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ABSTRACT 

 

In this work the selected one dimensional photonic crystal structures are studied and their 

photonic band gap is theoretically computed by solving the wave equation in multilayered 

periodic media using the transfer matrix method. The mathematical modeling of one 

dimensional photonic crystal is used to calculate the effect of design parameters on the 

optical response of these structures .The analytical expression of density of states, effective 

index and group velocity is used to comparatively study the optical properties of selected 

photonic crystals. The application of one dimensional photonic crystal as omnidirectional 

reflector is mathematically designed which can be tuned by changing the design parameters. 

The comparative study of effect of material dispersion on the Omni-directional Reflector 

(ODR) properties is examined. One dimensional photonic crystal based microcavity chemical 

sensors are also designed using anisotropic effects.  

The first chapter deals with the introduction and literature review of work and various 

applications of 1DPC. The second chapter represents the mathematical modelling of linear 

1DPC for obtaining the dispersion relation and transmission coefficients. The effect of design 

parameters on the optical response of 1DPCs is analysed in this chapter. The third chapter 

deals with application of 1DPCs as (ODRs). The optimisation of ODR has been analysed on 

the basis of design parameters in this chapter. We have designed 1DPC microcavity based 

anisotropic and isotropic bio-chemical sensors. The theory of design, mathematical modelling 

and comparison of sensitivity is mentioned in fourth chapter.The design of Metallo-Dielectric 

1DPCs and its applications are discussed fifth chapter. In the sixth chapter, conclusion and 

future scope of work has been discussed.  
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                                    ddefect = 534.48 nm, (a) N = 7, (b) N = 9, (c) N = 11, (d) N = 13. 



Figure (4.6)    Resonant microcavity mode in Si/Air 1DPC with Air defect layer with 

                               n1 = 1, n2 = 3.42, d1 = 267.24 nm, d2 = 113.30 nm, ndefect = 1, 

                              ddefect = 534.48 nm, (a) N = 5, (b) N = 7, (c) N = 9, (d) N = 11. 

Figure (4.7)     Resonant microcavity mode in Si/Air 1DPC with Si defect layer n1 = 1, 

                               n2 = 3.42, d1 = 267.24 nm, d2 = 113.30 nm, ndefect = 3.42, ddefect =

                               226.6 nm, (a) N = 5, (b) N = 7, (c) N = 9, (d) N = 11. 

Figure (4.8)    Variation of logarithmic Q-value with increasing the number of layers in 

      Si/SiO2 and Si/Air 1D-PC with defect of constituent layers.  

Figure (4.9)       Incident,  reflected and transmitted p and s modes of light wave with their 

      wave vectors  ka, k′a, kf , respectively. 

Figure (4.10)     Schematic diagram of (a) 1D-PSMC-1 and (b) 1D-PSMC-2. 

Figure (4.11)       The reflectance (red lines) and transmittance (black lines) spectrum for s 

       and p- polarizations for anisotropic 1D-PSMC-1 for nvoid = 1 

Figure (4.12)       The reflectance (red lines) and transmittance (black lines) spectrum for s 

       and p- polarizations for anisotropic 1D-PSMC-2 for nvoid = 1. 

Figure (4.13)        Reflection spectrum of anisotropic 1D-PSMC-1 sensor and wavelength 

        red-shift observed with change in the refractive index of analyte inside the 

        pores (red lines) (a) nvoid = 1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) 

                                 nvoid = 1.4 (e) nvoid = 1.5, with respect to air in pores (nvoid = 1) for s- 

            polarization (black lines). 

Figure (4.14)        Reflection spectrum of anisotropic 1D-PSMC-1 sensor and wavelength 

        red-shift observed with change in the refractive index of analyte inside the 

        pores (red lines) (a) nvoid = 1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) 

                                  nvoid = 1.4 (e) nvoid = 1.5 with respect to air in pores (nvoid = 1) for p- 

                 polarization (black lines). 

Figure (4.15)        Reflection spectrum of anisotropic 1D-PSMC-2 sensor and wavelength 

        red-shift observed with change in the refractive index of analyte inside the 

        pores (red lines)  (a) nvoid = 1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) 

                                  nvoid = 1.4 (e) nvoid = 1.5 with respect to air in pores (nvoid = 1) for s- 

                 polarization (black lines). 



Figure (4.16)           Reflection spectrum of anisotropic 1D-PSMC-2 sensor and wavelength 

           red-shift observed with change in the refractive index of analyte inside 

           the pores (red lines) (a) nvoid = 1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) 

                                      nvoid = 1.4 (e) nvoid = 1.5 with respect to air in pores (nvoid = 1) for  

                    p-polarization (black lines). 

Figure (4.17)         The reflectance spectrum (red lines) and transmittance spectrum (black 

           lines) for s and p- polarization for isotropic 1D-PSMC-1 for nvoid = 1 

Figure (4.18)          The reflectance spectrum (red lines) and transmittance spectrum (black 

            lines) for s and p- polarization for isotropic 1D-PSMC-2 for nvoid = 1. 

Figure (4.19)            Reflection spectrum of isotropic 1D-PSMC-1 sensor and wavelength 

           red-shift observed with change in the refractive index of analyte inside 

           the pores (red lines)  (a) nvoid = 1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) 

                                      nvoid = 1.4 (e) nvoid = 1.5 with respect to air in pores (nvoid = 1)               

           (black lines).  

Figure (4.20)            Reflection spectrum of isotropic 1D-PSMC-2 sensor and wavelength 

           red-shift observed with change in the refractive index of analyte inside 

           the pores (red lines) (a) nvoid = 1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) 

                                      nvoid = 1.4 (e) nvoid = 1.5 with respect to air in pores (nvoid = 1)  

           (black lines). 

Figure (4.21)           Sensitivity comparision of anisotropic 1D-PSMC sensors   and  isotropic 

          1D-PSMC sensors. 

Figure (5.1)         Transmittance spectrum for Metallo-Dielectric 1D-PC with d1=200nm 

          (Cryolite) d2=10 nm (Ag). 

Figure (5.2)          Density of states in Metallo-Dielectric 1D-PC with d1=200 nm (Cryolite) 

                   d2=10 nm (Ag). 

Figure (5.3)         Spectral response of 1D-MDPC with change in number of layers. 

Figure (5.4)         Spectral response of 1D-MDPC with change in thickness Fill-Factor of 

          metal layer. 

Figure (5.5)          Spectral response of TE modes in 1D-MDPC with change in angle of 

           incidence. 



