Lean tools (LT)	64
3.2.16 Motivational tools (MT)	64
3.3 CONCLUDING REMARKS	73

vii

IV	MEASURING EFFECTIVENESS OF QT&T	73-89
	BY INTEGRATED (AHP-GTA) APPROACH	
4.1	I EXISTENCE OF QT&T GROUPING IN MANUFACTURING	73
	ORGANIZATIONS	
4.	2 GRAPH THEORETIC APPROACH (GTA)	76
	4.2.1 Digraph representation	76
	4.2.2 Matrix representation	77
	4.2.3 Permanent function representation	77
4.	3 ANALYTIC HIERARCHY PROCESS	77
4.	4 INTEGRATED GTA-AHP APPROACH	78
4.	5 EXAMPLE	80
4.6	CONCLUDING REMARKS	89
V	ANALYZING BARRIERS OF QT&T:	91-116
	INTEGRATED (ISM-MICMAC) APPORACH	
5.1	GENERALIZATION OF BARRIERS IN MANUFACTURING	91
	ORGANIZATIONS	
5.2	IDENTIFICATION OF QT&T BARRIERS	92
5.3	DEVELOPMENT OF SURVEY QUESTIONNAIRE	94
	5.3.1 Analysis of survey data	96
	5.3.2 Analysis of data for checking multi-co linearity	96
5.4	ISM METHODOLOGY	97
	5.4.1 Major applications of ISM- MICMAC approach	98
	5.4.2 Benefits of ISM –MICMAC approach	98
5.5	BUILD UP STRUCTURAL SELF-INTERACTION	100
	MATRIX (SSIM)	
	5.5.1 Development of initial and final Reachability matrix	101
	5.5.2 Levels partitioning	103
	5.5.3 Development of lower triangular matrix	108
	5.5.4 Development of digraph and ISM-based model	108
	5.5.5 Development of digraph and ISM-based model	109

viii

5.6 M	ICMAC ANALYSIS	111
5.7 D	EVELOPMENT OF INTEGRATED MODEL	112
5.8 (CONCLUDING REMARKS	114
VI	APPLICABILITY OF QT&T IN	117-138
Μ	ANUFACTURING AND SERVICE ORGANIZATIONS:	
A	COMPREHENSIVE SURVEY	
6.1 IN	TRODUCTION	117
6.2 Al	PPLICABILITY OF QT&T IN VARIED ORGANIZATIONS	117
6.3 FI	EASIBILITY OF QT&T CATEGORIZATIONS	118
Π	N DIFFERENT SECTORS	
6.3	3.1 QT&T -an extent of applicability in manufacturing organizations	118
6.	3.2 QT&T -an extent of applicability in service organizations	118
6.4 Q	UESTIONNAIRE DEVELOPMENT	120
6.4	.1 Survey questionnaire	120
6.4	4.2 Meeting organizational experts	120
6.4	.3 Survey distribution	121
6.5 0	CONCLUDING REMARKS	138
VII .	ANALYSIS AND COMPARISON OF	139-159
	ANALYSIS AND COMPARISON OF DOMINATING CATEGORIES	139-159
Ι		139-159 139
I 7.1	DOMINATING CATEGORIES	
I 7.1 7.2 I	DOMINATING CATEGORIES INTRODUCTION	139
I 7.1 7.2 I I	DOMINATING CATEGORIES INTRODUCTION MPLEMENTATION STATUS OF QT&T	139
I 7.1 7.2 I I 7.3 AI	DOMINATING CATEGORIES INTRODUCTION MPLEMENTATION STATUS OF QT&T N MANUFACTURING & SERVICE ORGANIZATIONS	139 140
I 7.1 7.2 I I 7.3 AI 7	DOMINATING CATEGORIES INTRODUCTION MPLEMENTATION STATUS OF QT&T N MANUFACTURING & SERVICE ORGANIZATIONS DMINISTRATION OF AMENDED SURVEY QUESTIONNAIRE	139 140 142
I 7.1 7.2 II 7.3 AI 7 7.	DOMINATING CATEGORIES INTRODUCTION MPLEMENTATION STATUS OF QT&T N MANUFACTURING & SERVICE ORGANIZATIONS DMINISTRATION OF AMENDED SURVEY QUESTIONNAIRE .3.1 Questionnaire development	139 140 142 143
I 7.2 I 7.2 I 7.3 AI 7 7. 7.4 (DOMINATING CATEGORIES INTRODUCTION MPLEMENTATION STATUS OF QT&T N MANUFACTURING & SERVICE ORGANIZATIONS DMINISTRATION OF AMENDED SURVEY QUESTIONNAIRE .3.1 Questionnaire development 3.2 Survey distribution and data acquisition	139 140 142 143 143
I 7.2 II 7.2 II 7.3 AI 7. 7. 7.4 (VIII	DOMINATING CATEGORIES INTRODUCTION MPLEMENTATION STATUS OF QT&T N MANUFACTURING & SERVICE ORGANIZATIONS OMINISTRATION OF AMENDED SURVEY QUESTIONNAIRE .3.1 Questionnaire development 3.2 Survey distribution and data acquisition CONCLUDING REMARKS	139 140 142 143 143 159
I 7.2 II 7.2 II 7.3 AI 7. 7. 7.4 (VIII	DOMINATING CATEGORIES INTRODUCTION MPLEMENTATION STATUS OF QT&T N MANUFACTURING & SERVICE ORGANIZATIONS OMINISTRATION OF AMENDED SURVEY QUESTIONNAIRE .3.1 Questionnaire development 3.2 Survey distribution and data acquisition CONCLUDING REMARKS SUMMARY, LIMITATIONS AND SCOPE	139 140 142 143 143 159
I 7.2 I 7.2 I 1 7.3 AI 7 7.4 (VIII 8.1 S	DOMINATING CATEGORIES INTRODUCTION MPLEMENTATION STATUS OF QT&T N MANUFACTURING & SERVICE ORGANIZATIONS OMINISTRATION OF AMENDED SURVEY QUESTIONNAIRE .3.1 Questionnaire development 3.2 Survey distribution and data acquisition CONCLUDING REMARKS SUMMARY, LIMITATIONS AND SCOPE OF FUTURE RESEARCH	139 140 142 143 143 159 161-166
I 7.2 I 7.2 I 1 7.3 AI 7 7.4 (VIII 8.1 SI 8.2 M	OOMINATING CATEGORIES INTRODUCTION MPLEMENTATION STATUS OF QT&T N MANUFACTURING & SERVICE ORGANIZATIONS OMINISTRATION OF AMENDED SURVEY QUESTIONNAIRE .3.1 Questionnaire development 3.2 Survey distribution and data acquisition CONCLUDING REMARKS SUMMARY, LIMITATIONS AND SCOPE OF FUTURE RESEARCH JMMARY OF WORK DONE	139 140 142 143 143 159 161-166 161
I 7.2 II 7.2 II 7.3 AI 7 7.4 (VIII 8.1 SI 8.2 M 8.3 IN	DOMINATING CATEGORIES INTRODUCTION MPLEMENTATION STATUS OF QT&T N MANUFACTURING & SERVICE ORGANIZATIONS OMINISTRATION OF AMENDED SURVEY QUESTIONNAIRE .3.1 Questionnaire development 3.2 Survey distribution and data acquisition CONCLUDING REMARKS SUMMARY, LIMITATIONS AND SCOPE OF FUTURE RESEARCH UMMARY OF WORK DONE IAJOR CONTRIBUTION OF RESEARCH	139 140 142 143 143 159 161-166 161 163

8.3.2 Implications associated with manager's/decision makers	164
8.4 LIMITATIONS OF PROPOSED WORK	165
8.5 SCOPE FOR FUTURE WORK	166
REFERENCES	167-188
[Appendix –I]	189-191
[Appendix –II]	192-195
BRIEF PROFILE OF THE RESEARCH SCHOLAR	196
LIST OF PUBLICATIONS OUT OF THESIS	197-198

LIST OF TABLES

Table	Description	Page No.
1.1	Definitions of quality	2
3.1	Usage and application of (7QT)	29
3.2	Usage and application of 7MT	31
3.3	Usage and application of problem solving tools	34
3.4	Usage and application of software tools	37
3.5	Usage and application of statistical tool	39
3.6	Usage and application of graphical tools	42
3.7	Usage and application of NPDT tools	45
3.8	Usage and application of decision making tools	49
3.9	Usage and application of productivity improvement tools	51
3.10	Usage and application of specific analysis/assessment tools	54
3.11	Usage and application of combinational tools	57
3.12	Usage and application of communicational tools	60
3.13	Usage and application of relationship tools	62
3.14	Usage and application of performance tools	65
3.15	Usage and application of lean tools	67
3.16	Usage and application of motivational tools	70
4.1	Grouping of QT&T	74
4.2	Quantification of QIJ	79
4.3	Pair wise comparison matrix (NPDT) Tools	83
4.4	Pair wise comparison matrix (DMT) Tools	84
4.5	Pair wise comparison matrix (DRAT) Tools	84
4.6	Pair wise comparison matrix (LT) Tools	85
4.7	Pair wise comparison matrix (PMT) Tools	85
4.8	Pair wise comparison matrix (ST) Tools	85
5.1	Data of responding organizations	95
5.2	Statistics of QT&T barriers	96

5.3	Correlation Coefficients for QT&T barriers	97
5.4	Structural self-interactive matrix (SSIM)	101
5.5	Initial reachability matrix	102
5.6	Final reachability matrix	102
5.7	Iteration 1	103
5.8	Iteration 2	104
5.9	Iteration 3	105
5.10	Iteration 4	105
5.11	Iteration 5	106
5.12	Iteration 6	106
5.13	Iteration 7	106
5.14	Iteration 8	107
5.15	Iteration 9	107
5.16	Combined level partitions table	107
5.17	Lower triangular matrix	108
5.18	Difference in driver power and dependency power	112
6.1	Organizational profile of survey respondents	121
6.2	Survey data based on sub-groups of participated organizations	122
6.3	Survey data based on company size	122
6.4	Survey data on organizations establishment year	123
6.5	Survey data on category wise adoption QT&T in an organization	124
6.6	Data in normalized form	128
6.7	Weightage of rating	128
6.8	Weighted matrix of normalized data	129
6.9	Table of ideal categorization	129
6.10	Table of anti-ideal categorization	129
6.11	Distance of ideal and anti-ideal alternative from weighted data	130
6.12	Ratio of distance to anti-ideal from total	130
6.13	Ranking the categorizations from largest to smallest value	131
6.14	Iteration values for not applicable and highly applicable tools	134
6.15	Row coordinates between two dimensions	135
6.16	Measure values for not applicable and highly applicable tools	136
7.1	Comparison of mean squares between problem solving tools (PST)	151
7.2	Comparison of mean squares between problem solving tools (PT)	151

7.3	Comparison of mean squares between problem solving tools (PMT)	152
7.4	Reliability Statistics of PMT category	154
7.5	KMO and Bartlett's Test of PMT category	154
7.6	Communalities of extraction of PMT category	155
7.7	Total variance of PMT category	156
7.8	Component Matrix of PMT category	157
7.9	Rotated Component Matrix of PMT category	157

LIST OF FIGURES

Figure	Description	Page No.
1.1	Kano's two-dimensional model of quality	2
1.2	Execution of major QT&T in production system	5
1.3	QT&T areas of applications	7
1.4	Chapter wise organization of proposed thesis	10
2.1	Classification of literature survey	11
2.2	Introduction of new product in organization	12
2.3	Year-wise contribution of different authors	15
	in new product development	
2.4	Nomenclature of structural equation modelling	20
2.5	Succession of QT&T in manufacturing organizations	22
2.6	Succession of QT&T in service organizations	24
4.1	Digraph for a six system elements	76
4.2	Digraph for New product development tools (NPDT)	80
4.3	Digraph for decision making tools (DMT)	81
4.4	Data representation and analysis tools (DRAT)	81
4.5	Digraph for lean tools (LT)	82
4.6	Digraph for performance measuring tools (PMT)	82
4.7	Digraph for software tools (ST)	83
5.1	Process sequence of ISM model	99
5.2	Digraph of barriers affecting utilization of QT&T	109
	in manufacturing organization	
5.3	Interpretive structural model showing levels	110
	of barriers affecting QT&T	
5.4	Driver power-dependence graph	112
5.5	Integrated model of barriers affecting	113
	manufacturing organization	
6.1	Applicability of QT&T in different organizations	119

6.2	Implementation of QT&T in different organizations	125
6.3	Percentage for non implementers	132
6.4	Benefits of QT&T in manufacturing and service organizations	133
6.5	(Shepard plot) distinguished applicability of	137
	QT&T categories based on the extent of adoption	
7.1	Implementation status of various QT&T categories	140
	in different organizations	
7.2	Hierarchy status of QT&T in organizations	142
7.3	Flow diagram for survey questionnaire analysis	144
7.4	Percentage wise comparison of PST, PT, PMT categories	145
7.5	Percentage wise comparison of PST category	146
7.6	Percentage wise comparison of PT category	146
7.7	Percentage wise comparison of PMT category	147
7.8	Comparison of mean & standard deviation of PST category	148
7.9	Comparison of mean & standard deviation of PT category	149
7.10	Comparison of mean & standard deviation of PMT category	150
7.11	Scree plot of 3 principal components	155
7.12	EFA model for 3 PMT components	158

1.1 THEORETICAL BACKGROUND

Manufacturing organizations over the past two decades have seen numerous changes in product variety, versatility and sustainability for experiencing fierce market competition in global scenario. In late nineteenth century, F. W. Taylor set up basic inspection procedures on finished goods to determine number of successive phases in product life cycle. Garvin (1988) illustrated foremost areas of organizations in production system whereas Bounds et al. (1994) contributed step wise distributions of these foremost areas. Consequently, new challenges in form of product design, sales, revenue growth, distribution and dumping of unused/defective items were raised that slower down the growth of manufacturing organizations (Crosby, 1980; Deming, 1982; Ishikawa, 1985; Feigenbaum, 1991; Payne et al., 1996). To resolute this crisis, organizations were agreed to replace these primitive inspection procedures by quality control to outperform their opponents. To uphold this task, manufacturing organizations were developing various initiatives and paradigm for improving the quality of products and maintain supplier -buyer relationships.

Previously, the role of quality paradigm was completed in six major divisions viz: machinist quality control, foreman quality control, assessor quality control, arithmetical quality control, total quality control and techno-craft quality. To accomplish the same, distinctive researchers and academicians made frequent efforts for the execution of quality improvement tools and techniques in manufacturing organizations. Beginning with the formation of new product development tools for strategic outcomes (Bowen et al., 1994). Various authors like (Kolarik, 1995; Noori, 1993; Watson, 1998) were integrated philosophical and technological aspect of quality in more than one paradigm. Hence, the need of quality tools and techniques (QT&T) has been felt and development of new QT&T becomes intended in manufacturing organizations. Although tools like quality function deployment (QFD), failure mode and effect analysis (FMEA), design of experiments and benchmarking were the most widely deployed QT&T in manufacturing organizations but the significance of statistical process control (SPC) in production system brings a new change over these primitive used tools and techniques. Evidently, the role of training for making SQC more effective rather than any other methodological approach has been advanced with graphical illustration in the form of control charts to find noticeable changes in every manufacturing organization (Shewhart, 1931).

This new direction requires commencement for substantial training program in statistical process control to imitate achievement (Rockart, 1979). Therefore, Ishikawa (1976) introduced the concept of seven quality control tools to help professionals for maintaining growth. Similarly, Bunney and Dale (1997) and Spring et al. (1998) pointed out problem solving

methodology based upon the applications of QT&T crucial for facilitating improvement in manufacturing organizations. In other words, problem solving methodology intended to collect information and records by permitting consumers to recognize precise tool at appropriate time. Hence, QT&T plays an important role to assist the analysis and reached the final outcomes of different manufacturing organizations. For this reason, QT&T has been influenced by many guiding theories and opinions by various quality gurus like Deming, Juran, Feigenbaum and Crosby which plays an essential role in continuous improvement of manufacturing organizations. Table 1.1 describes distinctive definitions of quality presented by various authors.

QT&T theories	Explanations	Year
A. Shewhart	Contributes statistics to explain process variability	(1931)
Juran	Fitness for use, Conformance to specifications	(1964, 1988)
Ishikawa	Emphasis on human side of quality	(1968)
Crosby	Conformance to requirements	(1979)
Fegienbaum	Total composite will meet the expectations of customers	(1983)
Deming	Aims at the needs of the customer, present and future	(1986)
Taguchi	Stress on the losses associated with the product	(1986)
ISO 9000	Totality of features and characteristics of a product or	(1992)
	service to satisfy stated or implied need	
ASQ	Operational techniques and activities used to fulfill	(1997)
	requirements for quality.	

 Table 1.1: Definitions of quality

Accordingly, the adequacy of quality for particular products or services depends on the willingness of the customers to visit again and demanding for more products. In the beginning of 1990's, noori identified that customers are the buyers responsible for satisfying cost, delivery, flexibility and service of the products (Noori, 1993). Similarly, (Kano et al., 1984) suggested customer requirements in two-dimension quality model. Figure 1.1 describes the Kano model in two dimensional outcomes.

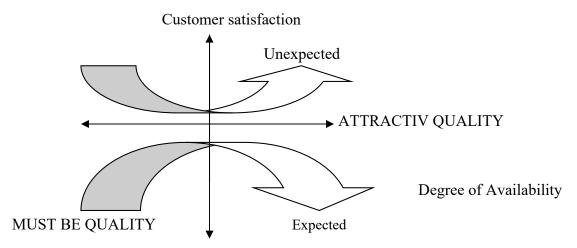


Figure 1.1: Kano's two-dimensional model of quality. (Source: kano et al., 1984)

At present effective utilization of a certain QT&T in manufacturing organizations becomes highly reliant to achieve anticipated results in global customer requirements. So it is essential that manufacturing organization must adopt these valuable tools & techniques for improving and enhancing work culture environment.

It may be concluded that instead of small and medium scale organizations, most of the manufacturing organizations must understand the importance of these QT&T in efficient manner to contribute in data analysis, performance measure and lean methods. Therefore, manufacturing organizations have been developed new categorizations with different tools and techniques that resolved new challenges in current scenario. In the next section the progression of QT&T in manufacturing organizations is described.

1.2 Progression of Quality tools and techniques (QT&T) in manufacturing organizations.

The worldwide scenario allows manufacturers to attain finest capabilities in progression of product delivery, customer demands and cost optimization. Thus, manufacturing practitioners must understand the applicability and importance of these simplistic quality tools and techniques that were crucial to handle problems in manufacturing organizations. Deliberately, QT&T has persistently evolved over the past two decades for improving performance and growth of manufacturing organizations. Quality tools may be defined as the practical applications, means or mechanisms that can be applied to particular tasks to facilitate improvement in positive way. On the other hand, techniques can be thought as the collection of different tools that have broader approach other than tools. Although quality is a framework of time and cost in an organization system, every subsystem has an objective to fulfill within given time and minimum cost. QT&T in manufacturing organizations contributes in following ways:

- Productivity improvement
- Work-culture environment
- Employee satisfaction
- Customer loyalty
- Profitability
- Avenues for diversification

Law and Gunasekaran, (2012) investigated a variety of factors that influence the execution of environmental practices and sustainable product development in manufacturing organizations. The term quality control in manufacturing can be used for:

- Awareness and understanding
- Usage
- Experiences and outcomes
- Economic approach
- Marketing strategies

- Planning
- Resource allocation
- Motivation
- Execution of new strategies
- Succession plans
- Sustainable outcomes
- Component analysis
- Investigating operations
- Realization
- Operation refinement

Also, Groover, (2001) relates that production system considered to being the collections of people, equipment, and procedures organize to accomplished approaches in the manufacturing organizations. However, Arnheiter and Maleyeff (2005) and Bryne et al. (2007) differentiate these approaches rather than clubbing them into distinctive tools and techniques. As a result, only few no of techniques and systematic procedures have been deployed by various academicians and researchers that work in the area of quality improvement.

1.2.1 Execution of QT&T in manufacturing organizations

Twentieth century begins with the elementary change in the expansion and performance of QT&T in manufacturing organizations. The execution of various QT&T in manufacturing organizations has been addressed by Motwani (2001); Summers (2000) and Xie et al. (2001). The utility and expansion of different QT&T in manufacturing organizations can be described in four main steps. The tools and techniques involved with these steps are:

- Introduction of new product: brainstorming, design of experiment (DOE), kano analysis, team profiling and balance scorecard etc.
- Measuring and analysis of product: Pareto chart, histograms, guage R&R, process flow diagrams, and control chart etc.
- Assessing process of product: Scatter diagram, queuing analysis, run charts pie chart and bar chart etc.
- Improving performance of product: Quality loss function, Total productive maintenance, capability indices and weibull analysis etc.

The next section describes the hierarchy structure of already implemented QT&T in manufacturing organizations as shown in figure 1.2.

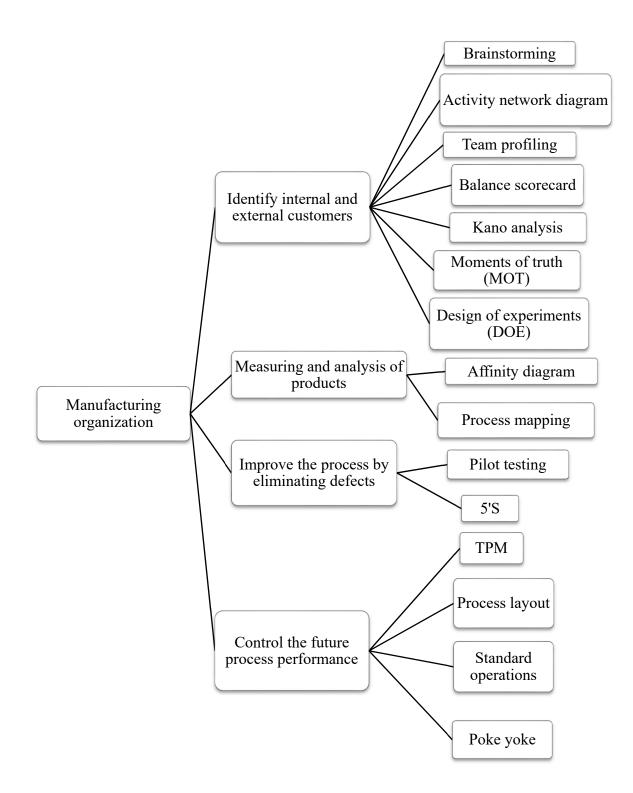


Figure 1.2: Execution of major QT&T in production system.

Figure 1.2 implies the implementation of main QT&T in manufacturing organizations. The next section deals about the benefits and applications of QT&T in manufacturing organizations

1.3 Benefits of QT&T in manufacturing organizations

The benefits of QT&T in particular organization has been enhanced, and integrated with other methodologies to suit new confronts in today's manufacturing arena. Following main benefits of QT&T in manufacturing organizations are listed below:

- QT&T systematically improves the working background by eliminating inefficiencies and wastages within the organizations.
- QT&T improves employee enthusiasm and position with the organization to ascertain objectives in progressive manner.
- QT&T calculates and measures the implementation of auditing process periodically.
- QT&T helps to improve material flow by in cooperating minimal lead time by composing organization profit.
- Establishing each department/activity to encompass visual management and retain standard operating procedures up-to-date.
- QT&T administered awareness and training to hatch superior products in upbringing organizations.
- QT&T allows manufacturers to identify various enablers related to planning and operation of production system.
- QT&T assess the uniqueness of efficient decisions contributed in different stages of production system.
- QT&T provides appropriate investigation to promote buyers for competitiveness and sustainability.
- QT&T administered knowledge valuation by assessing quality for assortment and development of distinctive departments.

1.4 Applications of QT&T in manufacturing organizations

The subject area of applications defines the broad vision of different QT&T used in manufacturing organizations. Figure 1.3 describes the indefinite range of applications of various QT&T.

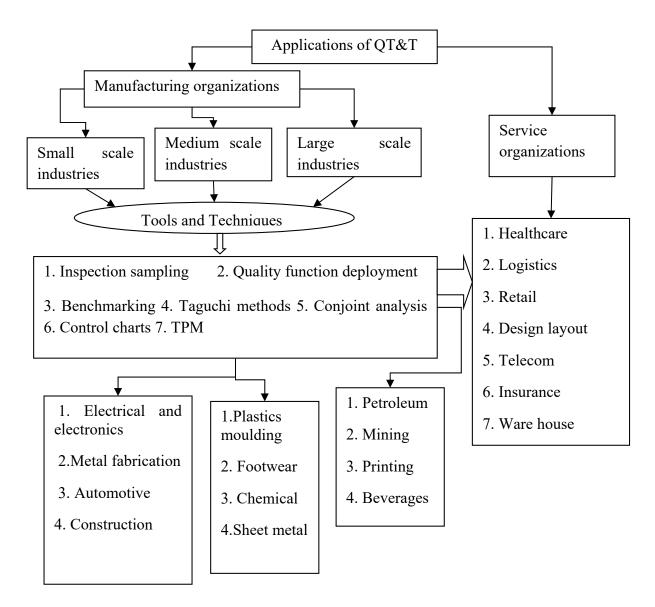


Figure 1.3: QT&T areas of applications

1.5 Objectives of the research

This present work represents the implementation and suitability of different QT&T in manufacturing organizations. For this purpose, categorization of different (QT&T) in various organizations have been made based upon the application of usages and suitability of distinctive work. Various QT&T are classified into varied groups which have been analyzed by using integrated multi-criteria decision making approach for measuring the effectiveness. Also, barriers affecting the execution of QT&T in manufacturing organizations have been analyzed by using interpretive structural Modelling (ISM) and Matriced Impacts Croisés Multiplication Appliquée á un Classement (MICMAC) approach. Afterwards, an exploratory questionnaire survey consisting of three parts was distributed out among organizations to examine the level of

adoption, applicability, benefits and challenges faced by various organizations. Finally, factor analysis has been done to assess and validate QT&T model. Following are the list of objectives accomplished during the present work.

- (i) To study various quality tools & techniques used in manufacturing organizations.
- (ii) To classify quality tools & techniques based on similarity and applicability.
- (iii) To assess the effect of quality tools & techniques in different areas.
- (iv) To conduct survey for applicability of tools and techniques in different areas.
- (v) To apply various MADM techniques for effectiveness and applicability of tools & techniques.
- (vi) To assess the effectiveness of various tools and techniques.

1.6 Methodology adopted for present work

The methodology adopted for the present exertion will be deliberated as follows:

Step 1: Study various QT&T deployed in manufacturing organizations.

Step 2: Categorized different QT&T into 16 groups based on their characteristics of applications, suitability and usages.

Step 3: Develop a mathematical model for identified QT&T by using integrated Graph theoretic approach (GTA) and Analytic hierarch process (AHP).

Step 4: Determine single numerical index representing the effectiveness of QT&T in manufacturing organization.

Step 5: Perform pilot survey for preparing of questionnaire.

Step 6: Develop questionnaire with the help of professionals (academic and industrial) to know the implementation status of QT&T categorizations in different organizations.

Step 7: Collect the survey data.

Step 8: Execute data for assessing and finding the level of adoption, applicability and benefits of various QT&T in an organization by Topsis apporach.

Step 9: Perform multi-dimensional unfolding test to detect challenges faced by various organizations.

Step 10: Identify possible barriers which affects the utilization of QT&T in manufacturing organizations

Step 11: Rank those identified barriers by means of integrated interpretive structural modeling (ISM) and MICMAC analysis.

Step 12: Determine driving power & dependence power to compute effectiveness of each barrier.

Step 13: Perform factor analysis to calculate the verifiable assessment range for measuring the effect of QT&T in organizations.

Step 14: Develop an assessment model for validating the current status of QT&T in organizations by Exploratory Factor Analysis (EFA) along with Confirmatory factor analysis (CFA).

1.7 Organization of the proposed thesis

Chapter 1 represents the theoretical background of various QT&T deployed in manufacturing organizations. Also, progression followed by the execution of various QT&T in manufacturing organization has been addressed in this section. Consequently, this chapter confers about the research objectives along with applications and benefits of QT&T in various organizations.

Chapter 2 covers the literature review for the successful implementation of QT&T in manufacturing and service organizations. Various journals and research papers from reputed source such as: Springer, Elsevier, Emerald and Science direct have been reviewed for this purpose. The literature review in this section has been divided into three main divisions namely: (a) Review of literature on implementation of QT&T in manufacturing organizations; (b) Review of literature on applications to choose MADM approaches; (c) Review of literature on the basis survey outcomes for the execution of QT&T in organizations. This uncertainty in execution of various QT&T in different organizations gives clear perception not only in implementation but also in the area of realistic research. Latterly, the gaps in current literature have also been acknowledged in this section.

Chapter 3 describes the introspection and detailed classification of various QT&T in manufacturing organizations. The classification of QT&T into sixteen foremost categories has been defined in this section.

Chapter 4 deals with the investigation of QT&T categories by means of integrated MADM approach like: Graph theoretic analysis (GTA) & Analytic hierarchy process (AHP) to evaluate the effectiveness of each QT&T in manufacturing organizations.

Chapter 5 endorses the execution of QT&T in manufacturing organizations by determining barriers. Barriers affecting the effective utilization of (QT&T) in organizations have been identified and analyzed by using interpretive structural Modelling (ISM) and Matriced Impacts Croisés Multiplication Appliquée á un Classement (MICMAC) approach.

Chapter 6 represents the development and distribution of questionnaire for analyzing survey data. Initially, pilot survey has been utilized to improve the quality of the questionnaire. Later on assessment of QT&T categories by Topsis approach have been analyzed. Also, Multi-

dimensional unfolding test along with transformational shepard plot has been determined to know response rate of dominating categories in this section.

Chapter 7 represents the response rate of former survey results into selective three dominating categories. The analysis and comparison of PST, PT & PMT categories based on extent of usage and impact on organizations has been discussed in this section. In the present study, factor analysis usually employed to accomplish the required objective of the research. Exploratory Factor Analysis (EFA) along with Confirmatory factor analysis (CFA) has been discussed to validate QT&T assessment model.

Chapter 8 covers the summary, implications and major contribution of the research work. At the end limitations and scope of future research has been illustrated in this section.

The current research work has been arranged in nine chapters as stated in figure 1.4 as described below:

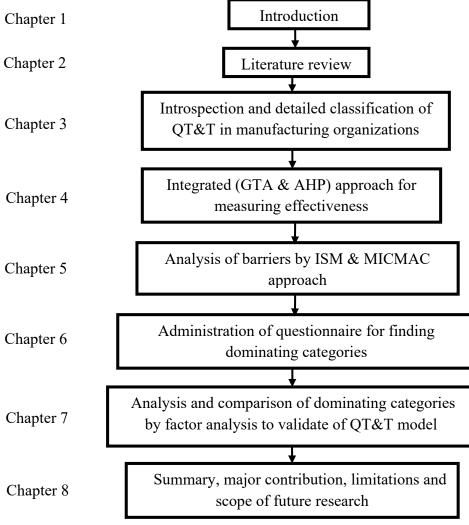


Figure 1.4: Chapter wise organization of proposed thesis

CHAPTER II

LITERATURE REVIEW

Literature has been appraised from three perspectives (Figure 2.1) namely implementation status of QT&T in manufacturing organizations, applications to choose MADM approaches and survey responses for the execution of QT&T in organizations.

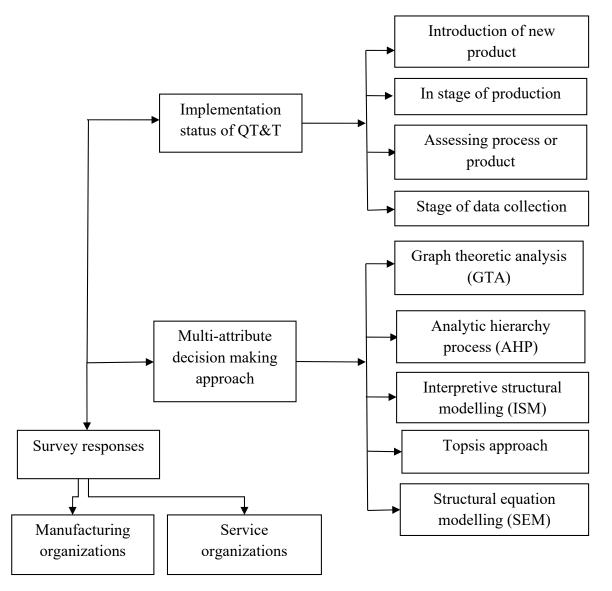


Figure 2.1: Classification of literature survey

2.1 LITERATURE REVIEW ON IMPLEMENTATION STATUS OF QT&T IN MANUFACTURING ORGANIZATIONS

This section describes the appraisal of literature on execution status of distinctive QT&T in manufacturing organizations.

2.1.1 New product introduction

Literature reveals that identification and implementation of QT&T in manufacturing organization has become more prominent and valuable in recent times. Many academicians and researchers improve the performance of organizations (manufacturing and service) by proficient use of QT&T in different areas. The current section shows the introduction of new product for the relevance of QT&T in varied organizations. According to Nakano et al., (2008) the stages for the development of new product in manufacturing organizations are:

- *Primary stage:* This stage involves the establishment of products and services in terms of design, planning and assessment of productivity operation and cost.
- *Secondary stage:* It contributes to reconfiguration and estimation of primary product in organizations.
- *Tertiary stage:* It is also called product change stage which involves re-design, replanning of process for evaluation of productivity in organizations.
- *Quaternary stage:* It refers to the final stage of production system which describes the abandon of unused products/items.

Figure 2.2: Introduction of new product in organization

Authors: Tari, (2005); Dale & McQuater, (1998); Ishikawa, (1985); Imai, (1986); Dale, (1999) and Dean and Evans, (1994) have identified various quality tools and techniques (QT&T) for the development of new product in organizations. For this reason, quality practitioners must utilize suitable QT&T for development and implementation of quality in their organizations.

2.1.2 In stage of production

Methodology / techniques have been adopted for the enhancement of productivity in optimum manner. The overall quality of products concerns with different stages of production system changed drastically for getting desired results. Therefore, QT&T sustained remarkable effect on workforce & work environment of production system. Besterfield et al., (1999) represents following tools consider to be adopted under in stage production are:

- Pareto diagrams
- Cause-and-effect diagrams
- PERT, CPM
- Arrow diagram
- Control charts
- Process flow diagram

These tools provide necessary feedback by monitoring quality activities for improving in stage production. According to (McQuater et al., 1995) a single quality tool have clear role which is often narrow in focus and is usually used on its own, whereas techniques has wider application and is understood as a set of tools. More ever Ishikawa (1985, 1990) and McConnell (1989), Evans and Lindsay (1999), Dale and McQuater (1998) and Dale (1999) have identified seven basic TQM tools which a vital role and usage in today's manufacturing environment. The next section deals with the evaluation and assessment of products or services in manufacturing organizations.

2.1.3 Assessing process or product

Spring et al. (1998) has conferred about the assessment tactic for the use of quality tools and techniques in new product design of any organizations. Similarly, authors like Deming (1982, 1986) introduced the concept of statistical techniques for quality enhancement and proposed Plan-Do-Check-Act (P-D-C-A) cycle and Ebrahimpour and Schonberger (1984) has relate quality control as the origin for future productivity, quality and growth. The tools and techniques responsible to assess the quality of product in manufacturing organizations are:

- Pie chart
- Histogram
- Bar chart
- Design of experiments (DOE)

- Failure mode and effect analysis (FMEA)
- Fault tree analysis (FTA)

On the other hand, Authors like Lam (1996), Curry and Kadasah (2002), Ahmed and Hassan (2003), Vouzas (2004), Sousa et al., (2005), Bamford and Greatbanks (2005), Hagemeyer et al., (2006) and Alsaleh (2007) develop a distinction between quality tools and techniques to provide facility for users to understanding and implementing the concept of quality. Ishikawa (1976, 1985) suggests the utility and importance of quality circle and problem solving diagram (cause and effect) for continuous improvement.

2.1.4 Stage of data collection

Dangayach and Deshmukh, (2003) relates diversity of products for global competition in international market. Crosby (1979) focuses on zero defect philosophy for problem solving, corrective actions and quality measurement. Similarly, Imai (1986), Dean and Evans (1994), Goetsch and Davis (1997), Dale (1999), Evans and Lindsay (1999) contributing the list of quality tools and techniques in product development. More ever Kwok and Tummala (1998) argued that quality tools and techniques are useless and do not work correctly and professionally for receiving preferred outcomes in manufacturing organization. Accordingly, maximum efficiency to avoid the delivery of defective products to customer will optimized procedure and performance in quality provided with minimum effort time and cost for products (Werner & Weckenmann, 2012). Hence, Antony et al. (1998) describe the variety of tools and techniques required for complete the process of new product development are:

- Check sheets
- Capability indices
- Time series graph

The stage of data collection understood the implication of suitable QT&T in varied organizations to identify and solve problems. Amhed and Hassan (2003) relates that quality management cannot be perceived without the applications of QT&T and Amhed et al., (2005) determines effectiveness and improvement of quality management system for quantifying different QT&T viz benchmarking, statistical process control and defect cost analysis. Figure 2.2 donates the orderly use of various QT&T at different stages of production system. The year wise diagrammatically illustration of QT&T by various authors has been presented in figure 2.3.

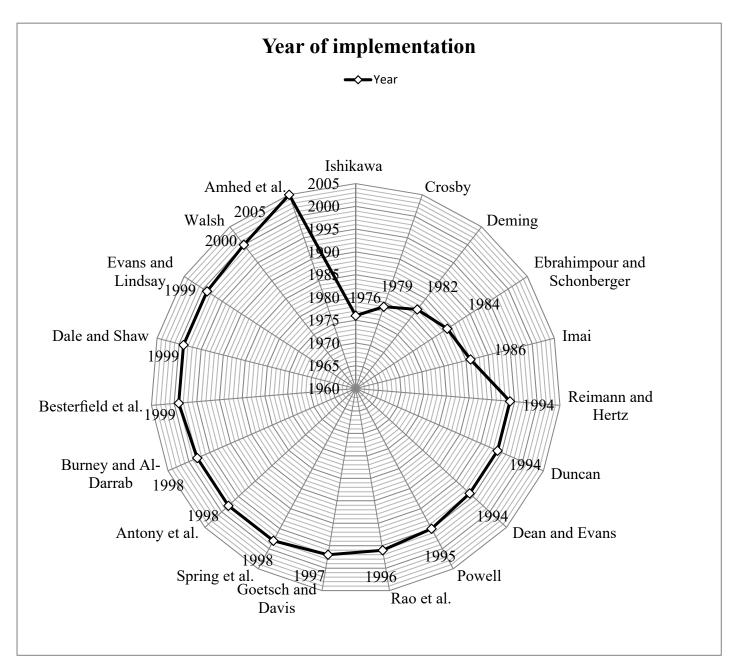


Figure 2.3: Year-wise contribution of different authors in new product development

Hence much progress has been made while adopting these QT&T in different areas of manufacturing for improvement in design and product aspects. From the above literature review it is obvious that many researchers have explored the level of usage & implementation of different QT&T in various organizations. In view of this, the next section addresses the contribution of MADM approaches employed to extract desired outcomes of the research.

2.2 LITERATURE REVIEW ON APPLICATIONS TO CHOOSE MADM APPROACHES

Literature emphasized that exploratory survey of different manufacturing organizations to identify the best practice related to QT&T in order to make comparison between them and to focuses on different aspect related to the application, usage and suitability of QT&T. After exploration the integrative framework, it is revealed that QT&T are not new for improving performance and constantly increasing gains that incessantly striving improvement in manufacturing organizations. Thus, considering the importance of these QT&T in different areas, Multi-attribute decision making approaches (MADM) have been utilized in this chapter.

