May, 2019

M.Tech. (PS) - II SEMESTER Digital Protection of Power System (MPS601)

Instructions :

1. It is compulsory to answer all the questions 1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Write two points on recent advances in digital protection.
(1.5) CO 1
(b) Write down the difference between MMM \& MSS system in differential protective scheme. (1.5) CO2
(c) How does one decide the minimum sampling frequency in a numerical relay.
(1.5) CO 2
(d) Derive the signal to noise ratio due to quantization in DSP system.
(1.5) CO 2
(e) Draw the practical low pass anti aliasing filter characteristics.
(1.5) CO 3
(f) Write down the relationship between Fourier and Walsh technique.
(g) Explain dual slope converter.
(h) Draw diagram showing basis of digital to analog converter arrangement.
(1.5) CO 1
(i) Write two points on implementation of specific distance relay using differential equation algorithm.
(1.5) CO^{3} -
(j) Derive the receiving end coefficient of reflection in travelling waves.
(1.5) CO 3

PART-B

2. (a) Explain forward interpolation algorithm used in digital protection.
(7) CO 3
(b) With proof, show pseudo Inverse technique amount to minimizing to LSE sense.
(8) CO 2
3. (a) Find the fourth element of the Walsh function having the order of 5 and length $\mathrm{N}=8$ i.e. Wal $(5,4)$.
(7) CO_{2}
(b) Describe with diagram the parallel comparator convertor for converting analog to digital signal.
(8) CO 2
4. Derive the Mann and Morrison algorithm in digital power system protection on undistorted single frequency sine wave.
(15) CO 3
5. (a) Explain Full cycle window Fourier algorithm.
(7) CO_{3}
(b) Find the maximum frequency that can be sampled without and with using hold circuit for DSP system having following specification:
Conversion time of $\mathrm{ADC}=5 \mu \mathrm{~s}$, number of bits in $\mathrm{ADC}=16$, aperture time of hold circuit $=250 \mathrm{ps}$.
(8) CO 2
6. (a) Write a note on digital differential protection of transformer.
(7) CO 1
(b) Explain to determine the error involved in numerically determined signal derivatives.
(8) CO_{2}
7. (a) Provide a frequency domain explanation of the aliasing phenomenon.
(7) CO 2
(b) Write a note on fundamentals of travelling wave based protection.
(8) CO 3