Figure (5.6)   Spectral response of TM modes in 1D-MDPC with change in angle of 

    incidence. 

Figure (5.7)    Comparative Spectral response of 1D-MDPC with Ag and Au. 

Figure (5.8)   Comparative Spectral response of 1D-MDPC with Ag and Al 
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CHAPTER-I  

INTRODUCTION 

1.1 PHOTONIC NANOSTRUCTURES 

The beginning of research on periodic nanostructures in photonics has unwrapped new 

scenarios in various fields with unique optical properties of light-matter interaction. Nano-

photonics is a promising field in optics which deals with interaction of light with thin 

nanostructures of different optical constants. The thickness of each layer of the 

nanostructure is of the order of wavelength of interacting radiation. The structure shows 

interesting optical properties at this thickness scale due to superposition effects of light 

within a small volume. This has led to realization of optical devices like micro-lasers, 

antireflection coatings, optical switches, optical storage devices, biosensors and many more 

novel applications. 

Optical properties of these periodic nanostructures can be observed throughout the natural 

world, from changing colours of an opal held to the observed reflection patterns on a 

butterfly’s wings. Nature has been exploiting photonic crystals for millions of years, but 

humans have only recently started to realise their potential. Photonic Crystals (PC) or 

Photonic Band Gap (PBG) materials are periodic nanostructures composed of periodically 

arranged low and high refractive index materials with thickness comparable to wavelength 

of incident light [1.1]. They are characterized by allowed photonic energy bands and 

electromagnetic forbidden bandgaps or PBGs. In other words, the propagation of 

electromagnetic waves, whose frequencies lie within the PBGs, is prohibited. This property 

of PCs to mould photons led to many potential applications [1.2]. 

An optical system possessing a periodic modulation of dielectric constant on wavelength 

scale can be considered as a PC in the same way as periodic distribution of one or more 

atoms or ions constitutes a solid-state crystal. The atomic distribution scatters the electrons 

in a solid-state crystal and breaks the free energy electron dispersion relation into allowed 

bands and gaps. In the same way the periodic modulation of dielectric constant in a PC 

breaks the free photon energy dispersion relation into allowed photonic bands and gaps 

[1.3]. The scattering centres in PC are the periodic regions of high dielectric constant and 

this periodic refractive index in PC is equivalent to the periodic potential of ions in solid 

state crystals. If a complete gap is there in the photonic dispersion relation which means 
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photons within this frequency range will not be able to enter in this PC from outside and 

will not be able to leave the crystal from inside, irrespective of the direction of propagation 

of light. Frequencies of photons which are allowed to travel through this crystal are called 

modes and groups of allowed modes are called photonic bands and disallowed frequency 

bands are called gaps or PBGs [1.4]. 

 

 

 

 

 

   

Figure 1.1: (a) One dimensional photonic crystal (b) Two-dimensional photonic crystal (c) 

Three-dimensional photonic crystal. 

In these PC structures the refractive index is a periodic function in space and if the refractive 

index is periodic only in one dimension, then the structure is called one dimensional 

photonic crystal (1DPC).  With periodicity in two and three dimensions, the structures are 

known as two dimensional photonic crystals (2DPC) and three-dimensional photonic 

crystals (3DPC), respectively, as shown in Fig 1.1. The classification of PCs depends not 

only on the nature of periodic modulation but also depends on phase matching requirements 

and nature of materials forming the layers. A 1DPC can be purely periodic, where the linear 

optical constant is alternately modulated or quasi periodic like Quasi-phase matched (QPM) 

structure or a Fibonacci quasi-crystal. 

1.2 MAXWELL’S EQUATION IN PERIODIC MEDIA 

Felix Bloch in 1928 studied propagation of waves in three-dimensional periodic media. 

Bloch proved that in such a medium the wave travels without scattering and they are 

characterised by a periodic envelope function multiplied by a plane wave. Bloch studied 

quantum mechanics and according to it the electrons in a conductor are scattered by the 

imperfections and not by the periodic ions, the same method can be applied to 

electromagnetism by putting Maxwell’s equation as an eigenvalue problem in analogue 
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with Schrödinger equation. By combining the Faraday’s law and Ampere’s law at a fixed 

frequency we get: 

∇⃗⃗ ×
1

ε
∇⃗⃗ × H⃗⃗ = (

ω

c
)
2
H⃗⃗ ,                           (1.1) 

where ε is the dielectric function and c is the speed of light. A photonic crystal corresponds 

to a periodic dielectric function ε(x⃗ ) = ε(x⃗ + Ri⃗⃗  ⃗) for some primitive lattice vectors Ri⃗⃗  ⃗ (i = 

1, 2, 3 for all three dimensions). In this case the Bloch theorem states that the solution to 

Eq. (1.1) can be chosen of the form H⃗⃗ (x⃗ ) = eik⃗⃗
 .x⃗  H⃗⃗ n,k⃗⃗ (x⃗ ) with eigenvalues ωn(k⃗ ), where 

H⃗⃗ n,k⃗⃗ (x⃗ ) is the periodic envelope function satisfying  

(∇⃗⃗ + ik⃗ ) ×
1

ε
(∇⃗⃗ × ik⃗ ) × H⃗⃗ n,k(x⃗ ) = (

ωn(k⃗⃗ )

c
)
2

H⃗⃗ n,k⃗⃗ (x⃗ ),                               (1.2) 

yielding a different eigenvalue problem over the primitive cell of the lattice at each Bloch 

vector k⃗ . These eigenvalues ωn(k⃗ ) are continuous functions of  k⃗ , forming the discrete 

bands when plotted versus k⃗  in a dispersion diagram. The eigensolutions are periodic 

functions of k⃗  as well, the eigensolution at k⃗  is same at k⃗  +Gj , where Gj is the primitive 

reciprocal lattice vector defined by Ri. Gj = 2πδi,j. Due to periodicity, one considers the set 

of equivalent wave vectors closest to origin k⃗  = 0, a region called the first Brillouin zone. 