2.2.1 Graph theoretic approach (GTA)

Grover et al. (2005) have evaluated human resource performance index in TQM environment. Rao and Padmanabhan (2006) have developed criteria for industrial robots by applying GTA methodology to identify and compare factors responsible for selection. Likewise, Grover et al. (2004) have distinguished TQM factors of an organization by systematic digraph approach. Sabharwal and Garg (2013) have addressed the economic viability of organizations concerned with remanufacturing by graph theoretic approach. Grover, Agrawal, and Khan (2004, 2005, 2006); Kulkarni (2005); Raj and Attri (2010); Singh, Khan, and Grover (2012) have been successfully applied graph theoretic approach in distinguished areas of quality for judgment of the barriers affecting the production system. Also, the capability of digraph approach has been utilized in other areas for finding the interdependences and interrelationships between the identified variables. Raj, Shankar and Suhaib (2010a, 2010b) have identified various factors / enablers which affects the sustainability of flexible manufacturing system.

Garg, Agrawal, and Gupta (2006); Garg, Gupta, and Agrawal (2007); Dev, Samsher, and Kachhwaha (2012) and Dev et al. (2013) have analyzed various parameters of thermal power plant responsible to affects the efficiency of boiler system. Prabhakaran, Babu, and Agarwal (2006); Singh and Agrawal (2008); Kumar, Clement, and Agrawal (2010) have identified possible factors to accomplish in certain model by structural equation modelling. Chakladar, Das, and Chakraborty (2009); Gadakh and Shinde (2011); Koulouriotis and Ketipi (2011); Paramasivam, Senthil, and Ramasamy (2011); Singh, Khan, and Grover (2011, 2012); Vinodh, Prasanna, and Selvan (2013) have fallowed their contribution in manufacturing environment by dealing with different factors/enablers /parameters sustained the process of production system. Moreover, for checking the reliability of particular organization authors like: Agrawal, and Shishodia (1991); Sehgal, Gandhi, and Angra (2000) have gave their valuable contribution for identifying measurable properties.

2.2.2 Analytic hierarchy process (AHP)

Analytic hierarchy process (AHP) has wider application to cope with multiple criteria /multiattribute decision situations. Initially developed and applied by Satty (1977). AHP relates with multilevel hierarchical structure to define criteria, sub criteria and options, in ordinary and pair wise mode (Saaty, 1980, 1994, 2000, 2008). Saaty, (2008); Kumar et al., (2009) have developed rank order to compare vendor selection problem of various alternatives in organizations. Gorvett and Liu, (2007) have addressed about the system of an organizations by quantifying relationships and weights between identified factors. Al Qubaisi et al. (2016) have developed planning-based framework to set up criteria weights for school's inspection. Similarly, Sipahi, S. and Timor, M. (2010) have addressed about the recent applications of Analytic hierarchy process in manufacturing and other sectors.

Dey, P.K. (2002) has used AHP methodology for finding the effectiveness of benchmarking. Similarly authors like: Mangla et al., (2014), Bao et al., (2013); Govindan et al., (2014), Harputlugil et al., (2011) have applied AHP methodology in distinctive fields of organizations to get the optimum results from the identified enablers. Millet and Wedley (2002) contribute assist model indecision and menace situations wherever consistent events do not survive. Although, Ordoobadi, (2010) has reported AHP methodology to apply on wide range events/ situations such as: supply chain management, quality management system, engineering/design, education, healthcare and management etc. Sharma and Bhagwat (2007, 2009) have identified integrated BSC-AHP approach for assessment & performance of supply chain management. Chan (2006) has used AHP methodology for measuring the performance of postal cooperation with their competitors by means of benchmarking method. Wong and Li (2008) have applied AHP approach for investigation of the assortment of intelligent building systems (IB).

2.2.3 Interpretive structural Modelling (ISM)

Warfeld (1974) first introduced the concept of ISM methodology which helps to differentiate complex situations or problems in orderly manner by developing map between identified factors. Moreover, Mohammed et al., (2008) has identified solution to complex situations with the help of trained consultants in organizations. Thakkar et al., (2005) suggests that interpretive structural modelling is a logical methodology which finds connection between system variables. Sage, (1977) has protracted interpretive structural modelling as the decision making approach which finds judgment whether the enablers are interconnected with each other or not. Secondly, it develops structure relationships between recognized enablers. Later on, the developed structure being iterated into partitions tables by identifying level between different enablers and finally the analyzed model of organization converted into well-defined digraph representation.

Saxena et al. (1992) has applied ISM methodology in Indian cement manufacturing by identifying factors pertains to energy-conservation. Although, Saxena et al., (2006) has altered uncertain expressed model of system into well-defined approach of system. Sharma et al. (1995) has used ISM approach to counter ideas of waste management in Indian conditions. Similarly authors like: Mandal and Deshmukh (1994); Ravi and Shankar (2005); Singh et al. (2007) and Singh and Kant (2008) have identified various factors/enablers in different dimensions of organizations to categorize into well-organized structured model. Ramesh et al. (2010) has formulated barriers pertaining to supply chain management by using interpretive structural modelling. Soti et al., (2010) has dignified ISM methodology accountable for analyzing the barrier of Six Sigma. Jindal and Sangwan (2011) relate ISM approach for determining the barrier affecting the accomplishment of reverse logistics in Indian manufacturing organizations.

2.2.4 Topsis approach

Topsis is defined as the approach used to recognize order preferences by considering shortest Euclidean distance from the ideal solution. The concept of Topsis has been primarily originated by Hwang and Yoon. Hwang and Yoon (1981, 1995) and Lai et al. (1994) have discovered multiattribute decision making approach for finding fixed set of alternatives by evaluating minimize distance from idyllic point and maximize distance from a lowest point. Rao, (2007) has contributed the values of database in imaginary solution of the system. Jothimani and Sarmah (2014) have employed Topsis methodology for measuring the performance of real life situations in supply chain management. Ramezani and Lu (2014) have applied Topsis approach for analyzing the failures associated with maintenance. Kumar and Singh (2012) have contributed Topsis technique for assessing universal supply chain in current scenario. Khanna and Sharma (2011) have identified the rank of critical success factors accountable to affects the realization of quality management system by Topsis approach. Deng et al. (2000) has distinguished performance of upbringing organizations by determining the weighted Euclidean distances instead of developing weighted decision matrix.

However, many authors have applied Topsis technique into their own distinctive manner i.e Hao and Xie (2006) have used Topsis approach for valuation of bidding process in manufacturing enterprise; Wang and Chang (2007) relates Topsis approach for evaluation of aircraft training. Kannan et al. (2009) has distinguished the priorities availed by reverse logistic using Topsis approach; Chen et al. (2011) has used Topsis approach in personnel selection in multi-information surroundings; Latpate (2015) has used Topsis technique in selection of supplier in supply chain management. Jain and Raj (2015) have identified various factors affecting the performance of flexible manufacturing system and Ziaei et al. (2016) has improved the performance of water pump system by Topsis approach.

2.2.5 Structural equation modelling (SEM)

Structural equation modelling (SEM) is highly developed statistical technique used for testing model fit and build up path analysis for proposed model. In other words, structural equation modelling provides an imminent way to deal with complex theoretical issues. Shipley, (1999) has suggested the subsistence of linear and non –linear relationships into developed model with the help of correlations subsist between pragmatic values. Malaeb et al., (2000) has defined SEM as principal instrument which fallows the investigation of theoretical covariance into random variables to define test model. Pugesek and Tomer, (1995) have investigated SEM technique to detect errors and distortions occurred during the analysis of model fit. Similarly, Iriondo et al., (2003) has defined the underlying relationship of SEM model between variables and covariables. The four main types of relationships exist to make variables co-vary are:

- Straight fundamental relationships: These types of relationships occurred when one variable causes an effect to another variable and vice versa.
- Circuitous fundamental relationships: These types of relationships occurred when one variable causes an effect on another through third variable.
- Counterfeit relationships: These types of relationships occurred when two existed variables have common cause that effects mutually
- Involvement lacking relationships: In this relationship, it is impossible to determine relationship between ordinary variable to previously exist known variables with circuitous or counterfeit relationship.

Moreover, Chin, (1998); Joreskog and Sorbom (1989) and Munck (1979) have established relationship between latent variables to convert into structured model. Although, Bollen and Long, (1993) have distinguished SEM procedure into four basic steps:

- 1. Identification of model and parameter extermination.
- 2. Collection of data.
- 3. Testing of data for model fit.
- 4. Re-specification of model.

Bhushi, (2007) has donated SEM approach for the analysis of path diagram and Babakus et al., (1987) defined consistency to categorized variables under multivariate normality. Kaplan, (2000) has defined SEM as amalgam approach for donating statistical analyzed parameters into two different sub-techniques i.e factor analysis and regression analysis.

- Factor analysis: It is defined statistical technique which finds distinction between Confirmatory factor analysis (CFA) and Exploratory factor analysis (EFA).
- Regression analysis: It is identified as the technique in which variables extracted from visible set of variances and co variances.

The next section implies the nomenclature of structural equation modeling into sub-techniques.

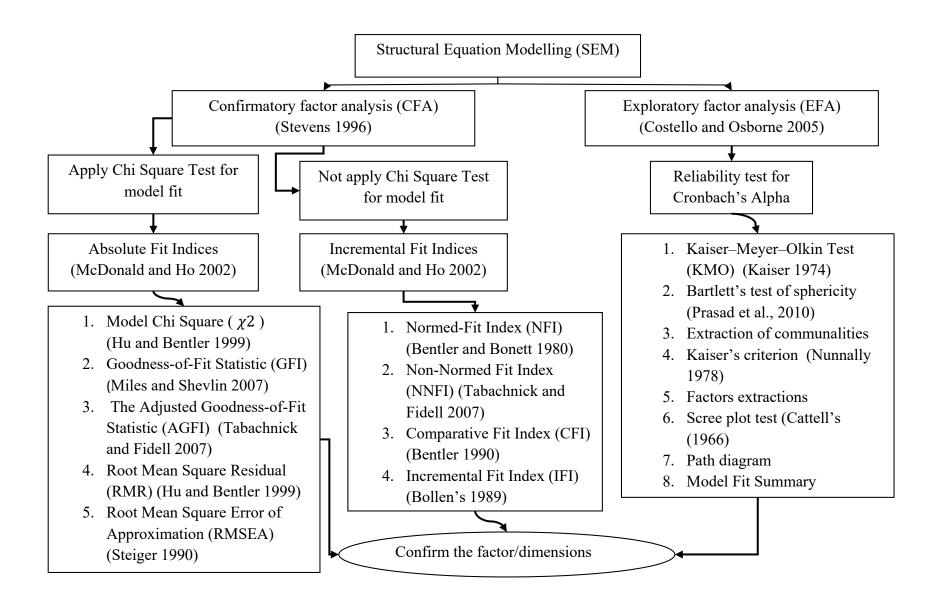


Figure 2.4: Nomenclature of structural equation modelling

2.3 SURVEY RESPONSE

Literature emphasized that investigative survey of different manufacturing and service organizations provides the best outcomes related to implementation of QT&T categories. Therefore, numerous surveys have been carried out to make comparison between applications, usages and suitability of distinctive QT&T's in varied areas. After through exploration of survey framework, it is revealed that QT&T are not new for improving performance of manufacturing and service organizations but are liable to offer optimum results in presiding the growth & development of various organizations. In present research, the output of survey responses has been divided into two main aspects:

- 1. Status of QT&T in manufacturing organizations.
- 2. Status of QT&T in service organizations.

2.3.1 Status of QT&T in manufacturing organizations

Mandal and Sohal, (1998) have formulate pronouncement approached to describe quality in a systemic manner. Similarly authors like Curry and Kadasah, (2002) have studied ISO 9001 registered companies in Saudi Arabia. Lam, (1996) has surveyed companies in Hong Kong; Ahmed and Hassan, (2003) have studied Malaysian small and medium enterprise (SME). Sohal et al., (1992); Sohal and Eddy, (1994); Brown, (1995) have pronounced the impact of quality initiatives in Australian manufacturing organizations. Bayazit, (2003) has surveyed Turkish large manufacturing companies. Lagrosen and Lagrosen, (2005) have studied Swedish companies. Tari, (2005) has surveyed ISO 9001 certified companies in Spain. Werner & Weckenmann, (2012) have organized practice and performance of products for time and cost with minimum efforts. Dangayach and Deshmukh, (2003) have admitted assortment techniques for universal competition in manufacturing industries. However, Dale, (2003); Boys et al., (2005) and Amhed et al., (2005) have identified organizations in quality management system with the applications of QT&T. Bayazit, (2003) has surveyed Turkish large manufacturing companies. Drew and Healy, (2006) have conducted survey in Irish companies. Grigg and Walls, (2007) have studied the applications of statistical quality tools in UK food industries. Frankl and Rubik, (2000) have emphasied deals about life cycle assessment of products. Radovilsky et al., (1996) has implemented quality control tools for productivity and growth in order to satisfy cost of quality. Kim and Im, (1993) has surveyed Korean manufacturing organizations randomly for reforming their manufacturing operations. Despite the fact that no of researchers gave their contributions to implicit quality for providing variety of products in global market (Nielsen and Wenzel, 2002; Zhou and Schoenung, 2007; Streimikiene et al., 2009; Bovea and Prez-Belis, 2012; Sarkis et al., 2010; Teixeira et al., 2012). In addition to this, Chikan and Demeter, (1996); Ettlie, (1996); Ferme, (1995) and Videras et al., (2012) addressed facility to provide users for better understanding and implementation of QT&T in various organizations. The year wise graphical illustration of QT&T succession in manufacturing organizations is shown in figure 2.5

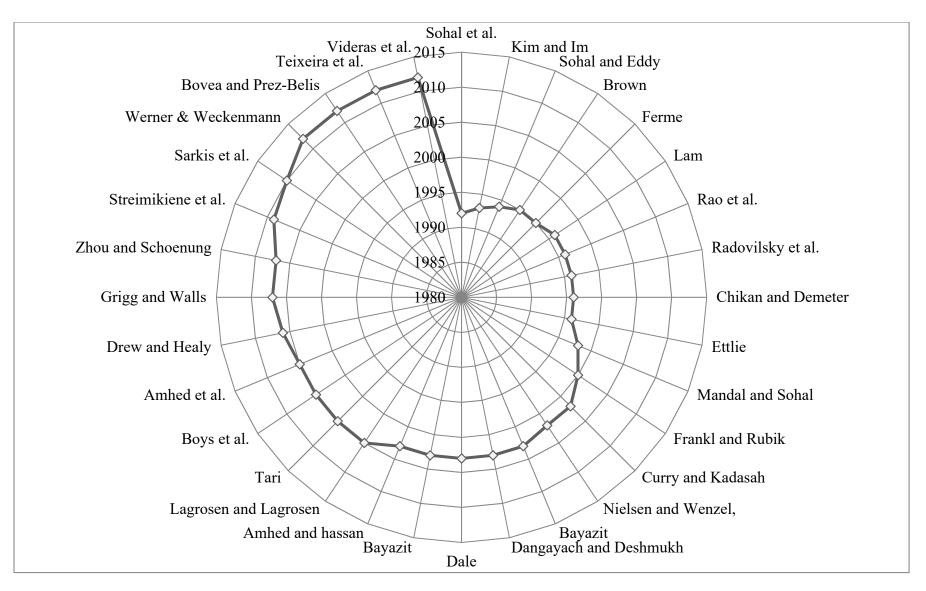


Figure 2.5: Succession of QT&T in manufacturing organizations

2.3.2 Status of QT&T in service organizations

Garg et al., (2002) and Antony et al., (2004) have recommended the increase of products and services for quality enhancement. Also Garg et al., (2005) and Kodali, (2003) have provided the relevancy of management tools in service and public sector organizations; In other words, adaptability of QT&T in service organizations brings higher quality with lower price independently to bring changes in product or service.

As illustrated by various authors about the realistic applicability of QT&T in service organizations: Heizer and Render, (2006) have discovered the powerful discernment of total quality management together with service organizations. Sullivan-Taylor and Wilson, (1996) implies that QT&T applied for both profitable and non-profitable organizations in the service sector. Drew and Healy, (2006) has confirmed that total quality tools and techniques assumed unequally distributed among countries, sectors and product areas. Silvestro, (1998, 2001) has recognized common proponents of TQM implemented in service organizations. Different authors surveyed various countries like Fotopoulos and Psomas, (2009) and Vouzas and Psychogios, (2007) have visited Greece, Al-khalifa and Aspinwall, (2000) have visited Qatar, Khanna, (2009) and Kumar et al., (2009) have visited India, Tari, (2005) has surveyed Eastern spain, Chang and Lu, (1995) have visited Taiwan, Ghosh and Hua, (1996) have visited Saudi Arabia, to know the extent and implementation status of various QT&T in service organizations.

Although authors like Brah et al., (2000) ; Yasin et al., (2004); Sit et al., (2009); Lakhe and Mohanty, (1995); Moriarty (2011); Hong et al. (2012); Singh et al. (2012); El Faiomy and Shaban (2012); Al Owad et al., (2013); Reddy and Al Shammari (2013); Banawi and Bilec (2014); Oguz et al., (2012); Almuharib (2014); Alharthi et al. (2014); Bubshait and Al-Dosary (2014); Amminudin et al. (2011); Al-Sadat and Robertson (2007); Dhafer (2014); Talib, F.et al.,(2011) have supported positive disagreement regarding the definition for QT&T in theory or in practice. Hence literature has offered typical model for presenting both manufacturing and service organizations on the basis of adaptability.

Many researchers and authors used different quality initiatives to summaries empirical research in terms of applicability, usage and implementation of QT&T within the organizations. After ascertain study and screening of literature, subsequent results shows the current implementation succession of various QT&T categorizations in service organizations.

Figure 2.6 refers to the succession of QT&T in service organizations. The current figure provides the valuable insight for year wise allocation of different tools and techniques by various authors.

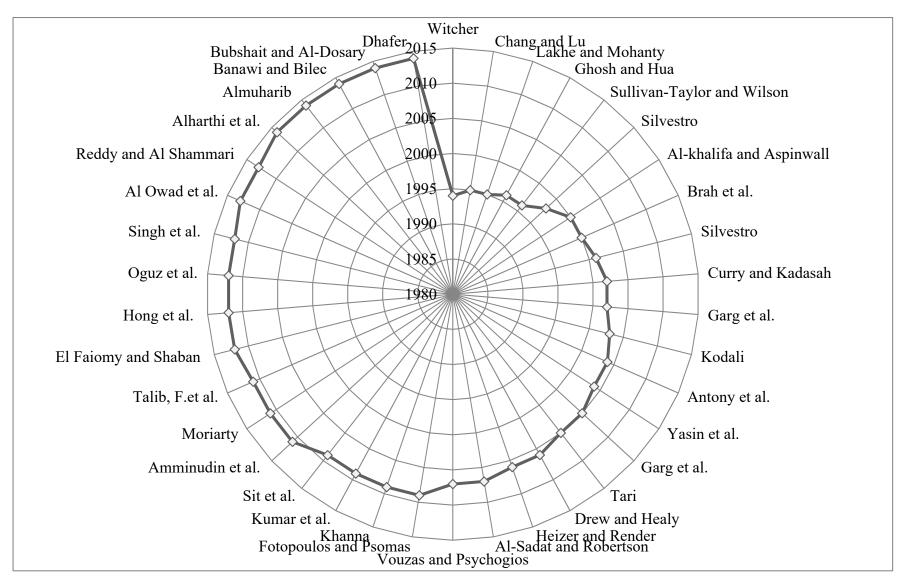


Figure 2.6: Succession of QT&T in service organizations

2.4 GAPS ACKNOWLEDGED FROM LITERATURE ANALYSIS

A widespread review of literature analysis brings out following gaps for the applicability of quality tools and techniques in manufacturing organizations:

- The researcher has not drawn closer to any literature for the grouping of distinctive QT&T in manufacturing organizations based on characteristics of applications.
- Only few numbers of categorizations are available in literature for investigating the implementation rate of QT&T in manufacturing and service organizations.
- In literature the applications of integrated (GTA-AHP) approach for determining effectiveness of QT&T categories through single numerical index has not been recognized.
- In literature, barriers affecting the effective utilization of QT&T in manufacturing organizations have not been carried out.
- Determining the effectiveness of QT&T in varied organizations by integrated (ISM-MICMAC) methodology has still not found in literature analysis.
- The researcher has not come across any literature for finding the level for adoption, applicability, benefits and challenges of various QT&T in manufacturing organizations.
- In literature, analysis of dominating categories by means of shepard plot has not been discovered by any organization.
- The researcher has not come across any literature for assessing the effect of QT&T categories in manufacturing organizations.
- In literature, evidence of developing a structured model between foremost QT&T categories has not been pointed out by any author.

QT&T: AN INTROSPECTION AND DETAILED CLASSIFICATION

Manufacturers have been trying to improve the environmental performance of products and services by implementing sustainable development concepts (Ingwersen and Stevenson, 2012). Moreover, law and gunasekaran, (2012) investigated variety of factors that influence the execution of environmental practices for sustainable development of products in manufacturing organizations. Ironically, Superior environmental performance becomes a crucial aspect for delivering goods and services in any organization (Suphunnika and Kayis, 2014). Hence, all organizations (service and manufacturing) undergone significant changes in its definitions, paradigms, approaches, techniques, scope and applications of QT&T in substituent areas. Thus, quality tools and techniques (QT&T) donates means for analyzing problems, performance measurement and diagnostic gaps for enhancing desired improvements in upbringing organization.

3.1 RECOGNITION OF QT&T

In present situation, manufacturing organizations leads to the development and innovation of accelerating product in worldwide competition for their quality, functionality and versatility. It defines the detailed specification and phase development of products for achieving desired results. The important step to get ahead in this competition has to discover new products in order to create differences in global customer requirements. Consequently, effective utilization of particular QT&T in manufacturing organizations becomes prominent for determining their applications and implementation status. To achieve this, organizations must adopt certain problem solving methodologies to accomplish desired improvements in team-oriented manner. So, numerous research & studies for complexity in problem solving techniques have been analyzed to assist the requirements of QT&T in manufacturing organizations.

Rationally, exploratory investigation of manufacturing organizations implements best practices in order to make comparison between different parts related to applications, usages and suitability of distinctive QT&T. Papulova & Papulova, (2006) discussed that industrial organizations must adapt and seeks improvement in quality control with the applicability of QT&T on specified areas. In other words, QT&T has been intended to accomplish various functions & tasks for satisfying customer demands. Deliberately, total 152 distinctive quality tools and techniques are identified and categorized into 16 groups based on their characteristics of applications, suitability and usages. Therefore, to seek the importance of QT&T in varied areas, classification of QT&T into well-defined categories has been made.

The next section of this chapter implies the classification of 152 distinctive QT&T into 16 groups, shown as underneath:

3.2 CLASSIFICATION OF QUALITY TOOLS AND TECHNIQUES

Different QT&T are clubbed into sixteen groups based on their characteristics.

- 1. Seven basic quality tools (7QT)
- 2. Management tools (Seven new quality tools) (7MT)
- 3. Problem solving tools (PST)
- 4. Software tools (SWT)
- 5. Statistical tools (ST)
- 6. Graphical tools (GT)
- 7. New product development tools (NPDT)
- 8. Decision making tools (DMT)
- 9. Productivity tools (PT)
- 10. Assessment/analysis tools (AT)
- 11. Combinational tools (CT)
- 12. Relationship tools (RT)
- 13. Lean tools (LT)
- 14. Communicational tools (CMT)
- 15. Motivational tools (MOT)
- 16. Performance measurement tools (PMT) (Sharma et al., 2017)

The detailed observation of QT&T categories with subsequent tools have been shown in tables 3.1 to 3.16. The following tables provide an idea about the usage, suitability and major areas of application of various QT&T in distinctive organizations.

3.2.1 Seven basic quality tools (7QT)

Seven basic quality tools are intended to perform imperative role in the development process of manufacturing organizations. These tools are so basic that people with less knowledge & training can easily adapt these tools in diversified areas of manufacturing. Table 3.1 describes the basic quality tools along with their province areas of usages and applications.

3.2.2 Management tools (7MT)

Management tools essentially focuses on work culture environment of the manufacturing organizations. These tools exhibit top to bottom management contribution for the enhancement of various production processes. In other words, managers may persuade a large number of employees to use these tools in a way that benefits the whole firm. Dealing with different managerial aspects, these tools convey different roles in order to demonstrate usages and applications as shown in table 3.2.

Basic quality tools	Usage	Major areas of Application	Suitability
1.Cause and effect diagram/fishbone diagram/ishikawa diagram/herringbone diagram/fishikawa diagram	 Analyzing problems Identify root cause, potential causes & performance reduction. Process improvement. Categorization capabilities Evaluation feature. 	 Purchasing Production Companywide techniques Data collection 	Manufacturing and service sectors
2. Scatter diagram	 Identify effects causing outcome of process, relationships, measuring capabilities & investigation Statistical analysis Input/output criteria 	 Production Problem solving Customer supplier relationships Data collection 	Manufacturing and service sectors
3. Pareto diagram	 Display relationship results Differentiate between two outcomes Concentration results & recourses 	 Purchasing Production Marketing engineering Sales fore cast 	Manufacturing, Service and process industries
4.Flow chart	 Graphical representation Easily readable Problem focus Displaying trends 	 Purchasing Sales revenue Customer services Problem solving 	Manufacturing, Service and process industries
5.Control charts (C, X̄, R,U,P)	 Control evaluating of processes Identify special causes Evaluate effort & process parameters Effectively adaptable to processes 	 Manufacturing Service industries Monitoring processes Performance variability Purchasing 	Manufacturing, Service and process industries

Table 3.1: Usage and application of (7QT)

Basic quality tools	Usage	Major areas of Application	Suitability
6. Histogram	 Specify variances Contributed results Differentiate data distribution Displaying results 	 Problem solving Production Accounting processes Manufacturing 	Manufacturing and service sectors
7.Check sheet and tally Chart	 Recording data Continuous phase measurement Results Compilation Continuous improvement of work environment 	 Data collection Purchasing Production Customer services Sales 	Manufacturing and service sectors

Management tools	Usage	Major areas of Application	Suitability
1.Affinity diagram	 Relate creative idea with work Organize natural framework Explaining difficult results Collecting data 	 Motion and time study Logistics Information technology Service industries 	Manufacturing, Service and process industries
2.Arrow diagram	 Calculate critical path Scheduling task Enhance thinking & speed up the project 	 Monitoring processes Business re-engineering Credit function Human resources 	Manufacturing and service sectors
3.Matrix diagram	 Gather multiple information Identify & investigate severity of data Explaining ideas of relationship 	 Core competencies Employee attitudes Facility management Manufacturing 	Manufacturing sectors
4.Matrix data analysis	 Identify comparative results Pair wise result evaluation Judging different strategies 	 Accounting processes Production Sales and revenue Problem solving 	Manufacturing and service sectors
5.Process decision program chart (PDPC)	 Counteracting potential problems Systematically identify happenstance Planning development & avoid risks 	 Credit function Finance Hotel services Information technology 	Manufacturing, Service and process industries

 Table 3.2: Usage and application of 7MT

Management tools	Usage	Major areas of Application	Suitability
6.Relation diagram/inter relationship diagram/network diagram	 Identify different aspect complex situation Determine phase logical sequence Implemented to complicated solution 	 Marketing Finance Pre-project planning Employee attitudes 	Manufacturing and service sectors
7.Systematic diagram/tree diagram/hierarchy diagram	 Step wise Categorization Planned way result orientation Analyze outcome capabilities 	 Information technology Logistics Performance measurement Career management 	Manufacturing sectors

3.2.3 Problem solving tools (PST)

Several unsuccessful attempts diminish due to the execution of problem solving tools in the manufacturing organizations. Systematic procedures have been adopted to find out the solution of specific problems that arises in the manufacturing organizations for the improvement of quality. Different QT&T have been categorized in terms of usage and application to identify the problems arising in various stages of manufacturing as shown in table 3.3.

3.2.4 Software tools (SWT)

Software based results are more easily accessible and formulated in orderly manner. Software tools are indented to create, debug, maintain or support identical programs that help to rationalize errors in automated equipments. For necessary improvement of products in manufacturing organizations, software tools along with respective usages and applications has been shown in Table 3.4

3.2.5 Statistical tools (ST)

QT&T have vast influence in data collection. Re-arranging of data by mathematical techniques requires statistical tool for getting the structured and meaningful results. Table 3.5 covers the representation of statistical tools with major areas of usages and applications.

3.2.6 Graphical tools (GT)

Graphical tools are used to represent data in orderly manner. These tools provide direct insight for the practitioners and industrial experts about the utilization of statistical technique in graphical manner. To know the influence of QT&T in manufacturing organizations various tools exhibits the features of pictographic illustration which facilitates the users to understand situation more easily. Table 3.6 shows the various graphical tools.

3.2.7 New product development tools (NPDT)

Industrialist and researchers have invented new tools for the development of products in order to satisfying performance in manufacturing organization. By identifying possible reasons of adopting NPDT tools in manufacturing organizations, researchers can easily sorted out the problems responsible for the enhancement of products. The domain areas of NPDT tools with respective applications and usages are enlisted in table 3.7.

Problem solving tools	Usage	Major areas of Application	Suitability
1. A3 report	 Captured past problem Introduced new concept Analyze document & trade-off 	 Manufacturing Core competencies Finance Data collection 	Manufacturing and service sectors
2.Effective meetings	 Preparing agenda Task oriented Encourage work force Exchange Information 	 Change management Facility management Information technology Public sectors 	Service and process industries
3. Eight disciplines (8D)	 Defining team objectives Counter measure problem Permanent corrective actions 	MarketingProblem solvingProduct development	Manufacturing and process industries
4.Five why's (5w's)	 Identify root cause Detailed overview of problem statement Simpler way for defining results 	 Manufacturing Service industries Operational performance Purchasing 	Manufacturing and service sectors
5.Five why's and one how's (5w1h)	 Evaluate complex situation Refined way to measure results Monitor activities 	 Manufacturing Public sector Research & & development 	Manufacturing and service sectors

Table 3.3: Usage and application of problem solving tools

Problem solving tools	Usage	Major areas of Application	Suitability
6.Five why's and two how's (5w2h)	 Exhaustive approach can be simplified In order distribution of outcome Planned way to deal situations 	 Product development Service industries Performance measurement 	Manufacturing and service sectors
7.Five why's and five how's (5w5h)	 Handle multiple situations In depth evaluation of problem Accuracy in results 	Career managementCore competenciesService industries	service sectors
8.Impact effort matrix	 Retrieve suggestive solutions Identify each outcome Systematic overview of problem statement 	SalesProductionCompanywide techniques	Manufacturing sectors
9.Nine windows	 Break initial and drive solution Avoid inflexibility & false assumptions Adaptable easily to other techniques 	 Problem solving Customer services Marketing Sales revenue 	Process industries
10.Nomial group Technique (NGT)	 Group contribution approach Identify conflicts between teams Generate quantities of ideas 	 Customer/supplier relationship New product introduction Quality awareness 	Manufacturing and process industries
11.Problem solving Methodology	 Dealing complex variety of situations Easy outcome for desired problem Continuous and sustainable improvement 	 Manufacturing Sales forecast Service industries Marketing 	Manufacturing, Service and process industries

Problem solving tools	Usage	Major areas of Application	Suitability
12.Problem concentration Diagram	 Determine location based occurrence Symbolic way for defining problems Connect events to physical location 	 New product development Credit function Human resources Finance 	Manufacturing and process industries
13.Quality circles	 Evaluate workforce capabilities Multiple situations In order distribution of work 	 Performance measurement Companywide techniques Employee attitudes 	Manufacturing, Service and process industries
14.Sucess and effect diagram	 Immediate attention to problem Continually improve other processes Conducted sense full ownership 	Accounting processesBusiness re-engineeringCareer management	Process industries
15.Pilot testing	 Small scale trial Eliminating errors Feedback about performance 	 Problem solving Information technology Facility management	Process industries
16. Triz	 Accelerate project team ability Provide repeatability, Predictability & reliability due to structure approach Scientifically based problem solving approach 	 Performance measurement Logistics Research & development Human resource 	Service and process industries

Software tools	Usage	Major areas of Application	Suitability
1.Anomaly report	 Identify detailed defect/ bug found in software Find out discrepancy & trouble issues Document investigation 	 Data analysis Human resource Public sectors Service industries 	Service and process industries
2.Integrated design for function modeling (IDEFO)	 Organize system analysis Promote consistency and interpretation between users Easily compatible with computer integrated manufacturing (CIM) 	 Research & development Career management Employee attitudes Product development 	Manufacturing, Service and process industries
3.Operational acceptance test (OAT)/operational readiness testing (ORT)	 Maintenance & operation of projects Verify non-functional aspect of system Periodically checking security 	 Manufacturing New product development Retail distribution strategy 	Manufacturing and process industries
4.Reliability metrics	 Maximize system reliability Counting operational failures Interaction between software and hardware 	 Risk management Sales performance Small and medium industries Capability measure 	Manufacturing process industries

Table 3.4: Usage and application of software tools

Software tools	Usage	Major areas of Application	Suitability
5.Simulations	 Mathematical modeling Performance optimization & safety engineering Simplifying approximation and assumptions 	 Data collection Performance measurement Pre-project planning Education 	Process industries
6.Rationale map	 Structure arguments Analyze reasoning Identify assumptions 	 Public sector Career management Research &development 	Service and process industries

Statistical tools	Usage	Major areas of Application	Suitability
1.Acceptance sampling	 Acceptance and rejection of lots Identify customer supplier relationships Calculate no of defective items 	 New product development Service industries Library Purchasing 	Manufacturing and service industries
2. Analysis of Variance (ANNOVA)	 Analysis of means Easily differentiate between two results Comparison between material and products 	 Data collection Financial services Operational management Sales forecast 	Process industries
3.Basic statistics	 Calculate mean, median, mode & standard deviation Easily accessible large data Combine with other techniques 	 Performance measurement Risk management Small and medium industries Finance 	Manufacturing, Service and process industries
4.Hypothesis test	 Determine probability of outcomes Calculate relationship between two data sets Specifying parametric limits 	 Safety management Public sector Pre-project planning Human resource 	Service and process industries
5.Measles chart	 Collecting and analyzing data Continuously improve defect rate Cluster marking approach 	 Physician workforce Preventive maintenance Product development Data collection 	Manufacturing industries

Table 3.5: Usage and application of statistical tool

Statistical tools	Usage	Major areas of Application	Suitability
6 .Record sheet	 Identify numerous data Compile Multiple information Implemented in almost all areas 	 Operational performance Library Customer/service relationship 	Service and process industries
7.Regression analysis	 Estimate relationship among variables Modeling technique Identify location parameter 	 Data collection Facility management Information technology Service industries 	Service industries
8.Sampling plan	Selection of subset individualSimplify dataIdentify critical factors	 Logistics Problem solving Manufacturing Design development 	Manufacturing and process industries
9.Wei bull analysis	 Predict life of product Parameterized distribution of data Identify failure & causes 	 New product development Preventive maintenance Data analysis 	Manufacturing industries
10.Correlation	 Find out dependency between two random variables Indicate predictive relationship Demonstrate data 	 Data collection Customer relationship Companywide techniques Sales and revenue 	Process industries
11.Sequential regression and best sub sets	 Step wise data evaluation Identify best fitting regression model Predict future response 	 Pre-project planning Human resource Employee attitudes Finance 	Process industries

Statistical tools	Usage	Major areas of Application	Suitability
12.Spaghetti diagram	 Identify redundancies in work flow Continuous flow line tracing approach Highlight major areas 	 Manufacturing Service industries Purchasing Design and development 	Manufacturing and service industries
13.Time series	 Successive measurement of data Calculate distance between two time intervals Determines records of results 	 Data analysis Performance measurement Risk management Travel management 	Process industries
14.Questionnaire	 Gathering information from respondents Design for analysis of responses Compile data in simpler way 	 Preventive maintenance practices Logistics Product development Service industries 	Manufacturing and service industries
15.Contingency table	 Display multivariate frequency distribution of variables Focus on survey & scientific research Store data in smarter way 	 Finance Purchasing Research & & development Data analysis 	Process industries
16.Taguchi methods	 Development of design for studying variation Improve mean outcome of process Make comparative statements 	 Performance measurement Risk management Core competencies Public sectors 	Service and process industries

Graphical tools	Usage	Major areas of Application	Suitability
1.Frequency graph	 Schematic displays of project schedule Find cumulative frequency Scheduling tools in Microsoft 	 Accounting processes Business re-engineering Manufacturing Marketing 	Manufacturing and process industries
2.Bar chart	 Group data distribution Compare size of two quantities Show cumulative effect 	 New product development Performance measurement Customer relationship 	Manufacturing, Service and process industries
3.Fault tree analysis (FTA)	 Analyzed undesired state of system Top to bottom deductive approach Identify causes which effects system 	 Preventive maintenance practices Facility management Retail distribution 	Process industries
4.Line graph	 Mathematical graph theory Show inter dependencies between variables Identify multi decision approach 	 Operational performance Business re-engineering Banks Information technology 	Process industries
5.Run chart	 Display observed data Find out Performance outcome Monitor behavior of variable 	 Logistics Manufacturing Operational management Banks 	Manufacturing, Service and process industries

Table 3.6: Usage and application of graphical tools

Graphical tools	Usage	Major areas of Application	Suitability
6.Pie chart	 Divide numeric proportions of data Make comparative statements Demonstrate various activities 	 Performance measurement Service industries Manufacturing Marketing 	Manufacturing, Service and process industries
7.Plan do check act cycle (PDCA)	 Continuous improvement of process and product Iterative management technique Repetitive work process 	 Career management Credit functions Public sectors Pre-project planning 	Service and process industries
8.Dispersion graph	Display distributed dataFocus each activityConfirmatory results	 Health and safety measurement Product development Employee attitudes 	Manufacturing, Service and process industries
9.Box and whisker Plot	 Represents five statistical summaries at a time Summarizes data from multiple source Comparison of data 	 Data analysis Financial services Purchasing Customer supplier relationship 	Process industries

Graphical tools	Usage	Major areas of Application	Suitability
10.Multi-vari chart	 Display patterns & variations among data Identify groups & sub group among activities Relationships between factors and response 	 Core competencies Public sectors Credit functions Banks 	Service and process industries
11.Radar chart	 Display data in two dimensional chart Represent quantitative variables on axes starting from same point Compatible easily with software 	 Finance Operational performance Service industries Telecommunications 	Service and process industries

NPDT Tools	Usage	Major areas of Application	Suitability
1.Benchmarking	 Measure organization policies Analyze performance level Identify problem areas 	Food and drinks industriesInformational technologyLaw courts	Service and process industries
2.Beta testing	 Explore product outcomes Discover flaws and issues between subordinates Easily adaptable with software 	 Product development Research & design Problem solving Human resource 	Manufacturing and process industries
3.Brainstorming	 Identify specific problems Gather ideas from members Give creative solution to problem 	 Information technology Purchasing Supply chain operations Risk management 	Process industries
4.Concept testing	 Evaluate customer response Generate communication between customers Introduce new product in market 	 Customer/supplier relationship Manufacturing Safety management Marketing 	Manufacturing, Service and process industries
5.Conjoint analysis	 Determine different attributes in market Compatible with statistical technique Control potential product and services 	 Service industries Public sectors Education Library 	Service and process industries

Table 3.7:	Usage and	application	of NPDT tools
-------------------	-----------	-------------	---------------

NPDT Tools	Usage	Major areas of Application	Suitability
6.Contextual enquiry	 Design ethnographic research method Semi structured interview method Capture work complexities, information flow and cultural qualities of working environment 	 New product introduction Finance Retail distribution strategies Sales performance 	Manufacturing and process industries
7.Delphi technique	 Interactive forecasting method Questionnaire technique Structured communication method between experts 	 Customer/supplier relationship Law courts Education Manufacturing Information technology 	Manufacturing and process industries
8.Design of experiments (DOE)	 Find cause and effect relationship Manage process input to optimize output Evaluate and control value of parameters 	 Research and development Manufacturing Performance measurement Risk management 	Manufacturing, Service and process industries
9.Design for six sigma (DFSS)	 Determine needs of customer and business Inform design decision and trade offs Focus on evolutionary and continuous improvement 	 Food and drinks industries Product development Employee attitudes Safety management 	Manufacturing and process industries

NPDT Tools	Usage	Major areas of Application	Suitability
10.Failure mode and effect analysis (FMEA)	 System reliability study Identify failure mode by reviewing many components Evaluation of diagnostic systems 	 Problem solving Sales forecast Small and medium scale industries Pre-project planning 	Process industries
11.Focus group	 Qualitative research method Identify survey results Provide data at lower cost 	 Business re-engineering Research and development Physician workforce 	Service and process industries
12.In-home use test	 Market research method Gain feedback from consumers Fallow-up survey technique 	 Marketing Employee attitudes Customer relationship Travel management Purchasing 	Process industries
13.Quality function deployment (QFD)	 Translate customer needs into specific plans Deploy function forming quality Achieve design quality into subsystem and component parts 	 Research and development New product development Research and design Pre-project planning 	Manufacturing, Service and process industries

3.2.8 Decision making tools (DMT)

Manufacturing professionals take several decisions regarding machine, material and other aspects related to organization. Decision makers often face diversified and complicated situations for the utilization of various QT&T that effectively engage problem solving methodology for quantifying quality-related issues developed in manufacturing organizations. For this purpose, various decision making tools are adopted by certain practitioners as shown in table 3.8.

