## 204103

## December, 2019

## BCA I SEMESTER

 Mathematics (BCA-17-103)[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

## PART-A

1. (a) If $A=\{4,5,8,12\}, B=\{1,4,6,9\}$ and $C=(1,2,3,4\}$, then find $A-(B-A)$ and A - (C - B).
(b) Write the given sets in roster form:
(i) $A=\{x: x$ is an integer and $-3<x<7\}$.
(ii) $\mathrm{B}=\{\mathrm{x}: \mathrm{x}$ is a prime number which is divisor of 60$\}$.
(c) If $\mathrm{A}=\{1,-1\}$, then find $\mathrm{A} \times \mathrm{A} \times \mathrm{A}$.
(d) If R be relation in the set $\{1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$. Then prove that R is reflexive and transitive but not symmetric.
(e) Find the domain of the function $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$.
(f) Differentiate $a x^{2}+b x+c$ from first principle.
(g) If $y=v^{3}+2 v^{2}+5, v=3 u+1$ and $u=9 x+1$, then find $d y / d x$.
(h) Evaluate $\int \frac{d x}{1-\sin x}$.
(i) Evaluate $\int_{0}^{\pi / 2} \sin ^{2} x d x$.
(j) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x . \quad(1.5 \times 10=15)$

## PART-B

2. (a) If $A$ and $B$ are two sets containing 3 and 6 elements respectively, then find the minimum and maximum number of elements in $\mathrm{A} \cup \mathrm{B}$.
(b) If $2 X+3 Y=\left[\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right]$ and $3 X+2 Y=\left[\begin{array}{cc}-2 & 2 \\ 1 & -5\end{array}\right]$, then find $X$ and $Y$.
3. (a) If R is an equivalence relation on a set A , then show that $R^{-1}$ is also an equivalence relation on $A$. (8)
(b) Evaluate
(i) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{2 x}$
(ii) $\lim _{x \rightarrow 3} \frac{3-x}{\sqrt{4+x}-\sqrt{1+2 x}}$.
4. (a) Find $d y / d x$ of the following at the indicated points:
(i) $\mathrm{y}=2 \sin ^{2} 3 \mathrm{x}$ at $\mathrm{x}=\pi / 6$.
(ii) $y=\frac{1-\sin x}{\cos x}$ at $x=\pi / 4$.
(b) Find $d y / d x$ if
(i) $y=\log \sqrt{\frac{1-\cos x}{1+\cos x}}$
(ii) $y=\log \left[e^{x}\left(\frac{x+2}{x-2}\right)^{3 / 4}\right]$
5. (a) Evaluate $\int x^{2} \cos ^{2} x d x$.
(b) Using Reduction formula, Evaluate $\int \sin ^{m} x \cos ^{n} x d x$. where $m, n$ are positive integers.
Q. (a) Lsime wremmmank, find the area of the triangle whose wertocs are given by
( 2,1$),(2,-4)$ and $(5,1)$, Also check whether the given pints are wllinear.
(b) Lovate the poinf of discontinumy (if any) for the funcion:

$$
f(x)= \begin{cases}x^{3}-x^{2}+2 x-2, x \geq 1  \tag{7}\\ 4 & x=1\end{cases}
$$

7. (a) If $x^{p} y^{*}=(x+y)^{p+2}$, then prove that $\frac{d y}{d x}=\frac{y}{x}$.
(b) State and prove the Fundamental Theorem of Integral Calculus.