In one dimensional system, where R1 = a for some periodicity a, G1=2π/a, the first Brillouin 

zone is the region k⃗ =  −
π

a
  to k⃗ =

π

a
, all the other wavevectors are equivalent to some 

points on this zone under translation by a multiple of G1. The familiar dispersion relations 

of uniform waveguides arise as a special case of Bloch formalism, such translational 

symmetry corresponds to a period a → 0. In this case, the Brillouin zone of wavevector   

k⃗  (also called β) is unbounded and the envelope function H⃗⃗ n,k⃗⃗ (x⃗ ) is a function only of the 

transverse coordinates. 
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1.3 ORIGIN OF PHOTONIC BAND GAP 

A complete photonic gap is a range of frequencies for which there are no propagating   

solutions of Maxwell’s Eq. (1.2) for any 𝑘⃗  , surrounded by propagating states above and 

below the gap. There is also incomplete bandgap, which exist over a subset of all possible 

wavevectors, polarisations and / or symmetries. Consider a one-dimensional system with 

uniform medium, which has plane wave eigen solutions 𝜔 = 𝑐𝑘  as depicted in Fig. 1.2 

(left). We can label the states in terms of Bloch envelope function and wave vectors   for 

𝑎 > 0, the bands for  |𝑘| > 𝜋/𝑎 are translated (folded) into the first Brillouin zone as 

shown by the dashed lines in Fig. 1.2 (Left). In place of writing these wave solutions with 

electric field 𝐸⃗ (𝑥)~𝑒±𝜋𝑥/𝑎, we can equivalently write in terms of linear combinations 

𝑒(𝑥) = cos(𝜋𝑥/𝑎) and 𝑜(𝑥) = sin(𝜋𝑥/𝑎)  both at 𝜔 =
𝑐𝜋

𝑎
  as shown in Fig.1.3.  

 

Figure 1.2: Left: Dispersion relation (ω verses k) for a uniform one dimensional region, 

where the dashed lines show the folding effect of applying the Bloch theorem with 

periodicity a. Right: Dispersion relation in a periodic dielectric variation where a gap has 

been opened by splitting the degeneracy at  𝑘 = ±𝜋/𝑎 Brillouin zone boundaries. 
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Figure 1.3: Schematic origin of bandgap in one dimension. The degenerate 𝑘 = ±𝜋/𝑎 

plane waves of a uniform medium are split into cos(𝜋𝑥/𝑎) and sin(𝜋𝑥/𝑎) standing waves 

by the dielectric periodicity, forming the lower and upper edges of bandgap, also 

 cos(𝜋𝑥/𝑎) has electric field peaks at higher dielectric medium so will lie at lower 

frequency than the sin(𝜋𝑥/𝑎) which peaks at lower dielectric medium. 

By the same arguments, it follows that any periodic dielectric variation in one dimension 

will lead to bandgap. In order to get a complete bandgap to arise in two and three 

dimensions, bandgaps in each symmetry direction must overlap in frequency. In order that 

they overlap, the gaps must be sufficiently large which requires high dielectric contrast. 

The periodicity should also be the same in different directions. The largest gap arises for 

hexagonal lattices in 2D and fcc lattices in 3D which have nearly circular / spherical 

Brillouin zones. The fabrication of 3DPC in the optical wavelength range is one of the 

difficult challenges to nanotechnology. Even accurate fabrication of 1DPC and 2DPC with 

nanometre size variations still possess serious manufacturing challenges. The PCs provide 

promising possibilities to be used in various optoelectronic applications so the research 

activities in PCs have increased exponentially in the last decade. Many analytical and 

numerical techniques have been developed for analysing the wave propagation in 

inhomogeneous media and in general case when the inhomogeneity is in three dimensions, 

the exact solution of the problem is extremely hard to obtain and one is forced to use some 

approximation scheme [1.5]. In the cases where the inhomogeneity is one dimensional, 

however, there exist several theoretical methods that allow exact solutions of the problem 

in some simple situations [1.6]. This can be used to obtain exact solutions for the reflection 

and transmission coefficients of incoming waves and the electric and magnetic field 

amplitudes inside arbitrarily inhomogeneous media [1.7]. 
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1.4 LITERATURE REVIEW  

1.4.1 Brief History of Photonic Crystals 

Historically, the property of periodic medium was introduced by Lord Rayleigh in the end 

of the 18th century. After a long time, the property of periodic medium was theoretically 

explored by F. Bloch in 1928. In 1972, Bykov explained that the spontaneous emission of 

atoms at optical wavelengths can be reduced by placing them in periodic lattice of 

dielectrics with pitches smaller than the wavelength of radiation [1.5]. In 1976, P.Yeh et. 

al., gave an idea of light behaviour in the periodic media with dispersion relation, and the 

band structure in analogue with Bloch phases [1.6]. The idea was implemented by E. 

Yablonovitch [1.1] and S. John [1.7] in 1987. Thereafter, an era of research in photonic 

crystals and its applications began. Yablonovitch focussed on designing three dimensional 

photonic crystals to enhance the density of optical states and hence to control the 

spontaneous emission of materials embedded within photonic crystals. The tools of 

classical electromagnetic theory can be used to explain the behaviour of light in these 

periodic media. Propagation of light in photonic crystals is analogous to the flow of 

electrons in crystalline atomic lattice, where periodic potential of the electron wavefunction 

produces electronic bandgap. The concept of defect lattice and light localisation was 

introduced by John [1.7]. A lot of research work was done around this period but most of 

them were theoretical studies and little experimental work was reported in micron scale. 

The reason behind this was the difficulty to achieve the experimental realisation of nano-

scale structuring with the existing fabrication technology. 

A theoretical investigation using plane wave expansion method for Maxwell’s equations 

predicted the existence of photonic band structure of a face centred cubic lattice [1.8]. In 

1992, a two-dimensional photonic crystal was fabricated using GaAs / InGaAs [1.9]. The 

existence of complete photonic band gap was experimentally verified in a three-

dimensional photonic crystal fabricated using layer by layer method in wood pile structure 

[1.10]. The application-based research on photonic crystals flourished towards the end of 

the 20th century. It has also been reported that the nonlinear interactions are enhanced in a 

periodic high Q cavity medium [1.11]. First integrated optical device using photonic 

crystals was designed in 1996 [1.12]. This device had a transmission waveguide designed 

with a line defect in photonic crystal and it realised high transmission and 90° bends which 

could never be attained by conventional waveguides. The main drawback with 
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conventional waveguides based on total internal reflection was to bend the light to large 

angles and this difficulty was overcome by the use of photonic crystal waveguides. Super-

prism effects have also been observed in photonic crystals [1.13]. A 2DPC defect mode 

laser was invented in 1996 [1.14]. Currently photonic band gap fibers (PBGF) designed 

from 2DPC promises important applications in optical communications. PBGF has the 

advantage over conventional single mode fiber as it can guide the light by phenomena of 

diffraction rather than total internal reflection. PBGF provides data delivery without 

nonlinear effects and material damage [1.15]. Plasmonics is another field of nano-photonics 

in which nonlinear optical materials with periodicity in wavelength scale are integrated 

with metal nano-particles. Presently research in plasmonics has attained considerable 

attention [1.16]. 