3.2.9 Productivity tools (PT)

Majority of manufacturing organizations offer higher productivity and efficiency for satisfying global competition market. The utilization of productivity tools encounters various difficulties related to the quality of product. To overcome this difficulty, many tools and techniques have been intended to increase the performance of varied products than average firms by enhancing the growth of manufacturing organizations. Table 3.9 describes the usages and applications of various productivity tools.

3.2.10 Specific analysis/assessment tools (AT)

As name indicates, these tools allow specific judgment to address and measure quality by means of different analysis methods in the manufacturing organization. These tools distinctively evaluate and focus on possible procedures that evaluate the effectiveness of manufacturing organizations. The role of major applications, usages and suitability of different assessment tools have been illustrated in table 3.10.

3.2.11 Combinational tools (CT)

QT&T's are intended to combine with other tools for enhancing their performance and getting desired results in the manufacturing organizations. These tools contribute in same manner like an individual tool performs in combined form. These tools are shown in table 3.11.

3.2.12 Communicational tools (CMT)

Communicational tools are used to convey information regarding improvement and growth of manufacturing organization. These tools help to identify efforts and deficiencies responsible to insist financial transactions in manufacturing organizations. Table 3.12 shows the possible communicational tools with their respective usages and applications in subsequent areas.

3.2.13 Relationship tools (RT)

Relationship tools are utilized for determining the relationship between different elements related to an issue. Moreover, these tools are widely utilized in all stages of product development and production process with the goal to minimize cost and increased customer satisfaction. Relationship tools are shown in table 3.13.

Decision making tools	Usage	Major areas of Application	Suitability
1.Break even chart	 Firm manufacturing of compact disk Identify profit and loss statement Determine relationship between sales ,costs and profits 	 Cost evaluation Accounting processes Manufacturing Operational performance World class manufacturing 	Manufacturing and process industries
2.Decision matrix	 Evaluates list of options Discuss and refine list of criteria Identify rate of performance and relationships 	 Logistics Food and drinks industries Employee attitudes Hotel services 	Service and process industries
3.Force field analysis	 Analyze force against change Communicate reason behind change Employed for social situations 	 Employee attitudes Physician workforce Credit functions Change management Pre-project planning 	Process industries
4.Gantt chart	 Illustrate project scheduled Show activities which display against time Scheduled complex projects 	 Education Public sector Telecommunications Sales forecast 	Service and process industries

Table 3.8: Usage and application of decision making tools

Decision making tools	Usage	Major areas of Application	Suitability
5.Multi voting	 List larger possibilities into narrow one List priorities and finalize selection Discuss remaining ideas 	 Safety management Operational performance Employee attitudes Core competencies 	Process industries
6.Prioritization matrix	 Multiple project completion Determine order sequence of factors Focus team recourses 	 Career management Product development Information technology Public sectors 	Service and process industries

Productivity improvement tools	Usage	Major areas of Application	Suitability
1.Concurent engineering	 Design and development of products Improve productivity and reduced cost Bring new product in market 	 Research and design New product development Pre-project planning Facility management 	Manufacturing and process industries
2.Enterprise resource planning (ERP)	 Collect, store & interpret data Control product planning, marketing, sales & inventory management Widely compatible with software 	 Career management Change management Sales performance Retail distribution strategies Marketing 	Manufacturing, Service and process industries
3.Evalutionary operation (EVOP)	 Experimental design improvement Manufacturing process optimization technique Introduce small change in process 	 Manufacturing Service industries Public sectors Medium and small scale industries 	Manufacturing and Service industries
4.Group technology (GT)	 Identification of similar parts Maximize production efficiencies Reduced recurring problems and task 	 Product evaluation Operational performance Spare parts logistics World class manufacturing 	Manufacturing industries

Table 3.9: Usage and application of productivity improvement tools

Productivity improvement tools	Usage	Major areas of Application	Suitability
5.Just in time (JIT)	 Reduce flow time between production Improve procurement policies and manufacturing process Production scheduling & interchanging data 	 Manufacturing Service industries Preventive maintenance Safety management 	Manufacturing, Service and process industries
6.Kaizen activities	 Improve every function of business Aim to eliminate waste Continual improvement and aspects of life 	 World class manufacturing Health and safety management Research and development 	Manufacturing and Service industries
7.Kano model	 Classify customer preferences Translate and transforms results Create profitable products or services 	 New product development Core competencies Performance measurement Pre-project planning 	Manufacturing and Service industries
8.Business process re- engineering (BPR)	 Refocus company values on customer needs Information technology to enable improvements. Analysis and redesign of work flow 	 Customer/supplier relationship Credit function Logistics Risk management 	Service and process industries

Productivity improvement tools	Usage	Major areas of Application	Suitability
9.Supply chain management	 Movement and storage of raw materials Interconnected with other network and channels Build competitive infrastructure 	 World class manufacturing Physician workforce Finance Information technology 	Manufacturing, Service and process industries
10.Total productive maintenance (TPM)	 Maintain & improve integrity of production Add business value to an organization Prefect production with no break downs 	 Performance measurement Safety management Product development Small and medium industries 	Manufacturing industries
11.Zero defect (ZD)	 Eliminate defects in industrial production Generate output within specified limits Sampling and comparing lots 	 Accounting processes Performance measurement Defect prevention World class manufacturing 	Manufacturing industries

Analysis/assessment tools	Usage	Major areas of Application	Suitability
1.Consensus analysis	 Answer series of related questions High level of consistency among informants Homogeneity analysis 	 Data analysis Change management Education Library Information technology 	Process industries
2.Internal audits	 Design and add value improvement Evaluate effectiveness Provide recommendations for assessments 	 Retail distribution strategies Employee attitudes Operational performance Information technology 	Service and process industries
3.Personality profiling	 Evaluate employee personal attributes Maximize and contribute job performance Design to seek out top to bottom management effort 	 Law courts Education Physician work force Customer relationship 	Process industries
4.Self-assessment	 Focus on revenue & customs Self-verification& enhancement Deductions of taxes 	 Accounting process Business re-engineering Credit function Change management 	Process industries
5.Stake holder analysis	 Identify groups that affected proposed action Weigh & balance competing demands Analyze attitude by mapping 	 Food and drinks industries Hotel services Logistics Retail distribution strategies 	Service and process industries

 Table 3.10: Usage and application of specific analysis/assessment tools

Analysis/assessment tools	Usage	Major areas of Application	Suitability
6.Supplier survey	 Collect information to satisfy social and environmental criteria Strength company mission Evaluate performance through questionnaire 	 Customer/supplier relationship Risk management Supply chain operations Travel management 	Process industries
7.Survey design and analysis	 Illuminate new opportunities Obtain information from large aggregate Focus on customer, employee & market needs 	 Research and development Human resource Operational performance Public sectors 	Service and process industries
8. Accelerated life test	 Testing product by subjecting conditions of stress & strain. Uncover faults and potential mode of failure High longevity of product 	 Product development Pre-project planning Operational performance Physician workforce 	Manufacturing and process industries
9.Architectural design evaluation tool	 Highlight the strength and weakness of design Evaluate refurbishment scheme Analysis and feedback response 	 Facility management Change management Risk management Design development 	Service and process industries

Analysis/assessment tools	Usage	Major areas of Application	Suitability
10.Customer satisfaction assessment	 Support strategic decision making Analyze data & share findings Valuable customer research program 	 Customer supplier relationship Business re-engineering Career management Employee attitudes 	Service and process industries
11.SWOT analysis (strength, weakness, Opportunities and threats)	 Evaluates elements of project or business Identify internal external factors Specifying objectives 	 Business re-engineering Manufacturing Supply chain operation Research and development 	Manufacturing, and process industries

Combinational tools	Usage	Major areas of Application	Suitability
1.Economic analysis	 Determine optimum scarce recourses Comparison between alternatives Assess policy & program 	 Accounting processes Change management Credit function Employee attitudes Facility management 	Process industries
2.Process capabilities	 Compare the output of stable processes Hold tolerance and customer requirements Choose most competing process 	 Operational performance Preventive maintenance practices Public sector 	Service and process industries
3.Statistical process control (SPC)	 Measuring & controlling quality during manufacturing process Ensure process operates with full potential Early detection & prevention of problem 	 Data analysis Performance measurement Information technology Accounting processes 	Process industries
4.Analysis of quality cost	 Finding & correcting defective work Compatible with software analysis Identify area keywords of different costs 	 Credit function Purchasing Sales forecast Performance measurement 	Process industries

Table 3.11: Usage and application of combinational tools

Combinational tools	Usage	Major areas of Application	Suitability
5.Suppliers, Input, process, Output, and customers	 Summarize input/output in table form Identify relevant elements of process improvement Process mapping 	 Logistics Operational performance Physician workforce Change management 	Process industries
6.Cross functional teams (CFT'S)	 Assign specific task to teams Multi-disciplinary approach Create new package company products 	 Information technology Marketing Supply chain operation Retail distribution strategies 	Service and process industries
7.Out of control action plan (OCAP)	 Guides employee's reaction to out of control situations Identify assignable causes for product monitoring Guide operators for repeatable &defined responses 	 New product development Spare part logistics Research and development Small and medium scale industries 	Manufacturing industries
8.Market test	 Gauge viability of product or service Judge acceptability of variations in market Promotion and distribution of product 	 Business re- engineering Facility management Finance Sales and revenue Purchasing 	Service and process industries

Combinational tools	Usage	Major areas of Application	Suitability
9.Six sigma	 Eliminating defects between processes Minimize variability in manufacturing process Train employee & provide valuable skills 	 New product development Research and design Core competencies Performance measurement 	Manufacturing, Service and process industries
10.PEST analysis (political, economic, Social, technological)	 Describe macro environmental factors Analysis of market research Focus on ecological aspects 	 Operational performance Supply chain operation Physician workforce Sales performance 	Service and process industries

Communicational tools	Usage	Major areas of Application	Suitability
1 Process mapping	 Measure and compare objectives Aligned company values and capabilities Focus on critical areas of process 	 Problem solving Core competencies Career management Human resource 	Process industries
2.Quality costing	 Identify efforts and deficiencies Categorize financial transactions into revenue & expense Determine potential savings by implementing process improvements 	 Logistics Marketing Product development Sales forecast Treasury Supply chain operations 	Manufacturing and process industries
3.Smart matrix	 Identify specifics of actions or tasks Capture key points of team project objectives Summarize data in efficient manner 	 Data analysis Business re- engineering Accounting processes Public sector 	Process industries
4.Standard operating Procedure (SOP)	 Focus on variety of different contexts Describe regular recurring operation revenant to quality of investigation Drafting the document 	 Supply chain operations Career management Employee attitudes Operational performance 	Process industries

Table 3.12: Usage and application of communicational tools

Communicational tools	Usage	Major areas of Application	Suitability
5.Business plan	 Background information about organization Target changes in perception & branding of customer Plan new strategies 	 Marketing Purchasing Risk management Sales performance Treasury 	Service and process industries
6.Customer voice	 Feedback report from customers Focus on customer needs & expectations Give multi source insight program for product improvement 	 Human resource Pre-project planning Sales performance Spare parts logistics Marketing 	Service and process industries
7.Critical incident	 Collect direct information from humans Identify perceived threats between organization Investigate critical incidents 	 Data collection Information technology Risk management Travel management Physician workforce 	Process industries
8.Visual management	 Immediate action for eliminating waste Identify errors & discern Highlighted problem areas 	 Manufacturing Hotel services Law courts Library Education 	Manufacturing and service industries

Relationship tools	Usage	Major areas of Application	Suitability
1.Departmental purpose analysis (DPA)	 Align departments in orderly manner Identify staff requirements Highlight opportunity for improvement 	 Career management Operational management Retail distribution strategies Risk management 	Process industries
2.House of quality (HOQ)	 Focus on customer desires & product capabilities Identify outcomes related to customer wants versus product features Provide conceptual map for planning & communications 	 Customer/supplier relationship New product development Service industries Employee attitudes 	Manufacturing and service industries
3.Service blue printing/moments of truth (MOT)	 Service innovation Conceptualize structural change Copy large architectural and construction drawings 	 Information technology Human resource Operational performance Service industries 	Service and process industries

Table 3.13: Usage and application of relationship tools

Relationship tools	Usage	Major areas of Application	Suitability
4.Input/output analysis	 Identify interdependence between various productive sectors Focus inter-industry relationship with economy Show brief information about each sector 	 Accounting processes Purchasing Companywide techniques Credit functions 	Service and process industries
5.Gap model	 Identify gap between service specification & service delivery Integrated company customer relationship Focus on customer expectations 	 Problem solving Service industries Customer/supplier relationship Sales forecast 	Service industries

3.2.14 Performance measurement tools (PMT)

Performance measurement tools are utilized for assessing and measuring the performance of manufacturing organizations. These tools increase the consistency, capability, effectiveness of the organizational performance as shown in table 3.14.

3.2.15 Lean tools (LT)

Lean tools are utilized by manufacturing and service organizations for eliminating the waste. Lean tools acted as the finish pointer of products to amplify productivity, quality, lead time, customer satisfaction and the growth of the employees' capabilities. Following tools fall under the category of lean tools as illustrated in table 3.15.

3.2.16 Motivational tools (MT)

Encouraging work force leads to tackle the different situations in manufacturing organizations. QT&T's requires persistence empowerment and motivation for developing self-improvement in manufacturing organizations. Motivational tools have been described in table 3.16 along with their domain areas of usage and applications.

Performance measurement Tools	Usage	Major areas of Application	Suitability
1.Evaluation of measurement/inspection system	 Increase consistency between quality management system Capability for measuring effectiveness Comparing quality performance criteria 	 Operational performance Performance measurement Physician work force Public sector 	Process industries
2.Gauge repeatability and reproducibility/gauge (R&R)	 Determine viability of measurement system Finding problems in current system Optimize performance 	 Research and development Spare parts logistics Product development Risk management 	Manufacturing and service industries
3.Management by objectives (MBO)	 Defining objectives of organization Measure employee actual performance Identify common goals 	 Human resource Career management Credit functions Accounting processes 	Service and process industries
4.Pair wise comparison	 Judging each entity of system Pair wise comparison for measurement Easily assessable with statistical technique 	 Small and medium scale industries Telecommunications World class manufacturing Sales performance 	Manufacturing, Service and process industries
5.Balanced scorecard	 Balance financial perspective Support design & automation tools Track executive activities 	 Strategic planning management Credit function Logistics Retail distribution strategies 	Service and process industries

Table 3.14: Usage and application of PMT tools

Performance measurement Tools	Usage	Major areas of Application	Suitability
6.Critical to quality (CTQ) Tree	 Measure characteristics of product Align improvements in design with customer requirements Improve interactions among customers 	 Product development Small and medium scale industries Supply chain operations Pre-project planning 	Manufacturing and service industries
7.Control plan	 Improved process at current level Focus training requirements and human recourse Describe and check contingency plan 	 Manufacturing Service industries Research and development Public sector Marketing 	Manufacturing, Service and process industries
8.Key performance indicator (KPI)	 Evaluate success of organization Focus on progress towards strategic goals Compare financial matters 	 Performance measurement Strategic planning Information technology Operational performance 	Service and process industries
9.OEE analysis (overall equipment effectiveness)	 Describe labor efficiencies Compare between different manufacturing units Identify scope for processes 	 Sales forecast Pre-project planning Retail distribution strategy World class manufacturing 	Manufacturing and process industries

Lean tools	Usage	Major areas of Application	Suitability
1. 5'S	 Simplify design Identify defects Enhance enterprise image to customers 	 Product development Research and design World class manufacturing 	Manufacturing and service industries
2.Hei-junka (level out the work load)	 Reduce waste in production & interpersonal processes Achieve smoother production flow Leveling type & quality of production 	 New product development Operational performance Safety management Business re-engineering 	Manufacturing and process industries
3.Kanban	 Improve and maintain high level of production Control logistical chain for production Manage work with efficient manner 	 Manufacturing Service industries Strategic planning World class manufacturing Spare parts logistics 	Manufacturing, Service and process industries
4.One piece flow	 Efficient movement of work parts between stations Reduced time in change over Systematic approach of work parts selection 	 Research and development Manufacturing Information technology Human resource 	Manufacturing and process industries

Table 3.15: Usage and application of lean tools

Lean tools	Usage	Major areas of Application	Suitability
5.Poka Yoke	 Eliminating error in manufacturing Identify and correcting defects Focus on customer service and procurement 	 Product development Safety management Risk management Customer/supplier relationship Service industries 	Manufacturing, Service and process industries
6.Preventive maintenance	 Systematic inspection Prevent sudden failures Avoid unplanned maintenance 	 Performance measurement Pre-project planning Logistics 	Service and process industries
7.Quenining analysis	 Quantitative analysis technique Focus on delays Rapid & inexpensive selection 	 Customer /supplier relationship Food and drinks industries Public sectors 	Service and process industries
8.Single minute Exchange of dies (SMED)	 Rapid & efficient way of converting one product into another Reduce production lot size Focus on revolutionary product design 	 Spare parts logistics Research and design Small and medium scale industries Supply chain operations 	Manufacturing and service industries

Lean tools	Usage	Major areas of Application	Suitability
9.Time and motion studies	 Repetitive tasks Improving planning and scheduling Optimize performance of products 	 Career management Supply chain operations Retail distribution strategies 	Manufacturing and process industries
10.Value stream mapping	 Improve flow of information or materials Analyze and design future state of events Diagrammatically detailing of step of processes 	Manufacturing	Manufacturing and service industries
11.Hoshin kanri	 Find strategic goals Design to ensure mission, vision and goal Interpreted direction management for entity 	 Supply chain operations World class manufacturing Marketing Design and development 	Manufacturing industries

Motivational tools	Usage	Major areas of Application	Suitability
1.Recognisation & reward	 Motivate employee to change work habits Support mission, value and goal Focus on employee satisfaction 	 Employee attitudes Human resource Travel management Treasury Banks 	Service and process industries
2.Quality improvement Team	 Invariable involve multiple work system Carry out improvement efforts Divide responsibilities to each employee 	 Business re-engineering Performance measurement Research and development Information technology 	Process industries
3.Training	 Focus on skills and knowledge related tasks Enhance team effort Identify weak points in workforce units 	 Library Education Hotel services Safety management Small and medium enterprise 	Service and process industries

 Table 3.16: Usage and application of motivational tools

Motivational tools	Usage	Major areas of Application	Suitability	
4.Team profiling	 Boost self-awareness Focus on teamwork Maximize individual effectiveness 	 Core competencies Facility management Human resource World class manufacturing 	Manufacturing, Service and process industries	
5.Employee suggestion Schemes (ESS)	 Improve safety and reduction in waste Introduce high level production criteria Generate financial saving 	 Employee attitudes Pre-project planning Operational performance Sales forecast 	Service and process industries	

3.3 CONCLUDING REMARKS

- Manufacturing organizations needs to improve their working environment by effective and efficient usage of QT&T in distinctive manner.
- Idiosyncratic 152 quality tools and techniques are identified and categorized into 16 groups based on their characteristics of applications, suitability and usages.
- QT&T makes optimistic relationship with quality indicator to imitate techniques for the contribution of employee's in the expansion of manufacturing organizations.
- The role of QT&T in manufacturing and service organizations enumerates distinctive key features responsible for enhancing performance and growth of the organizations.
- Subsequent surrounding changes have been detected and in cooperated to stay in present challenging environment.
- Integrated methods must be applied to scrutinize the effect of QT&T in manufacturing organizations for finding effectiveness.

CHAPTER IV

MEASURING EFFECTIVENESS OF QT&T BY INTEGRATED (AHP-GTA) APPROACH

In today's manufacturing environment, advancement in application of quality tools and techniques (QT&T) has enhanced the conventional manufacturing aspects. Modern manufacturing organizations that wish to be successful and to achieve world-class manufacturing must utilize the deployment of QT&T more effectively. The concept and methodology of QT&T have been expanded and integrated with other concepts in the present era. Thiagaragan et al. (2001) has discussed that for fulfilling the needs of consumers many corporate entities give priorities to quality for satisfying global competitive environment.

4.1 EXISTENCE OF QT&T GROUPING IN MANUFACTURING ORGANIZATIONS

Dale (2003) suggested that application of QT&T provide direct and immediate least problematic aspects for quality improvement. McQuater et al. (1995) suggested that QT&T are practical methods, skills, means or mechanisms that can be applied to particular tasks. Moreover, QT&T has been described by many theories and guiding principles from various quality gurus like Deming, Juran, Feigenbaum and Crosby for enhancement of performance in manufacturing organizations.

Every manufacturing organization opt systematic procedures and techniques for improvement and effectiveness of variety of products. Many researchers and practitioners over the last two decades revels the outcome of QT&T into different area of manufacturing best suited according to application. It is commendable that many of these QT&T are simple but these QT&T needs to be clubbed into different aspects for accessing the combined effect of their application and usages in manufacturing arena.

From literature analysis, it is revealed that limited number of authors e.g. Hellsten & Klefsjo, (2000); Mehra et al. (2001); Chin et al. (2002); Grover et al. (2004) have categorized these QT&T into different groups. Hence there is requirement of elaborated classification of QT&T. In view of this, QT&T have been classified and categorized into different groups as illustrated in Table 4.1 (Sharma et al., 2020).

- 1. New product development tools (S1) (Thia et al.2005)
- 2. Decision making tools (S₂) (Grover et al.2007)
- 3. Data representation and analysis tools (S₃) (Bamford et al.2005)
- 4. Lean tools (S₄) (Kovach et al.2011)
- 5. Performance measurement tools (S₅)
- 6. Software tools (S_6)

Sr no.	Grouping of QT&T	Quality tools and techniques (QT&T)
1.	New product development tools (NPDT)	 Benchmarking (BM) Beta testing (BT) Focus group (FG) Conjoint analysis (CA) Contextual enquiry (CE) Teaming (TE) Design of experiments (DOE) Failure mode and effect analysis (FMEA) Quality function deployment (QFD)
2.	Decision making tools (DMT)	 Questionnaire (QU) Delphi technique (DT) Suggestion scheme (SS) Break even chart (BEP) Gantt chart (GC) Customer satisfaction assessment (CSA)
3.	Data representation and analysis tools (DRAT)	 Pie chart (PC) Pareto analysis (PA) Cause and effect diagram (CED) Scatter diagram (SD) Histogram (HG) Control chart (CC)

 Table 4.1: Grouping of QT&T

	Grouping of QT&T	Quality tools and techniques (QT&T)
4.	Lean tools (LT)	 Value stream mapping (VSM) 5S Single minute exchange of dies (SMD) Standardized work (SW) Poke-yoke (PY) Kanban (KA) Hei-junka (HJ)
5.	Performance measurement tools (PMT)	 Gauge repeatability and Reproducibility (R&R) Management by objectives (MBO) Pair wise comparison (PWC) Critical to quality (CTQ) tree Key performance indicator (KPI) Balanced scorecard (BS) Overall equipment effectiveness (OEE)
6.	Software tools (SWT)	 Anomaly report (AR) Integrated design for functional modeling (IDM) Operational acceptance test (OAT) Reliability metrics (RM) Simulations (SIM) Rationale map (Rm)

Based on their usage, 41 different QT&T have been clubbed into 6 groups. The next section deals with the analysis of different QT&T categories by integrated Graph theoretic approach (GTA) and analytical hierarchy process (AHP) to find out the interactions among individual QT&T.

4.2 GRAPH THEORETIC APPROACH (GTA)

Graph theoretic approach is a logical and systematic approach useful for modelling and analysis of various kinds of systems and problems in numerous fields of science and technology (Chen 1997, Jense and Gutin 2000). Basically it is the study of directed graph which consists of set of nodes and directed edges to indicate interrelation and relative importance to one another. Previously block diagrams, flow charts and cause and effect diagrams do not suitable for further analysis to show relative importance among factors and cannot be represent into mathematical form (Raj and Attri, 2010). In other words, graphs are represented graphically by drawing a dot for every vertex and drawing an arc between two vertices (Rao and Padmanabhan, 2006). GTA is an organized methodology for adaptation of qualitative factors to quantitative values, and mathematical modelling gives the periphery to the premeditated technique over conventional methods like cause– effect diagrams, flow charts, etc (Gambhir and Grover,2015). Graph theory approach (GTA) consists of three main components:

4.2.1 Digraph representation: A digraph donated by set of nodes and directed edges which represent inheritance and relative importance among QT&T. Digraph for a six element is shown in figure 4.1.

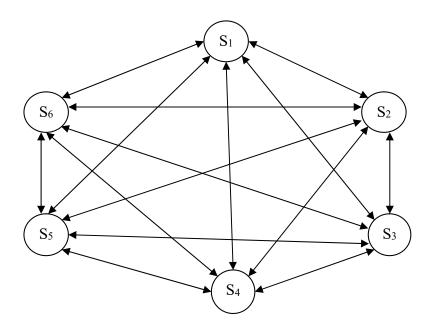


Figure 4.1: Digraph for a six system elements

4.2.2 Matrix representation: Although digraph relates with visual representation and helps in limited manner for analyzing the problems. To establish an expression in terms of mathematical analysis and computer processing, it is represented in N x N matrix form for further analysis. Matrix representation for grouping of 6 QT&T gives one to one representation and shown in equation 4.1.

$$A = \begin{bmatrix} S_1 & c_{12} & c_{13} & c_{14} & c_{15} & c_{16} \\ c_{21} & S_2 & c_{23} & c_{24} & c_{25} & c_{26} \\ c_{31} & c_{32} & S_3 & c_{34} & c_{35} & c_{36} \\ c_{41} & c_{42} & c_{43} & S_4 & c_{45} & c_{46} \\ c_{51} & c_{52} & c_{53} & c_{54} & S_5 & c_{56} \\ c_{61} & c_{62} & c_{63} & c_{64} & c_{65} & S_6 \end{bmatrix}$$
(4.1)

In this matrix A, the diagonal elements S_1 , S_2 , S_3 , S_4 , S_5 and S_6 represent the impact of different categories of QT&T in an organization and c_{ij} represents the relative importance between QT&T, represented by edge for QT&T *i* and *j*.

4.2.3 Permanent function representation: The permanent function of matrix [i.e. equation 4.1] donates mathematical expression in symbolic notation. These terms are arranged in groupings for obtaining desired results. In general, it is standard matrix function and is used in combinatorial mathematics [Jurkat, 1966]. Permanent function is obtained in a similar manner in which the determinant of a matrix can be calculated except the positive sign replaces negative sign so that no information is lost on account of negative sign. The permanent function for matrix A will be written as:

$$Per(A^{*}) = \prod S_{i} + \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} c_{ij}^{2} S_{k} S_{l} S_{m} S_{n} \dots + 2 \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{ki}) S_{l} S_{m} S_{n} \dots + 2 \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{li}) S_{m} S_{n} \dots + \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{lm} c_{mi}) S_{n} \dots + 2 \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{lm} c_{mi}) S_{n} \dots + 2 \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{lm} c_{mi}) S_{n} \dots + 4 \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl}) (c_{lm} c_{mn} c_{ln}) \dots + 2 \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn} c_{mn} c_{mn}) \dots + 2 \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn}^{2} m) \dots + 4 \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn}^{2} m) \dots + 4 \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn}^{2} m) \dots + 4 \sum_{i} \sum_{j} \sum_{k} \dots \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn}^{2} m) \dots + 4 \sum_{i} \sum_{j} \sum_{k} \sum_{m} \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn}^{2} m) \dots + 4 \sum_{i} \sum_{j} \sum_{k} \sum_{m} \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn}^{2} m) \dots + 4 \sum_{i} \sum_{j} \sum_{k} \sum_{m} \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn}^{2} m) \dots + 4 \sum_{i} \sum_{k} \sum_{j} \sum_{k} \sum_{m} \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn}^{2} m) \dots + 4 \sum_{i} \sum_{k} \sum_{j} \sum_{k} \sum_{m} \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn}^{2} m) \dots + 4 \sum_{i} \sum_{k} \sum_{j} \sum_{k} \sum_{m} \sum_{m} \sum_{n} (c_{ij} c_{jk} c_{kl} c_{ln}) (c_{mn}^{2} m) \dots + 4 \sum_{i} \sum_{k} \sum_{i} \sum_{k} \sum_{m} \sum_{m} \sum_{n} \sum_{k} \sum_{i} \sum_{k} \sum_{m} \sum_{i} \sum_{k} \sum_{m} \sum_{i} \sum_{k} \sum_{m} \sum_{k} \sum_{i} \sum_{k} \sum_{m} \sum_{k} \sum_{i} \sum_{k} \sum_{k} \sum_{i} \sum_{k} \sum_{i} \sum_{k} \sum_{k} \sum_{i} \sum_{k} \sum_{i} \sum_{k} \sum_{i} \sum_{k} \sum_{i} \sum_{k} \sum_{k} \sum_{k} \sum_{i} \sum_{k} \sum_{k} \sum_{k} \sum_{k} \sum_{k} \sum_{k} \sum_{$$

4.3 ANALYTIC HIERARCHY PROCESS

Analytic hierarchy process (AHP) is a decision making tool developed by Satty (1980, 1985, 1990), Satty and Kearns (1991) suggested hierarchy development and validation at the Wharton School of Business. AHP is a technique used for dealing with problems which involve the consideration of multiple criteria simultaneously.

It allows comparison of both tangible and intangible factors and sets of priorities among alternative course of action for synthesis (Foreman and Gass, 2001). AHP allows alteration of complex or unstructured situations into hierarchical order and converts these situations into numerical values that can be expressed and compared over the complete range of the problem. The most important distinguish capability of AHP approach from other decision-making techniques is to compare incommensurable elements to one another in a rational and consistent way by assigning numerical weights or priorities (Sharma et al.2015).

AHP involves four major steps:

- Structure the hierarchy problem and build an AHP decision model.
- Breakdown problem into interrelated decision elements by placing overall goal at the top priority and bottom level contain the list of alternatives.
- Collect data and organize pair wise comparison of decision elements.
- Construct a pair wise comparison matrix (N x N) which represents intermediate importance values between two adjacent judgments by rated using a scale with the values 1-9.
- Determine the normalized priority weight of individual factors and sub factors. At each level of the hierarchy aggregate relative weights of decision elements and sum all weighted eigenvector entries corresponds to the next lower level of the hierarchy.

4.4 INTEGRATED GTA-AHP APPROACH

The effectiveness of QT&T relationship depends upon the degree of inheritance and the amount of interactions among various factors present between them, which could be directional dependent or independent. Proposed methodology intended to utilize two complementary techniques - GTA and AHP for recognition of levels of criteria and digraph for interrelationship between variables. AHP formulates QT&T connection in the form of priority weights and GTA establishes an index for calculating effectiveness of QT&T in manufacturing organization. In this research, GTA showed the interdependency between distinctive QT&T categories that are equally dependent and analogous to the same category. The anticipated integrated method can aid in decision making by providing more instructive, precise and an enhanced choice of methodology than using either GTA or AHP in isolation.

The main steps involved in integrated GTA-AHP approach for measuring effectiveness of QT&T in a manufacturing organization are as follows:

- 1. Identify the various QT&T affecting the manufacturing organization. The effectiveness of these QT&T may differ from organization to organization depending on the size of organization and product configuration.
- 2. Group the various QT&T into different categories depending upon their applications.

- 3. Develop digraph between different QT&T categories (at system level) on the basis of their relative importance among QT&T. This is the digraph at the system level.
- 4. After the development of digraph between main categories, developed digraph for the individual categories for each QT&T in same manner as done in step (3). This is the digraph at the sub-system level.
- 5. Develop sub matrix for each category of QT&T. This will be of size NXN, with diagonal elements representing QT&T attributes and the off-diagonal elements representing relative importance among QT & T.
- 6. Substitute the value of inheritance and relative importance in sub matrix of each QT&T category. The value of inheritance (diagonal elements) of these classifications is to be calculated by using AHP approach as explained earlier and value of relative importance to one another is determined purely by the experts (academia and industries) opinion on the basis of scale given in Table 4.2.

Sr no	Class description	Relative importance of			
		quality g	groups		
		QIJ QJI= 1-QIJ			
1	Two groups are of equal importance.	.5	.5		
2	One group is slightly important over the other.	.6	.4		
3	One group is very important over the other.	.7	.3		
4	One group is most important over the other.	.8	.2		
5	One group is extremely important over the other.	.9	.1		
6	One group is exceptionally important over the other.	1	0		

Table 4.2: Quantification of QIJ

- 7. Compute the value of permanent functions for each category of QT&T.
- 8. Develop QT&T matrix at the system level.
- 9. Substitute the value of inheritance and relative importance in QT&T matrix at system level. At the system level, the permanent value of each sub matrix provides inheritance of QT&T and relative importance value among QT&T is decided on the basis of Table 4.2.
- 10. Find the value of permanent function for the system. This value of permanent function will provide the effectiveness of QT&T in manufacturing organization. This value is known as QT&T effectiveness index.

QT&T effectiveness index = QTTEI = f(QT&T)

= Permanent function of QT&T matrix

11. Based on the above-discussed methodology, the manufacturing organization can evaluate the effectiveness of each QT&T based on their applications. The procedure for finding the effectiveness of QT&T by using integrated graph theoretic analysis (GTA) and Analytic hierarchy process (AHP) approach is illustrated in next section.

4.5 EXAMPLE

For the illustration of proposed integrated methodology, a manufacturing organization is taken as an example whose effectiveness is to be computed. The organization is producing steel tubes and is having turnover of 50 million dollars. The steps involved for computation of QT&T effectiveness index are as follows:

- 1. Various QT&T affecting the manufacturing organization are identified as shown in Table 4.1.
- 2. Different QT&T are grouped into six different groups based upon their application.
- 3. Digraph is developed for the six main categories of QT&T (shown in Figure 4.1)
- 4. Digraph for each QT&T category is developed in (Figures 4.2–4.7). In the digraph, nodes represent the sub QT&T and edges represent their relative importance.

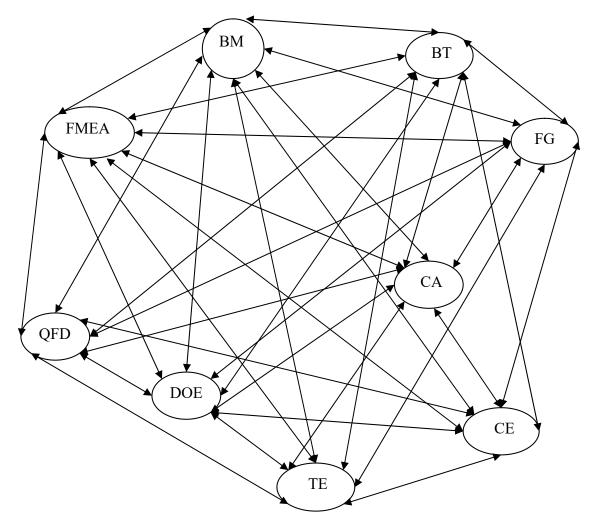


Figure 4.2: Digraph for New product development tools (NPDT)

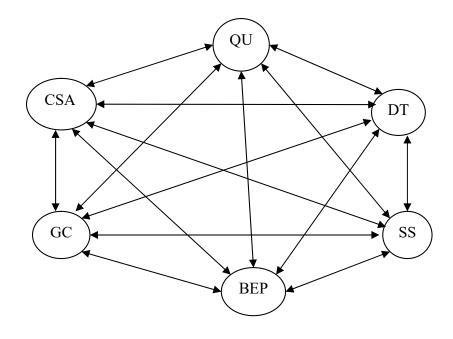


Figure 4.3: Digraph for decision making tools (DMT)

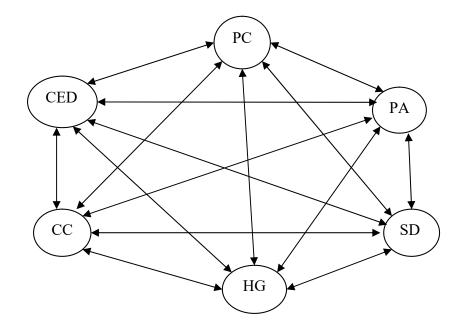


Figure 4.4: Data representation and analysis tools (DRAT)

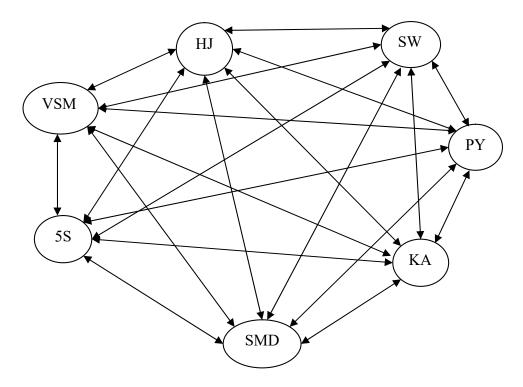


Figure 4.5: Digraph for lean tools (LT)

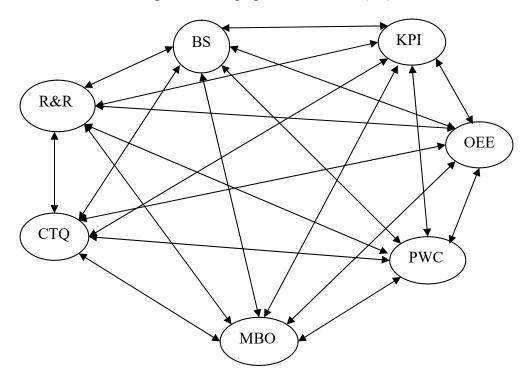


Figure 4.6: Digraph for performance measuring tools (PMT)

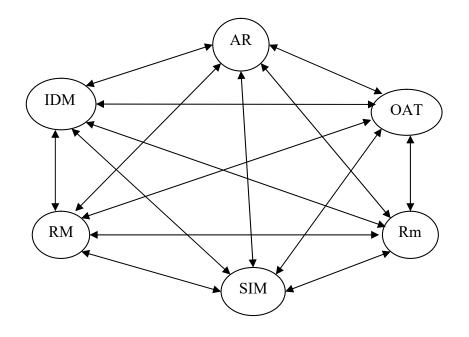


Figure 4.7: Digraph for software tools (ST)

5. Matrix for digraph for each sub-system is written through table (4.3–4.8). For this, interrelation of sub QT&T is computed by AHP approach and their relative importance is taken from Table 4.2.

