Total Pages: 3

425103

December, 2019 M.Tech. (PS) - I SEMESTER RENEWABLE ENERGY SYSTEM (MPS103A)

Time: 3 Hours] [Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

	1.	(a)	Define point of common coupling.	(1.5)
)		(b)	Write two points on Nuclear Power Energy.	(1.5)
		(c)	Define the principle of primary power free	quency
			control for conventional generators.	(1.5)
		(d)	Explain the theory of momentum with respect to	o wind
			power.	(1.5)
		(e)	Define the fill factor of the solar cell.	(1.5)

- (f) A synchronous system has a total control strength of 25,500 MW/Hz. A shortage of 1350 MW in production occurs in a control area with a control strength of 2500 MW/Hz. Calculate the drop in frequency? (1.5)
- (g) How does an Internal Combustion Engine work. (1.5)
- (h) Explain restoration after blackout in power. (1.5)
- (i) Differentiate a solar cell from conventional p-n junction diode. (1.5)
- (j) Explain hosting capacity approach in power system. (1.5)

PART - B

- 2. (a) Explain Distributed and Centralized generation interconnection with its benefits and challenges. (7)
 - (b) Discuss the principle of solar photovoltaic energy conversion with I-V characteristics of solar cell. (8)
- 3. (a) A solar cell array is required to deliver 100 W peak output at 120 V DC bus voltage. The solar cell to be used are rated 0.1 W peak output at 0.4 V. Assuming that there are no assembly losses, find the array. (7)
 - (b) Explain (N-1) Criterion in Distributed generation. (8)

4	(0)	Diamer de f	41
4.	(a)	Discuss the impact of Distributed generation on	
		power system.	(7)
	(b)	Explain the secondary control and reserves	in
		transmission system operation.	(8)
5.	(a)	Explain the effect of power quality in Distribu	ıted
		generation.	(7)
	(b)	Discuss Full power electronics coupling with the g	grid.
			(8)
6.	(a)	Discuss the protection failures which occur due	e to
		distributed generation.	(7)
	(b)	Write a note on Economics of distributed generat	ion.
	(0)		(8)
		Calculate the fault current through CB for upstr	eam
7.	(a)		
		3 phase faults when generation is connected along	
		feeder.	(8)
	(b)	Explain Micro turbines for Distributed po	wer
	(0)	generation.	(7)
		201101 4410-1-1	