The first experimental realisation of three-dimensional photonic crystal with photonic band 

gap in near infrared region was reported in 1996 [1.17]. A full three-dimensional photonic 

crystal fabricated using wafer–fusion technique exhibited complete photonic band gap at 

optical communication wavelengths [1.18]. A defect in the 3D structure provides strong 

localisation of resonant photons in it and this effect allows perfect control of light 

propagation through such a structure. The recent advances in fabrication techniques 

encourage the development of photonic devices with applications including optical 

communication, photovoltaic and bio-photonics. It has been observed that a 3D photonic 

crystal can absorb more solar light than conventional thin films. Increased solar absorption 

leading to enhanced photocurrent density with an ultra-thin (100-300 nm) layer of gallium 

arsenide has been reported [1.19]. The metallic photonic crystals can be employed for an 

emission spectrum useful for solar thermo-photovoltaic applications as they exhibit high 

spectral emissivity compared to unstructured metals [1.20]. 

The 1DPC has been subject of interest to large theoretical and experimental research, 

because of its simplest design and complicated practical realization due to fabrication 

accuracy. One of the main applications of 1DPC is the omnidirectional reflector. In 1999, 

the first omnidirectional reflector was designed experimentally [1.21]. This designing was 

later extended to waveguide formation, where the core was filled with lossless high index 

material, so that light is confined to the core of the omnidirectional reflector thus enabling 

high power laser guidance at various wavelengths in visible – IR region. These structures 

can exhibit high gain nonlinear effects [1.22]. One dimensional nonlinear photonic crystal 

has been explored extensively for various nonlinear phenomena like higher harmonic 
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generation, self-focussing, self-steepening, pulse trapping and self-phase modulation. 

These effects are explored in designing of devices including higher harmonic generation 

[1.23] and pulse shaping mechanism like pulse compression [1.24-1.25]. These structures 

offer soliton propagation with balancing of non-linearity with dispersion effects [1.26]. One 

dimensional photonic crystal with defect exhibits high nonlinear gain and such structures 

can be used as a micro cavity for optical applications [1.27]. 

1.4.2 Introduction of Defects to the Periodic Structures 

The periodicity in photonic crystals produces allowed energy bands and forbidden energy 

gaps and in the bandgap region no electromagnetic waves are allowed. A defect or 

imperfection in the otherwise perfect crystal sustains modes in the bandgap region [1.28 - 

1.34]. In analogy with semiconductor crystals where the dopant and acceptor impurities 

create localized electromagnetic levels like donor level and acceptor level, intentional 

impurities added in photonic crystals creates localised modes inside the bandgap region 

[1.35–1.43]. This gives the possibility of confining light within the localised modes and to 

be used at sharp bends without losses in photonic integrated circuits [1.12, 1.44 - 1.48]. The 

defect introduced in an otherwise perfect crystal can be one dimensional (1D), two 

dimensional (2D) or three dimensional (3D). In 1D defect, light can be confined to a single 

defect plane whereas in 2D defect, light can be localized along a linear defect while in 3D 

defect, light can be trapped at a single point known as “cage of photon” [1.49]. Figure (1.4) 

shows the various types of inserted defects. One of the imperfections is changing the 

dielectric medium at a place in a photonic crystal or modifying its size or simply removing 

it [1.50]. A defect mode appears in the bandgap region leading to a strong localised state. 

By removing the dielectric medium at a place in a photonic crystal creates a cavity which 

is surrounded by reflecting walls. If the cavity is of sufficient size to support a mode, then 

the light is strongly confined in this cavity, which is also called resonant cavity.  
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Figure 1.4 (a) One dimensional photonic crystal with defect layer of air in between a multi-

layered (AB)12 structure. The refractive index and the thickness of the two dielectric 

mediums being nA, nB and dA, dB respectively. 

 

 

 

 

 

 

 

  

 

 

 

Figure 1.4 (b) Two-dimensional photonic crystal with a line defect layer   

 

 

 

Defect layer 

Defect Layer 

𝑛𝑎𝑖𝑟 

 

Air 

𝑑𝑎𝑖𝑟 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 



10 
 

 

                                      

Figure 1.4 (c) Three-dimensional photonic crystal with a cavity point defect and waveguide 

inside the bulk 

The resonant cavity mode inside the bandgap can be tuned by removing the dielectric or 

adding impurity [1.51-1.53]. This flexibility of tuning the defect modes makes microcavity 

photonic crystals useful in many applications including various optical sensors, filters, 

couplers, laser micro cavities with high Q value, etc. Line defect in otherwise perfect 

crystals creates a waveguide in which light is confined and directed along the waveguide. 

This resonant cavity waveguide has advantage over conventional dielectric waveguides like 

optical fiber in which light travels by phenomena of total internal reflection. In an optical 

fiber there is too much loss when it is bent at sharp corners because the condition of total 

internal reflection is not fulfilled. However, in resonant cavity waveguides, light travels 

through the defect mode in the bandgap region such that it can bend at sharp corners. 

Photonic crystal resonant cavity waveguides bring compactness to the photonic integrated 

circuits. 

1.4.3 Applications of Photonic Crystals  

The photonic crystals have the unique ability of controlling the photons, which make them 

useful in many future optical and photonic applications. Photonic crystals can improve the 

performance of waveguides [1.12, 1.40-1.42, 1.54 -1.58]. Photonic crystal waveguide is 

basically a photonic crystal with defect mode which allows the propagation of light in a 

specific direction. Photonic waveguides are superior to dielectric and metallic waveguides 

because of the photonic bandgap properties that make them lossless. A straight photonic 

crystal waveguide with discrete periodicity can produce mode coupling whenever Bragg’s 

condition is satisfied. Photonic crystal waveguides can be easily created by removing a row 

of air holes or embedding dielectric waveguides in photonic crystal slabs [1.12, 1.44, 1.61]. 
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Photonic crystals are used to make resonant microcavities where light is trapped in 

intentionally created defects leading to strong localisation of electric field inside the small 

volume of micro-cavities [1.49, 1.50, 1.62]. Photonic crystals with defects cause the 

concentration of high electric fields in the defect mode which give rise to enhancement of 

nonlinear optical phenomena [1.59, 1.60, 1.63-1.65]. Photonic crystals can be inserted in 

conventional waveguides to create optical filters with special transmission characteristics 

which can create optical systems with small volume, instantaneous response and consume 

small amounts of power [1.65-1.67]. One of the important needs in optics is to create 

omnidirectional reflectors which can reflect light irrespective of the angle of incidence and 

state of polarisation. Photonic crystals are used to create tuneable omnidirectional reflectors 

with desired frequency ranges [1.22, 1.68-1.76]. Photonic crystal microcavities with defect 

modes are used as optical sensors for sensing refractive index, pressure, temperature, etc. 