The values of inheritance of all QT&T catergories is to be calculated individually by using AHP approach. For first category, NPDT tools. Let decision maker makes the following matrix as shown in Table 4.3 for AHP analysis:

	BM	BT	FG	CA	CE	TE	DOE	FMEA	QFD	PV
BM	1	3	2	3	1/3	3	4	5	1/3	.142
BT	1/3	1	3	3	1/3	3	3	5	1/3	.119
FG	1/2	1/3	1	3	1/3	3	3	3	1/3	.091
CA	1/3	1/3	1/3	1	1/3	3	3	3	1/3	.071
CE	3	3	3	3	1	3	3	3	1/3	.176
TE	1/3	1/3	1/3	1/3	1/3	1	1/2	3	1/7	.039
DOE	1/4	1/3	1/3	1/3	1/3	2	1	5	1/7	.051
FMEA	1/5	1/5	1/3	1/3	1/3	1/3	1/5	1	1/7	.026
QFD	3	3	3	3	3	7	7	7	1	.284
Total	8.95	11.53	13.33	17	6.33	25.33	24.7	35	3.095	CR=.0913

Table 4.3: Pair wise comparison matrix (NPDT) Tools

The values found by using AHP approach are as follows: $W_{BM} = 0.142$, $W_{BT} = .119$, $W_{FG} = .091$, $W_{CA} = .071$, $W_{CE} = .176$, $W_{TE} = .039$, $W_{DOE} = .051$, $W_{FMEA} = .026$, $W_{QFD} = .284$.

These values are being put in matrix (4.3) for compution of permanent function.

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	\mathbf{S}_8	S_9	QT & T
	0.142	.4	.6	.5	.6	.3	.4	.7	.2]	S_1
	.6	0.119	.2	.6	.4	.3	.8	.4	.1	S_2
	.4	.8	0.091	.8	.4	.6	.5	.2	.3	S_3
NPDT =	.5	.4	.2	0.071	.6	.4	.8	.2	.5	S_4
MDI =	.4	.6	.6	.4	0.176	.3	.5	.8	.9	S_5
	.7	.7	.4	.6	.7	0.039	.8	.6	.4	S_6
	.6	.2	.5	.2	.5	.2	0.051	.2	.6	S_7
	.3	.6	.8	.8	.2	.4	.8	0.026	.7	S_8
	.8	.9	.7	.5	.1	.6	.4	.3	0.284	S_8 S_9

Similarly, the pair wise comparison of remaining (DMT), (LT), (SWT), (DRAT) and (PMT) tools have been calculated as given below:

T 11 4 4	D ' '	• . •		T 1
1 able 4.4:	Pair wise	comparison matrix	$(\mathbf{D}\mathbf{M})$	1001s
	1 411 11150	comparison maarin		, 10015

	QU	DT	SS	BEP	GC	CSA	PV
QU	1	2	2	2	1/6	1/3	.137
DT	1/2	1	2	2	1/2	1/3	.123
SS	1/2	1/2	1	2	1/2	1/3	.098
BEP	1/2	1/2	1/2	1	1/2	1/3	.076
GC	6	2	2	2	1	1/2	.249
CSA	3	3	3	3	2	1	.319
Total	11.5	9	10.5	12	4.66	2.83	CR=.0879

Table 4.5: Pair wise comparison matrix (DRAT) Tools

	PC	PA	CED	SD	HG	CC	PV
PC	1	1/3	1/5	1	1/6	1/2	.070
PA	3	1	2	2	1/2	1/3	.155
CED	5	1/2	1	2	1/2	1/3	.143
SD	1	1/2	1/2	1	1/2	1/3	.082
HG	6	2	2	2	1	1/2	.233
CC	2	3	3	3	2	1	.317
Total	18	7.33	8.7	11	4.66	3	CR=.0844

(4.3)

	VSM	5S	SMD	SW	PY	KA	HJ	PV
VSM	1	2	2	2	1	3	3	.233
5S	1/2	1	2	2	1/2	3	3	.167
SMD	1/2	1/2	1	2	1/2	3	3	.139
SW	1/2	1/2	1/2	1	1/2	3	3	.115
PY	1	2	2	2	1	3	3	.223
KZ	1/3	1/3	1/3	1/3	1/3	1	1/5	.049
HJ	1/3	1/3	1/3	1/3	1/3	5	1	.084
Total	4.166	6.66	8.166	9.66	4.166	21	16.2	CR=.0715

Table 4.6: Pair wise comparison matrix (LT) Tools

Table 4.7: Pair wise comparison matrix (PMT) Tools

	R&R	MBO	PWC	CTQ	KPI	BS	OEE	PV
R&R	1	7	4	3	6	9	8	.444
MBO	1/7	1	2	2	1/2	3	3	.121
PWC	1/4	1/2	1	2	1/2	3	3	.108
CTQ	1/3	1/2	1/2	1	1/2	3	3	.093
KPI	1/6	2	2	2	1	3	3	.142
BS	1/9	1/3	1/3	1/3	1/3	1	1/5	.033
OEE	1/8	1/3	1/3	1/3	1/3	5	1	.060
Total	2.12	11.66	10.16	10.66	9.16	27	21.2	CR=.0878

Table 4.8: Pair wise comparison matrix (ST) Tools

	AR	IDM	OAT	RM	SIM	Rm	PV
AR	1	1/2	1/6	1	1/7	1/3	.063
IDM	2	1	2	2	1/2	1/3	.145
OAT	6	1/2	1	2	1/2	1/3	.148
RM	1	1/2	1/2	1	1/2	1/3	.082
SIM	7	2	2	2	1	1/2	.237
Rm	3	3	3	3	2	1	.325
Total	20	7.5	8.66	11	4.64	2.83	CR=.0784

The remaining matrices for AHP analysis are represented in tables (4.3 to 4.8). Later on, their required weighted values are being substituted into respective matrices to find out the values of permanent function of diversified categories. In a similar way, matrices for other categories of QT&T can be written as:

 $DMT = \begin{bmatrix} 0.137 & .4 & .4 & .7 & .1 & .5 \\ .6 & 0.123 & .8 & .5 & .2 & .3 \\ .6 & .2 & 0.098 & .5 & .4 & .6 \\ .3 & .5 & .5 & 0.076 & .2 & .7 \\ .9 & .8 & .6 & .8 & 0.249 & .3 \\ .5 & .7 & .4 & .3 & .7 & 0.319 \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \end{bmatrix}$ (4.4)

	S_1						QT & T	
	0.070	.5	.6	.2	.3	.8]	S_1	
	.5	0.155	.5	.9	.6	.7	S_2	
DRAT =	.4	.5	0.143	.5	.4	.6	S_3	(4.5)
	.8	.1	.5	0.082	.1	.6	S_4	
	.7	.3	.6	.9	0.233	.4	S_5	
	.2	.3	.4	.3	.6	0.317	$egin{array}{c} S_1 \ S_2 \ S_3 \ S_4 \ S_5 \ S_6 \end{array}$	

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	QT & T	
	0.223	.8	.6			.7	.3	S_1	
	.2	0.167	.3	.4	.2	.6	.4	S_2	
LT =	.4	.7	0.139	.5	.2	.7	.9	S_3	(4.6)
<i>L1</i> –	.7	.6	.5	0.115	.8	.3	.2	S_4	(4.0)
	.4	.8			0.223	.6	.5	S_5	
	.3	.4	.3	.7	.4	0.049	.6	S_6	
	L.7	.6	.1	.8	.5	.4	0.084	S_7	

	S_1	S_2	S ₃	S_4	S_5	S_6	\mathbf{S}_7	QT & T	
	0.444	.3	.9	.2	.9	.2	.4]	S_1	
	.7	0.121	.6	.5	.4	.3	.6	S_2	
PMT =	.1	.4	0.108	.4	.6	.7	.7	S_3	(4.7)
1 1/11 -	.8	.5	.6	0.093	.5	.3	.1	S_4	(4.7)
	.1	.6	.4	.5	0.142	.2	.8	S_5	
	.8	.7	.3	.7	.8	0.033	.7	S_6	
	.6	.4	.3	.9	.2	.3	0.060		
								,	
	S_1	S_2	S ₃	S_4	S_5	S_6	Q^{\prime}	T & T	
	0.063	.5	.3	.7	.5	.3]	S_1	
	.5	0.145	.5	.4	.5	.7		S_2	
ST =	.7	.5	0.148	.5	.3	.8		S_3	

51 -	• /	.5	0.140	.5	.5	.0	D_3	
	.3	.6	.5	0.082	.9	.4	S_3 S_4 S_5 S_6	
	.5	.5	.7	.1	0.237	.5	S_5	
	.7	.3	.2	.6	.5	0.325	S.	
							~ ₆	(4.8)

- 6. The permanent functions of each sub system QT&T classification is determined as illustrated below:
 - The permanent function contains terms arranged in (N+1) groups. The first group measures set of N variables as it contains only one term.
 - The second group is absent due to non-existence of self-interaction loop.
 - Third grouping holds set of two QT&T attributes distinguish by measuring (N-2) variables.
 - Fourth group symbolizes set of three QT&T attributes and measures of (N-3) variables.
 - The fifth group holds two QT&T sub-groups. First sub group restrain set of two QT&T attributes and the measures of (N-4) variables and second subgroup donates set of four QT&T attributes and measures rest of (N-4) variables.

• Sixth grouping also contains two QT&T sub-groups. First subgroup represented by set of three QT&T attributes relative importance loop and two variable importance loop and measures (N-5) variables. Second subgroup contains set of five QT&T attributes and measures (N-5) variables.

Likewise, vales of permanent function have been calculated by considering all terms for matrix NxN as positive. For ease of lengthened calculations, a software program in C++ was developed to evaluate different values of permanent function as described below:

- ➢ Per (DMT) = 5.3329
- ightarrow Per (DCAT) = 4.9218 →
- \blacktriangleright *Per (LT)* = 18.7657
- ▶ Per(PMT) = 19.0134
- \blacktriangleright *Per (ST)* = 6.03264
- 7. QT&T matrix at the system level (9) is developed by taking the values of diagonal elements from sub-system level i.e. permanent function value for each QT&T comes to be 822.017.

	S_1	S_2	S_3	S_4	S_5	S_6	QT & T
	296.591	.8	.4	.3	.5	.1]	S_1
	.2	5.332	.4	.7	.3	.7	S_2
=	.6	.6	4.921	.2	.9	.4	S_3
	.7	.3	.8	18.765	.5	.7	S_4
	.5	.7	.1	.5	19.013	.9	S_5
	.9	.2	.6	.3	.1	6.032	S_6
							0

(4.9)

This value indicates the value of system QTTEI in the organization under consideration. The above proposed methodology can be utilized by the managers to find the effectiveness of QT&T in their organizations.

4.6 CONCLUDING REMARKS

- A methodology is developed for calculating the effectiveness of QT&T in various areas of manufacturing through a systematic approach.
- The suggested integrated methodology is based upon the combined analysis of (GTA-AHP) approach that has been adopted to set up the intricate or cluster relationships between different QT&T employed in varied manufacturing organizations. By knowing the effectiveness of various QT&T, some tactics may be employed by the managers to tackle them competently.
- The expression for finding effectiveness of manufacturing organization has been donated in terms of an index, called the QTTEI (QT&T effectiveness index). This index value depends on the significance of quality tools and techniques adopted and their interdependencies.
- The suggested approach for quantifying categories like: NDPT, DMT, DRAT, LT, PMT and ST tools has been established by assigning derived weighted values diagonally with each QT&T category for determining permanent function of system matrix.
- The value of permanent function of foremost category helps the professionals to evaluate and compare effectiveness of different manufacturing organizations through single numerical index.

ANALYZING BARRIERS OF QT&T: INTEGRATED (ISM-MICMAC) APPORACH

Manufacturing organizations largely enables speedy, smooth and economical manufacture of products. During the last two decades, superior manufacturing recital has led to sustainable improvement in quality tools and techniques (QT&T) to support the manufacturer aspects. Evidently, manufacturers have been trying to improve their performance together by aiming manufacturing systems and products for immense development (Baumgartner and Zielowski, 2007; Kara et al., 2007; Gehin et al., 2008; Ingwersen and Stevenson, 2012). Hence manufacturing organizations must improve the quality of their product for achieving spirited advantage, and shifted to the path of growth and excellence. Many researchers and practitioners have focused on effective utilization of QT&T to accomplish the demands of manufacturing organizations. For this purpose, numerous identified QT&T and systematic methodologies are adopted for enhancing the performance of manufacturing organizations.

5.1 GENERALIZATION OF BARRIERS IN MANUFACTURING ORGANIZATIONS

A variety of factors are involved in today's manufacturing arena for improved quality and productivity. These factors perceive different action on different manufacturing organizations. Kara et al., (2005); Kaebernick and Kara, (2006) have suggested that five major factors namely environmental aims; environmental performance; early stage product development implementation; implementation from top to down and bottom to up; and simplicity are responsible for successful implementation of product development concepts and methodologies.

Each phase of conversion i.e. raw materials into finished products requires a scrupulous production planning that contribute the requisite production target and optimize the resources utilization (Muhammad and Jeng Feng, 2014). In order to achieve and apprehend the required task, manufacturing organizations must identify certain barriers that affect the effective utilization of QT&T. The manufacturing organizations prompt to find barriers which help them in achieving effectiveness. Researchers put their efforts to recognize and classify these barriers in orderly manner to recognize the best suited barrier which influence the most for effective utilization of QT&T. Consequently, various barriers have been acknowledged in text with different authors but no work is available to allocate the effectiveness of QT&T in an organization. This could be done by proposing an integrated interpretive structural modeling (IISM) and MICMAC analysis which bridges the gap between different organizations.

Furthermore, in this chapter, assessment and interactions among various barriers of QT&T will clarify an IISM-MICMAC model to evaluate effectiveness in a manufacturing organization. In view of this, twelve barriers have been recognized from extensive literature review, opinions of academic & industrial experts. These identified barriers are analyzed by IISM- MICMAC in order to build up a categorized structural model. Finally, effectiveness of each barrier has been computed by subtracting dependence power from driver power. The foremost purpose of using IISM-MICMAC in this chapter is as follows:

- To identify and rank the barriers affecting the utilization of QT&T in manufacturing organizations;
- To find out the interaction between identified barriers affecting the utilization of QT&T using IISM-MICMAC approach;
- To organize barriers into different categories;

5.2 IDENTIFICATION OF QT&T BARRIERS

Barriers can be considered as obstructions posed to avert the successful utilization of QT&T in manufacturing organizations. These barriers diminish the effectiveness of the nimbleness, adaptability, intellect shape and knowledge-driven capabilities that they are the building blocks for any manufacturing organizations. Some experts from academic & industries were asked to recognize the key barriers affecting the manufacturing organizations (Sharma et al., 2017). From literature, an improved and authenticate list has been prepared with the help of experts' opinion. The details of these barriers are as follows:

- 1. Employee's resistance to change (B_1): Manufacturing organizations intended to counter out the pressure for gradually more globalized and competitive environment and rapidly change conditions and demands responsible for quick decision-making and innovation activity (Abuelmaatti and Rezgui, 2008). Employees working in the manufacturing organization must educate for the successful implementation of the program (Khurana, 2009).
- 2. Motivational technique and Recipient organizations (B₂): Employees who work within a defined frame take less attention towards motivational techniques concerning the utilization of QT&T in manufacturing organizations. (Raj and Attri, 2011) have emphasized that motivation allows change in the behavior of employees towards work from pessimistic to optimistic approach.
- Lack of continuous communication (B₃): Lack of continuous communication is critical to assist knowledge flow in manufacturing organizations. It leads to affect lack of coordination, cooperation and team work which may obstruct the utilization of QT&T. Improved communication prevents misunderstandings and trim down the costs of quality by avoiding mistakes (Cohen and Brand, 1993; Talib et al., 2011).

- 4. **Inability to change organizational Culture (B**₄**):** Organizational framework is associated to the right business environment and conditions. The arrangement of the venture divides its labor into distinct tasks and then achieves coordination (Abuelmaatti and Rezgui, 2008). Top management must be able modify organizational culture for civilizing performance and competence.
- 5. **Inadequate coordination and teamwork (B**₅): Inadequate coordination and teamwork is the most important barrier existing in the Indian manufacturing organizations. It becomes extremely tough to execute any improvement program while their employees not succeed to work jointly as a team and determines the implementation of nature and extent of quality program (Sureshchandar et al., 2001).
- 6. **Dilemma about organization policies (B**₆**):** Employees working in manufacturing industries have impasse towards the development of proper policies at the organizational level for effectual implementation of QT&T. Policies and accomplishment plan should be appropriately communicated to all the employees working in that organization.
- 7. Lack of proper training and education (B₇): Newall and Dale (1990); Ljungström and Klefsjö (2002); Talib et al., (2011); revels that deprived learning acts as a key barrier in the growth and completion of quality program. Improper training and education leads to failure while implement ting QT&T in manufacturing organizations. Thus, training programs are effectively intended and correctly implemented.
- 8. Lack top Management Support (B₈): Top management should bring continual support for properly utilization of QT&T in manufacturing organizations. Lack of topmanagement commitment empowers lack of experience, training, resistance to change, and hesitation in initiating development programs. It also tackles with acquaintance arrangement and support system that facilitates sharing and request of knowledge (Huang and Lin 2010).
- 9. Divergence with other quality management system (B₉): The quality systems like Poka-Yoke, Six Sigma and ISO 9000 varies in terms of requirements from different departments to different organizations (Liker and Hoseus, 2008). This disparity in the requirements of quality systems overwhelms to choose programs for completion and engage their employees in improvement activities.

- 10. Deficient planning and implementation (B_{10}): The lack of strategic planning leads to unproductive improvement in quality. This is leading barrier while implementation quality enhancement programs in Indian manufacturing organizations (Warwood and Knowles, 2004). It also shares rise in knowledge for flow utilization.
- 11. Accessibility of time and space (B_{11}): Manufacturing organizations requires time and space for face-to-face communication and the amalgamation of knowledge (Herrgard 2000; Cheng, Yeh, and Tu 2008). This is the essential barrier which motivates worker to generate their cooperative relationship with others by the convenience of time and space.
- 12. Keen to share knowledge (B_{12}) : There should be appropriate loom for convey knowledge within and outside the manufacturing organizations. Knowledge sharing defined as the synergistic process by which the employers and the employees getting advantage from renewed knowledge (Capó-Vicedo, Mula, and Capó 2011). Eagerness to contribute knowledge acts as an enabler of knowledge surge in the organization.

In the next section, administration of questionnaire with corresponding results is presented. The important points for implementation of QT&T barriers have been reported and described in next sections.

5.3 DEVELOPMENT OF SURVEY QUESTIONNAIRE

After discussion with industrial experts and academicians, the barriers influencing the utilization of QT&T in manufacturing organizations have been validated by using questionnaire based survey. For this reason, a questionnaire was developed on 5 point Likart scale.

Numeral 1 donates barrier with least importance while numeral 5 represent barrier with most importance. The questionnaires were directed to 270 manufacturing organization for knowing the impact of identified barriers for utilization of QT&T. Out of those 270 questionnaires only 102 completely filled questionnaires were received and have been used for further analysis. Survey suggested that no new barrier was found in the study. The data of the responding organizations is given in table 5.1.

Sr no	Description of data	Range	No. of organizations	Percentage (%)
1	Type of organization	Automobile	30	29.41
		Refrigeration	20	19.60
		Electrical	13	12.74
		Sheet metal	18	17.64
		Others	21	20.58
		Total organizations	102	99.97*
2	Number of employees	Less than 100	18	17.64
		100-250	15	14.70
		251-500	28	27.45
		501-1000	21	20.58
		1001 and above	20	19.60
		Total employees	102	99.97*
3	Turnover (in Rs crores)	Less than 50	17	16.66
		51-100	23	22.54
		101-150	26	25.49
		151-200	21	20.58
		More than 200	15	14.70
		Total Turnover	102	99.97*
4	Department	Quality	29	28.43
		Production	23	22.54
		Marketing	19	18.62
		РРС	17	16.66
		Others	14	13.72
		Total Departments	102	99.97*

Table 5.1: Data of responding organizations

*Considering only two digits' fractional decimals

Table 5.1 illustrates the percentagewise breakup of participated organizations i.e (automobile sector donates 29.41% fallowed by other sectors 20.1% and rest of refrigeration, electrical and sheet metal which involves contribution of 19.60%, 12.74% and 17.64% respectively. Moreover, the involvements of departments like quality and production dominates 28.43% & 22.54% of the total contribution than rest of the other departments. Also, the no of employees and annual turnover plays an integral role for the assessment of survey questionnaire in distributed data form. The contribution of employees ranging (251-500) with annual turnover (151-200) crores concludes most significant participation of particular organization for statistically identified QT&T barriers.

5.3.1 Analysis of survey data

This section deals with the analysis of survey data of different manufacturing organizations by statistical software SPSS 18. The survey data of respondents was statically analyzed by using SPSS software. Result statistics of survey data is shown in Table 5.2. Afterwards, Spearman's rho Correlation Coefficient test among the barriers of QT&T is conducted to check the existence of any multi-co linearity occurrence. Table 5.3 donates the correlation coefficients between barriers of QT&T and signifies no occurrence of multi- co linearity. The next section shows the response rate of different barriers participated in survey questionnaire.

5.3.2 Analysis of data for checking multi-co linearity

Table 5.2 to 5.3 covers the data of various barriers of QT&T for occurrence of any multi-co linearity between various barriers.

	B ₁	B ₂	B ₃	B 4	B ₅	B ₆	B ₇	B ₈	B 9	B ₁₀	B ₁₁	B ₁₂
Mean	1.87	1.97	1.96	2.14	2.39	2.16	2.47	2.36	2.57	2.59	2.61	2.26
Median	2.00	2.00	2.00	2.00	2.00	1.00	2.00	2.00	2.00	2.00	2.00	1.00
Mode	2	2	2	2	1	1	1	1	1	1	1	1
Std.	.804	.710	.878	1.135	1.470	1.447	1.527	1.553	1.479	1.451	1.470	1.567
Deviation												
Variance	.647	.504	.771	1.288	2.162	2.094	2.331	2.412	2.188	2.106	2.162	2.454
Range	3	3	4	4	4	4	4	4	4	4	4	4

Table 5.2: Statistics of QT&T barriers

Table 5.2 describes the evaluation of different barriers identified from survey results. Barrier (B₁₁) i.e accessibility of time and space with corresponding values of mean=2.6, standard deviation=1.470 and variance=2.162 contributes to the most significant barrier affecting the utilization of QT&T in manufacturing organizations fallowed by barrier deficient planning and implementation which donates mean=2.59, standard deviation=1.451 and variance=2.106 values for the deliberation of particular QT&T barrier among rest of the other barriers. Similarly, barriers like divergence with other quality management system (mean=2.57, standard deviation=1.479), lack of proper training and education (mean=2.47, standard deviation=1.527) and inadequate coordination and teamwork mean=2.39, standard deviation=1.470) provides the adequacy of QT&T barrier to evaluate both the manufacturing process and organizational culture in the firm. The next table describes the correlation coefficients for various QT&T barriers in manufacturing organizations.

	B ₁	B ₂	B ₃	B ₄	B 5	B ₆	B ₇	B ₈	B 9	B ₁₀	B ₁₁	B ₁₂
_												
B ₁	1.000	.603**	.421**	029	.265**	.078	.024	067	.103	133	049	033
B ₂	.603**	1.000	.599**	.177	.348**	.080	052	.015	.063	067	.090	.116
B ₃	.421**	.599**	1.000	.500**	.169	089	.003	.054	107	143	046	151
B ₄	029	.177	.500**	1.000	.438**	.035	104	092	205*	.003	.030	.032
B 5	.265**	.348**	.169	.438**	1.000	.648**	.262**	.025	065	113	132	204*
B ₆	.078	.080	089	.035	.648**	1.000	.562**	.252*	047	184	214*	216*
B ₇	.024	052	.003	104	.262**	.562**	1.000	.527**	.128	233*	206*	354**
B ₈	067	.015	.054	092	.025	.252*	.527**	1.000	.555**	.088	.145	110
B 9	.103	.063	107	205*	065	047	.128	.555**	1.000	.530**	.407**	.178
B ₁₀	133	067	143	.003	113	184	233*	.088	.530**	1.000	.868**	.671**
B ₁₁	049	.090	046	.030	132	214*	206*	.145	.407**	.868**	1.000	.764**
B ₁₂	033	.116	151	.032	204*	216*	354**	110	.178	.671**	.764**	1.000

Table 5.3: Correlation Coefficients for QT&T barriers

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).

In the current chapter, integrated (ISM-MICMAC) model has been developed for identified barriers affecting the effective utilization of QT&T in manufacturing organizations. The next section covers the outline of ISM approach implemented in manufacturing organizations.

5.4 ISM METHODOLOGY

In the present framework, ISM methodology integrated with MICMAC analysis used to identify the barriers prominence to effective utilization of QT&T in manufacturing organizations. Interpretive structural modelling (ISM) is a decision making tool that can identify various variables categorizing a problem (Warfield 1974; Sage 1977). It includes structured approach of set of variables or barriers identifying relationships among specific items which define a problem or an issue (Jharkharia and Shankar 2004). In other words, it gives planned and well defined summary of framework for challenging issues and thoughts for researchers to get obvious picture of the system. The challenge of recent scenario is to assemble the barriers affecting the utilization of QT&T in manufacturing organizations.

Manufacturing organizations use to understand and implement QT&T in most effective manner in accordance to their applications and usages. Therefore, it becomes necessary to practice a hierarchy model to recognize certain barriers for effective utilization of QT&T. ISM approach is helpful for determining complex relationships among the various barriers involved in manufacturing organizations. Also ISM methodology helps the decision makers to find out the order and magnitude by identifying the relationships among the elements (Yin et al., 2012; Govindan et al., 2015). Many researchers have used blend of ISM and MICMAC approach in different areas such as operational management, logistics and scheduling for systematic structured analysis.

5.4.1 Major applications of ISM- MICMAC approach

- > For analysis of complexity of system to underneath maintainability analysis.
- > For analysis of factors influencing lean remanufacturing practices.
- > Providing framework for mass customization enablers.
- > Implementation of emission trading system in the building sector.
- Identification and analysis of key factors for waste management in humanitarian response.
- Analysis of interactions among critical success factors to implement green supply chain management towards sustainability. (Kumar et al.,2016)
- > Analyze supply chain risks in apparel retail chains for risk prioritization model.
- Analyzing the scheduling system stage of PSLC. (Attri and Grover, 2015a)
- For finding contextual relationship among the QEFs of inventory control system stage. (Attri and Grover, 2015b)

5.4.2 Benefits of ISM –MICMAC approach

Some important benefits of ISM methodology are given below:

- Discover different barriers affecting utilization of QT&T in manufacturing organizations.
- Identify relationships between factors by plotting a digraph model.
- Involves both group and individual learning by carried out complex problem-solving procedure.
- Examine different barriers involved in manufacturing organizations in terms of order and direction.
- To understand the relative contact and involvement of each barrier responsible for diagnosing relationships between suppliers and buyers.
- To identify coefficient of likeness and divergence for manufacturing organizations to find out the degree of dissatisfaction exists among distinctive barriers.
- To know the effectiveness of organizations based upon the nature of driver and dependence power.
- It provides the basis for categorize barriers into respective ranks by determining lower triangular matrix.

Figure 5.1 discovers process sequence diagram of ISM model used in manufacturing organizations.

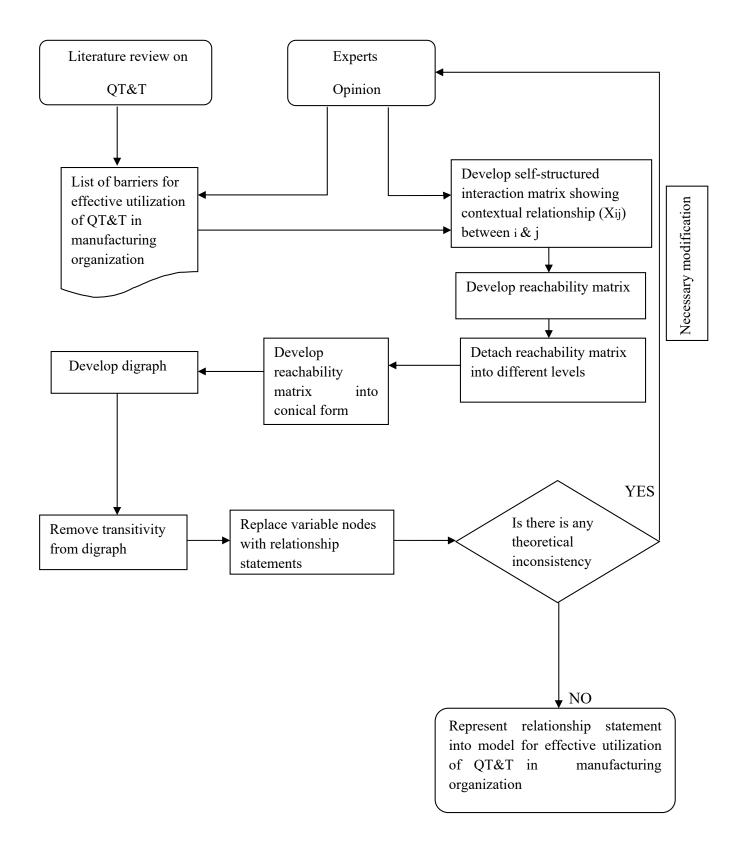


Figure 5.1: Process sequence of ISM model (adapted from govindan et al. 2012)

Various steps involved in ISM methodology are discussed below:

- 1. Analyze the literature and get expert opinion to identify the various barriers affecting the utilization of QT&T in manufacturing organizations by group problem-solving method or by survey;
- 2. Among the identified barriers, develop contextual relationships;
- 3. Build up a structural self-interaction matrix (SSIM) of elements. This matrix indicates the pair wise relationship among barriers considered for analysis;
- 4. Development of initial and final reachability matrix from SSIM and checking it for transitivity;
- 5. Partitioning of final reachability matrix into different levels and convert into lower triangular matrix (conical matrix);
- 6. Building the ISM-based directed graph (digraph) on the basis of relationships given in final reachability matrix after the removal of transitive links;
- 7. Perform MICMAC analysis after converting digraph into an ISM model;
- 8. Review of developed ISM model for theoretical inconsistency, and necessary modifications are carried out, if required.

5.5 BUILD UP STRUCTURAL SELF-INTERACTION MATRIX (SSIM)

In order to explore the barriers affecting utilization of QT&T, a contextual relationship of "give rise to" is used in this work. The expert panel was utilized for pair-wise comparisons to identify the contextual relationship among the barriers. Following four symbols have been used for describing relationship between the barriers i and j.

- V- when barrier i will give rise to barrier j;
- A- when barrier j will give rise to barrier i;
- X-when barriers i and j will give rise to each other;
- O-when barriers i and j have no relationship;

On the basis of contextual relationship among different barriers, SSIM has been obtained as shown in Table 5.4.

The next section describes the development of Structural self-interactive matrix of distinctive QT&T barriers under consideration. It is prepared on the basis of pair wise comparison of QT&T barriers.

Barriers with codes	B ₁₂	B ₁₁	B ₁₀	B 9	B ₈	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂
Employee's resistance to change (B ₁)	0	0	Α	0	A	A	A	V	V	А	А
Motivational technique and Recipient organizations (B_2)	0	0	A	0	A	A	A	V	V	0	
Lack of continuous communication (B ₃)	Х	А	А	V	A	A	A	V	V		
Inability to change organizational Culture (B ₄)	0	0	А	0	A	A	A	А			
Inadequate coordination and teamwork (B ₅)	0	0	А	0	А	А	А				
Dilemma about organization policies (B ₆)	А	А	А	V	A	V					
Lack of proper training and education (B ₇)	0	А	А	0	А						
Lack top Management Support (B ₈)	0	А	V	V							
Divergence with other quality management system (B ₉)	0	A	А								
Deficient planning and implementation (B ₁₀)	0	А									
Accessibility of time and space (B ₁₁)	0										
Keen to share knowledge (B12)											

 Table 5.4:
 Structural self-interactive matrix (SSIM)

5.5.1 Development of initial and final Reachability matrix

ISM methodology transforms the symbols V, A, X, O into binary numbers i.e. '0' and. '1' (known as initial reachability matrix) as illustrate in table 5.5. Following are the rules employed for creation of initial reachability matrix:

- The existence of V in SSIM reveals to apply '1' in (i, j) entry and '0' in the (j, i) entry in the reachability matrix.
- The existence of A in SSIM reveals to apply '0' in (i, j) entry and '1' in the (j, i) entry in the reachability matrix.
- The existence of X in SSIM reveals to apply '1' in both (i, j) and (j, i) entries in the reachability matrix.
- The existence of O in SSIM reveals to apply '0' in both (i, j) and (j, i) entries in the reachability matrix.

On the basis above mentioned rules, initial reachability matrix is accomplished as stated in Table 5.5.

Barriers	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	B 9	B ₁₀	B ₁₁	B ₁₂
B ₁	1	0	0	1	1	0	0	0	0	0	0	0
B ₂	1	1	0	1	1	0	0	0	0	0	0	0
B ₃	1	0	1	1	1	0	0	0	1	0	0	1
B ₄	0	0	0	1	0	0	0	0	0	0	0	0
B 5	0	0	0	1	1	0	0	0	0	0	0	0
B ₆	1	1	1	1	1	1	1	0	1	0	0	0
B ₇	1	1	1	1	1	0	1	0	0	0	0	0
B ₈	1	1	1	1	1	1	1	1	1	1	0	0
B 9	0	0	0	0	0	0	0	0	1	0	0	0
B ₁₀	1	1	1	1	1	1	1	0	1	1	0	0
B ₁₁	0	0	1	0	0	1	1	1	1	1	1	0
B ₁₂	0	0	1	0	0	1	0	0	0	0	0	1

 Table 5.5: Initial reachability matrix

After the development of initial reachability matrix (Table 5.6), final reachability matrix is obtained by the prologue of transitivity concept (as specify in step of ISM methodology) in the initial reachability matrix.

Table 5.6: Final reachability matrix

Barriers	B ₁	B ₂	B ₃	B 4	B 5	B ₆	B 7	B 8	B 9	B ₁₀	B ₁₁	B ₁₂	Driving power
B 1	1	0	0	1	1	0	0	0	0	0	0	0	3
B ₂	1	1	0	1	1	0	0	0	0	0	0	0	4
B ₃	1	0	1	1	1	1*	0	0	1	0	0	1	7
B ₄	0	0	0	1	0	0	0	0	0	0	0	0	1
B 5	0	0	0	1	1	0	0	0	0	0	0	0	2
B ₆	1	1	1	1	1	1	1	0	1	0	0	1*	9
B ₇	1	1	1	1	1	0	1	0	1*	0	0	1*	8
B 8	1	1	1	1	1	1	1	1	1	1	0	1*	11
B 9	0	0	0	0	0	0	0	0	1	0	0	0	1
B ₁₀	1	1	1	1	1	1	1	0	1	1	0	0	10
B ₁₁	1*	1*	1	1*	1*	1	1	1	1	1	1	0	12
B ₁₂	1*	1*	1	1*	1*	1	1*	0	1*	0	0	1	9
	9	7	7	11	10	6	6	2	8	3	1	7	77/77

Note: 1* indicates transitivity check

In addition, it represents the indirect relationship between the barriers which clarifies that if barrier i give rise to barrier j and barrier j give rise to barrier k, then barrier i also give rise to barrier k.

5.5.2 Levels partitioning

Level partitioning enforce to disclose the levels of the barriers and to detach the barriers according to their levels. Reachability set contains the barrier itself and all the barriers which are driven by it but antecedent set contains the barrier itself and all the other barriers which drive it. The unlike sets of intersection and antecedent for all the barriers are obtained by partitioned final reachability matrix. In ISM methodology, level 1 is assigned to the barrier which attains same reachability and intersection sets and is situated at the top position of ISM model as shown in Table 5.7.

Barriers	Reachability set	Antecedent set	Intersection set	Level
(\mathbf{B}_i)	\mathbf{R} (\mathbf{B}_i)	$A(B_i)$	\mathbf{R} (\mathbf{B}_i) \cap \mathbf{A} (\mathbf{B}_i)	
\mathbf{B}_1	B 1, B 4, B 5	B1, B2, B3, B6, B7, B8,	B ₁	
		B10, B11, B12		
B ₂	B1, B2, B4, B5	B2, B6, B7, B8, B10,	B2	
		B ₁₁ , B ₁₂		
B ₃	B1, B3, B4, B5, B6,	B3, B6, B7, B8, B10,	B3, B6, B12	
	B 9, B 12	B11, B12		
B 4	B4	B1, B2, B3, B4, B5, B6,	B4	Ι
		B7, B8, B10, B11, B12		
B 5	B5	B1, B2, B3, B5, B6, B7,	B5	
		B8, B10, B11, B12		
B ₆	B1, B2, B3, B4, B5,	B 3, B 6, B 8, B 10, B 11,	B3, B6, B12	
	B6, B7, B9, B12	B ₁₂		
\mathbf{B}_7	B1, B2, B3, B4, B5,	B6, B7, B8, B10, B11,	B7, B12	
	B7, B9, B12	B ₁₂		
\mathbf{B}_{8}	B1, B2, B3, B4, B5,	B 8, B 11	B 8	
	B ₆ , B ₇ , B ₈ , B ₉ , B ₁₀ ,			
	B12			
B 9	B9	B3, B6, B7, B8, B9,	B9	Ι
		B10, B11, B12		
B ₁₀	B ₁ , B ₂ , B ₃ , B ₄ , B ₅ ,	B_{8}, B_{10}, B_{11}	B_{10}	
	B6, B7, B9, B10, B12			
B ₁₁	B1, B2, B3, B4, B5,	B11	B ₁₁	
	B6, B7, B8, B9, B10,			
	B11, B12			
B ₁₂	B1, B2, B3, B4, B5,	B3, B6, B7, B8, B10,	B3, B6, B7, B12	
	B6, B7, B9, B12	B11, B12		

 Table 5.7: Iteration 1

The top-level barriers would not help to achieve any other barrier above their own level in the model. Once the top-level barriers are recognized, they are alienated out from the rest of the barriers list and then the same procedure is adopted to find out the next level of barriers, and so on. These recognized levels help in building the directed graph as well as ISM model.

Thakkar et al. (2005) suggested that factors and precedence relationships are carried out by level partitioning process in topological order. In the present work, partitioning of the final reachability matrix (for the recognition of level of barriers) in the current task is carried out by nine iterations stated in Tables 5.7-5.15.

