41815

May 2019

M.Tech. (CSE)-1st Semester (Reappear)
 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE
 (MCSE-17-109)

Time : 3 Hours]
[Max. Marks : 75

Instructions :

(i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Why do we need of Pumping Lemma?
(b) Can we simulate multi-tape turing machine using single tape turing machine? Explain.
(c) List various limitations of Finite State Machine. (1.5)
(d) What is right most derivation? Explain with a suitable example.
(e) Differentiate between Moore and Mealy Machine.
(f) Design a DFA to accept string of a and b having a substring aab.
(g) Write a regular expression for the language $\mathrm{L}=\left\{w:|w| \bmod 3=0\right.$ where $\left.w \varepsilon(a, b)^{*}\right\}$.
(h) Discuss Chomsky hierarchy of grammars.
(i) List various conditions for a PDA to be deterministic.
(j) What are recursively enumerable languages?

PART-B

2. (a) Construct a DFA for the following ε-NFA.

	ε	a	b	c
p	\varnothing	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	\varnothing
${ }^{*} \mathrm{r}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	\varnothing	$\{\mathrm{p}\}$

5. (a) Show that following grammar is ambiguous and make it unambiguous.

$$
\begin{equation*}
\mathrm{S} \rightarrow \mathrm{~S}+\mathrm{S}|\mathrm{~S} \times \mathrm{S}| \mathrm{a} \mid \mathrm{b} \tag{5}
\end{equation*}
$$

(b) State and prove Pumping Lemma for Context Free Languages with a suitable example.
6. (a) Differentiate between DFA, NFA and ε-NFA.
(b) Convert the following CFG to GNF $S \rightarrow X Y \quad X \rightarrow Y S Y \quad X \rightarrow Y Y|1 \quad Y \rightarrow 0 X 1| 1$
(c) Given an instance of PCP with two pairs $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right), \ldots(x n, y n)$ and the character set of PCP containing only one alphabet, write an algorithm to find the solution of PCP, if it exists.
7. Write short notes on
(a) Halting Problem of Turing Machine.
(b) Closure Properties of regular sets.
(c) Context Sensitive Grammars.