One of the most successful applications of photonic crystals is in the development of 

photonic crystal fibers (PCFs) [1.51, 1.77-1.81]. PCF is different from conventional optical 

fiber because PCF light travels in a hollow core with the property of photonic crystals. PCF 

is finding applications in optical communication, fiber laser, nonlinear devices, high power 

transmission, sensitive gas sensors and other areas. PCF are categorised into photonic-

bandgap fiber, holey fiber (PCF with air holes in the cross-sections), Bragg fiber (PCF 

formed by concentric rings of multilayer films). 1DPCs are very much used in thin film 

optics from low reflection and high reflection coatings on lenses and mirrors to colour 

changing paints and inks. 2DPCs are used in nonlinear devices and to guide exotic 

wavelengths. 3DPCs can lead to efficient photovoltaic devices. 

The fabrication of photonic crystals with full 3D band gap in the optical wavelength range 

is one of the most difficult challenges for the micro-system and nano-system technologies. 

Even accurate fabrication of 1D and 2D structures with nanometre-size features often 

possess serious manufacturing challenges. In recent years, much effort has been made to 

demonstrate the localization of light experimentally [1.82]. Another important area of 

research has been created from an analogy with the electronic band structure problem in 

condensed matter physics. In media where the dielectric permeability varies periodically in 

space, a series of photonic band gaps can appear in their frequency spectra. Because of the 

promising possibility that the number of devices based on this phenomenon can be used in 

various optoelectronic applications, research activity in photonic crystals has increased 

exponentially in the last decade. A number of analytical and numerical techniques have 
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been developed for analysing the wave propagation in inhomogeneous media. In the most 

general cases where the inhomogeneity is three dimensional, the exact solution of the 

problem is extremely hard to obtain and one is forced to use some approximation scheme. 

In the cases where the inhomogeneity is one dimensional, however, there exist several 

theoretical methods that allow exact solutions of the problem in some simple situations. It 

can be used to obtain exact solutions for the reflection and transmission coefficients of 

incoming waves and the electric and magnetic field amplitudes inside arbitrarily 

inhomogeneous media. 

1.5 THEORETICAL TOOLS TO STUDY THE INTERACTION OF LIGHT WITH 

PHOTONIC CRYSTALS  

There are some effective tools to study the propagation of light through a periodic medium. 

The widely used methods are Transfer Matrix Method (TMM), Plane Wave Expansion 

Method (PWE) and Finite Difference Time Domain (FDTD) method. 

1.5.1 Plane Wave Expansion Method: 

The PWE method is one of the most extensively used methods to calculate band structure 

because of its convenience [1.83]. Kushwaha et al. [1.84] firstly obtained the band structure 

of a PC by PWE. The PWE method includes expansion of all parameters such as modulus, 

density, and Poisson’s ratio as the Fourier series in the reciprocal space. The equations of 

motion are transformed into the standard eigenvalue problem based on the Bloch theorem. 

The band structure of the dispersion relations between the frequency and wave vector is 

obtained by solving the eigenvalue equation. It is a convenient assumption that the wave 

vector just needs to traverse along the boundary of the irreducible region of the first 

Brillouin zone. The PWE shows great advantages in dealing with scatterers of different 

geometries and different arrangements, because it does not require meshing and 

reconstructing the finite element matrix. But the conventional PWE has a disadvantage of 

the slow convergence rate, especially for systems of either very high or very low filling 

ratios or of large elastic mismatch. The fictitious band gaps always appear as redundant 

lines in the band structure. Nevertheless, an improved PWE has a good convergence and 

can provide much more accurate numerical results [1.85, 1.86]. 
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1.5.2 Finite Difference Time Domain Method  

It can be shown from Maxwell’s differential equations that the time derivative of the E-

field is dependent on the H-field across the space. This gives the basic FDTD relation that 

at any point in space, the change in E-field with time is dependent on the stored value of 

the E-field and the curl of the local distribution of H-field in space. Similarly, the H-field 

is time stepped, at any point in space the change in H-field with time is dependent on the 

stored value of the H-field and the curl of the local distribution in E-field in space. In this 

technique the finite differences of the temporal and spatial derivatives of the E-fields and 

H-fields are computed using central difference approximations. At a particular instant the 

magnetic field vector components are solved and then the electric field vector components 

are calculated at the next instant. This process is repeated for the whole problem area till 

the exact picture of propagation analysis is completed. This method was introduced by 

Taflove [1.87] for analysing wave propagation in bulk medium. Chan et. al. [1.88] 

implemented this method to compute the band structure of multi-layered structures of high 

complexity. This method is a time domain method hence the solution covers a wide range 

of frequencies. This method has emerged as a commercial tool for device designing using 

photonic crystal structure.  

1.5.3 Transfer Matrix Method  

This method is used in optics and acoustics to study the propagation of electromagnetic 

and acoustic waves through multi-layered medium. The Transfer Matrix method is based 

on the fact that according to Maxwell’s equations and the boundary conditions, the 

components of electric field and magnetic field are continuous across the boundaries from 

one medium to another. In case of a multi-layered system the field components at the 

starting layer are related to the field components at the end layer through transfer matrix 

operation [1.89]. The transmission and reflection coefficients of this multi-layered system 

can be derived from the field components. Abeles [1.90-1.91] studied the propagation of 

electromagnetic waves through multi-layered medium and framed this method. Later P. 

Yeh [1.6] extended this method for periodically stratified medium and the conditions of 

photonic band gap (PBG) were derived. This method is then proposed to find the 

dispersion relation and electrostatic potential calculations in multi-layered systems. The 

transfer matrix method to calculate the reflection and transmission coefficients in a thin 
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film is described here.  Transfer matrix method correlates the amplitude of incoming wave 

and outgoing wave.  