Barriers	Reachability set	Antecedent set	Intersection set	Level
(\mathbf{B}_i)	\mathbf{R} (\mathbf{B}_i)	$A(\mathbf{B}_i)$	\mathbf{R} (\mathbf{B}_i) \cap \mathbf{A} (\mathbf{B}_i)	
B ₁	B 1, B 5	B1, B2, B3, B6, B7, B8,	B ₁	
		B_{10}, B_{11}, B_{12}		
\mathbf{B}_2	B_{1}, B_{2}, B_{5}	B ₂ , B ₆ , B ₇ , B ₈ , B ₁₀ ,	B ₂	
		B_{11}, B_{12}		
B ₃	B ₁ , B ₃ , B ₅ , B ₆ , B ₁₂	B ₃ , B ₆ , B ₇ , B ₈ , B ₁₀ ,	B_{3}, B_{6}, B_{12}	
		B 11, B 12		
B 5	B5	B1, B2, B3, B5, B6, B7,	B5	Π
		B8, B10, B11, B12		
B 6	B ₁ , B ₂ , B ₃ , B ₅ , B ₆ ,	B 3, B 6, B 8, B 10, B 11,	B_{3}, B_{6}, B_{12}	
	B 7, B 12	B ₁₂		
\mathbf{B}_7	B1, B2, B3, B5, B7,	B6, B7, B8, B10, B11,	B 7, B 12	
	B12	B12		
\mathbf{B}_{8}	B1, B2, B3, B5, B6,	B_{8}, B_{11}	B8	
	B7, B8, B10, B12			
B ₁₀	B1, B2, B3, B5, B6,	B8, B10, B11	B10	
	B7, B10, B12			
B ₁₁	B1, B2, B3, B5, B6,	B ₁₁	B ₁₁	
	B7, B8, B10, B11, B12			
B ₁₂	B1, B2, B3, B5, B6,	B3, B6, B7, B8, B10,	B3, B6, B7, B12	
	B 7, B 12	B ₁₁ , B ₁₂		

Table 5.8: Iteration 2

Barriers	Reachability set	Antecedent set	Intersection set	Level
(\mathbf{B}_i)	\mathbf{R} (\mathbf{B}_i)	$A(B_i)$	\mathbf{R} (\mathbf{B}_i) \cap \mathbf{A} (\mathbf{B}_i)	
B ₁	B ₁	B 1, B 2, B 3, B 6, B 7, B 8,	B 1	III
		B10, B11, B12		
B ₂	B1, B2	B2, B6, B7, B8, B10,	B ₂	
		B_{11}, B_{12}		
B ₃	$B_{1}, B_{3}, B_{6}, B_{12}$	B3, B6, B7, B8, B10,	B_{3}, B_{6}, B_{12}	
		B_{11}, B_{12}		
B ₆	B 1, B 2, B 3, B 6, B 7,	B3, B6, B8, B10, B11,	B3, B6, B12	
	B ₁₂	B_{12}		
B 7	B1, B2, B3, B7, B12	B6, B7, B8, B10, B11,	B 7, B 12	
		B ₁₂		
B ₈	B 1, B 2, B 3, B 6, B 7,	B8, B11	B8	
	B_{8}, B_{10}, B_{12}			
B ₁₀	B1, B2, B3, B6, B7,	B8, B10, B11	B10	
	B10, B12			
B ₁₁	B1, B2, B3, B6, B7,	B ₁₁	B 11	
	B8, B10, B11, B12			
B ₁₂	B1, B2, B3, B6, B7,	B3, B6, B7, B8, B10,	B3, B6, B7, B12	
	B ₁₂	B ₁₁ , B ₁₂		

 Table 5.9: Iteration 3

Table 5.10: Iteration 4

Barriers	Reachability set	Antecedent set	Intersection set	Level
(\mathbf{B}_i)	\mathbf{R} (\mathbf{B}_i)	$A(\mathbf{B}_i)$	\mathbf{R} (\mathbf{B}_i) \cap \mathbf{A} (\mathbf{B}_i)	
B ₂	B2	B2, B6, B7, B8, B10,	B2	IV
		B_{11}, B_{12}		
B ₃	B_{3}, B_{6}, B_{12}	B ₃ , B ₆ , B ₇ , B ₈ , B ₁₀ ,	B_{3}, B_{6}, B_{12}	IV
		B_{11}, B_{12}		
B 6	B ₂ , B ₃ , B ₆ , B ₇ , B ₁₂	B ₃ , B ₆ , B ₈ , B ₁₀ , B ₁₁ ,	B_{3}, B_{6}, B_{12}	
		B ₁₂		
B 7	B ₂ , B ₃ , B ₇ , B ₁₂	B ₆ , B ₇ , B ₈ , B ₁₀ , B ₁₁ ,	B7, B12	
		B ₁₂		
B ₈	B ₂ , B ₃ , B ₆ , B ₇ , B ₈ ,	B_{8}, B_{11}	B ₈	
	B10, B12			
B ₁₀	B2, B3, B6, B7, B10,	B8, B10, B11	B10	
	B12			
B ₁₁	B2, B3, B6, B7, B8,	B11	B ₁₁	
	B10, B11, B12			
B ₁₂	B2, B3, B6, B7, B12	B3, B6, B7, B8, B10,	B3, B6, B7, B12	
		B ₁₁ , B ₁₂		

Barriers (B _i)	Reachability set R (B _i)	Antecedent set A (B _i)	Intersection set $R(B_i) \cap A(B_i)$	Level
B ₆	B6, B7, B12	B6, B8, B10, B11, B12	B6, B12	
B ₇	B 7, B 12	B6, B7, B8, B10, B11, B12	B 7, B 12	V
B ₈	B6, B7, B8, B10, B12	B ₈ , B ₁₁	B8	
B ₁₀	B6, B7, B10, B12	B ₈ , B ₁₀ , B ₁₁	B10	
B ₁₁	B6, B7, B8, B10, B11, B12	B ₁₁	B ₁₁	
B ₁₂	B6, B7, B12	B ₆ , B ₇ , B ₈ , B ₁₀ , B ₁₁ , B ₁₂	B ₆ , B ₇ , B ₁₂	V

Table 5.11: Iteration 5

Table 5.12: Iteration 6

Barriers (B _i)	Reachability set R (B _i)	Antecedent set A (B _i)	Intersection set $R(B_i) \cap A(B_i)$	Level
B 6	B ₆	$B_{6}, B_{8}, B_{10}, B_{11}$	B ₆	VI
B ₈	B ₆ , B ₈ , B ₁₀	B ₈ , B ₁₁	B ₈	
B ₁₀	B ₆ , B ₁₀	B ₈ , B ₁₀ , B ₁₁	B ₁₀	
B ₁₁	B6, B8, B10, B11	B ₁₁	B11	

 Table 5.13: Iteration 7

Barriers (B _i)	Reachability set R (B _i)	Antecedent set A (B _i)	Intersection set $R(B_i) \cap A(B_i)$	Level
B ₈	B ₈ , B ₁₀	$B_{8,} B_{11}$	B_8	
B ₁₀	B ₁₀	B ₈ , B ₁₀ , B ₁₁	B ₁₀	VII
B ₁₁	B ₈ , B ₁₀ , B ₁₁	B ₁₁	B ₁₁	

Table 5.14: Iteration 8

Barriers (B _i)	Reachability set R (B _i)	Antecedent set A (B _i)	Intersection set $R(B_i) \cap A(B_i)$	Level
B ₈	B8	B8, B11	B8	VIII
B ₁₁	B ₈ , B ₁₁	B11	B11	

Table 5.15: Iteration 9

Barriers (B _i)	Reachability set R (B _i)	Antecedent set A (B _i)	Intersection set $R(B_i) \cap A(B_i)$	Level
B ₁₁	B11	B11	B11	IX

 Table 5.16: Combined level partitions table

Barriers (B _i)	Reachability set R (B _i)	Antecedent set A (B _i)	Intersection set $R(B_i) \cap A(B_i)$	Level
B ₁	B ₁	$\begin{array}{c} 11 \\ B_1, B_2, B_3, B_6, B_7, B_8, \\ B_{10}, B_{11}, B_{12} \end{array}$	B_1	III
B ₂	B ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B ₂	IV
B ₃	B ₃ , B ₆ , B ₁₂	B3, B6, B7, B8, B10, B11, B12	B ₃ , B ₆ , B ₁₂	IV
B ₄	B4	B1, B2, B3, B4, B5, B6, B7, B8, B10, B11, B12	B4	Ι
B 5	B5	B1, B2, B3, B5, B6, B7, B8, B10, B11, B12	B5	II
B ₆	B6	B6, B8, B10, B11	B6	VI
B ₇	B7, B12	B6, B7, B8, B10, B11, B12	B7, B12	V
B ₈	B8	B ₈ , B ₁₁	B8	VIII
B9	B9	B3, B6, B7, B8, B9, B10, B11, B12	B9	Ι
B ₁₀	B10	B8, B10, B11	B10	VII
B ₁₁	B11	B11	B11	IX
B ₁₂	B6, B7, B12	B6, B7, B8, B10, B11, B12	B6, B7, B12	V

5.5.3 Development of lower triangular matrix

Afterwards, the barriers of same level across the rows and columns are clubbed together from the final reachability matrix in order to develop lower triangular matrix. This rearrangement of barriers into lower triangular form leads to the computation of both driver and dependence power for allocation of barriers according to their respective levels by calculating ranks. Driver power is obtained by adding up the number of 1s in equivalent rows and dependence power is obtained by adding up the number of 1s in equivalent columns. Table 5.17 shows the driver and dependence power of each barrier. It is concluded that barrier (B4, B9) with level I attains at the top position and barrier (B11) with level IX placed at the bottom and resulting the formation of structured model form digraph.

Barriers	B 4	B 9	B 5	B ₁	B ₂	B ₃	B 7	B ₁₂	B 6	B ₁₀	B 8	B ₁₁	Driver	Rank
													power	
B 4	1	0	0	0	0	0	0	0	0	0	0	0	1	10
B 9	0	1	0	0	0	0	0	0	0	0	0	0	1	10
B 5	1	0	1	0	0	0	0	0	0	0	0	0	2	9
B ₁	1	0	1	1	0	0	0	0	0	0	0	0	3	8
B ₂	1	0	1	1	1	0	0	0	0	0	0	0	4	7
B ₃	1	1	1	1	0	1	0	1	1	0	0	0	7	6
\mathbf{B}_7	1	1	1	1	1	1	1	1	0	0	0	0	8	5
B ₁₂	1	1	1	1	1	1	1	1	1	0	0	0	9	4
B ₆	1	1	1	1	1	1	1	1	1	0	0	0	9	4
B ₁₀	1	1	1	1	1	1	1	1	1	0	1	0	10	3
\mathbf{B}_{8}	1	1	1	1	1	1	1	1	1	1	1	0	11	2
B ₁₁	1	1	1	1	1	1	1	1	1	1	1	1	12	1
Dependence	11	8	10	9	7	7	6	7	6	2	3	1		
Power														
Rank	1	4	2	3	5	5	6	5	6	8	7	9		

 Table 5.17: Lower triangular matrix

5.5.4 Development of digraph and ISM-based model

On the basis of lower triangular matrix (Table 5.17), initial digraph comprising of transitive or indirect links is constructed by nodes and line of edges. Final digraph is developed by eliminating the indirect links from initial digraph and is transformed into an ISM model as shown in Figure 5.2. This hierarchy model represents connection between the barriers along with their associated direction as illustrated and discussed in next section of this chapter.

5.5.5 Development of digraph and ISM-based model

On the basis of lower triangular matrix (Table 5.17), initial digraph comprising of transitive or indirect links is constructed by nodes and line of edges. Final digraph as illustrated in figure 5.2 is developed by eliminating the indirect links from initial digraph and is transformed into an ISM model which has been presented in figure 5.3. This hierarchy model represents connection between the barriers along with their associated direction as described below:

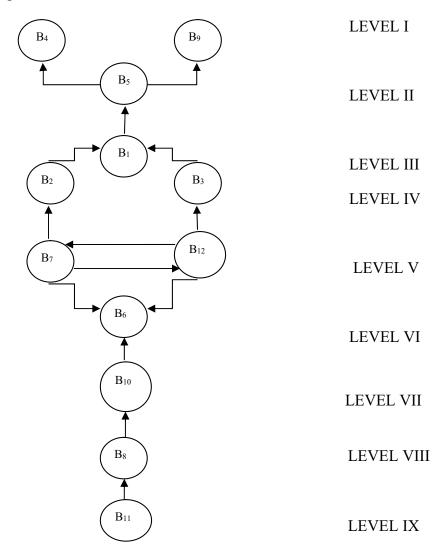


Figure 5.2: Digraph of barriers affecting utilization of QT&T in manufacturing organization

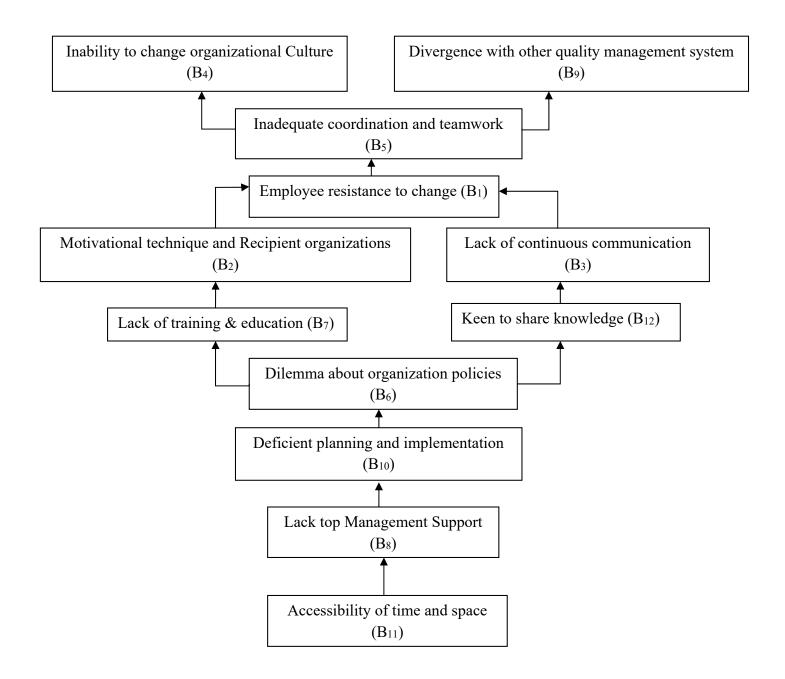


Figure 5.3: Interpretive structural model showing levels of barriers affecting QT&T

5.6 MICMAC ANALYSIS

MICMAC is known as cross-impact matrix multiplication applied to classification derived from (Matriced'Impacts croises-multiplication appliqué and clasment). It is based upon multiplication properties of matrices (Sharma et al., 1995). MICMAC analysis helps to analyze the barrier on the basis of their driver and dependence power and to group them accordingly (Singh et al., 2014). It starts with the calculation of both driver and dependence power for each barrier and categorizes the barrier into following four quadrants:

- Autonomous barriers (Ist quadrant): These barriers lie in first quadrant and signify their presence with weak driver and dependence power. They are promptly detached with few links.
- **Dependent barriers (IInd quadrant):** These barriers lie in second quadrant and have weak driver power but strong dependence power. They are significantly exaggerated by various barriers
- Linkage barriers (IIIrd quadrant): These barriers lie in third quadrant and have strong driver power along with the strong dependence power. Being an important quadrant the action made by these variables will affects others and vice versa.
- Independent barriers (IVth quadrant): These barriers lie in forth quadrant and have strong driver power but weak dependence power. They have greater driver power above several barriers.

The driver power & dependence power diagram is constructed in figure 5.4. Abscissa represents dependence power and ordinate relates with driver power. The diagram so generated helps to conquer the classification of different barriers affecting the utilization of QT&T in manufacturing organizations.

This diagram is alienated into four quadrants. Bottom left contains autonomous barriers, bottom right consists of dependent barriers, top right and left quadrants comprises with linkage and Independent barriers collectively. From figure 5.4, it is concluded that there is no barrier under autonomous variable's quadrant. Two barriers drop under linkage variable's quadrant, five barriers beneath dependant quadrant and rest of it fall under independent barrier variable's quadrant. The driver and dependence power obtained through MICMAC analysis give visions about the relative significance and the interdependencies for effective utilization of QT&T in manufacturing organizations and provide valuable understandings that can efficiently deploy these QT&T for to persist effectiveness.

The next section of this chapter deals with the partitions of barriers into four quadrants. The level exhibited by different barriers in terms of driver and dependence power has been described in figure 5.4 as underneath:

	12	B 11							.	III rd Qu	uadrant		
↑ D	11		B_8						Lın	kage b	arriers		
R	10			B_{10}									
I	9						B ₆	B ₁₂					
	8		IV	/ th Qua	drant								
E E	7]	[ndepei	ndent b	arriers			B3					
R P	6							II nd Quadrant					
	5								Deper	ndent b	arriers		
W	4							B_2					
E	3		I st Q	uadrant	Ţ					B 1			
R	2	Aı	utonom	ious ba	rriers						B 5		
	1								B 9			B 4	
		1	2	3	4	5	6	7	8	9	10	11	12
	DEPENDENCE POWER												

Figure 5.4: Driver power-dependence graph

5.7 DEVELOPMENT OF INTEGRATED MODEL

For perceived effectiveness, better and more refined approach has been used to upgrade the basic ISM model. Integrated model as shown in figure 5.5 is the hierarchical order of barriers which approximately analogous to that of conventional ISM model. An integrated model has been developed from MICMAC analysis by means of the driver and dependence powers of the barriers. Table 5.18 illustrates the calculation of effectiveness (E) for each barrier by subtracting the dependence power from the driver power. The barriers having higher effectiveness are placed at the bottom and the barriers with lower effectiveness are placed at the top of the model on to other barriers.

Barriers	Driver power	Dependence power	<i>E</i> =(driver power-dependence power)
B 1	3	9	-6
B ₂	4	7	-3
B ₃	7	7	0
B 4	1	11	-10
B 5	2	10	-8
B ₆	9	6	3
B 7	6	8	-2
B 8	11	3	8
B 9	1	8	-7
B ₁₀	10	2	8
B ₁₁	1	12	-11
B ₁₂	9	7	2

 Table 5.18: Difference in driver power and dependency power

The integrated model described in figure 5.5 implies to be more reliant and sophisticated for the representation of barriers affecting the utilization of QT&T.

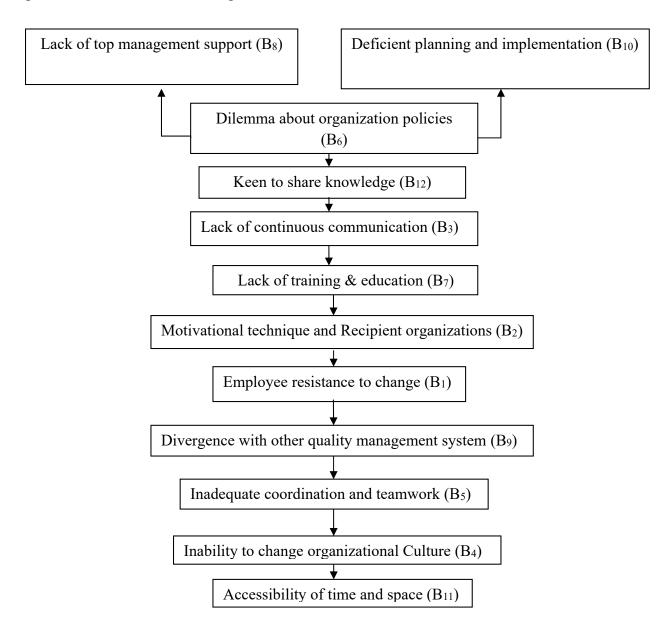


Figure 5.5: Integrated model of barriers affecting manufacturing organization

After going through the integrated model, it is found that barrier (B₁₁) Accessibility of time and space, (B₄) Inability to change organizational Culture and (B₅) Inadequate coordination and teamwork are placed at the same bottom level of hierarchy and indicate independent barriers which drive the barriers situated at in higher level of the model. On the other hand, barriers specifically (B₆) Dilemma about organization policies, (B₈) lack of top management support and (B₁₀) Deficient planning and implementation have propensity to affect the manufacturing organization and appears at the top most position of the model and indicate dependent barriers which are driven by other barriers in the model.

5.7 CONCLUDING REMARKS

This chapter endeavors to evaluate the effectiveness of different barriers inhibiting the proper execution of QT&T in manufacturing organizations. In the present excretion, an integrated ISM model based on contextual relationships has been developed which identified barriers through methodical framework that evocates the picture and helps managers to productively employ the QT&T in manufacturing organizations.

The basic ISM model allocates the known barriers into nine different levels which show the prolongation of inter-relationships among these measured barriers. With the help of ISM methodology, the model was developed. It has been observed that accessibility of time and space (B₁₁), lack of top management support (B₈) and deficient planning and implementation (B₁₀) situated at (IX, VIII&VII) level of the ISM model. These are necessary inputs for any manufacturing organization to implement QT&T with proper planning with the help of top management support incorporates with the accessibility of appropriate time and space. The level VI constitutes dilemma about organization policies (B₆) which brings inappropriate knowledge about manufacturing organization. Similarly, Lack of training & education (B7) and keen to share knowledge (B12) both attains at same level of the hierarchy which substitute to integration of information with the aid of the incentive source. These barriers would lead to personalization of knowledge and further endorse integration of knowledge. Motivational technique and recipient organizations (B_2) with lack of continuous communication (B_3) together comprise at level IV which improves the mutual alliance and motivates well organizational culture. On the other hand, employee resistance to change (B_1) becomes dominant barrier while considering the efficient utilization of QT&T in any manufacturing organizations and finally top level of ISM model contributes level II for Inadequate coordination and teamwork (B₅) which combines with inability to change organizational Culture (B4) and divergence with other quality management system (B₉) together influence same level I and willing to deals with the effectiveness of manufacturing organization. All the nine levels will facilitate to enhanced effective coordination, effective utilization and proper utilization of QT&T in manufacturing organization. The confirmation of ISM development with MICMAC analysis has been carried out with eleven experts (manufacturing organization practitioners – eight and academics – three). The concluded ISM model was developed and MICMAC analysis is carried out which gives an evidence to show resemblance in interrelationships with different barriers associated to their driving power and dependence power.

- The second purpose of present study is to carry out MICMAC analysis which defines barriers into four main quadrants (autonomous, linkage, dependent and independent) with their respective driver power and dependence power. They are:
 - 1. *Autonomous barriers:* The driving-dependence power diagram as shown in figure 5.4 indicates that there are no autonomous barriers existing in this quadrant these barriers have weak driver and dependence power and thus donated by only few links which directly influence the system. None of the barriers exist in this quadrant.
 - 2. Dependent barriers: Dependent barriers are strongly dependent on other barriers. Motivational technique and recipient organizations (B₂), employee resistance to change (B₁), inadequate coordination and teamwork (B₅), inability to change organizational culture (B₄) and divergence with other quality management system (B₉) have weak driving but have strong dependence power, and described as performance orientated. These barriers will appear at the top level of the ISM hierarchy and are therefore considered important barriers shown in Figure 5.3.
 - 3. *Linkages barriers:* Linkage barriers are influenced by lower level barriers and in turn impact other barriers in the model, which may affect the successful knowledge flow in manufacturing organizations either in an optimistic or pessimistic way. Two barriers namely keen to share knowledge (B₁₂) and lack of continuous communication (B₃) fall under this quadrant. Managers have to take special care while handling such barriers.
 - 4. *Independent barriers:* Barriers like accessibility of time and space (B₁₁), lack of top management support (B₈), deficient planning and implementation (B₁₀), inadequate coordination and teamwork (B₅), lack of training & education (B₇) are fall under this quadrant and are called independent barriers which drive other barriers and are subjected to be the most important barrier with high driver power than dependence power.

Afterwards, the developed Integrated ISM-MICMAC model has been presented in Figure 5.5. The analysis of Integrated ISM-MICMAC is as follows:

• Barriers like accessibility of time and space (B₁₁), Inability to change organizational Culture (B₄) and Inadequate coordination and teamwork (B₅) they all appear in the same level, i.e. at the bottom most level which means they drive the barriers present in top level of the model.

- Barriers namely keen to share knowledge (B₁₂), Lack of continuous communication (B₃), Lack of training & education (B₇), Motivational technique and Recipient organizations (B₂), Employee resistance to change (B₁) and Divergence with other quality management system (B₉) fall under middle level which supports both top level and bottom most level of the hierarchy.
- Barriers specifically lack of top management support (B₈), deficient planning and implementation (B₁₀) and dilemma about organization policies (B₆) will retain at top most level and have propensity to refer decisions to higher levels in manufacturing organizations which implies that these are the dependent barriers and are driven by other barriers in the model.

APPLICABILITY OF QT&T IN MANUFACTURING AND SERVICE ORGANIZATIONS: A COMPREHENSIVE SURVEY

6.1 INTRODUCTION

Manufacturing and service organizations identifies the way towards the expansion and modernization of accelerating products in worldwide competition for their quality. Organizations that are continuously strived to attain quality must adopt certain quality tools and techniques (QT&T) for satisfying customer needs. Manufacturing organizations are identified to give solid products while service organizations change input plan into an output one in form of service. In particular, organizations must possess innovative strategies for improving performance (Monteiro et al., 2017). Thus different diagnosis, paradigms or techniques are employed to diminish the gap between organizations. Therefore, it is obligatory to distinguish between planned and operational outcome of the manufacturer in an organization (Suphunnika and Kayis, 2014).

6.2 APPLICABILITY OF QT&T IN VARIED ORGANIZATIONS

Applicability of different quality tools and techniques (QT&T) for creation and inevitability of products and services has sustained many changes to cope up with recent future trends. Several QT&T were suggested and classified into different groups to standardized organizations (manufacturing and service) for improving their efficiency and quality. Formerly exist seven basic (cause and effect diagram, scatter diagram, pareto diagram, flow chart, control charts, histogram and Check sheet) and seven management tools (affinity diagram, arrow diagram, matrix diagram, matrix data analysis, process decision program chart (PDPC), relation diagram and tree diagram) does not ensure organizations to overcome problems but also helps to identify the gap encountered while implementing distinctive QT&T categories. Hence selective usage of QT&T in different areas depends upon the level of applicability in an organization (Toremen et al., 2009; Lau and Tang, 2009; Bugdol, 2005).

Furthermore, during the usage of selective QT&T can help organizations to classify into different groups (Nave, 2002; Revere et al., 2004). It is discovered that only limited number of authors like Hellsten & Klefsjo, (2000); Mehra et al., (2001); Chin et al., (2002); Grover et al., (2004); Thia et al., (2005); Grover et al., (2007); Bamford et al., (2005); Kovach et al., (2011) have categorized these QT&T into diversified groups. Hence this research insists an optimistic approach about the level of implementation and adaptability of various QT&T among different organizations.

In this chapter, all sixteen categories namely: seven basic tools (7BT), management tools (7MT), problem solving tools (PST), software tools (SWT), statistical tools (ST), graphical tools (GT), new product development tools (NPDT), decision making tools (DMT), productivity tools (PT), assessment/analysis tools (AT), combinational tools (CT), relationship tools (RT), lean tools (LT), communicational tools (CMT), motivational tools (MOT), performance measurement tools (PMT) are analyzed by using survey based questionnaire. These categorizations provide valuable insight for adopting distinctive QT&T in an organization. To conquer this gap, a survey regarding the applicability of QT&T was done in NCR region and industrial town Bhiwadi in Rajasthan, India. The foremost objectives of deploying questionnaire based survey are as follows:

- To finds out the level of adoption and applicability of various QT&T in an organization;
- To assess the effect of QT&T categories in different organizations;
- To discover why some organizations, have not implemented QT&T;
- To recognize the benefits and challenges of implementing QT&T in an organization;

Such survey reports provide vital understanding on the execution rate, similarities and divergence for adapting selective QT&T category in particular organization. The next section describes the extent of QT&T categories in various organizations. (Sharma et al. 2020)

6.3 FEASIBILITY OF QT&T CATEGORIZATIONS IN DIFFERENT SECTORS

Innumerable surveys studies (Jin et al., 2008; Salah et al., 2011) have been reported to assemble selective (QT&T) in manufacturing and service organizations. This uncertainty in execution of various (QT&T) in different organizations gives clear perception not only in implementation status but also in the area of realistic research.

6.3.1 QT&T -an extent of applicability in manufacturing organizations

The accomplishment of QT&T in productivity brings significant changes in manufacturing organizations. In early 1990s and late 1980s many researchers contributed their relevancy towards successful development and implementation of QT&T in their organizations while McQuater et al. (1995) identified limited approach and focus for a single tool instead of techniques which has wider applications and related with set of tools. However, Kwok and Tummala, (1998) argued that QT&T are ineffective and do not work correctly for getting preferred outcomes in manufacturing organizations. Despite the fact that no of researchers gave their contributions to implicit quality for providing variety of products in global market.

6.3.2 QT&T -an extent of applicability in service organizations

Garg et al., (2002) and Antony et al., (2004) suggested the increase in product and service quality by productivity enhancement. In other words, adaptability of QT&T in service organizations brings higher quality with lower price independently to bring changes in product or service. As illustrated by various authors about the realistic applicability of QT&T in service organizations: Heizer and Render, (2006) discovered effectual perception of TQM together with service organizations. Hence QT&T applied for both profitable and non-profitable organizations in the service sectors.

On this contradiction, it is revealed that some QT&T categorizations related to manufacturing and other corresponds to service organizations. Bertha et al. (2019) concludes contemporary relationship between quality management and productivity as performance indicator. Likewise, Fay Abdulla Al khalifa (2019); Nimmy J.S (2019); Amit agrahiri et al. (2019) presented different outcomes in various fields about the adoption and assimilation of QT&T in particular organizations. Figure 6.1 shows the applicability of several QT&T in diversified areas and identifies the common region which illustrates the applicability of QT&T in both organizations.

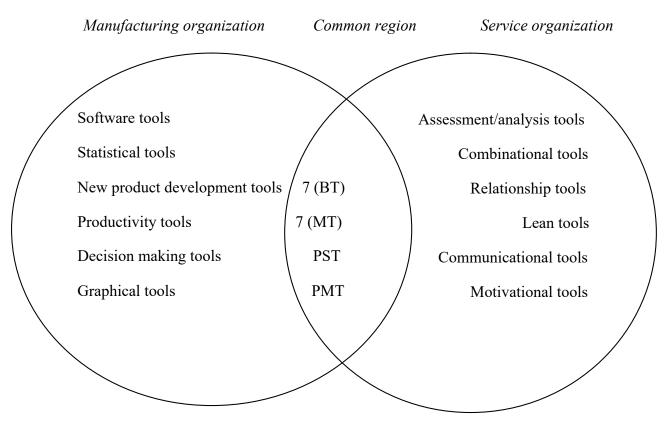


Figure 6.1: Applicability of QT&T in different organizations

6.4 QUESTIONNAIRE DEVELOPMENT

The exploratory research methodology was intended to assist the applicability of different QT&T techniques among various manufacturing and service organizations. To accomplish the objectives of this research, two approaches were intended – development of survey questionnaire and meeting with organizational experts.

6.4.1 Survey questionnaire

To accumulate the complete information of the research, a survey questionnaire was developed. The outline of required questionnaire was taken from Tansey et al. (2001), and Lin and Johnson (2004) and survey questions were derived from Albliwi et al. (2014) and Albliwi et al. (2015). This developed questionnaire was analyzed by number of professional academicians and industrial experts to validate the survey report and obtain best possible results. Minor alterations were suggested for better understanding of QT&T in particular organization. The modified questionnaire consists of three major sections.

- First section consists of background details of the contributing organizations (manufacturing and service) such as name of organization, years of establishment, number of employees, company size and quality certification.
- Second section concerns with implementation status, level of awareness and impact on organization.
- Last section contributes with respondent information (position in organization, department and year of serving). (Appendix-I)

A Likert five-point scale was used to determine the applicability of distinctive QT&T in particular organization. The scale was rating from 1 to 5, 1 stands for exceptionally applicable QT&T, 2 stands for less applicable QT&T, 3 stands for moderate applicable QT&T, 4 stands for more applicable QT&T and 5 signifies strongly applicable QT&T. This valuable insight helps the organizations to assign score for various QT&T according to the extent of applicability.

6.4.2 Meeting organizational experts

Planned meetings were held with distinguish industrial professionals and experts already employed QT&T in different areas of their organizations. The main aim for arranging this meeting was to merge the views of industrial professionals and experts that were look forward in the area of quality improvement. Detailed observations and comments were also taken from senior executives/managers /directors to improve the extent of research and investigate the survey data.

6.4.3 Survey distribution

The survey was conducted in nearby NCR region and industrial town Bhiwadi involving manufacturing and service organizations. These organizations were selected according to their annual turnover (above 200 million). The questionnaires were administered to 398 general managers including director, managing director, executive managing directors and quality managers to facilitate survey response. Both postal and online modes of communication were used for distributing questionnaires. Requesting e-mails were also sent to chief operating executives (COEs) to contribute in filling questionnaires.

However, from 398 distributed survey 190 filled questionnaires were received (88 for service organizations and 102 manufacturing organizations). Thus the combined response rate is 47.73 percent. After reviewing 190 questionnaires only 106 successfully filled questionnaires were selected, 84 become excluded from the analysis on account of financial background (47) and quality certification (32), rest of the 5 respondents were neglected based on unidentified job condition. Hence the concluded response rate for 106 organizations is 26.63 percent which is measured as high according to (Forza, 2009). The below mention tables from 6.1 to 6.4 represents all relevant information required to gather data through survey questionnaire.

Organization sector	Frequency of organizations (total 106)	Percentage of organizations
Government	15	14.15
Semi government	18	16.98
Multinational	20	18.86
Non-government	22	20.75
organization		
Private	31	29.24
Total	106	100

Table 6.1: Organizational profile of survey respondents

Type of	Frequency of organizations	Percentage of
organization	(total 106)	organizations
Construction	5	4.71
Consultancy	6	5.66
Financial	4	3.77
Telecom	5	4.71
Shipping	6	5.66
Airline	7	6.60
Retail	5	4.71
Logistics	6	5.66
Metallurgy	5	4.71
Healthcare	4	3.77
Automotive parts	6	5.66
Electrical	4	3.77
manufacturing		
Beverage	4	3.77
Printing	8	7.54
Insurance	4	3.77
Petroleum	7	6.60
Chemical	5	4.71
Sheet metal	5	4.71
Mining	4	3.77
Warehouse	6	5.66
Total	106	100

 Table 6.2: Survey data based on sub-groups of participated organizations

Table 6.3: Survey data based on company size

Company size	Frequency of organizations	Percentage of organizations
	(total 106)	
Below 100 employees	22	20.75
Between 101 and 200	28	26.41
employees		
Between 201 and 300	31	29.24
employees		
Between 301 and 400	12	11.32
employees		
Above 400 employees	13	12.26

Year of establishment	Frequency of organizations (total 106)	Percentage of organizations
<5 years	20	18.86
>5 years but <10 years	18	16.98
>10 years but <15 years	34	32.07
>15 years but <20 years	24	22.64
20 years and above	10	9.43

 Table 6.4:
 Survey data on organizations establishment year

Once the necessary information in terms of types of organizations, sub group contribution, company size and year of establishment were composed, they were analyzed by MS Excel software. Percentages were calculated on account of frequency participation at primary stage and then after demographic information have been discussed to show the current extent of applicability of different QT&T in various organizations.

Table 6.1 illustrates the type of organizational sectors participated in survey research. It is found that private sector contributed to be main (29.24 percent) of the total research followed by non-government organization (20.75 percent), multinational (18.86 percent), semi-government (16.98 percent) and government organization (14.15 percent). The next section of this chapter represents the individual sequence of sub organizations participated in survey results. Table 6.2 shows the relevance of participated organizations in individual format.

About (18.86 percent) of the workers have been established in particular organization for less than 5 years, whereas (16.98 percent) contributed with more than 5 years but less than 10 years, (32.07 percent) served more than 10 years but less than 15 years, (22.64 percent) indicated more than 15 years but less than 20 years and only (9.43 percent) of workers employed in an organization for more than 20 years as represented in table 6.4 mean while to the percentage (20.75 percent) for no of employees below 100, (26.41 percent) in between 101 to 200 employees, (29.24 percent) in between 201 to 300 employees, (11.32 percent) in between 301 to 400 employees and finally (12.26 percent) for employees more than 400 as illustrated in table 6.3.

Thus, distinctive observation and data collection has compiled to attain following objectives:

• To find out the level for adoption and applicability of various QT&T in an organization.

Table 6.5 shows the percentage wise categorizations of 152 QT&T into16 groups (Sharma et al., 2017). Each category has different perceived effect on different organizations to assess the level of adoption.

Categorizations	Percentage of organization							
	Not adopted	Less adopted	Consider to be adopted	Adopted	Highly adopted			
Basic quality tools (7BT)	02	19	17	40	28			
Management tools (7MT)	04	18	26	44	14			
Problem solving tools (PST)	01	08	05	59	33			
Software tools (SWT)	03	25	27	39	12			
Statistical tools (ST)	05	28	18	44	11			
Graphical tools (GT)	06	17	19	48	16			
New product development tools (NPDT)	03	22	24	52	5			
Decision making tools (DMT)	07	19	21	44	15			
Productivity tools (PT)	01	05	04	56	40			
Assessment/analysis tools (AT)	03	17	28	51	7			
Combinational tools (CT)	04	21	23	40	18			
Relationship tools (RT)	08	27	29	36	6			
Lean tools (LT)	02	22	22	54	6			
Communicational tools (CMT)	04	18	24	50	10			
Motivational tools (MOT)	09	21	17	43	16			
Performance measurement tools (PMT)	01	06	08	57	34			

Table 6.5: Survey data on category wise adoption QT&T in an organization

Out of 106 survey reports the implementation of particular category into different organizations prevail a valuable insight to discriminate between manufacturing and service organizations. The demographic illustrations of QT&T categories have been taken by evaluating the average mean for individual category. Figure 6.2 depicts the implementation rate of different categories according to the adaptability of usage.

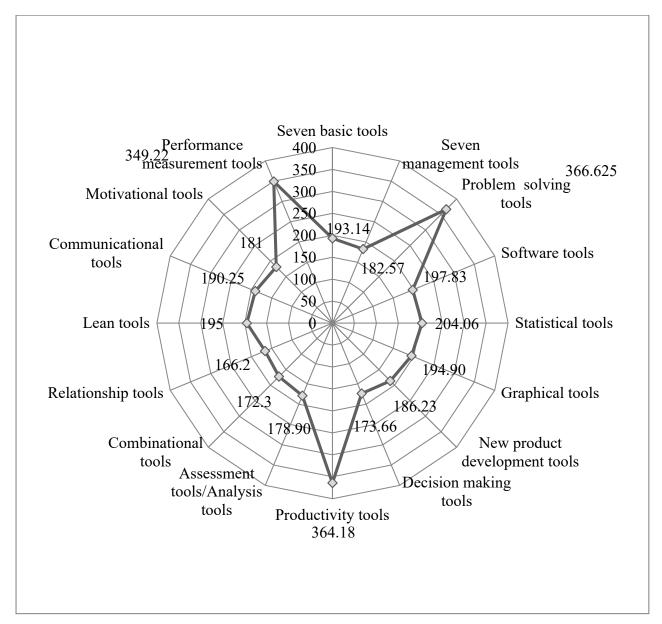


Figure 6.2: Implementation of QT&T in different organizations

From the above analysis, it is obvious that problem solving tools, productivity tools and performance measurement tools contributed to be the most widely used QT&T among manufacturing and service organizations. However, it is significant to mention that 63 organizations out of 106 have not adopted any kind of QT&T in their organizations.

• To assess the effect of QT&T categories in different organizations

The present section describes the assessment of different QT&T categories by questionnaire method. This survey questionnaire was assessed by TOPSIS approach to determine the order preference of QT&T categories in different areas of manufacturing and service organizations. The concept of TOPSIS initially developed by Hwang and Yoon (1981) and first presented by Chen and Hwang (1992). This approach has been used to identify solutions from a finite set of alternatives. The main fundamental aspects of this approach have not only determined the shortest distance from the optimistic ideal solution, but also have the longest distance from the pessimistic ideal solution. Optimistic and pessimistic ideal solutions are also called the ideal and anti-ideal solutions (Zeleny, 1982).

The main steps involved in TOPSIS are as follows (Rao, 2007):

- 1. The first step is to nomenclature these 16 categorizations into different abbreviations.
- 2. All unique abbreviations are expressed in matrix form. Each row of the matrix defines one categorization and each column to one criterion. So recital data for *n* alternatives over *k* criteria is obtained. Element X_{ij} of the matrix provides the value of jth criteria in original real values, for the ith categorization. After standardized raw measurements convert raw X_{ij} into standardized measures S_{ij} by using equation given below:

$$S_{ij} = X_{ij} / \left(\left(\sum_{i=1,j=1}^{n,k} \left(X_{ij}^2 \right) \right)^{1/2} \right) \qquad \dots \tag{6.1}$$

3. Set of importance weights w_k are obtained for each criteria. These weights are determined in such a way that set of weights W_k (k=1, 2,..., n) represent $\sum W_k = 1$ represented by equation (3.2)

Normalised weight of each importance = $\frac{\text{Total of each importance}}{\text{Grand total of all importances}}$... (6.2)

4. Multiply each element of column S_{ij} with its linked weight W_{ij} expressed by equation stated below:

$$W_{ij} = wkSij \tag{6.3}$$

- 5. Identify the ideal categorization i.e optimistic ideal solution (The ideal categorization is the maximum value of each rating column of weighted matrix donated on each criterion by S+).
- 6. Identify anti-ideal categorization i.e pessimistic ideal solution (The anti-ideal categorization is the minimum value of each rating column of weighted matrix donated on each criterion by S-).
- 7. Develop a distance measure over each criterion to both ideal (D+) and anti-ideal (D-). The distance from ideal can be calculated using equation (3.4).

$$D_t^+ = \left\{ \sum_{j=1}^k (W_{ij}^- S_j^+)^2 \right\}^{1/2} \qquad i = 1, 2, 3 \dots n \qquad (6.4)$$

and the distance from anti-ideal can be calculated using equation (6.5).