The TMM is a very useful method for calculation of reflection and transmission 

coefficients in multi-layered systems. It can analyse real and complex refractive index so 

it can be used to study lossless, absorptive and amplifying mediums. There is no restriction 

on the number of layers in this method for multi-layered structures. All these layers can be 

ordered in any manner and there is no essential requirement of periodicity. If the structure 

has periodicity, then the unit cell can be composed of any number of layers. The thickness 

and refractive index of the periodic layers can be defined independently. There is no 

restriction on thickness and refractive index of layers which makes this method suitable 

for modelling different periodic multilayer structures stacked together. This method can 

handle high refractive index contrast between the constituent layers, hence suitable for 

modelling multilayer structures, which usually have a high index contrast between their 

composite materials. 

The TMM method assumes the plane perpendicular to the direction of propagation of the 

wave to be infinite, which means the multilayer structures extends infinitely in the other 

two dimensions, which is not realistic. So, the layers which are used have to be wide 

enough to avoid errors from this assumption. This method calculates the field throughout 

the multilayer structure by matrix multiplication, so it depends on the computation speed 

and therefore is limited by it. This method is limited to continuous wave propagation and 

cannot handle pulse propagation. This method is combined with the Fourier Transform 

method to deal with pulse propagation. 

1.6 MOTIVATION 

Photonic crystal is a composite dielectric with periodic modulation of refractive index that 

brings about a unique photonic band-gap effect by which light could be totally reflected 

on the surface of such material regardless of any incident angle or mode. Many 

applications based on this mechanism have been developed and introduced into new 

waveguides. Such band-gap effect could be understood by investigating the optical 

performance of one-dimensional photonic crystals. The wave-guides from 1DPCs are 

superior to conventional waveguides because of the bandgap property which makes them 

lossless. 1DPCs also work as optical filters that can be tuned in the desired wavelength 
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range. These optical filters are useful in optical networks and photonic circuits. 

Omnidirectional reflectors (ODR) formed by 1DPCs are superior over dielectric and 

metallic mirrors because of low absorption. ODRs find applications in photonic integrated 

circuits. 1DPCs with porous silicon layers are used for making microcavity sensors which 

can sense, liquid and gaseous chemical and biological analytes and environmental 

pollutants. These sensors are highly sensitive to change in refractive index due to the 

analytes inside its pores. The designed 1D-metallo-dielectric photonic crystals structures 

find applications in radio and microwave shields, transparent conductors, laser safety 

goggles, sunglasses for protection from UV rays etc. 

1.7 PROBLEM STATEMENT 

The bandgap of 1DPCs is controlled by its design parameters. The design parameters of 

1DPCs like thickness, refractive index contrast, ambient medium index and number of 

layers helps us to tune the PBG in the desired wavelength range. 1DPCs are used in a wide 

variety of applications like wavelength filters, optical switches, omnidirectional reflectors, 

microcavity and waveguides, wavelength multiplexers, optical sensors, colour displays 

and photovoltaic. ODR is a perfect mirror and is very useful in photonic integrated circuits. 

These reflectors are superior over the conventional dielectric and metallic mirrors. There 

is a need for highly efficient ODRs with optimised design parameters.  The width of the 

ODR band can be tuned to the desired wavelength range of application by selecting 

different materials and by changing the design parameters.  

1DPCs with introduction of defect layer creates a microcavity structure which is widely 

used in waveguide and sensing applications. High precision optical sensing of chemical-

analytes, bio-analytes, gases and environmental pollutants is the need of the hour. One of 

the applications of 1DPC microcavity structure is in designing of chemical and gas sensors 

with high sensitivity. Porous silicon based 1DPC microcavity sensors are superior over 

conventional sensors and have high sensitivity. 1DPCs with metallo-dielectric layers find 

application in microwave shielding and transparent conductors and UV-filters. 
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1.8 RESEARCH OBJECTIVES 

• To characterize the photonic crystals using matrix approach. 

• The emphasis of work will be on 1DPC waveguides and devices with different design 

parameters. 

• To design and propose new designs of photonic crystal waveguides and optoelectronic 

devices. 

• To study the analytical treatment for the density of states in 1DPC. 

• To compare the analytical expression for the density of states with the results of direct 

numerical calculations. 

1.9 ORGANIZATION OF THESIS 

Chapter 1: Introduction 

This chapter deals with the introduction of photonic crystals and its literature review. The 

development of PCs over the years along with its utility in various applications is studied. 

Advantages of 1DPC over 2DPC, 3DPC and other conventional waveguides are discussed 

through literature review. The mathematical models like PWE, FDTD method and TMM 

are studied to characterize the spectral response of 1DPCs. The versatility of 1DPCs to be 

used in opto-electronic devices and sensing applications gives the motivation for work 

Chapter 2: Mathematical Modeling and Effect of Design Parameters on Optical 

Response of 1DPC 

In this chapter the mathematical modelling of 1DPC is done by solving the wave equation 

in a multi-layered periodic medium. The dispersion relation is obtained by applying 

boundary conditions and Bloch theorem. The reflection and transmission coefficients in 

1DPC are calculated using TMM where the thickness of constituent layers is taken from 

quarter wave stack condition. 

Chapter 3: Omnidirectional Reflection Band in 1DPC 

This chapter deals with one of the applications of 1DPC as ODR. An ODR is a perfect 

reflector which has high reflectance in a specific wavelength range irrespective of the angle 

of incidence and state of polarization of the incident wave. 

Chapter 4: Microcavity Defect in 1DPC 

This chapter deals with simulation study of single defects in 1DPC to make resonant 

microcavities. PCs with defects lead to localised electromagnetic modes inside the 

bandgap region. Many useful devices are designed using impurities in the PCs e.g., micro-
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cavities, linear waveguides, etc. Impurities destroy the perfect translational symmetry in 

the photonic crystals. This can be achieved in a periodic dielectric structure by various 

methods e.g., adding impurity dielectric materials to a unit cell, removing dielectric 

materials from a unit cell, changing the dielectric constant of materials in a cell and by 

changing the size/geometry of materials in a cell in the lattice. The total effect will be a 

localized change of the average dielectric constant of the medium. Impurities at a single 

site serve as high quality factor microcavities. Such structures bind resonantly localized 

cavity modes about themselves having a frequency in a stop band of the photonic crystal. 

Since no light in the stop band can pass through the surrounding bulk materials, the 

impurity mode will be evanescent in the bulk material. Thus, a resonance occurs in a very 

narrow frequency range inside the stop band. The structure is then called a resonant 

microcavity, and the confined resonant mode about the structure is called the resonant 

excitation. The efficiency of the resonant cavity is characterized by a quality factor or Q 

value, a measure of the number of oscillations of light in the cavity before damping 

eventually causing the original excitation to decay away. The resonant excitations in such 

cavities are the basis of laser systems, Fabry-Perot oscillators, and photonic microcavities. 

Chapter 5: Metallo-Dielectric 1DPC 

In this chapter the transmission characteristics of 1D-Metallo-Dielectric PC (1DMDPC) 

with formation of structural and plasmonics bandgaps are studied. The structural bandgap 

is due to interference effects whereas the plasmonics bandgap is due to the bulk metal 

property. Transparent 1DMDPCs find applications in devices like microwave open door 

cavity, solar heat shields, laser safety goggles, sunglasses for protection from UV rays, and 

Radio waves shields. 

Chapter 6: Conclusion and Future Scope of Work  

This chapter presents the conclusions of the whole thesis and describes the expectations 

for further work in this area. 
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CHAPTER-II 

MATHEMATICAL MODELING AND EFFECT OF DESIGN 

PARAMETERS ON OPTICAL RESPONSE OF 1DPC 

INTRODUCTION:  

In this chapter the mathematical modelling of 1DPC is done by solving the wave equation in a 

multi-layered periodic medium. The dispersion relation is obtained by applying boundary 

conditions and Bloch theorem. The reflection and transmission coefficients in 1DPC are 

calculated using TMM where the thickness of constituent layers is taken from quarter wave 

stack condition.  

2.1 KRONIG PENNY MODEL 

 Electrons trapped inside a one-dimensional periodic rectangular potential well give rise to 

allowed energy bands and forbidden energy gaps. This model is known as the Kronig Penny 

Model. This model is also applicable for photons where the periodic potential is replaced by 

the periodic refractive index of the structure [2.1-2.8]. In the case of one-dimensional photonic 

crystal there is a periodic variation of refractive index where the periodicity is of the order of 

wavelength.  Fig. (2.1) below shows the periodic variation of refractive index with distance 

inside the crystal 

 

 

 

 

 

Figure (2.1): Periodic variation of refractive index in one dimensional photonic crystal 
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The periodic refractive index can be expressed as  

n(x) = {
n1,              0 ≤ 𝑥 ≤ d1
n2 ,     − d2 ≤   𝑥 ≤ 0

                                                                     (2.1) 

where 𝑑1 and 𝑑2 are thickness of the two medium and the corresponding refractive indices are   

𝑛1 and 𝑛2, respectively. The periodicity of the structure is 

  d = d1 + d2 , such that         n(𝑥) = n(𝑥 + d). 

We have the one-dimensional wave equation for the electromagnetic eigen-mode  ψk(𝑥) as  

∂2ψk(𝑥)

∂𝑥2
+
n2(𝑥)ω2k

c2
ψk(𝑥) = 0.                                                                                                   (2.2) 

Using Eq. (2.1) , the above equation yields 

∂2ψk(𝑥)

∂𝑥2
+
n1

2(𝑥)ω2k
c2

ψk(𝑥) = 0,           0 ≤ 𝑥 ≤ d1                                                                (2.3) 

∂2ψk(𝑥)

∂x2
+
n2

2(𝑥)ω2k
c2

ψk(𝑥) = 0, −d2 ≤ 𝑥 ≤ 0                                                               (2.4) 

Let α =
n1

c
ωk,   β =

n2

c
ωk 

∂2ψk(𝑥)

∂𝑥2
+ α2ψk(𝑥) = 0,              0 ≤ 𝑥 ≤ d1                                                                              (2.5) 

∂2ψk(𝑥)

∂𝑥2
+ β2ψk(𝑥) = 0,          − d2 ≤ 𝑥 ≤ 0                                                                           (2.6)  

Now according to Bloch’s theorem, the wavefunction in a periodic potential can be written as 

ψk(𝑥) = uk(𝑥)e
ik𝑥  so  

ψk(𝑥) = u1(𝑥)e
ik𝑥  ,                             0 ≤ 𝑥 ≤ d1                                                                       (2.7)  

ψk(𝑥) = u2(𝑥)e
ik𝑥   ,                             − d2 ≤ 𝑥 ≤ 0                                                                  (2.8) 

Using the Bloch’s theorem and applying the boundary conditions  



20 
 

u1(𝑥)|𝑥=0 = u2(𝑥)|𝑥=0                                                                                                                      (2.9) 

du1
d𝑥
|
𝑥=0

=
du2
d𝑥
|
𝑥=0

                                                                                                                          (2.10) 

u1(𝑥)|𝑥=d1 = u2(x)|𝑥=−d2                                                                                                 (2.11) 

du1
d𝑥
|
𝑥=d1

=
du2
d𝑥
|
𝑥=−d2

                                                                                                                    (2.12) 

We will get four equations with four unknown constants. To obtain a nontrivial solution of the 

equations the determinant of coefficient matrix of unknown constants must be zero. 

So [

A11 A12
A21 A22

A13 A14
A23 A24

A31 A32
A41 A42

A33 A34
A43 A44

] = 0.                                                                                                  (2.13)  

Where  

A11 = A12 = A13 = A14 = 1                                                                    

A21 = i(α − k),    A22 = i(α + k),    A23 = i(β − k), A24 = −i(β + k) 

A41 = i(α − k)eid1(α−k),   

 A42 = −i(α − k)e−id1(α+k), A43 = i(β − k)e−id2(β−k)A31 = e
id1(α−k),   

 A32 = e−id1(α+k),   A33 = e−id2(β−k), A34 = e
id2(β+k) 

A44 = −i(β + k)eid2(β+k).    

Here, k is the wave-number related to frequency 𝜔. After solving Eq. (2.13), we get the 

dispersion relation, 

k(ω) =
1

d
cos−1 [cos (

n1ωd1

c
) cos (

n2ωd2

c
) −

1

2
(
n1

n2
+
n2

n1
) sin (

n1ωd1

c
) sin (

n2ωd2

c
)]           (2.14) 
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2.2 TRANSFER MATRIX METHOD  

2.2.1 Application of TMM in a Thin Film 

Let us consider a plane wave incident on a thin dielectric film as shown in Fig. (2.3). Let (A1, 

A2
′ , A2, A3

′ ) represent the amplitude of the wave progressing towards right side and (B1, B2
′ , 

B2, B3
′ ) represent the amplitude of the wave progressing towards left side. 

n(x) = {

n1                                        x < 0       
n2                            0 < 𝑥 < 𝑑          
n3                                        d < 𝑥      

                                                 (2.15) 

  

 

 

 

 

 

 

 

 

 

 

  

Figure (2.2): Block diagram of two dielectric interfaces  

Where n1,   n2 , n3 are the refractive indices of layers 1, 2, 3 respectively and d is the thickness 

of film. The medium is homogenous in z-direction so the solution to the classical wave equation 

is   

E = E(𝑥)ei(ωt−βz)                                                                (2.16) 

Where β  is representing the z-component of wave vector and ω is the angular frequency. Since 

the wave is travelling along x-z plane and for s-wave, E⃗⃗  is parallel to y-axis and for p-wave, H⃗⃗  
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is parallel to y-axis. The total electric field E(𝑥) can be written as sum of Right side travelling 

wave and Left side travelling wave. 