8. Fractional ratio FR is calculated by dividing distance to anti-ideal by the sum of the distance to the anti-ideal and the distance to the ideal, as shown in equation (3.6).

$$FR_i = \frac{D_i^-}{D_i^- + D_i^+}$$
 $i = 1, 2, 3 \dots n$ (6.6)

9. Finally rank order categorizations by maximizing the ratio describe in step 8.

After analysis, the required results have been validated by TOPSIS approach to know the order of accessibility of various QT&T categorizations in manufacturing and service organizations. Table 6.6 donates the normalized data of sixteen QT&T categories.

Rating	5	4	3	2	1
Categorizations	Highly	Adopted	Consider to be	Less	Not
	adopted		adopted	Adopted	adopted
7BT	9.8023	8.3673	3.4532	4.6370	0.2166
7MT	2.4506	10.1245	8.0774	4.1617	0.8664
PST	13.6157	18.2042	0.2987	0.8221	0.0542
SWT	1.8004	7.9542	8.7107	8.0280	0.4874
ST	1.5129	10.1245	3.8714	10.0703	1.3538
GT	3.2008	12.0490	4.3135	3.7122	1.9495
NPDT	0.3126	14.1408	6.8826	6.2169	0.4874
DMT	2.8132	10.1245	5.2695	4.6370	2.6535
РТ	20.0047	16.4000	0.1912	0.3211	0.0542
AT	0.6126	13.6022	9.3679	3.7122	0.4874
СТ	4.0509	8.3673	6.3210	5.6646	0.8664
RT	0.4501	6.7775	10.0490	9.3639	3.4658
LT	0.4501	15.2495	5.7833	6.2169	0.2166
СМТ	1.2503	13.0740	6.8826	4.1617	0.8664
МОТ	3.2008	9.6695	3.4532	5.6646	4.3864
РМТ	14.4534	16.9909	0.7647	0.4624	0.0542

Table 6.6: Data in normalized form

 Table 6.7: Weightage of rating

Rating	5	4	3	2	1
	Most	Very	Important	Somewhat	Least
	important	important		important	important
Instance of each					
importance	271	757	312	293	63
Total of each					
importance	1355	3028	936	586	63
Normalized weight of					
each importance	0.2270	0.5074	0.1568	0.0982	0.0106

Rating	5	4	3	2	1
Categorizations	Most	Very	Important	Somewhat	Least
	important	important		important	important
7BT	0.1326	0.2809	0.434	0.1423	0.0102
7MT	1.2998	2.3504	1.4987	0.6598	0.0022
PST	0.3249	2.8440	3.5056	0.5922	0.0088
SWT	1.8054	5.1136	0.1296	0.1170	0.0006
ST	0.2387	2.2343	3.7805	1.1424	0.0050
GT	0.2006	2.8440	1.6802	1.4330	0.0138
NPDT	0.4244	3.3846	1.8721	0.5282	0.0199
DMT	0.0414	3.9721	2.9870	0.8847	0.0050
РТ	0.3730	2.8440	2.2869	0.6598	0.0271
AT	2.6526	4.6068	0.0830	0.0457	0.0006
СТ	0.0812	3.8208	4.0657	0.5282	0.0050
RT	0.5372	2.3504	2.7433	0.8061	0.0088
LT	0.0597	1.9038	4.3613	1.3325	0.0354
СМТ	0.0597	4.2836	2.5099	0.8847	0.0022
МОТ	0.1658	3.6725	2.9870	0.5922	0.0088
РМТ	0.4244	2.7162	1.4987	0.8061	0.0447

Table 6.8: Weighted matrix of normalized data

 Table 6.9:
 Table of ideal categorization

S+	W_{i1}	W_{i2}	W _{i3}	W_{i4}	W_{i5}
	2.6526	5.1136	4.3613	1.4330	0.0447

Table 6.10: Table of anti-ideal categorization

S-	W_{il}	W_{i2}	W_{i3}	W_{i4}	W_{i5}
	0.0414	1.9038	0.0830	0.0457	0.0006

Rating	1	2
Categorizations	$\mathbf{D_{i}^{+}}$	Di
7BT	9.4072	3.1435
7MT	8.4189	4.5609
PST	9.4734	5.4256
SWT	8.3765	4.5400
ST	8.9936	3.6041
GT	9.0039	3.9246
NPDT	8.0765	5.0455
DMT	8.9647	3.7246
РТ	9.5648	5.3167
AT	7.8426	5.6015
СТ	8.8534	3.7367
RT	8.3353	4.9382
LT	8.2082	5.0410
СМТ	8.3240	4.7708
МОТ	9.3876	3.2314
РМТ	9.4201	5.1540

Table 6.11: Distance of ideal and anti-ideal alternative from weighted data

 Table 6.12: Ratio of distance to anti-ideal from total

Sr no	Categorizations	R_i
1	7 BT	0.2505
2	7MT	0.3514
3	PST	0.3642
4	SWT	0.3515
5	ST	0.2861
6	GT	0.3036
7	NPDT	0.3845
8	DMT	0.2935
9	РТ	0.3573
10	AT	0.4167
11	СТ	0.2968
12	RT	0.3720
13	LT	0.3805
14	СМТ	0.3643
15	МОТ	0.2561
16	РМТ	0.3536

Sr no	Categorizations	R_i
1	AT	0.4167
2	NPDT	0.3845
3	LT	0.3805
4	RT	0.3720
5	СМТ	0.3643
6	PST	0.3642
7	РТ	0.3573
8	РМТ	0.3536
9	SWT	0.3515
10	7MT	0.3514
11	GT	0.3036
12	СТ	0.2968
13	DMT	0.2935
14	ST	0.2861
15	МОТ	0.2561
16	7B T	0.2505

Table 6.13: Ranking the categorizations from largest to smallest value

From the above discussion, it has been evident that categories like assessment/analysis tools (AT), new product development tools (NPDT) and lean tools (LT) prevails the characteristic feature of rank after analyzed by TOPSIS approach. Yet categories like problem solving tools, productivity tools and performance measurement tools noticed narrow down fall in rank order which results in the formation of obstacles/challenges occurred during the successful implementation of QT&T categories in different organizations. The next section of this chapter deals with the challenges and benefits faced by distinctive QT&T categories in various organizations.

• To discover why some organizations, have not implemented QT&T

To respond second objective, list of non-implementers has been calculated from table 6.5, it is found that out of 106 successfully surveying reports, 63 organizations neither implemented nor adopted any kind of QT&T category. The prime challenging factors driven out from survey analysis is lack of knowledge (49 per cent) followed by communication gap (17 per cent) which contributed about more than half percent of the total non-implementers. In fact, these two confronts are key factors while successful implementation and adaptability of QT&T in any organization. Although, rest of the challenges were accountable to investigate the crisis in any organization like lack of training (14 percent), financial constraints (11 percent) and lack of resources about (8 percent). However, categorizations like problem solving tools, productivity

tools and performance measurement tools have shown their supremacy towards other categories and exaggerated the most to find out the level of adoption and implementation of QT&T. Figure 6.3 describes the frequency of non-implementers for the of adoption of QT&T in an organization.

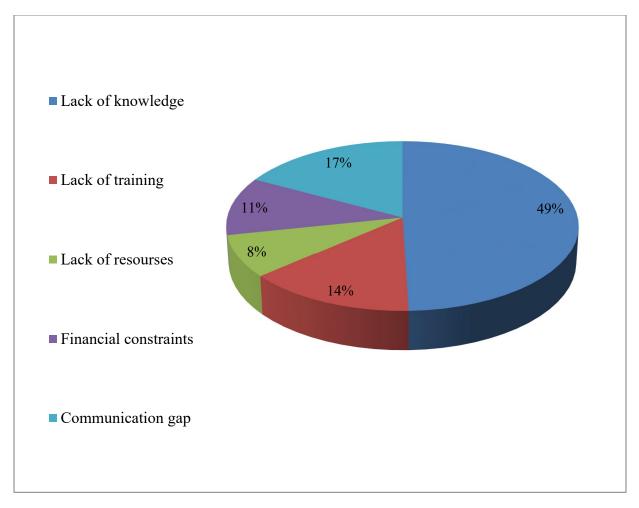


Figure 6.3: Percentage for non-implementers

• To recognize the benefits of implementing QT&T in an organization

Analyses so far demonstrated fine depiction about adoption and implementation of QT&T in manufacturing as well in service organizations. It was found that a total of 43 out of 106 organizations (40.56 percent) successfully implemented QT&T and remaining (59.43 percent) were non implementers. On this contradiction survey respondent were asked whether QT&T helped to raise the efficiency of the firm without overcome any proceeding gaps. Therefore, respondents from different areas of manufacturing and service sectors were invited to give detailed observations about benefits and implementation status of various QT&T.

To eliminate this gap, five benefits have been incorporated after concluded optimum 32 manufacturing and 11 service organizations out of 43. These were increased customer satisfaction (21 percent), improved key performance metrics (25 percent), Improve inventory turnover (32 percent), reduce waste (11 percent) in the process and cost saving (9 percent). Figure 6.4 shows the proportion wise breakup of benefits for various organizations.

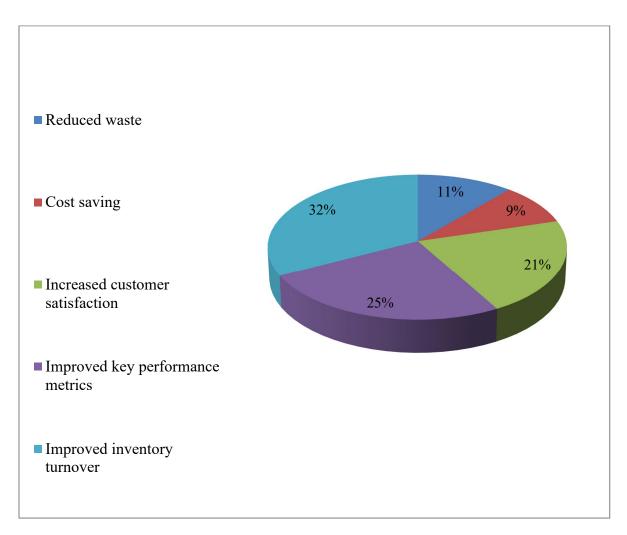


Figure 6.4: Benefits of QT&T in manufacturing and service organizations

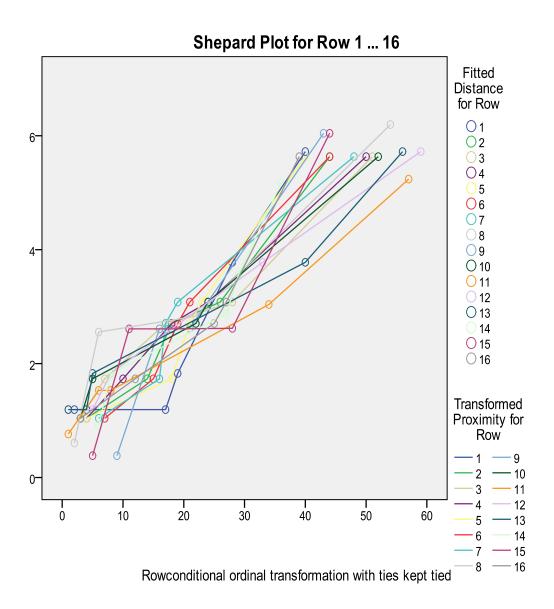
By analyzing 106 surveying reports, it was originated that about (40.56 percent) of organizations definitely employed QT&T for improving their efficiency and provides sensible amount of eagerness concerning the usage of QT&T categories in diversified fields. The distinctive tools which fall beneath categories: problem solving tools, productivity tools and performance measurement tools have shown their ascendancy both in individual as well in sub-group classifications.

These results have been validated by performing multidimensional unfolding analysis to find general quantitative scale to inspect relationships between two not applicable and highly applicable tools using SPSS 18 software. After analyzed through multidimensional unfolding test, the order of proximities between not applicable and highly applicable tools have transformed their values from original one to proportional one by converging 368 iterations, with a final penalized stress of .0000997.

To describe the adaptability of different QT&T in various organizations, shepard plot was used. Shepard plot is a scatter plot of input proximities against output distances for every pair of items scaled. The variation coefficient and Shepard's index are sufficiently low and DeSarbo's indices are sufficiently large as shown in table 6.16. Iteration tables 6.14 to 6.15 evaluate stress part between not applicable (horizontal axis) and highly applicable (vertical axis) dimensional categories donated by shepard plot as illustrated in figure 6.5.

- Toward the bottom of the vertical axis categorizations plotted by lines (15, 12 and 18) that restrict performance of other intermediate categorizations donated by lines (6, 14 and 10) pulled down the vertical axis results in transitional adaptability of these categorizations.
- Toward the top of the vertical axis categorizations plotted by lines (3, 9 and 16) that restrict performance of other less dominant categorizations donated by lines (1, 2,4,5,7,13 and 11) pulled up the vertical axis results in fewer adaptability of these categorizations.

Iteration	Penalized stress	Difference	Stress	Penalty
0	.8630457	0	.1994998	3.7335771
386	.0000997	0000019	.0000000	2.7878634


Table 6.14: Iteration values for not applicable and highly applicable tools

Categories	Dimension 1 (horizontal axis) (Not applicable tools)	Dimension 2 (vertical axis) (Highly applicable tools)
Basic quality tools (7BT)	007	-1.538
Management tools (7MT)	.574	.577
Problem solving tools (PST)	.574	.577
Software tools (SWT)	.574	.577
Statistical tools (ST)	.574	.577
Graphical tools (GT)	.574	.577
New product development tools (NPDT)	.574	.577
Decision making tools (DMT)	1.024	-1.38
Productivity tools (PT)	.837	261
Assessment/analysis tools (AT)	.574	.577
Combinational tools (CT)	-1.82	785
Relationship tools (RT)	007	-1.536
Lean tools (LT)	007	-1.536
Communicational tools (CMT)	.145	1.323
Motivational tools (MOT)	.837	261
Performance measurement tools (PMT)	.574	.577

Table 6.15: Row coordinates between two dimensions

Iterations		386
Final Function Value		.0000997
Function Value	Stress Part	.0000000
Parts	Penalty Part	2.7878634
Badness of Fit	Normalized Stress	.0000000
	Kruskal's Stress-I	.0000000
	Kruskal's Stress-II	.0000000
	Young's S-Stress-I	.0000000
	Young's S-Stress-II	.0000000
Goodness of Fit	Dispersion Accounted For	1.0000000
	Variance Accounted For	1.0000000
	Recovered Preference Orders	.9625000
	Spearman's Rho	.9889223
	Kendall's Tau-b	.9775489
Variation	Variation Proximities	.7781195
Coefficients		
	Variation Transformed Proximities	.6526165
	Variation Distances	.5929184
Degeneracy Indices	Sum-of-Squares of DeSarbo's Inter	2.4719183
	mixedness Indices	
	Shepard's Rough Non degeneracy Index	.8687500

Table 6.16: Measure values for not applicable and highly applicable tools

Figure 6.5: (Shepard plot) distinguished applicability of QT&T categories based on the extent of adoption

Thus, it is evident that the categorizations plotted by lines (3, 9, and 16) in proximity row signify more dominant characteristic towards manufacturing and service organizations and hence lead the other categories as illustrated by shepard plot. However large no of organizations (59.43 percent) were non implementers and noticed certain challenges to diminish this gap, these were lack of knowledge (49.20 percent), lack of training (14.28 percent), lack of resources (7.93 percent), financial constraints (11.11 percent) and communication gap about (17.46 percent). The results proved that there were still assorted regions in manufacturing and service organizations that can yield every anticipated QT&T adoption in particular organization.

On the other hand, it is suggested that advance pragmatic investigations should exercise with new categorizations that lead to exemplified larger sample of organizations in order to attain performance and efficiency. This impending research helps to look up the survey data by means of additional methods like case study & longitudinal data to offer further in depth proportional insights to investigate the adaptability of QT&T.

6.5 CONCLUDING REMARKS

- The outcome of the research discloses subsequent insight through the implementation status and adaptability of various QT&T in manufacturing and service organizations.
- The purpose of this survey research is to scrutinize different categories of QT&T and to examine the level of adoption, applicability, benefits and challenges faced by various organizations in NCR region India.
- This chapter acknowledged the applicability of 152 different QT&T into 16 groups to drawn out foremost relationships in terms of implementation status, frequency of non-implementers and benefits of various QT&T categories in both organizations.
- Categories like problem solving tools, productivity tools and performance measurement tools retain to be most dominant for improving efficiency of organizations contributed by transformational shepard plot.

7.1 INTRODUCTION

Imminent versatility in products and services maintain to develop an intense competition between manufacturing and service organizations for satisfying customer demands in nationwide and worldwide market. The introductory perspective of an organization includes product identification and requirement in terms of design, operation and outcomes. Therefore, organizations (manufacturing and service) needs to improve the quality of their products and services continuously by enfold their policies in more appropriate manner for achieving output. Consequently, all organizations desire to improve the quality of their products and services to meet ever increasing customer demands. In particular, organizations must adopt certain innovative strategies and tasks for improving performance (Monteiro et al., 2017). Thus organizations must employ various development and performance techniques to suppress research activity.

Hence the real characteristics assessment of the products can be evaluated by quality perspective (Vališ et al., 2012; Galar et al., 2012). In current scenario, manufacturing organizations are considered to produce solid products whereas service organizations transform input plan into an output one in form of service. Manufacturing organizations plays a vital role to elevate the values and overall development of the products with absolute accuracy. The primary constraint of any product life cycle is to identify customer demands and addressed them in terms of design to end up with completed product or an afford service (Nobelius and Trygg, 2002; Akroush, 2012; Schöggl et al., 2017). Any product confirmed to be established if it satisfies the manufacturer's technical requirements. To accomplish competitiveness as well as responsiveness manufacturing organizations evolves feasible administration of resources and operations that has been visualized by indispensable module of the organization.

However, service organizations discovered optimum solutions to surmount quality by analyzing their requirements on an incessant manner. In other words, organizations like healthcare, hospitality, banking, insurance and tele-communication etc. contributed to endorse constant improvement in quality that focused on new strategies and outcomes concerned with upcoming demands of future. Therefore, manufacturing and service organizations must adopt assorted techniques to sustain latest technologies and provide best possible outcomes in terms of products and services for satisfying customer demands.

7.2 IMPLEMENTATION STATUS OF QT&T IN MANUFACTURING & SERVICE ORGANIZATIONS

In recent scenario, organizations ought to implement distinctive QT&T (quality tools and techniques) for achieving desired outcomes to ensure quality. Hence QT&T emphasized more on quality by improving performance of products, processes and services of the organizations by identifying gaps between them. Each QT&T have diversified apparent effect on every organization which results increase in productivity by minimal cost investment. Previous surveys on QT&T in manufacturing and service organizations analyzed sixteen different categories based on questionnaire analysis. After going through comprehensive survey study, categories such as problem solving tools, productivity tools and performance measurement tools preserve to be the most leading categorizations for improving efficiency of the organizations (*Sharma et al., 2020*). Figure 7.1 illustrates the implementation status of various QT&T in manufacturing and service organizations based on adaptability of usage.

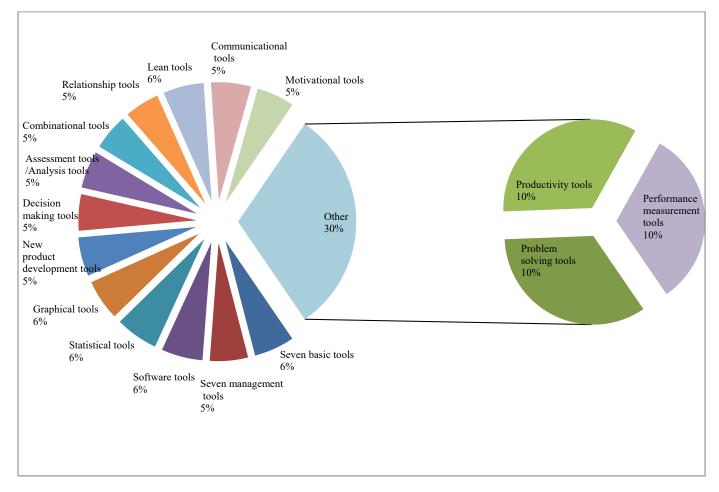


Figure 7.1: Implementation status of various QT&T categories in different organizations

From pie-chart analysis, it was clearly understood that 30% of the total contributors retain to be the problem solving tools (PST), productivity tools (PT) and performance measurement tools (PMT) considered being the most dominating categories irrespective of the other categorizations.

Therefore, to have a deeper perspective for assessing and validating the survey results, an amended questionnaire consist of two parts was developed and sent to various organizations to know the intricacy of relationships and calculate the range for the assessment of QT&T in distinctive organizations. This amended questionnaire concerned with tools and techniques which fall under these dominating categorizations. To achieve this, the questionnaire survey analysis has been done in Indian manufacturing and service organizations located in nearby NCR region and industrial town bhiwadi (India). In order to accomplish the overall research aim, this chapter answers the following research questions:

RQ1.To identifies the foremost QT&T among these dominating categories.

RQ2.To builds up an assessment model for validating the current status of QT&T in manufacturing and service organizations.

The rest of the chapter has been planned as follows: Next section concerns about the survey framework of QT&T in the current scenario. The former research investigates only about the survey results of distinctive QT&T categorizations but not keen to focus upon the current status of QT&T in manufacturing and service organizations. Thus, the topical layout of QT&T in current scenario has been illustrated in figure 7.2.

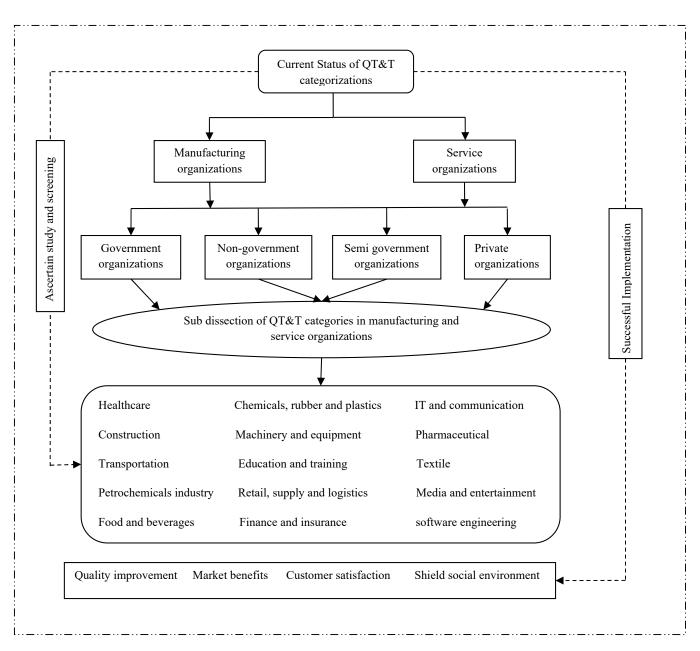


Figure 7.2: Hierarchy status of QT&T in organizations

7.3 ADMINISTRATION OF AMENDED SURVEY QUESTIONNAIRE

To attempt the aforementioned research questions, a survey was carried out in manufacturing and service organizations located in nearby NCR region and industrial town bhiwadi (India) by means of questionnaire method. The motive to prefer that regions is to provide the connectivity with multinational, regional, government and private organizations necessary for survey research. The information gathered from survey results provides in depth understanding of QT&T categorizations crucial for planning and further investigation of the research. For acknowledging the outcomes of the research, design of survey tool (questionnaire) is necessary

(Creswell, 2009; Welman, 2005). Therefore, detailed observation of survey report with respect to response rate and distribution of questionnaire has been discussed in next section of this chapter.

7.3.1 Questionnaire development

The survey questionnaire was designed to conquer gap in previous survey studies. Based on applications and existing literature outcome, this questionnaire was analyzed by number of professional academician, industrial experts and quality contributors to validate the survey results. After subsequent alterations and brainstorming, the amended questionnaire was obtained which consist of two parts:

- First part deals with demographical details of the organizations like type of organization (product based/service based), year of establishment, quality certification, no of employees and respondent information (name, valid phone number and e-mail address).
- Second part contained questions based on the following criteria:
 - 1) Extent of usage of QT&T in Organizations (Government, semi-government, private and public, large and SMEs, any industry)
 - 2) Stages of usage QT&T in organizations (Planning, production, post-production, general).
 - 3) Years of deploying QT&T (PST, PT, PMT) in organizations.
 - 4) QT&T training schedule (weekly/monthly/yearly).
 - 5) Impact on organizations. (Appendix-II)

The replies in the second part of the questionnaire would be analyzed by Likert scale having five-point scale division (1 = not employ, 2 = very little employ, 3 = little employ, 4 = moderate employ, 5 = highly employ).

7.3.2 Survey distribution and data acquisition

A total of 986 amended questionnaires were sent randomly in manufacturing and service organizations. The organizations with annual turnover ranging from than Rs. 500 crores to Rs. 1,200 crores were included to undertake survey outcomes. All possible modes of communications (postal, via-e-mail, fax or manually) have been employed to meet best responses. Out of 986 questionnaires, only 330 completely filled questionnaires were received. A total of 30 questionnaires were neglected based on incomplete data and financial background. Hence the proficient response rate for 300 organizations is 30.42 percent which is considered as high according to (Forza, 2009). The pictographic illustration in terms of distribution, data analysis and response rate for categorizations (PST, PT & PMT) have been discussed in flow chart as shown in figure 7.3.

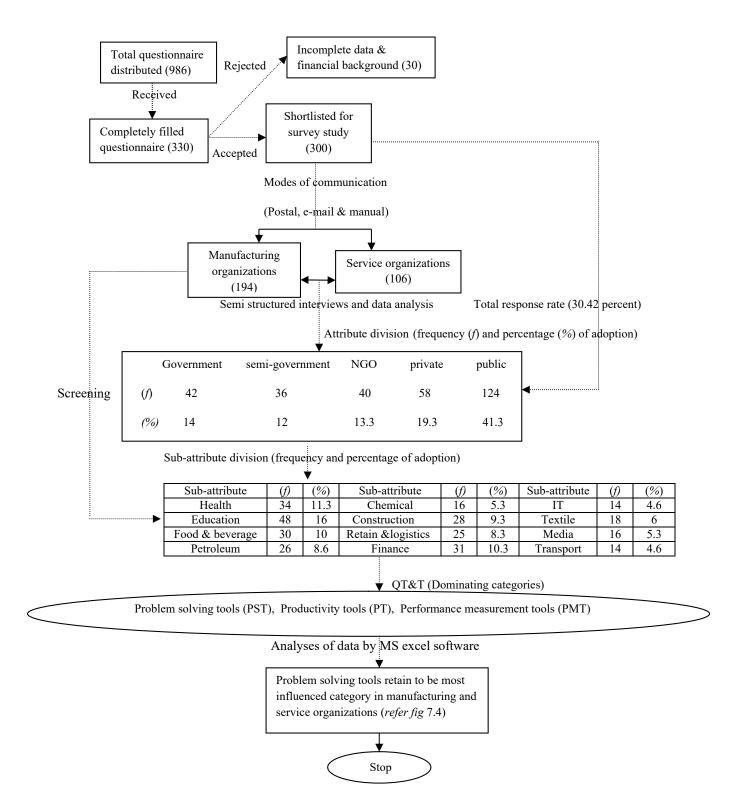


Figure 7.3: Flow diagram for survey questionnaire analysis

By going through both parts of questionnaire (I&II) and survey reports, the author has built an obvious perception for the implementation of different quality tools and techniques in manufacturing and service organizations. This section primarily shows the percentage wise break up of every categorization on particular organization. Figure 7.4 describes the survey data comparison of PST, PT & PMT categories based on extent of usage and impact on organizations. From the figure, it was clearly observed that problem solving tools sustained to be the most leading category with (33.04) percent contribution irrespective of productivity tools with (17.69) percent and performance measurement tools (13.61) percent. Figure 7.4 depicts the comparison of PST, PT & PMT in various organizations.

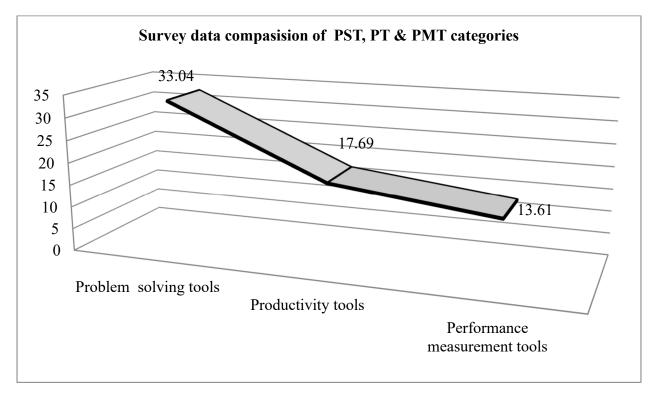


Figure 7.4: Percentage wise comparison of PST, PT, PMT categories

The next section illustrates the first research question of the survey analysis to determine the role of individual QT&T in manufacturing and service organizations.

RQ1. To identifies the foremost QT&T among these dominating categories.

The no of organizations examined in study have been classified into manufacturing (194) and service (106) organizations. The total contribution exhibited individually by these organizations were 64.66 percent & 35.33 percent respectively.

Figures 7.5 to 7.7 represent the individual contribution of particular QT&T which fall under these dominating categories (PST, PT & PMT). The next section describes the influence of particular QT&T in manufacturing and service organizations.

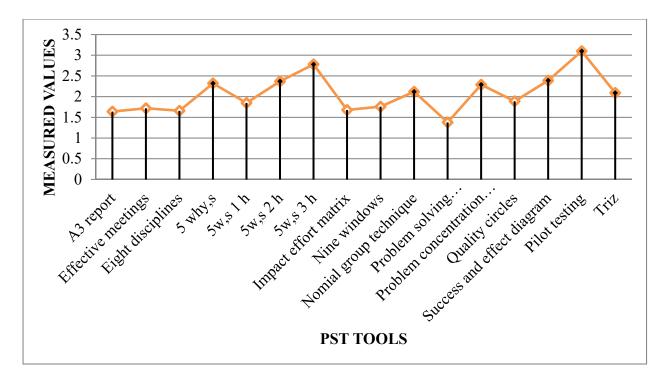


Figure 7.5: Percentage wise comparison of PST category

Figure 7.5 donates the contribution of eight foremost QT&T viz: 5 why's, 5 why's 2h, 5 why's 3h, nominal group technology, problem concentration diagram, success and effect diagram, pilot testing and triz. The average contribution of these QT&T governs the rest of tools which fall under PST category. All leading QT&T donates 2 percent or above contribution of survey response for finding the accessibility of particular QT&T in manufacturing and service organizations.

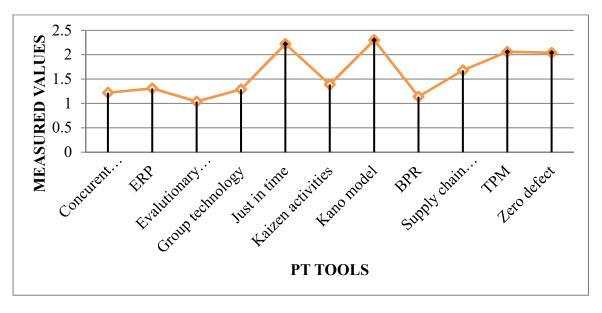


Figure 7.6: Percentage wise comparison of PT category

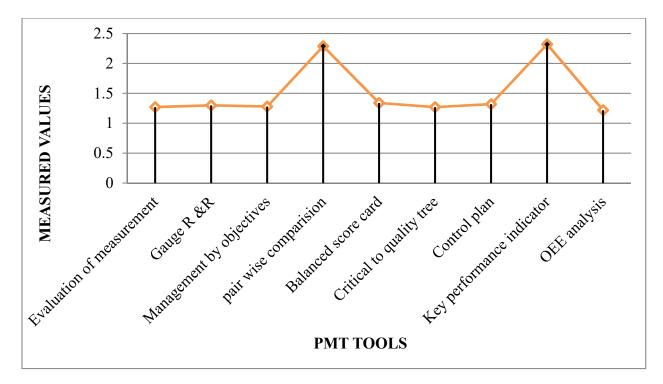


Figure 7.7: Percentage wise comparison of PMT category

Similarly figures 7.6 & 7.7 represent the contribution of PT and PMT categories. From the above mentioned figures, it has been understood that four prime QT&T like: Just in time, kano model, TPM and zero defect donates the overall contribution of 2 percent or above followed by other QT&T fall under PT category. Moreover, PMT category also contributes two major QT&T i.e key performance indicator and pair wise comparison which further helps to assessed model for validation of QT&T in manufacturing and service organizations.

The statistical package for social sciences (SPSS version 20) has been used for data processing and survey analysis. A summary of total influenced mean (*m*) along with standard deviation (σ) for principal categories (PST, PT, and PMT) have been evaluated. According to (Sharma et al., 2017), PST category donate 16 tools, PT category offer 11 tools whereas PMT category carried out 9 tools. It was originated that average mean possess by PST category becomes 32.45 and standard deviation 15.57. Likewise PT category contributed (*m*=17.72; σ =10.77) and PMT category offer (*m*=13.64; σ =7.651) values for the extent of usage and impact on organization in both manufacturing and service sector. The mean and standard deviation graph for PST, PT and PMT categories has been described in figures from 7. 8 - 7.10.

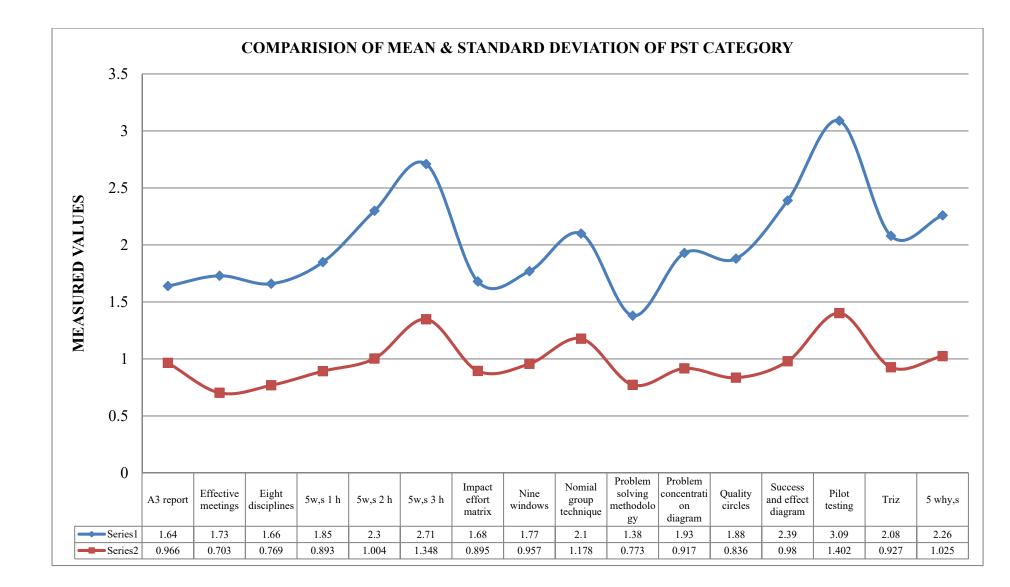


Figure 7.8: Comparison of mean & standard deviation of PST category

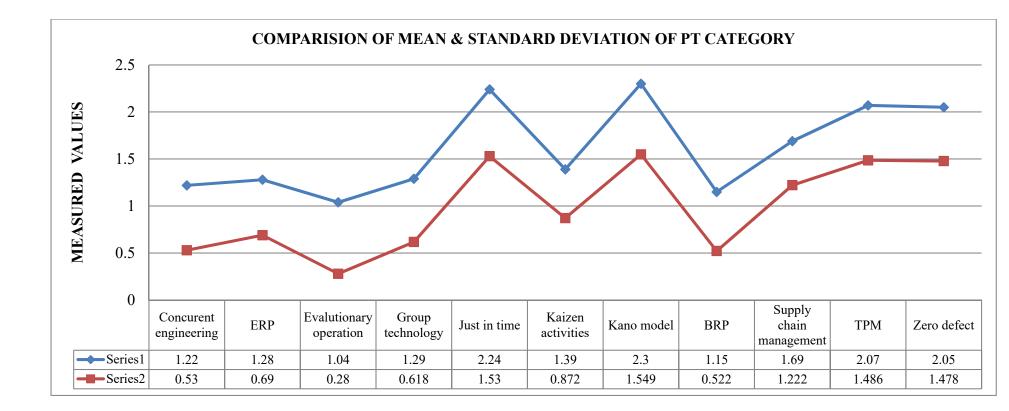


Figure 7.9: Comparison of mean & standard deviation of PT category

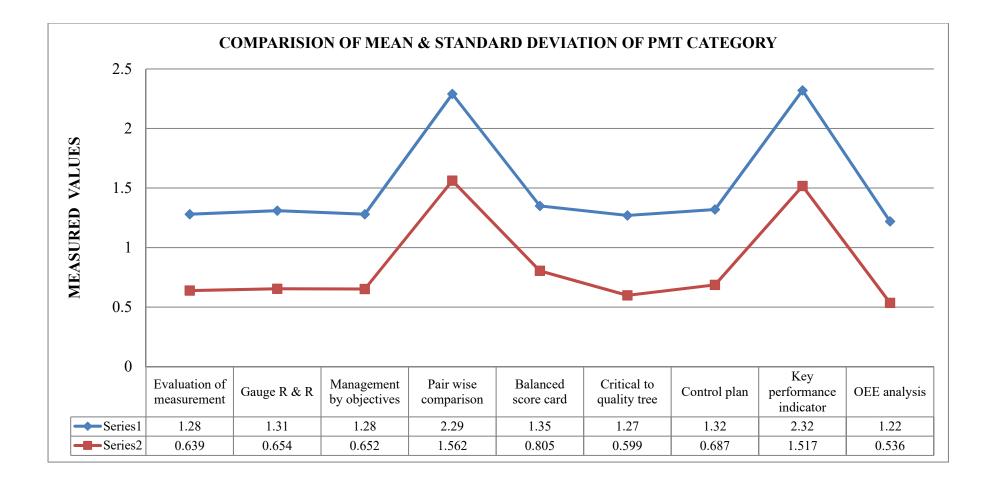


Figure 7.10: Comparison of mean & standard deviation of PMT category

The above graphs show the respective values of mean (series 1) and standard deviation (series 2) for three prominent categories. Further, the analysis for determine the two-tailed significance values for all categorizations have been done by Tukney's test for non-additivity. It is also named (two-way Anova), assists to compute regression analysis of variables related to probable values of the responses. The significance values of all categorizations should be less than or equal to 0.05. Tables 7.1-7.3 exemplify the values of non-additivity along with the two-tailed significance no in organizations.

ANOVA with Friedman's Test and Tukey's Test for Nonadditivity							
			Sum of		Mean	Friedman's	
			Squares	df	Square	Chi-Square	Sig
Between P	eople		370.792	299	1.240		
Within	Between	Items	876.277	15	58.418	60.526	.000
People	Residual	Nonadditivity	62.202 ^a	1	62.202	65.370	.000
		Balance	4266.647	4484	.952		
		Total	4328.848	4485	.965		
	Total		5205.125	4500	1.157		
Total		5575.917	4799	1.162			
Grand Mea	an = 2.03						
a. Tukey's estimate of power to which observations must be raised to achieve additivity =945.							

Table 7.1: Comparison of mean squares between problem solving tools (PST)

ANOVA with Friedman's Test and Tukey's Test for Nonadditivity							
			Sum of		Mean	Friedman's	
			Squares	df	Square	Chi-Square	Sig
Between P	eople		711.135	299	2.378		
Within	Between	Items	669.314	10	66.931	63.735	.000
People	Residual	Nonadditivity	419.915 ^a	1	419.915	461.436	.000
		Balance	2720.043	2989	.910		
		Total	3139.959	2990	1.050		
	Total		3809.273	3000	1.270		
Total			4520.407	3299	1.370		
Grand Mean = 1.61							
a. Tukey's estimate of power to which observations must be raised to achieve additivity = -1.749 .							

Table 7.2: Comparison of mean squares between problem solving tools (PT)

ANOVA with Friedman's Test and Tukey's Test for Nonadditivity							
			Sum of		Mean	Friedman's	
			Squares	df	Square	Chi-Square	Sig
Between P	eople		778.569	299	2.604		
Within	Between	Items	485.807	8	60.726	94.080	.000
People	Residual	Nonadditivity	276.010 ^a	1	276.010	520.474	.000
		Balance	1267.961	2391	.530		
		Total	1543.971	2392	.645		
	Total		2029.778	2400	.846		
Total			2808.347	2699	1.041		
Grand Mean = 1.52							
a. Tukey's estimate of power to which observations must be raised to achieve additivity = -1.127 .							

Table 7.3: Comparison of mean squares between problem solving tools (PMT)

The comparative analysis of PST, PT & PMT categories through Tukney's test gives an obvious perception for the implementation and existence of QT&T in manufacturing and service organizations. Tables 7.1-7.3 depict the values of mean squares between and within the organizations stipulated for finding the significance of foremost category. The hypothesis value (P<0.05) is considered significant and has been used to analyze data. For values less than or equal to 0.05 becomes accepted otherwise rejected. Descriptive Tukney's test for non-additivity has been employed to accomplish the fundamental objectives of the research. The two-tailed significance no provides a valuable insight for the acceptance of leading category participated in survey research. Investigation so far reveals that the significance level for all three prominent categories (PST, PT & PMT) falls within the normal range. Therefore, further exploration for evaluating QT&T model has been validated by considering the values of Cronbach's α for all dominating categories.

According to Nunnally (1978) the value of Cronbach's α should be greater than 0.7. The extracted values of Cronbach's α for PMT, PST & PT categories are found to be 0.75, 0.22 and 0.58 respectively. Therefore, above analysis revels that PMT category in table 7.4 matches the desired P value and thus allows the researchers to narrow research area around PMT category rather assessing both PST and PT categories. The next section deals with the validation of PMT category by factor analysis method.

RQ2.To builds up an assessment model for validating the current status of QT&T in manufacturing and service organizations.

To assess the model for validating PMT category, Exploratory Factor Analysis (EFA) along with Confirmatory factor analysis (CFA) has been done. In EFA the scrutiny of factors has been made by performing two tests in SPSS 20 software; Kaiser-Meyer-Olkin (KMO) test and Bartlett's test of Sphericity. According to Kaiser (1974) the value of KMO lies between 0.5 and 1.0 used to describe the suitability of factors in PMT category.

On the other side, Bartlett's test of Sphericity is employed to measure the significance level between the variables. Significance values less than 0.05 was considered important and values more than 0.10 indicates that data is not suitable for factor analysis (Prasad et al. 2010). In addition, the value of Cronbach's α has been calculated for checking the reliability of QT&T's category (PMT) along with the analysis of communalities. Smaller values of communalities i.e (<0.5) in extraction column describe the inability of variable to not fit well in factor solution and higher value of communalities i.e (>0.5 to 1) donates the extraction of principal variables to fit optimum for factor estimation. To show the relevance of Exploratory Factor Analysis (EFA) following steps have been adopted to conquer the desired results:

- PMT category involves 09 distinctive QT&T. The sample data of total 300 manufacturing and service organizations have been analyzed by using SPSS 20 software to explicit desired outcomes.
- Reliability test has been carried out to check the internal consistency of QT&T category by identifying Cronbach's α . The value of Cronbach's α for PMT category is found to be 0.75 considered appropriate for further analysis of data. Table 7.4 identifies case processing summary of PMT category along with the extracted value of Cronbach's α .
- The observed values obtained from Kaiser-Meyer-Olkin (KMO) and Bartlett's tests of Sphericity (chi square value) were 0.800 and 643.308 respectively. The derived values shown in table 7.5 prove to be suitable for factor analysis after comparing with standard KMO and chi square values.
- Table 7.6-7.7 depicts the extraction of component analysis (communalities) and total variance explained. The values greater than 0.5 have been chosen or else rejected.
- Figure 7.11 provides valuable insight to differentiate 9 communalities into 3 PMT component factors (PMT 1, PMT 2 & PMT 3) with eigen values as shown in scree plot.
- Three component factors have been extracted as described in table 7.8.
- Component matrix with Varimax rotation has been evaluated along with Kaiser Normalization value which restricts matrix values greater than 0.7 as described in table 7.9.
- Finally, three components have been extricated after Varimax rotation and Kaiser Normalization. No further analysis has been needed.

- From the above analysis, it is revealed that foremost category (PMT) becomes splinted into three principal components/factors i.e. PMT 1, PMT 2 and PMT 3.
- The three principal components PMT 1, PMT 2 & PMT 3 and their respective QT&T for further analyzed to validate the model.
- By identifying three extracted factors through EFA, the foremost results have been processed for validation by CFA using AMOS software as shown in figure 7.12. After being analyzed by AMOS 18 software the measured values EFA and CFA to fit the existing model becomes: Model Chi Square (χ2) =178.732; DF=79 Cmin /DF(^{χ2}/_{DF}) = 1.8826; p=.000 absolute fit indices (Goodness-of-Fit Statistic (GFI)= 0.936; Adjusted Goodness-of-Fit Statistic (AGFI) =0.907; Root Mean Square Residual (RMR)=0.003; Weighted root mean residual (WRMR)=0.86; Root Mean Square Error of Approximation (RMSEA)=.075 and values for incremental Fit Indices were (Normed-Fit Index (NFI)=0.905; Comparative Fit Index (CFI)=0.926; Incremental Fit Index (IFI)=0.928; Tucker-Lewis index (TLI)=0.907.

Reliability Statistics and Case Processing Summary					
Cronbach's α.		Cronbach's α. Based on Standardized Items	N of Items		
().752	0.793	9		
		Ν	%		
Cases Valid Excluded ^a Total		300 0 300	100 0 100		

Table 7.4: Reliability Statistics of PMT category

KMO and Bartlett's Test					
Kaiser-Meyer-Olkin Measure of Sampling .800					
Adequacy.					
Bartlett's Test of	Approx. Chi-Square	643.308			
Sphericity df		36			
	Sig000				

Table 7.5: KMO and Bartlett's Test of PMT category

Communalities					
	Initial	Extraction			
Evaluation of	1.000	.505			
measurement					
Gauge R & R	1.000	.524			
Management by	1.000	.748			
objectives					
Pair wise comparison	1.000	.639			
Balanced score card	1.000	.813			
Critical to quality tree	1.000	.527			
Control plan	1.000	.774			
Key performance	1.000	.531			
indicator					
OEE analysis	1.000	.747			
Extraction Method: Prine	cipal Comp	oonent Analysis.			

Table 7.6: Communalities of extraction of PMT category

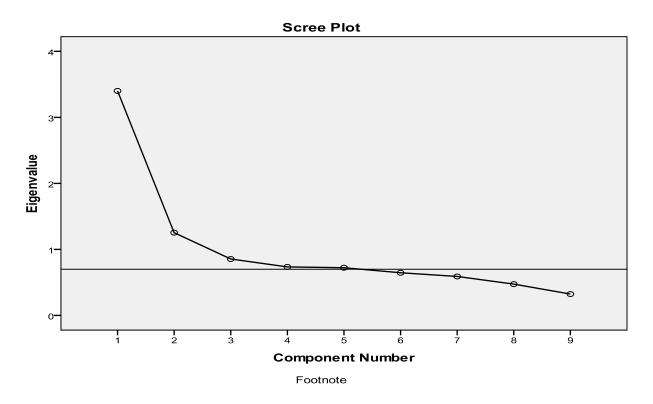


Figure 7.11: Scree plot of 3 principal components

Total Variance Explained									
Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
		% of	Cumulative		% of	Cumulative		% of	Cumulative
	Total	Variance	%	Total	Variance	%	Total	Variance	%
1	3.401	37.784	37.784	3.401	37.784	37.784	2.220	24.668	24.668
2	1.254	13.933	51.717	1.254	13.933	51.717	1.729	19.212	43.880
3	.854	9.490	61.207	.854	9.490	61.207	1.559	17.327	61.207
4	.735	8.165	69.372						
5	.723	8.032	77.405						
6	.646	7.176	84.581						
7	.590	6.556	91.137						
8	.474	5.269	96.406						
9	.323	3.594	100.000						
Extraction M	ethod: Prin	ncipal Compor	nent Analysis.			•			

Table 7.7:	Total	variance of PMT	category
-------------------	-------	-----------------	----------

Component Matrix ^a					
	Component				
	1	2	3		
Pair wise comparison	.681				
Management by objectives	.632				
Balanced score card	.631	581			
Control plan	.627	578			
Critical to quality tree	.614				
Gauge R & amp;R	.592	.411			
Evaluation of measurement	.592				
Key performance indicator	.577	.418			
OEE analysis	.579		.619		
Extraction Method: Principal Component Analysis.					
a. 3 components extracted.					

 Table 7.8: Component Matrix of PMT category

Rotated Component Matrix ^a					
	Component				
	1	2	3		
Pair wise comparison	.771				
Key performance indicator	.718				
Gauge R & R	.667				
Evaluation of measurement	.641				
Management by objectives		.721			
Balanced score card		.873			
Control plan		.840			
OEE analysis			.732		
Critical to quality tree			.644		
Extraction Method: Principal Component Analysis.					
Rotation Method: Varimax v	vith Kaise	Normaliza	ation.		
a. Rotation converged in 4 iterations					

 Table 7.9: Rotated Component Matrix of PMT category

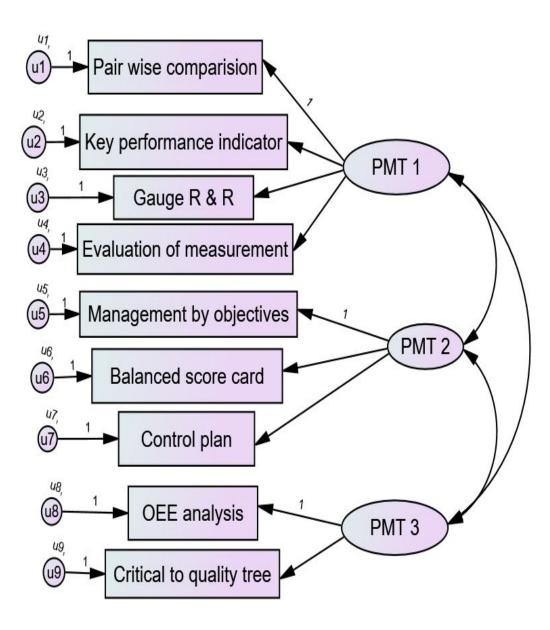


Figure 7.12: EFA model for 3 PMT components.

7.4: CONCLUDING REMARKS

- This chapter provides valuable insight for the contribution of PST, PT and PMT categories in manufacturing and service organizations. Out of 3 foremost categories, Performance measurement tools (PMT) preserves to be most prevailing category to discriminate QT&T in terms of implementation status and impact on the organizations.
- The survey-questionnaire method has been used to instigate the accessibility of PMT category in manufacturing and service organizations. Tukney's test for non-additivity becomes employed to undertake the significant nature of the particular categories.
- The value of Cronbach's α has been used to slender the research around PMT category.
- Exploratory factor analysis (EFA) has been deployed to carry out extracted components of PMT category.
- In the present analysis, usually 3 principal components (PMT 1, PMT 2, & PMT 3) have been extracted from rotated component matrix. Scree plot has been deployed to show the obscurity of PMT components in eigen value graph by Kaiser Normalization with varimax rotation.
- Variables with certain uniqueness have been drawn to know the interrelationships between the components and finally, analyses for the estimates and fit indices have been calculated to validate the proposed model for PMT category.

The key contribution of this research is to identify & scrutinized variety of QT&T into three foremost categories to develop an instructive quality framework for manufacturing organizations. Specifically, the proposed framework provides an elusive approach for the depiction & accomplishment of significant QT&T categories into five major streams of research : first stream of research involves the categorization of various QT&T into substantial groups; second stream begins with the contribution of MADM methodology for finding the effectiveness of QT&T categories in manufacturing organizations; third stream of research contributes to the identification & determination of assorted barriers liable to affect the utilization of various QT&T in manufacturing organizations; fourth stream deals with analysis of survey respondents by questionnaire method to know the intricacy of QT&T categories in manufacturing organizations and finally concluded stream donates the outcome of survey responses into well-developed structured QT&T model. This study provides a positive framework for the researchers to bridge the gap between organizations adopted distinctive QT&T.

8.1 SUMMARY OF WORK DONE

This section represents the work done in the direction of applications & effectiveness of quality tools and techniques in manufacturing organizations. The main intents of this research are as follows:

- Grounded in the literature and beliefs of various experts (industrial and academia), a total number of 152 distinctive QT&T were identified and categorized into 16 groups based on characteristics of applications.
- A widespread literature investigation was carried out in different manufacturing and service organizations to counteract the gaps/ restrictions incurred by various QT&T categories at successive stages of implementation in manufacturing organizations.
- By concluding the applications of 16 QT&T categories, an integrated methodology (GTA-AHP) has been adopted to measure the effectiveness of particular organization through single numerical index. This numerical index is useful for determining the permanent function of QT&T categories by establishing the comparison between various organizations with significant organization.

- After thorough analysis of literature background, barriers affecting the effective utilization of QT&T have been identified in manufacturing organizations. The present research attempts to scrutinize the identified QT&T barriers into well-developed integrated model.
- The proposed framework uses an integrated (ISM-MICMAC) methodology to rank the identified barriers associated with manufacturing organizations and calculates their effectiveness for the same by means of subtracting dependence power from driver power.
- Questionnaire based survey was adopted to narrow the gap and establish the relationship between different organizations successfully implemented QT&T.
- The administration of survey questionnaire leads to carry out by five different interpretations:
 - First and foremost, pilot survey was conducted to know the response rate and determine the direction of present search participated in survey study.
 - The developed questionnaire was distributed among various manufacturing and service organizations to determine the implementation status, level of awareness and impact on organization.
 - The response obtained from survey analysis reveals that out of 16 distinctive QT&T categories, only three dominating categories has been extracted after being investigated by SPSS statistical software.
 - The three foremost categories i.e. problem solving tools (PST); a productivity tools (PT) and performance measurement tools (PMT) implies the dominance of QT&T in manufacturing organizations.
 - The concluded survey results narrow the research area towards these three significant categories (PMT, PT & PST) to validate into QT&T model by means of amended questionnaire.
- SPSS statistical software incorporated with shepard plot have been utilized to recognize the dominance and assess the effect of QT&T in manufacturing organizations.
- Finally, structural equation modelling has been applied to convert three significant categories into three extracted factors. To validate the results and develop a successful model of QT&T: confirmatory factor analysis along with exploratory factor analysis has been used to validate theoretical model into well-structured framework.

The next section of this chapter deals with the major contribution of the present research fulfills to carry out various objectives of the study.

8.2 MAJOR CONTRIBUTION OF RESEARCH

The major contributions of research associated with present work are as follows:

- Literature emphasized that the present work provides an obvious perception for the utilization & implementation of various QT&T in manufacturing and service organizations. Although, it is obligatory to implicit the limitations and silent features of QT&T categories within the organizations.
- Sixteen categories incorporated with distinctive 152 QT&T have been identified and recommended particularly for manufacturing organizations.
- Classification of QT&T categories in on the basis of applications donated the adaptability of particular organization to encounter problems.
- An additional unique framework of methodology comprises with (GTA-AHP) approach has been utilized to carry out the effectiveness of QT&T categories in particular organization.
- The anticipated integrated methodology has provided an accurate approach to tackle all situations related to decision making in manufacturing organizations rather than using either GTA or AHP in isolation.
- Single numerical index has been developed to compare effectiveness of different manufacturing organizations.
- The key aspects associated with each QT&T have been recognized to distinguish the gaps and identify the barriers incurred in literature outcome.
- A brief overview of identified QT&T barriers associated with different stages of manufacturing organizations has been analyzed to developed ISM based quality model.
- Another integrated methodology consists of ISM-MICMAC approach have been adopted to counter effectiveness sustained by manufacturing organizations.
- Implementation status, frequency of non-implementers and benefits of various QT&T categories have been determined in manufacturing and service organizations.
- Categories such as: PMT, PT & PST for improving the efficiency of manufacturing organizations have been evaluated by transformational shepard plot.
- The accessibility of PMT category in manufacturing and service organizations incorporated with Tukney's test for non-additivity have been employed to undertake the significant nature of the particular categories.
- A unique comprehensive model consists of three prominent categories have been validated in manufacturing organizations by means of structural equation modelling.
- Variables with certain uniqueness have been extracted to know the interrelationships between significant QT&T categories and lastly, fit indices have been calculated to validate the proposed model for PMT category in manufacturing organizations.

8.3 IMPLICATIONS OF THE RESEARCH

The present research also offers some managerial implications that have been divided into two important aspects:

- Implications associated with academicians
- Implications associated with manager's/decision makers

The brief deliberation of implications associated with various academicians & managers are as follows:

8.3.1 Implications associated with academicians

- With the help of this study, academicians may know the intricacy of various gaps encountered with different areas of manufacturing organizations.
- The present study manages the academicians to differentiate various organizations that are not familiar with some tools and their associated values.
- Pilot survey together with development of amended questionnaire facilitates the academicians to deal with complex situations and tackle crisis associated with implementation of QT&T.
- Integrated (GTA-AHP) methodology assists the academicians to develop framework for understanding effectiveness of manufacturing organizations.
- ISM approach together with MICMAC analysis allows different academicians to visualize context relationships among various QT&T at different stages of production system.

8.3.2 Implications associated with manager's/decision makers

- Managers and decision makers from various areas of manufacturing insist serious efforts towards successful adoption and integration of developed methodologies for determining the impact of QT&T categories in varied organizations.
- Apart from identification of various barriers influencing QT&T categories corroborates various issues, concerns and roadblocks that need to be taken care of during implementation of QT&T.
- Validation of QT&T model by extracting foremost categories helps managers and decision makers to develop a structured model that fit in the standard values of CFA and EFA modelling analysis.

The next section describes the overall limitations of the present work along with scope of future research.

8.4 LIMITATIONS OF PROPOSED WORK

Although the present research offers the valuable insights for the use and adoption of distinctive QT&T categories in manufacturing organizations, it offers certain limitations that need to be interpreted with caution. The limitations of the present work are as follows:

- Exploratory survey of QT&T categories in different manufacturing organizations has been limited to NCR region (India). Hence vast survey brings some changes in usability status and adaptability of particular QT&T in varied organizations.
- The proposed integrated GTA-AHP methodology for evaluating the effectiveness of QT&T in manufacturing organization is new one and no work can be impeccable in this direction. Therefore, it represents some biasness to be offered by some researchers who applied distinctive new methodologies like VIKOR, PROMETHEE, DEMATEL and ELECTRE etc to formulate new outcomes.
- It insists relative importance and interconnection of different QT&T in broad manufacturing areas which requires the development of equation, pair wise comparison matrix and permanent function equation which becomes more difficult especially when categorization of QT&T are more and for this software need to be developed.
- More categorizations can be made with different tools and techniques to restrain this approach.
- Validation of barriers by Integrated ISM-MICMAC model has been limited to manufacturing only. Consequently, more barriers have been identified by considering service organizations for getting more informative results.
- The administration of survey questionnaire has been developed to narrow the research gap towards three prominent categories i.e PMT, PST and PT categories. For this reason, new statistical software (like STATA and Amos) has been used to validate the survey outcomes.
- The categories adopted for present study have been taken from past results and extensive literature survey. Thus it is difficult to compare QT&T constraints with earlier outcomes of the research.

8.5 SCOPE FOR FUTURE WORK

Following work may be carried out in future to extend the succession of present work. These are:

- It allows self-analysis, evaluation, implementation and comparison of manufacturing and service organizations.
- Mathematical analysis allows conversion of qualitative factors to quantitative values through systematic integrated approach which is relatively more ambient technique over conventional methods.
- This impending research helps to look up the survey data by means of additional methods like case study & longitudinal data to offer further in depth proportional insights to investigate the adaptability of QT&T.
- The current research has been limited to Indian manufacturing and service organizations, future research may be carried out on global platform.
- This research work developed an integrated ISM model that has not been statistically validated. So, in future, the developed model can be tested by LISREL software to validate and development of model.
- Advanced statistical software (like STATA and Amos) has been used to validate the survey results.
- Exploratory research should be conducted in other country for the validation of model in particular organization.

- Abuelmaatti, A., & Rezgui, Y. (2008). Virtual organizations in practice: a European perspective. AMCIS 2008 Proceedings, 142.
- Agrahari, A., & Srivastava, S. K. (2019). A data visualization tool to benchmark government tendering process: Insights from two public enterprises. Amit Agrahari and Samir K Srivastava, a data visualization tool to benchmark government tendering process: Insights from two public enterprises, Benchmarking: An International Journal, Vol. 26 No.3, pp. 836-853.
- Ahmed, S.M. & Hassan, M. (2003). Survey and case investigations on application of quality management tools and techniques in SMIs. International Journal of Quality & Reliability Management, Vol. 20, No. 7, pp. 795-826.
- Ahmed, S.M., Aoieong, R.T., Tang, S.L. & Zheng, D.X.M. (2005). A comparison
 of quality management systems in the construction industries of Hong Kong and
 the USA. International Journal of Quality & Reliability Management, Vol. 22,
 No. 2, pp. 149-161.
- Akroush, M.N. (2012), "An empirical model of new product development process: phases, antecedents and consequences", International Journal of Business Innovation and Research, Vol. 6 No. 1, pp. 47-75, available at: http://dx.doi.org/10.1504/ijbir.2012.044257.
- Al Khalifa, F. A. (2019). Adaptation of international sustainability rating tools to Bahrain. Archnet-IJAR: International Journal of Architectural Research.
- Al Owad, A., Karim, M.A. and Ma, L. (2013), "Integrated Lean Six Sigma approach for patient flow improvement in hospital emergency department", Advanced Materials Research, Vol. 834-836 No. 19, pp. 1893-1902.
- <u>Al Qubaisi, A., Badri, M., Mohaidat, J., Al Dhaheri, H., Yang, G., Al Rashedi, A.</u> and <u>Greer, K.</u> (2016), "An analytic hierarchy process for school quality and inspection: Model development and application", <u>International Journal of Educational Management</u>, Vol. 30 No. 3, pp. 437-459.
- Albliwi, S., Antony, J. and Lim, S.A. (2015), "A systematic review of Lean Six Sigma for the manufacturing industry", Business Process Management Journal, Vol. 21 No. 3, pp. 665-691.
- Albliwi, S., Antony, J., Lim, S.A. and van der Wiele, T. (2014), "Critical failure factors of Lean Six Sigma: a systematic literature review", International Journal of Quality & Reliability Management, Vol. 31 No. 9, pp. 1012-1030.
- Alharthi, A.A., Sharaf, M.A. and Aziz, T. (2014), "An integrated approach Lean Six Sigma and risk management in entertainment and media industry", Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management, Bali, 7-9 January.

- Al-khalifa, K.N. and Aspinwall, E.M. (2000), "The development of total quality management in Qatar", The TQM Magazine, Vol. 12 No. 3, pp. 194-204.
- Almuharib, T.M. (2014), "Service quality improvement through lean management at King Khalid international airport in Saudi Arabia", Plymouth University, Plymouth.
- Al-Sadat, M.A. and Robertson, K.E. (2007), "Using Lean Six Sigma to increase productivity in generating the Digital Terrain Model (DTM)", Saudi Aramco.
- Alsaleh, N.A. (2007). Application of quality tools by the Saudi food industry. The TQM Journal, Vol.19, No.2, pp. 150-61.
- Amminudin, K.A., Enezi, T.S., Jubran, M.A., Hajji, A.T., Enizi, A.S. and Bedoukhi, Z.F. (2011), "Gas plant improves C3 recovery with Lean Six Sigma approach", Oil and Gas Journal, Vol. 109 No. 19, pp. 102-109.
- Antony, J., Fergusson, C., Waraood, S. and Tsang, H.Y. (2004), "Comparing total quality management success factors in UK manufacturing and service industries: some key findings from survey", Journal of Advances in Management Research, Vol. 1 No. 2, pp. 32-45.
- Arnheiter, E.D. and Maleyeff, J. (2005), "The integration of lean management and Six Sigma", The TQM Magazine, Vol. 17 No. 1, pp. 5-18.
- Attri, R. and Grover, S. (2015a), Analyzing the scheduling system stage of production system life cycle, Management Science Letters, Vol. 5, No. 5, pp. 431-442.
- Attri, R. and Grover, S. (2015b), Contextual relationship among the quality enabled factors of inventory control system stage, International Journal of Recent advances in Mechanical Engineering, Vol. 4, No. 2, pp. 45-57.
- Babakus, E., Ferguson, C.E. and Jöreskog, K.G. (1987), "The sensitivity of confirmatory maximum likelihood factor analysis to violations of measurement scale and distributional assumptions", Journal of Marketing Research, Vol. 24 No. 2, pp. 222-229.
- Bamford, D.R. & Greatbanks, R.W. (2005). The use of quality management tools and techniques: a study of application in everyday situations. International Journal of Quality & Reliability Management, Vol.22, No.4, pp. 376-392.
- Banawi, A. and Bilec, M. (2014), "Applying Lean, Green, and Six-Sigma framework to improve exterior construction process in Saudi Arabia", Journal of Construction Engineering and Project Management, Vol. 4 No. 2, pp. 12-22.
- Bao, P.N., Aramaki, T. and Hanaki, K. (2013), "Assessment of stakeholders' preferences towards sustainable sanitation scenarios", Water and Environment Journal, Vol. 27 No. 1, pp. 58-70.

- Baumgartner, R.J. and Zielowski, C. (2007). Analyzing zero emission strategies regarding impact on organizational culture and contribution to sustainable development, Journal of Cleaner Production, Vol. 15, No. 13/14, pp. 1321-1327.
- Bayazit, O. (2003), "Total quality management (TQM) practices in Turkish manufacturing organizations", The TQM Magazine, Vol. 15 No. 5, pp. 345-350.
- Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.
- Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606.
- Besterfield, D.H., Besterfield-Michna, C., Besterfield, G.H. and Besterfield-Sacre, M. (1999), Total Quality Management, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.
- Bhushi, U.M. (2007), Total Quality Management in Engineering Education in India, Universal Publishers, ISBN-10: 1581123957.
- Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: John Wiley.
- Bollen, K.A. and Long, J.S. (1993), Testing Structural Equations Models, Sage, Thousand Oaks, CA.
- Bounds, G., Yorks, S.L., Adams, M. and Ronnie, G. (1994), Beyond Total Quality Management Toward The Emerging Paradigm, McGraw-Hill, NY, pp. 48-62.
- Bovea, M.D. and Perez, Belis, V. (2012), "A taxonomy of eco design tools for integrating environmental requirements into the product design process", Journal of Cleaner Production, Vol. 20 No. 1, pp. 61-71.
- Bowen, H.K., Clark, K.B., Holloway, C.A and Wheelwright, S.C. (1994), Development projects: the engine of renewal, Harvard Business Review, 72(5), pp. 110-20.
- Boys, K., Wilcock, A., Karapetrovic, S. & Aung, M. (2005). "Evolution towards excellence: use of business excellence programmes by Canadian organizations", Measuring Business Excellence, Vol. 9 No. 4, pp. 4-15.
- Brah, S.A., Wong, J.L. and Rao, B.M. (2000), "TQM and business performance in the service sector: a Singapore study", International Journal of Operations and Production Management, Vol. 20 No. 11, pp. 1293-1312.

- Brown, A. (1995), Industry Experience with ISO 9000, Proceedings of the Second National Research Conference on Quality Management, Monash University, Melbourne, Australia, pp. 147-159.
- Bryne, G., Lubowe, D. and Blitz, A. (2007), "Using a lean Six Sigma approach to drive innovation", Strategy & Leadership, Vol. 35 No. 2, pp. 5-10.
- Bubshait, A.A. and Al-Dosary, A.A. (2014), "Application of Lean Six-Sigma methodology to reduce the failure rate of valves at oil field", Proceedings of the World Congress on Engineering and Computer Science (WCECS), Vol. 2, San Francisco, CA, 22-24 October.
- Bugdol, M. (2005), "The implementation of the TQM philosophy in Poland", The TQM Magazine, Vol. 17 No. 2, pp. 113-120.
- Bunney, H.S. and Dale, B.G. (1997), "The implementation of quality management tools and techniques: a study", The TQM Magazine, Vol. 9 No. 3, pp. 183-9.
- Capó-Vicedo, J., J. Mula. and J. Capó. (2011). A Social Network-based Organizational Model for Improving Knowledge Management in Supply Chains. Supply Chain Management: An International Journal, Vol. 16, No 5, pp. 379–388.
- Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276.
- Chakladar, N. D., R. Das, and S. Chakraborty. (2009). "A Digraph-based Expert System for Non-traditional Machining Processes Selection." International Journal of Advanced Manufacturing Technology 43 (3–4): 226–237.
- Chan, Y.C.L. (2006), "An analytic hierarchy framework for evaluating balanced scorecards of healthcare organizations", Canadian Journal of Administrative Sciences, Vol. 23 No. 2, pp. 85-104.
- Chang, P. and Lu, K. (1995), "Current status of total quality management implementation of Taiwan companies", The TQM Magazine, Vol. 7 No. 1, pp. 14-19.
- Chen, C.T., Pai, P.F. and Hung, W-Z. (2011) 'Combined utility function with TOPSIS for personnel selection based on multi-type information environment', Proceedings of Business and Information 2011, Bangkok, Thailand, Vol. 8, pp.1– 13.
- Chen, S.J. and Hwang, C.L. (1992), Fuzzy Multiple Attribute Decision Making Methods and Applications, Springer, Berlin.
- Chen, W.K. (1997). Digraph theory and its engineering applications, (vol.5). World Scientific Publishing Company.

- Cheng, J. H., C. H. Yeh. and C. W. Tu. (2008). Trust and Knowledge Sharing in Green Supply Chains. Supply Chain Management: An International Journal, Vol. 13, No. 4, pp. 283–295.
- Chikan, A. and Demeter, K. (1996), "Services provided by manufacturing the Hungarian case", International Journal of Production Economics, Vol. 46-47, pp. 489-496.
- Chin, K.S., Pun, K.F., Xu, Y and Chan, J.S.F. (2002). An AHP based study of critical factors for TQM implementation in Shanghai manufacturing industries, Technovation, 22 (11), pp. 707-715.
- Chin, W. (1998), "The partial least squares approach to structural equation modeling", in Marcoulides, G. (Ed.), Modern Methods for Business Research, Mahwah, NJ, pp. 295-33.
- Cohen, Francisco. S. and Brand, R. (1993), Total Quality Management in Government, Jossey Bass, San Francisco.
- Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment Research & Evaluation, 10(7), 1–9.
- Creswell, J.W. (2009), Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 3rd ed., Sage Publications, Thousand Oaks, CA.
- Crosby, P.B. (1979). Quality is Free: The Art of Making Quality Certain, Hodder & Stoughton, New York, NY.
- Crosby, P.B. (1980), Quality is Free, New American Library, NY.
- Curry, A. & Kadasah, N. (2002). Focusing on key elements of TQM evaluation for sustainability. The TQM Journal, Vol.14, No. 4, pp. 207-216.
- Dale, B. (2003), Managing Quality. 4th ed., Blackwell Publishers, Oxford.
- Dale, B.G. (1999). Managing Quality. Blackwell Publishers, Oxford.
- Dale, B.G. & McQuater, R. (1998). Managing Business Improvement & Quality Implementing Key Tools and Techniques. Blackwell Business, Oxford.
- Dangayach, G.S. & Deshmukh, G. (2003). Evidence of manufacturing strategies in Indian industry: a survey, International Journal of Production Economics. Vol. 83, No. 3, 279-298.
- Dean, J.W. & Evans, J.R. (1994). Total Quality, Management, Organization and Strategy, West Publishing Company, Minneapolis, MN.
- Deming, W.E. (1982). Quality, Productivity and Competitive Position. MIT Center for Advanced Engineering, Cambridge, MA.
- Deming, W.E. (1986). Out of the Crisis, MIT Center for Advanced Engineering, Cambridge, MA.

- Deng, H., Yeh, C.H. and Willis, R.J. (2000) 'Inter-company comparison using modified TOPSIS with objective weights', Computers and Operations Research, Vol. 27, No. 10, pp.963–974.
- Dev, N., Samsher, and S. S. Kachhwaha. (2012). "System Modeling and Analysis of a Combined Cycle Power Plant." International Journal of System Assurance and Engineering Management 4 (4): 353–364.
- Dev, N., Samsher, S. S. Kachhwaha, and R. Attri. (2013). "GTA-based Framework for Evaluating the Role of Design Parameters in Cogeneration Cycle Power Plant Efficiency." Ain Shams Engineering Journal 4 (2): 273–284.
- <u>Dey, P.K.</u> (2002), "Benchmarking project management practices of Caribbean organizations using analytic hierarchy process", <u>Benchmarking: An International</u> Journal, Vol. 9 No. 4, pp. 326-356.
- Dhafer, A. (2014), "Aramco Riyadh refinery Lean Six Sigma projects a case study", International Conference on Industrial Engineering and Operations Management, Bali.
- Drew, E. & Healy, C. (2006), Quality management approaches in Irish organizations. The TQM Journal. Vol.18, No. 4, pp. 358-371.
- Ebrahimpour, M. & Schonberger, R.J. (1984). The Japanese just-in-time/total quality control production system: Potential for developing countries. International Journal of Production Research, 22(3), 421-430.
- El Faiomy, M.A. and Shaban, A.A.M. (2012), "Improving waiting time in vaccination room using Lean Six Sigma methodology", Senaya Primary Healthcare Center, Saudi Ministry of Health.
- Ettlie, J.E. (1996), "The German Way", Automotive Production, Vol. 10 No. 12, p. 12.
- Evans, J.R. & Lindsay, W.M. (1999). The Management and Control of Quality. South-Western College Publishing, Cincinnati, OH.
- Feigenbaum, A.V. (1991), Total Quality Control, McGraw-Hill, New York, NY.
- Ferme, B. (1995), Design for Quality: The Practices of Leading Australian Manufacturers, Proceedings of the Second National Research Conference on Quality Management, Monash University, Melbourne, Australia, pp. 162-83.
- Forman, E. and Gass, S. (2001) the analytic hierarchy process An exposition. Operations Research, 49(4), pp. 469–486.
- Forza, C. (2009), "Surveys", Researching Operations Management, Routledge, New York, NY, pp.84-161.
- Fotopoulos, C.B. and Psomas, E.L. (2009), "The impact of 'soft' and 'hard' TQM elements on quality management results", International Journal of Quality and Reliability Management, Vol. 26 No. 2, pp. 150-63.

- Frankl, P. and Rubik, F. (2000), "Life cycle assessment in industry and business: adoption patterns, applications and implications", International Journal of Life Cycle Assessment, Vol. 5 No. 3, pp. 130-133.
- Gadakh, V. S., and V. B. Shinde. (2011). "Selection of Cutting Parameters in Side Milling Operation Using Graph Theory and Matrix Approach." International Journal of Advanced Manufacturing Technology 56 (9–12): 857–863.
- Galar, D., Gustafson, A., Tormos, B. and Berges, L. (2012), "Maintenance decision making based on different types of data fusion", Eksploatacja i niezawodnošč, Vol. 14 No. 2, pp. 135-144, available at: <u>www.ein.org.pl/2012-02-07</u>.
- Gambhir, V., Wadhwa, N.C and Grover, S. (2016). Quality concerns in Technical Education in India", Quality Assurance in Education, 24 (1), pp. 2 25.
- Gandhi, O. P., V. P. Agrawal, and K. S. Shishodia. (1991). "Reliability Analysis and Evaluation of Systems." Reliability Engineering and System Safety 32 (3): 283–305.
- Garg, D., Garg, T.K. and Kumar, R. (2002), "Quality management practices in Indian industries", Productivity, Vol. 43 No. 3, pp. 426-33.
- Garg, D., Garg, T.K. and Kumar, R. (2005), "Perspectives of TQM in Indian industries", 43 Productivity, Vol. 45 No. 4, pp. 634-641.
- Garg, R. K., V. K. Gupta, and V. P. Agrawal. (2007). "Quality Evaluation of a Thermal Power Plant by Graph-Theoretical Methodology." International Journal of Power and Energy Systems 27 (1): 42–48.
- Garg, R. K., V. P. Agrawal, and V. K. Gupta. (2006). "Selection of Power Plants by Evaluation and Comparison Using Graph Theoretical Methodology." Electrical Power and Energy Systems 28 (6): 429–435.
- Garvin, D.A. (1988), Managing Quality: The Strategic and Competitive Edge, The Free Press, New York, NY.
- Gehin, A., Zwolinski, P. and Brissaud, D. (2008). A tool to implement sustainable end-of-life strategies in the product development phase, Journal of Cleaner Production, Vol. 16, No. 5, pp. 566-576.
- Ghosh, B.C. and Hua, W.H. (1996), "TQM in practice: a survey of Singapore's manufacturing companies on their TQM practices and objectives", The TQM Magazine, Vol. 8 No. 2, pp. 52-54.
- Goetsch, D.L. & Davis, S.B. (1997). Introduction to Total Quality, Quality Management for Production, Processing, and Services. Prentice-Hall, Englewood Cliffs, NJ.
- Gorvett, R. and Liu, N. (2007), "Using interpretive structural modeling to identify and quantify interactive risks", In ASTIN Colloquium, June Orlando.

- Govindan, K., Kaliyan, M., Kannan, D. and Haq, A.N. (2014), "Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process", International Journal of Production Economics, Vol. 147, pp. 555-568.
- Govindan, K., Shankar, K.M. and Kannan, D. (2016). Application of fuzzy analytic network process for barrier evaluation in automotive parts remanufacturing towards cleaner production–a study in an Indian scenario. Journal of Cleaner Production, Vol. 114, pp.199-213.
- Grigg, N. & Walls, L. (2007). The role of control charts in promoting organizational learning. New perspectives from a food industry study. The TQM Journal, Vol.19, No.1, pp. 37-49.
- Groover, M.P. (2001) Automation, Production Systems and Computer Integrated Manufacturing, Prentice-Hall, Englewood Cliffs.
- Grover, S. and Singh, V. (2007). A Graph Theoretic Approach to the Use of Quality Tools and Techniques. *Int J Oper Quantum Manage*, 13(3), pp. 199-209.
- Grover, S., Aggrawal, V.P and Khan, I.A. (2004). A digraph approach to TQM evaluation of an industry, International Journal of Production Research, 42 (19), pp. 4031-4053.
- Grover, S., Agrawal, V., Khan, I. (2005). Human resource performance index in TQM environment. Int. J. Manag. Pract. 1, 131–151.
- Grover, S., V. P. Agrawal, and I. A. Khan. (2006). "Role of Human Factor in TQM: A Graph Theoretic Approach." Benchmarking: An International Journal 13 (4): 447–468.
- Guzmán, B. V. R., Brun, A., & Domínguez, O. F. C. (2019). Quality management as a determinant factor of productivity. International Journal of Productivity and Performance Management.
- Hagemeyer, C., Gershenson, J.K. & Johnson, D.M. (2006). Classification and application of problem solving quality tools a manufacturing case study. The TQM Journal, Vol.18, No.5, pp. 455-483.
- Hao, L. and Xie, Q.S. (2006) 'Application of TOPSIS in the bidding evaluation of manufacturing enterprises', Proceedings of e-ENGDET2006, 5th International Conference on e-Engineering & Digital Enterprise Technology, Guiyang, China, 16–18 August, pp.184–188.
- Harputlugil, T.İ.M.U.Ç.İ.N., Prins, M.A.T.T.H.I.J.S. and Gültekin, A.T. (2011), "Conceptual framework for potential implementations of multi criteria decision making (MCDM) methods for design quality assessment", Management and

Innovation for a Sustainable Built Environment, Amsterdam, The Netherlands, June, ISBN: 9789052693958, pp. 20-23.

- Heizer, J. and Render, B. (2006), Operations Management, 8th ed., Pearson Education, New Delhi.
- Hellsten, U. and Klefsjö B. (2000). TQM as a management system consisting of values, techniques and tools. The TQM Magazine, 12 (4), pp. 238–244.
- Herrgard, T. H. (2000). Difficulties in Diffusion of Tacit Knowledge in Organizations. Journal of Intellectual Capital, Vol. 1, No 4, pp. 357–365.
- Hong, P. et al. (2012), 'Evolving benchmarking practices: a review for research perspectives', Benchmarking: An International Journal, Vol. 19, No. 4, pp.444–462.
- Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.
- Huang, C. C. and S. H. Lin. (2010). Sharing Knowledge in a Supply Chain Using the Semantic Web. Expert Systems with Applications, Vol. 37, No. 4, pp. 3145–3161.
- Hwang, C.L. and Yoon, K. (1981) Multiple Attribute Decision Making: Methods and Applications, Springer-Verlag, New York.
- Hwang, C.L. and Yoon, K. (1995) Multiple Attribute Decision Making: An Introduction, Sage, Thousand Oaks, CA.
- Imai, M. (1986). Kaizen, the Key to Japan's Competitive Success. McGraw-Hill, New York.
- Ingwersen, W.W. and Stevenson, M.J. (2012). Can we compare the environmental performance of this product to that one? An update on the development of product category rules and future challenges toward alignment, Journal of Cleaner Production, Vol. 24, No. 1, pp. 102-108.
- Iriondo, J.M., Albert, M.J. and Escudero, A. (2003), "Structural equation modelling: an alternative for assessing causal relationships in threatened plant populations", Biological Conservation, Vol. 113 No. 1, pp. 367-377.
- Ishikawa, K. (1976). Guide to Quality Control, Asian Productivity Organization, Tokyo.
- Ishikawa, K. (1985), what is Total Quality Control? The Japanese Way, Prentice-Hall, Englewood Cliffs, NJ.
- Ishikawa, K. (1990). Introduction to Quality Control, 1st ed., p.98, 3A Corp., Tokyo.

- Jain, V. and Raj, T. (2015) 'A hybrid approach using ISM and modified TOPSIS for the evaluation of flexibility in FMS', International Journal of Industrial and Systems Engineering, Vol. 19, No. 3, pp. 389-406.
- Jense, J.B. and Gutin, G. (2000). Digraph theory, algorithms, and applications.
- Jharkharia, S. and Shankar, R. (2004). IT enablement of supply chains: modeling the enablers. International Journal of Productivity and Performance Management.
- Jin, M., Switzer, M. and Agirbas, G. (2008), "Six Sigma and Lean in healthcare logistics centre design and operation: a case at North Mississippi Health Services", International Journal of Six Sigma and Competitive Advantage, Vol. 4 No. 3, pp. 270-288.
- Jindal, A. and Sangwan, K.S. (2011), "Development of an interpretive structural model of barriers to reverse logistics implementation in Indian industry", Glocalized Solutions for th Sustainability in Manufacturing, Proceedings of the 18 CIRP International Conference, 2-4 May, Technische Universitat Braunschweig, Braunschweig, pp. 448-453.
- Jöreskog, K.G. and Sörbom, D. (1989), LISREL 7, A Guide to the Program and Applications, 2nd ed., SPSS, Chicago, IL.
- Jothimani, D. and Sarmah, S.P. (2014), "Supply chain performance measurement for third party logistics", Benchmarking: An International Journal, Vol. 21 No. 6, pp. 944-963.
- Jurkat, W.B. and Ryser, H.J. (1966). Matrix factorization of determinants and permanents'. Journal of Algebra, 3 (1), pp.1–27.
- Kaebernick, H., & Kara, S. (2006, May). Environmentally sustainable manufacturing: a survey on industry practices. In Proceedings of 13th CIRP international conference on life cycle engineering, pp. 19-28.
- Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36.
- Kannan, G., Pokharel, S. and Kumar, P.S. (2009) 'A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider', Conservation and Recycling Resources, Vol. 54, No. 1, pp.28–36.
- Kaplan, D. (2000), "Structural equation modeling foundations and extensions", Advanced Quantitative Techniques in the Social Sciences, Sage Publications, Thousand Oaks, CA, Vol. 10.

- Kara, S., Honke, I., & Kaebernick, H. (2005, December). An integrated framework for implementing sustainable product development. In 2005 4th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp. 684-691, IEEE.
- Khanna, H.K. and Sharma, D.D. (2011), "Identifying and ranking critical success factors for implementation of total quality management in the Indian manufacturing industry using TOPSIS", Asian Journal on Quality, Vol. 12 No. 1, pp. 124-138.
- Khanna, V.K. (2009), "5 'S' and TQM status in Indian organizations", The TQM Journal, Vol. 21 No. 5, pp. 486-501.
- Khurana, V.K. (2009). Management of Technology and Innovation, Ane Books Pvt Ltd.
- Kim, I.W. and Im. J.H. (1993)," Manufacturing environments in South Korea, Japan and the United States of America: a note", Asia Pacific Journal of Management, Vol. 10 No. 1, pp. 87-94.
- Kodali, R. (2003), "Japanese manufacturing strategies for Indian industries", Productivity, Vol. 44 No. 2, pp. 303-309.
- Kolarik, W.J. (1995), Creating Quality: Concepts, Systems, Strategies and Tools, McGraw-Hill, New York, NY.
- Koulouriotis, D. E., and M. K. Ketipi. (2011). "A Fuzzy Digraph Method for Robot Evaluation and Selection." Expert Systems with Applications 38 (9): 11901–11910.
- Kovach, J.V., Cudney E.A., & Elrod C.C. (2011). The use of continuous improvement techniques: A survey-based study of current practices. International Journal of Engineering, Science and Technology, 3(7), pp. 89-100.
- Kulkarni, S. (2005). "Graph Theory and Matrix Approach for Performance Evaluation of TQM in Indian Industries." The TQM Magazine 17 (6): 509–526.
- Kumar, A., S. Clement, and V. P. Agrawal. (2010). "Structural Modeling and Analysis of an Effluent Treatment Process for Electroplating-a Graph Theoretic Approach." Journal of Hazardous Materials 179 (1–3): 748–761.
- Kumar, P. and Singh, R.K. (2012), "A fuzzy AHP and TOPSIS methodology to evaluate global 3PL", Journal of Modelling in Management, Vol. 7 No. 3, pp. 287-303.
- Kumar, R., Garg, D. and Garg, T.K. (2009), "Total quality management in Indian industries: relevance, analysis and directions", The TQM Journal, Vol. 21 No. 6, pp. 607-622.

- Kumar, S., Luthra, S., Govindan, K., Kumar, N., & Haleem, A. (2016). Barriers in green lean six sigma product development process: an ISM approach. Production Planning & Control, 27(7-8), 604-620.
- Kumar, S., Parashar, N. and Haleem, A. (2009), "Analytical hierarchy process applied to vendor selection problem: small scale, medium scale and large scale industries", Business Intelligence Journal, Vol. 2 No. 2, pp. 355-362.
- Kwok, K.Y. & Tummala, V.M.R. (1998). "A quality control and improvement system based on total control methodology (TCM)". International Journal of Quality & Reliability Management, Vol. 15 No. 1, pp. 13-48
- Lagrosen, Y. and Lagrosen, S. (2005), 'The effects of quality management a survey of Swedish quality professionals', International Journal of Operations & Production Management, Vol. 25, No. 10, pp.940–952.
- Lai, Y.J., Liu, T.Y. and Hwang C.L. (1994) 'TOPSIS for MODM', European Journal of Operational Research, Vol. 76, No. 3, pp.486–500.
- Lakhe, R.R. and Mohanty, R.P. (1995), "Understanding TQM in service systems", International Journal of Quality & Reliability Management, Vol. 12 No. 9, pp. 139-153.
- Lam, S.S.K. (1996), Applications of quality improvement tools in Hong Kong: an empirical analysis. Total Quality Management & Business Excellence, Vol.7, No.6, pp. 675-680.
- Latpate, R.V. (2015) 'Fuzzy modified TOPSIS for supplier selection problem in supply chain management', International Journal of Innovative Research in Computer Science & Technology, Vol. 3, No.4, pp.22–28.
- Lau, A.W.T. and Tang, S.L. (2009), "A survey on the advancement of QA (quality assurance) to TQM (total quality management) for construction contractors in Hong Kong", International Journal of Quality and Reliability Management, Vol. 26 No. 5, pp. 410-425.
- Law, K.M.Y. & Gunasekaran, A. (2012). "Sustainability development in hightech manufacturing firms in Hong Kong: motivators and readiness", International Journal of Production Economics, Vol. 137 No. 1, pp. 116-125.
- Liker, J. K. and Hoseus, M. (2008). Toyota culture: The heart and soul of the Toyota way, McGraw-Hill, New York.
- Lin, Z.J. and Johnson, S. (2004), "An exploratory study on accounting for quality management in China", Journal of Business Research, Vol. 57, pp. 620-32.
- Ljungström, M. and Klefsjö, B. (2002). Implementation obstacles for a workdevelopment-oriented TQM strategy", Total Quality Management, Vol.13, No. 5, pp. 621-634.

- Malaeb, Z.A., Summers, J.K. and Pugesek, B.H. (2000), "Using structural equation modelling to investigate relationships among ecological variables", Environmental and Ecological Statistics, Vol. 7 No. 1, pp. 93-111.
- Mandal, A. and Deshmukh, S.G. (1994), "Vendor selection using ISM", International Journal of Operations & Production Management, Vol. 14 No. 6, pp. 52-59.
- Mandal, P. and Sohal, A.S. (1998), "Modelling helps in understanding policy alternatives: a case", ASCE Journal of Management in Engineering, Vol. 14 No. 1, pp. 41-48.
- Mangla, S., Kumar, P. and Barua, M.K. (2014), "An evaluation of attribute for improving the green supply chain performance via DEMATEL method", International Journal of Mechanical Engineering & Robotics Research, Vol. 1 No. 1, pp. 30-35.
- Mc Quarter, R.E., Scurr, C.H., Dale, B.G., & Hillman, P.G. (1995). Using quality tools and techniques successfully, The TQM Magazine, 7(6), pp. 37-42.
- McConnell, J. (1989). The Seven Tools of TQC, 3rd edition. The Delaware Group, NSW.
- McDonald, R. P., & Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64–82.
- McQuater, R.E., Scurr, C.H., Dale, B.G. & Hillman, P.G. (1995). Using quality tools and techniques successfully, The TQM Magazine. Vol. 7, No. 6, 37–42.
- Mehra, S., Holfman, J. M., & Sirias, D. (2001). TQM as a management strategy for the next millennia, International Journal of Operations and Production management, 21(5/6), pp. 855 876.
- Miles, J., & Shevlin, M. (2007). A time and a place for incremental fit indices. Personality and Individual Differences, 42(5), 869–874.
- Millet, I. and Wedley, W.C. (2002), "Modeling risk and uncertainty with the analytic hierarchy process", Journal of Multi-Criteria Decision Analysis, Vol. 11 No. 2, pp. 97-107.
- Monteiro, F., Mol, M. and Birkinshaw, J. (2017), "Ready to be open? Explaining the firm level barriers to benefiting from openness to external knowledge", Long Range Planning, Vol. 50 No. 2, pp. 282-295.
- Moriarty, J.P. (2011), 'A theory of benchmarking', Benchmarking: An International Journal, Vol. 18, No. 4, pp.588–611.

- Muhammad, N. and Jeng Feng, C. (2014). A methodology to optimize value in discrete event simulation for production planning and control studies, Proceedings of International Conference on Industrial Engineering and Operations Management, Bali, Indonesia, pp.676–684.
- Munck, I.M.E. (1979), "Model building in comparative education: applications of the LISREL method to cross-national survey data", International Association for the Evaluation Achievement Monograph Series, Almqvist and Wiksell, Stockholm, p. 10.
- Nakano, M., Noritake, S. and Ohashi, T. (2008). A lifecycle simulation framework for production systems. In Lean Business Systems and Beyond, pp. 327-335. Springer, Boston, MA.
- Newall, D. and Dale, B. (1990). The introduction and development of a quality improvement process: a study, International Journal of Production Research, Vol. 29, No. 9, pp. 1747-1760.
- Nielsen, P. and Wenzel, H. (2002), "Integration of environmental aspects in product development: a stepwise procedure based on quantitative life cycle assessment", Journal of Cleaner Production, Vol. 10 No. 3, pp. 247-257.
- Nimmy, J. S., Chilkapure, A., & Pillai, V. M. (2019). Literature review on supply chain collaboration: comparison of various collaborative techniques. Journal of Advances in Management Research.
- Nobelius, D. and Trygg, L. (2002), "Stop chasing the front end process management of the early phases in product development projects", International Journal of Project Management, Vol. 20 No. 5, pp. 331-340, available at: http://dx.doi.org/10.1016/s0263-7863(01)00030-8.
- Noori, H. (1993), Workshop on Managing the Dynamics of New Technology: Issues in Manufacturing Management, 30 September-1 October, Selangor.
- Nunnally, J. C. (1978). Psychometric theory (Vol. 2). New York: McGraw-Hill.
- Oguz, C., Kim, Y.W., Hutchison, J. and Han, S. (2012), "Implementing Lean Six Sigma: a case study in 527 concrete panel", 20th Annual Conference of the International Group for Lean Construction, San Diego, CA.
- Ordoobadi, S.M. (2010), "Application of AHP and Taguchi loss functions in supply chain", Industrial Management & Data Systems, Vol. 110 No. 8, pp. 1251-1269.
- Papulova, E. and Papulova Z. (2006) 'Competitive strategy and competitive advantages of small and midsized manufacturing enterprises in Slovakia', E-Leader, International Leadership and Networking Conference, Slovakia.

- Paramasivam, V., V. Senthil, and N. R. Ramasamy. (2011). "Decision Making in Equipment Selection: An integrated Approach with Digraph and Matrix Approach, AHP and ANP." International Journal of Advance Manufacturing Technology 54 (9–12): 1233–1244.
- Payne, A.C., Chelsom, J.V. and Reavill, L.R. (1996), Management for Engineers, Wiley, NY, p. 39.
- Prabhakaran, R. T. D., B. J. Babu, and V. P. Agarwal. (2006). "Structural Modeling and Analysis of Composite Product System: A Graph Theoretic Approach." Journal of Composite Materials 40 (22): 1987–2007.
- Prasad, D. K. G., Subbaiah, V. K., Rao, N. K., & Sastry, C. V. R. S. (2010). Prioritization of customer needs in house of quality using conjoint analysis. International Journal for Quality Research, 4(2), 145–154.
- Pugesek, B.H. and Tomer, A. (1995). Determination of selection gradients using multiple regressions versus structural equation models (SEM). *Biometrical Journal*, Vol. 37, No. 4, pp.449-462.
- Radovilsky, Z.D., Gotcher, J.W. and Slattsveen, S, (1996)," Implementing total quality management-statistical analysis of survey results", International Journal of Quality & Reliability Management, Vol. 13 No. 1, pp. 10-23.
- Raj, T., & Attri, R. (2010). Quantifying barriers to implementing total quality management (TQM). *European Journal of Industrial Engineering*, 4(3), pp. 308-335.
- Raj, T., & Attri, R. (2011). Identification and modelling of barriers in the implementation of TQM. International Journal of Productivity and Quality Management, Vol. 8, No.2, pp. 153-179.
- Raj, T., R. Shankar, and M. Suhaib. (2010a). "GTA-based Framework for Evaluating the Feasibility of Transition to FMS." Journal of Manufacturing Technology Management 21 (2): 160–187.
- Raj, T., R. Shankar, and M. Suhaib. (2010b). "A Graph-theoretic Approach to Evaluate the Intensity of Barriers in the Implementation of FMSs." International Journal of Services and Operations Management 7 (1): 24–52.
- Ramesh, A., Banwet, D.K. and Shankar, R. (2010), "Modelling the barriers of supply chain collaboration", Journal of Modelling in Management, Vol. 5 No. 2, pp. 176-193.
- Ramezani, F. and Lu, J. (2014), "An intelligent group decision-support system and its application for project performance evaluation", Journal of Enterprise Information Management, Vol. 27 No. 3, pp. 278-291.

- Rao, R.P., Compression Labs Inc, (1996). Method for configuring a statistical multiplexer to dynamically allocate communication channel bandwidth. U.S. Patent 5,506,844.
- Rao, R.V. (2007) Decision Making in Manufacturing Environment: Using Graph Theory and Fuzzy Multiple Attribute Decision making Methods, Springer-Verlag, London.
- Rao, R.V., & Padmanabhan, K.K. (2006). Selection, identification and comparison of industrial robots using digraph and matrix methods. Robotics and Computer-Integrated Manufacturing, 22 (4), pp.373–383.
- Ravi, V. and Shankar, R. (2005), "Analysis of interactions among the barriers of reverse logistics", Technology Forecasting and Social Change, Vol. 72 No. 1, pp. 1011-1029.
- Reddy, L.K.V. and Al Shammari, F. (2013), "Six Sigma approach on discharge process turnaround time in King Khalid Hospital, Hail, Saudi Arabia", Australian Journal of Basic and Applied Sciences, Vol. 7 No. 14, pp. 523-533.
- Rockart, J.F. (1979), "Chief executives define their own data needs", Harvard Business Review, Vol. 57 No. 2, March-April, pp. 81-93.
- Saaty, T. L. (1985). Decision making for leaders (Belmont, California). *Life Time Leaning Publications*.
- Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process, *European journal of operational research*, 48(1), pp. 9-26.
- Saaty, T.L. (1977), "A scaling method for priorities in hierarchical structures", Journal of Mathematical Psychology, Vol. 15 No. 3, pp. 234-281.
- Saaty, T.L. (1980), The Analytic Hierarchy Process, McGraw-Hill Book Co., New York, NY.
- Saaty, T.L. (1994), "How to make a decision: the analytic hierarchy process", Interfaces, Vol. 24, pp. 19-43.
- Saaty, T.L. (2000), Fundamentals of Decision Making and Priority Theory, 2nd ed., RWS Publications, Pittsburgh, PA.
- Saaty, T.L. (2008), "Decision making with analytic hierarchy process", International Journal of Services Sciences, Vol. 1 No. 1, pp. 83-98, available at: http://dx.doi.org/10.1504/ IJSSCI.2008.017590.
- Saaty, T.L., & Kearns K.P. (1991). Analytical planning: The organization systems. The analytic hierarchy process series. Vol (4). RWS Publications.
- Sabharwal, S., Garg, S. (2013). Determining cost effectiveness index of remanufacturing: a graph theoretic approach. Int. J. Prod. Econ. 144, 521–532.

- Sage, A.P. (1977), Interpretive Structural Modeling: Methodology for Large-scale Systems, McGraw-Hill, New York, NY, pp. 91-164.
- Salah, S., Rahim, A. and Carretero, J.A. (2011), "Implementation of Lean Six Sigma (LSS) in supply chain management (SCM): an integrated management philosophy", International Journal of Transitions and Innovation Systems, Vol. 1 No. 2, pp. 138-162.
- Sami Kara Suphunnika Ibbotson Berman Kayis, (2014), "Sustainable product development in practice: an international survey", Journal of Manufacturing Technology Management, Vol. 25 Issue 6 pp. 848 872.
- Sarkis, J., Gonzalez-Torre, P. and Adenso-Diaz, B. (2010), "Stakeholder pressure and the adoption of environmental practices: the mediating effect of training", Journal of Operations Management, Vol. 28 No. 2, pp. 163-176.
- Saxena, J., Sushil, P. and Vrat, P. (1992), "Scenario building: a critical study of energy conservation in the Indian cement industry", Technological Forecasting and Social Change, Vol. 41 No. 2, pp. 121-146.
- Saxena, J.P., Sushil and Vrat, P. (2006), Policy and Strategy Formulation: An Application of Flexible Systems Methodology, GIFT Publishing, Delhi.
- Schöggl, J.-P., Baumgartner, R.J. and Hofer, D. (2017), "Improving sustainability performance in early phases of product design: a checklist for sustainable product development tested in the automotive industry", Journal of Cleaner Production, Vol. 140 No. 3, pp. 1602-1617, available at: http://dx.doi.org/10.1016/j.jclepro.2016.09.195.
- Sehgal, R., O. P. Gandhi, and S. Angra. (2000). "Reliability Evaluation and Selection of Rolling Element Bearings." Reliability Engineering and System Safety 68 (1): 39–52.
- <u>Sevkli, M., Lenny Koh, S.C., Zaim, S., Demirbag, M.</u> and <u>Tatoglu, E.</u> (2008), "Hybrid analytical hierarchy process model for supplier selection", <u>Industrial</u> <u>Management & Data Systems</u>, Vol. 108 No. 1, pp. 122-142.
- Sharma, H.D. and Gupta, A.D. (1995), The objectives of waste management in India: A futures inquiry, Technological Forecasting and Social Change, Vol. 48, No. 3, pp.285-309.
- Sharma, M.K. and Bhagwat, R. (2007), "An integrated BSC-AHP approach for supply chain management evaluation", Measuring Business Excellence, Vol. 11 No. 3, pp. 57-68.

- Sharma, M.K. and Bhagwat, R. (2009), "An application of the integrated AHP-PGP model for performance measurement of supply chain management", Production Planning and Control, Vol. 20 No. 8, pp. 678-90.
- Sharma, V., Grover, S. and Sharma, S.K. (2017), "Quality tools and techniques: an introspection and detailed classification", Int. J. Quality and Innovation, Vol. 3, Nos. 2/3/4, 2017.
- Sharma, V., Grover, S. and Sharma, S.K. (2017). Analyzing the barriers affecting the effective utilization of quality tools and techniques using integrated ISM approach. Management Science Letters, Vol. 7, No. 11, pp.525-540.
- Sharma, V., Grover, S. and Sharma, S.K. (2020) 'Applicability of quality tools and techniques in manufacturing and service organizations: a comprehensive survey', Int. J. Six Sigma and Competitive Advantage, Vol. 12, No. 1, pp.37–58.
- Sharma, V., Grover, S., & Sharma, S. K. (2020). An integrated AHP-GTA approach for measuring effectiveness of quality tools and techniques. *International Journal of System Assurance Engineering and Management*, 11(1), 54-63.
- Sharma, V.K., Chandana, P., & Bhardwaj, A. (2015). Critical factors analysis and its ranking for implementation of GSCM in Indian dairy industry, Journal of Manufacturing Technology Management, 26 (6), pp. 911 – 922.
- Shewhart, W.A. (1931), Economic Control of Quality of Manufacturing Product, Van Norstrand, New York, NY.
- Shipley, B. (1999), Testing Causal Explanations in Organismal Biology: Causation, Correlation and Structural Equation Modeling, University Press, Cambridge.
- Silvestro, R. (1998), "The manufacturing TQM and service quality literatures: synergistic or conflicting paradigms?" International Journal of Quality and Reliability Management, Vol. 15 No. 3, pp. 303-328.
- Silvestro, R. (2001), "Towards a contingency theory of TQM in services: how implementation varies on the basis of volume and variety", International Journal of Quality & Reliability Management, Vol. 18 No. 3, pp. 254-88.
- Singh, B., Grover, S. and Singh, V. (2012) 'A systematic review of literature on benchmarking', Paper presented at 2nd Trends and Advancement of Mechanical Engineering National Conference at YMCAUST, October 2012, Faridabad, Haryana, India.
- Singh, J., Rastogi, V. and Sharma, R. (2014), Implementation of 5S practices: A review, Uncertain Supply Chain Management, Vol. 2, pp. 155-162.

- Singh, M., I. A. Khan, and S. Grover. (2011). "Selection of Manufacturing Process Using Graph Theoretic Approach." International Journal of System Assurance Engineering and Management 2 (4): 301–311.
- Singh, M., I. A. Khan, and S. Grover. (2012). "Development and Comparison of Quality Award: Based on Existing Quality Awards." International Journal of System Assurance and Engineering Management 3 (3): 209–220.
- Singh, M.D. and Kant, R. (2008), "Knowledge management barriers: an interpretive structural modelling approach", International Journal of Management Science and Engineering Management, Vol. 3 No. 2, pp. 141-150.
- Singh, R.K., Garg, S.K., Deshmukh, S.G. and Kumar, M. (2007), "Modelling of critical success factors for implementation of AMTs", Journal of Modelling in Management, Vol. 2 No. 3, pp. 232-250.
- Singh, V., and V. P. Agrawal. (2008). "Structural Modelling and Integrative Analysis of Manufacturing Systems Using Graph Theoretic Approach." Journal of Manufacturing Technology Management 19 (7): 844–870.
- <u>Sipahi, S.</u> and <u>Timor, M.</u> (2010), "The analytic hierarchy process and analytic network process: an overview of applications", <u>Management Decision</u>, Vol. 48 No. 5, pp. 775-808.
- Sit, W., Keng-Boon, O., Binshan, L. and Alain, Y. (2009), "TQM and customer satisfaction in Malaysia's service sector", Industrial Management & Data Systems, Vol. 109 No. 7, pp. 957-975.
- Sohal, A.S. and Eddy, T. (1994), Quality Practices in Australian Manufacturing Firms, A Joint Report Prepared by the School of Management, Monash University and Ernst and Young Report, Melbourne, Australia.
- Sohal, A.S., Ramsay, L. and Samson, D. (1992), "Quality management practices in Australian industries", Total Quality Management, Vol. 3 No 3, pp. 283-299.
- Soti, A., Shankar, R. and Kaushal, O.P. (2010), "Modelling the enablers of six sigma using interpretive structural modeling", Journal of Modeling in Management, Vol. 5 No. 2, pp. 121-141.
- Sousa, S.D., Aspinwall, E., Sampaio, P.A. & Rodrigues, A.G. (2005). Performance measures and quality tools in Portuguese small and medium enterprises: survey results. Total Quality Management & Business Excellence, Vol.16, No.2, pp. 277-307.
- Spring, M., McQuater, R., Swift, K., Dale, B. and Booker, J. (1998), "The use of quality tools and techniques in product introduction: an assessment methodology", The TQM Magazine, Vol. 10 No. 1, pp. 45-50.

- Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral manufacturing technology and opera- Research, 25(2), 173–180.
- Stevens, J. (1996). Applied multivariate statistics for the social sciences (3rd edition). Mahwah: Lawrence Erlbaum Associates.
- Streimikiene, D., Simanaviciene, Z. and Kovaliov, R. (2009), "Corporate social responsibility for 871 implementation of sustainable energy development in Baltic States", Renewable and Sustainable Energy Reviews, Vol. 13 No. 4, pp. 813-824.
- Sullivan-Taylor, B. and Wilson, M. (1996), "TQM implementation in New Zealand service organizations", The TQM Magazine, Vol. 8 No. 5, pp. 56-64.
- Suphunnika, S.K. and Kayis, I.B. (2014) 'Sustainable product development in practice: an international survey', Journal of Manufacturing Technology Management, Vol. 25, No. 6, pp.848–872.
- Sureshchandar, G.S., Rajendran, C. and Anantharaman, R.N. (2001). A holistic model for total quality service. International Journal of Service Industry Management, Vol. 12, No.4, pp. 378-412.
- Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th edition). New York: Allyn and Bacon.
- Talib, F. & Rahman, Z. (2010). 'Critical success factors of total quality management in service organization: a proposed model', Service Marketing Quarterly, Vol. 31, No. 3, pp.363–380.
- Talib, F., Rahman, Z. and Qureshi, M.N. (2011). Analysis of interaction among the barriers to total quality management implementation using interpretive structural modeling approach. Benchmarking: An International Journal, Vol. 18, No. 4, pp. 563-587.
- Talib, F., Rahman, Z., Qureshi, M.N. & Siddiqui, J. (2011). 'Total quality management and service quality: an exploratory study of management practices and barriers in service industries', International Journal of Services and Operations Management, Vol. 10, No. 1, pp.94–118.
- Tansey, R., Carroll, R.F. and Lin, Z.J. (2001), "On measuring cost of quality dimensions: an exploratory study in the People's Republic of China", International Business Review, Vol. 10, pp. 175-95.
- Tarí, J.J. (2005), 'Components of successful total quality management', The TQM Magazine, Vol. 17, No. 2, pp.182–194.
- Teixeira, A.A., Jabbour, C.J.C. and Jabbour, A.B.L.d.S. (2012), "Relationship between green management and environmental training in companies located in

Brazil: a theoretical framework and case studies", International Journal of Production Economics, Vol. 140 No. 1, pp. 318-329.

- Thakkar, J., Deshmukh, S.G., Gupta, A.D. and Shankar, R. (2005), "Selection of third-party logistics (3PL): a hybrid approach using interpretive structural modeling (ISM) and analytic network process (ANP)", Supply Chain Forum: An International Journal, Vol. 6 No. 1, pp. 32-46.
- Thia, C.W., Chai, Kah-Hin., Bauly, J. and Yan, X. (2005). An exploratory study of the use of quality tools and techniques in product development, The TQM Magazine. 17(5), pp. 406-424.
- Thiagaragan, T., Zairi, M., and Dale, B.G. (2001). A proposed model of TQM implementation based on an empirical study of Malaysian industry, International Journal of Quality & Reliability Management, 18(3), pp. 289-306.
- Toremen, F., Karakus, M. and Yasan, T. (2009), "Total quality management practices in Turkish primary schools", Quality Assurance in Education, Vol. 17 No. 1, pp. 30-44.
- Vališ, D., Koucký, M. and Žák, L. (2012), "On approaches for non-direct determination of system deterioration", Eksploatacja i niezawodnošč, Vol. 14 No. 1, pp. 33-41, available at: www.ein.org. Pl/2012-01-05.
- Videras, J., Owen, A.L., Conover, E. and Wu, S. (2012), "The influence of social relationships on pro-environment behaviors", Journal of Environmental Economics and Management, Vol. 63 No. 2, pp. 35-50.
- Vinodh, S., M. Prasanna, and K. E. Selvan. (2013). "Evaluation of Sustainability Using an Integrated Approach at Process and Product Level: A Case Study." International Journal of Sustainable Engineering 6 (2): 131–141.
- Vouzas, F. (2004). "HR utilization and quality improvement: the reality and the rhetoric the case of Greek industry", The TQM Magazine, Vol. 16 No. 2, pp. 125-35.
- Vouzas, F. and Psychogios, A.G. (2007), "Assessing managers' awareness of TQM", The TQM Magazine, Vol. 19 No. 1, pp. 62-75.
- Wang, T.C. and Chang, T.H. (2007) 'Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment', Expert Systems with Applications, Vol. 33, No. 4, pp.870–880.
- Warfeld, J.W. (1974), "Developing interconnected matrices in structural modeling", IEEE Transcript on Systems, Men and Cybernetics, Vol. 4 No. 1, pp. 51-81.

- Warfield, J.N. (1974). Toward interpretation of complex structural modeling, IEEE Trans. Syst. Man Cybern, Vol. 4, No. 5, pp. 405-417.
- Warwood, S.J. and Knowles, G. (2004). An investigation into Japanese 5-S practice in UK industry. The TQM Magazine.
- Watson, G.H. (1998), ``Digital hammers and electronic nails ± tools of the next generation", Quality Progress, July, pp. 21-6. Bowen, H.K., Clark, K.B., Holloway, C.A. and Wheelwright, S.C. (1994), "Development projects: the engine of renewal", Harvard Business Review, Vol. 72 No. 5, pp. 110-20.
- Welman, J.C. (2005), Research Methodology, Oxford University Press, Cape Town and Oxford.
- Werner, T. & Weckenmann, A. (2012). Sustainable quality assurance by assuring competence of employees, Measurement. Vol. 45, No. 6, Pages 1534-1539.
- Witcher, B. (1994), "The adoption of total quality management in Scotland", The TQM Magazine, Vol. 6 No. 2, pp. 48-53.
- Wong, J.K.W. and Li, H. (2008), "Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent building systems", Building and Environment, Vol. 43 No. 1, pp. 108-25.
- Yasin, M.M., Kunt, J.A.M. and Zimmerer, T.W. (2004), "TQM practices in service organizations: an exploratory study into the implementation, outcome and effectiveness", Managing Service Quality, Vol. 14 No. 5, pp. 377-389.
- Yin, S.H., Wang, C.C., Teng, L.Y. and Hsing, Y.M. (2012). Application of DEMATEL, ISM, 30 and ANP for key success factor (KSF) complexity analysis in RD alliance, Sci. Res. Essays, Vol. 31 7, No. 19, pp. 1872-1890.
- Zeleny, M. (1982), Multiple Criteria Decision Making, McGraw-Hill, New York, NY.
- Zhou, X. and Schoenung, J.M. (2007), "An integrated impact assessment and weighting methodology: evaluation of the environmental consequences of computer display technology substitution", Journal of Environmental Management, Vol. 83 No. 1, pp. 1-24.
- Ziaei, M., Sajadi, S.M. and Tavakoli, M.M. (2016) 'The performance improvement of water pump manufacturing system via multi-criteria decisionmaking and simulation (a case study: Iran Godakht Company)', International Journal of Productivity and Quality Management, Vol. 17, No. 1, pp.1–15.

[Appendix –I]

Questionnaire

Section A

- 1. Name of organization
- 2. Year of Establishment: (tick appropriate column)

<5 years	>10 years but <15 years	
>5 years but <10 years	>15 years but <20 years	
20 years and above		

3. No of Employees and company size: (tick appropriate column)

Below 100 employees	Between 201 and 300
	employees
Between 101 and 200	Between 301 and 400
employees	employees
Above 400 employees	

4. Quality certification: Does your organization have quality Certification:

YES	
NO	

Section B

Implementation status of the following QT&T in your organization

Please give response on the scale of 1 to 5 in the adjoining columns. (From very low to very high)

Scale:

1	Very Low
2	Low
3	Average
4	High
5	Very High

Sr no	QT&T Categories	Usage yes/ no	Level of awareness (1-5)	Impact on organization (1-5)	Effectiveness (1-5)	Remarks, if any
1	Basic quality tools (7BT)					
2	Management tools (7MT)					
3	Problem solving tools (PST)					
4	Software tools (SWT)					
5	Statistical tools (ST)					
6	Graphical tools (GT)					
7	New product development tools (NPDT)					
8	Decision making tools (DMT)					
9	Productivity tools (PT)					
10	Assessment/analysis tools (AT)					
11	Combinational tools (CT)					
12	Relationship tools (RT)					
13	Lean tools (LT)					
14	Communicational tools (CMT)					
15	Motivational tools (MOT)					
16	Performance measurement tools (PMT)					

Section C

Respondent information

- Name
- Position in organization
- Department
- Year of serving

[Appendix –II]

Questionnaire

Section A

- 3. Name of organization
- 4. Type of organization: Product based/Service based. (Tick appropriate column)
- 5. Year of Establishment: (Tick appropriate column)

<5 years	>10 years but <15 years
>5 years but <10 years	>15 years but <20 years
21 years and above	

6. Quality certification: Does your organization have quality Certification:

YES	
NO	

7. No of Employees and company size: (tick appropriate column)

Below 100 employees	Between 201 and 300 employees
Between 101 and 200 employees	Between 301 and 400 employees
Above 400 employees	

- 8. Respondent information
- Name
- Position in organization
- Department
- Year of serving

Section B

Implementation status of the following QT&T in your organization

Please give response on the scale of 1 to 5 in the adjoining columns.(From very low to very high)

Scale:

6	Very Low
7	Low
8	Average
9	High
10	Very High

Sr	QT&T Category	Extent	Stages of usage QT&T				Trainin		Impact on organizations		
no		of Usage							Schedule (Tick column)		
		(1-5)									
	Problem solving		Planning	Production	Post	General	Week	Month	Year		
	tools (PST)				production						
1	A3 report										
2	Effective										
	meetings										
3	Eight disciplines										
4	Five why's (5w's)										
5	Five why's and										
	one how's (5w1h)										
6	Five why's and										
	two how's (5w2h)										
7	Five why's and										
	five how's (5w5h)										
8	Impact effort matrix										
9	Nine windows										
10	Nomial group Technique(NGT)										
11	Problem solving methodology										
12	Problem										
	concentration										
	diagram										
13	Quality circles										
14	Sucess and										
L	effect diagram										
15	Pilot testing										
16	Triz										

Sr no	QT&T Category	Extent of Usage (1-5)	Stages of usage QT&T (Tick column)					ining edule column)	Impact on organizations (Y/N)	
	Productivity tools (PT)		Planning	Production	Post production	General	Week	Month	Year	
1	Concurent engineering									
2	Enterprise resource planning (ERP)									
3	Evalutionary operation (EVOP)									
4	Group technology (GT)									
5	Just in time (JIT)									
6	Kaizen activities									
7	Kano model									
8	Business process re- engineering (BPR)									
9	Supply chain management									
10	Total productive maintenance (TPM)									
11	Zero defect (ZD)									

Sr no	QT&T Category	Extent of Usage (1-5)	Stages of usage QT&T (Tick column)					g le olumn)	Impact on organizations (Y/N)	
	Performance measurement tools (PMT)		Planning	Production	Post production	General	Week	Month	Year	
1	Evaluation of measurement/ inspection system									
2	Gauge repeatability and Reproducibility/ Gauge (R&R)									
3	Management by objectives (MBO)									
4	Pair wise comparison									
5	Balanced scorecard									
6	Critical to quality (CTQ) Tree									
7	Control plan									
8	Key performance indicator (KPI)									
9	OEE analysis (overall equipment effectiveness)									

Vivek Sharma is pursuing his PhD from the J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India. He received his B. E in Mechanical Engineering from MD University, Rohtak, India in 2007 with honours and M.Tech in Mechanical Engineering (Manufacturing and Automation) from the YMCA Institute of Engineering, Faridabad (Haryana), India in 2009. He had published papers in various reputed journals and attending many international and national conferences. His area of research is quality management system and applications of MADM techniques in manufacturing and service organizations.

LIST OF PUBLICATIONS OUT OF THESIS

List of published papers

Sr no.	Title of paper along with volume, issue no and year of publication.	Publisher	Indexing	Refereed or non- refereed	Whether you paid any money for publication	Remarks
1.	Quality tools and techniques: an introspection and detailed classification, International journal of quality and innovation, Vol. 3(2-4), 107- 142, 2017.	Inderscience	Goggle scholar & J-gate	Refereed	No	Published
2.	Analyzing the barriers affecting the effective utilization of quality tools and techniques using integrated ISM approach. Vol. 7, No. 11, pp. 525-540, Management Science Letters, 2017.	Growing Science	Scopus	Refereed	No	Published
3.	Applicability of quality tools and techniques in manufacturing and service organizations: A comprehensive survey. Vol. 12, No.1, pp.37–58, International journal of six sigma and competitive advantage, 2020.	Inderscience	Scopus	Refereed	No	Published
4.	An integratedAHP-GTAapproachformeasuringeffectivenessofqualitytools& techniques.11(1),54-63,Internationaljournalofsystemassuranceengineeringandmanagement,2020.	Springer	ESCI	Refereed	No	Published

List of communicated papers

1.	Analysis and validation of	Center for	ESCI	Refereed	No	Communicated
	Quality tools and techniques by application of Factor Analysis.					
	International journal of quality research.	U				

List of Papers in Conferences/ Seminars

Sr no	Торіс	Year
1.	A novel classification of Quality tool & techniques for manufacturing organizations. 2 nd International	2016
	conference at G.B.U Noida on 16 th and 17 th July 2016.	
2.	Survey on the usage of quality tools and techniques in Indian manufacturing organizations. 1 st international conference at N.I.T Hamirpur on 14 th and 15 th July 2016.	2016
3.	Accessibility of QT&T in manufacturing and service organizations by TOPSIS approach. National conference of trends and advances in mechanical engineering. TAME YMCA. Feb 2019	2019