E(𝑥) = Re−i𝑥𝑘𝑥 + Lei𝑥𝑘𝑥 = A(𝑥) + B(𝑥)                                                                          (2.17) 

where 𝑘𝑥 is the x-component of wave-vector and R and L are homogenous constants for Right 

side and Left side travelling waves A(𝑥) and  B(𝑥) are the amplitudes of Right and Left side 

travelling waves. To represent in matrix method, we use the following definitions  

A1 = A(0
−),  B1 = B(0

−), A2
′ = A(0+) , B2

′ = B(0+)                                                     (2.18) 

A2 = A(d−), B2 = B(d−), A3
′ = A(d+), B3

′ = B(d+)                                                       (2.19) 

where 0− represent the left side of the interface at 𝑥 = 0, and 0+ represent the right side of the 

interface at 𝑥 = 0, similarly d− represent the left side of interface at 𝑥 = d and d+represent the 

right side of interface at 𝑥 = d. 

The two amplitudes of E(𝑥) can now be shown related through a column matrix form  

(
A1
B1
) = D1

−1D2 (
A2
′

B2
′ ) = D12 (

A2
′

B2
′ )                                                                                             (2.20) 

(
A2
′

B2
′ ) = P2 (

A2
B2
) = (e

i∅2 0
0 e−i∅2

) (
A2
B2
)                                                                                     (2.21) 

(
A2
B2
) = D2

−1D3 (
A3
′

B3
′ ) = D23 (

A3
′

B3
′ )                                                                                             (2.22) 

where 𝑃2 is called the propagation matrix which represents the propagation through the bulk 

medium and the dynamical matricesD1, D2, D3 are given by  

D𝑙 = {
(

1 1
n𝑙 cos θ𝑙 −n𝑙 cos θ𝑙

) (s − wave)

(
cos θ𝑙 cos θ𝑙
n𝑙 −n𝑙

)             (p − wave)
                                                                     (2.23) 

where l = 1, 2, 3 and 𝜃𝑙 is the incident ray angle in l th layer and is related to β and 𝑘𝑙𝑥 as 

β = n𝑙
ω

c
sin θ𝑙                                                                                                                                   (2.24) 

𝑘𝑙𝑥 = n𝑙
ω

c
cos θ𝑙                                                                                                                               (2.25) 

and ∅2is given by 

∅2 = 𝑘2𝑥d                                                                                                                                          (2.26) 
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The matrices D12 and D23 are transmission matrices which relates the amplitudes of waves on 

two sides of the interface and are given by 

D12 =

(

 
 

1

2
(1 +

𝑘2𝑥
𝑘1𝑥

)
1

2
(1 −

𝑘2𝑥
𝑘1𝑥

)

1

2
(1 −

𝑘2𝑥
𝑘1𝑥

)
1

2
(1 +

𝑘2𝑥
𝑘1𝑥

)
)

 
 
  s − wave                                                                     (2.27) 

and  

D12 =

(

 
 

1

2
(1 +

n2
2 𝑘2𝑥

n1
2 𝑘1𝑥

)
1

2
(1 −

n2
2 𝑘2𝑥

n1
2 𝑘1𝑥

)

1

2
(1 −

n2
2 𝑘2𝑥

n1
2 𝑘1𝑥

)
1

2
(1 +

n2
2 𝑘2𝑥

n1
2 𝑘1𝑥

)
)

 
 
  p − wave                                                        (2.28) 

Similarly  

D23 =

(

 
 

1

2
(1 +

𝑘3𝑥
𝑘2𝑥

)
1

2
(1 −

𝑘3𝑥
𝑘2𝑥

)

1

2
(1 −

𝑘3𝑥
𝑘2𝑥

)
1

2
(1 +

𝑘3𝑥
𝑘2𝑥

)
)

 
 
  s − wave                                                                     (2.29) 

D23 =

(

 
 

1

2
(1 +

n3
2 𝑘3𝑥

n2
2 𝑘2𝑥

)
1

2
(1 −

n3
2 𝑘3𝑥

n1
2 𝑘1𝑥

)

1

2
(1 −

n3
2 𝑘3𝑥

n2
2 𝑘2𝑥

)
1

2
(1 +

n3
2 𝑘3𝑥

n2
2 𝑘2𝑥

)
)

 
 
  p − wave                                                        (2.30) 

D12 can now be written as  

D12 =
1

t12
(
1 r12
r12 1

)                                                                                                                      (2.31) 

where t12 and r12 are Fresnel transmission and reflection coefficients and are given by  

r12 =

{
 
 

 
 𝑘1𝑥 − 𝑘2𝑥
𝑘1𝑥 + 𝑘2𝑥

,                s − wave

n1
2 𝑘1𝑥 − n2

2 𝑘2𝑥

n1
2 𝑘1𝑥 + n2

2 𝑘2𝑥
    𝑝 − 𝑤𝑎𝑣𝑒

                                                                                         (2.32) 

and 

t12 =

{
 
 

 
 2𝑘2𝑥
𝑘1𝑥 + 𝑘2𝑥

            s − wave

2n2
2 𝑘2𝑥

n1
2 𝑘1𝑥 + n2

2 𝑘2𝑥
 p − wave

                                                                                            (2.33) 



24 
 

The amplitudes of incidence medium  A1, B1 and exit medium A3
′ , B3

′  are related as  

(
A1
B1
) = D1

−1D2P2D2
−1D3 (

A3
′

B3
′ )                                                                                                  (2.34) 

Each side of the interface is represented by dynamic matrix and each bulk medium is               

represented by propagation matrix. This method can be applied to multi-layered systems with 

the matrix multiplication in sequential order of the exact system. 

2.2.2: Application of TMM in Multilayer system 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure (2.3): Block diagram of N layered dielectric medium  

Let us consider a one-dimensional multi-layered dielectric structure with refractive index 

variation along x-axis. We assume that all the mediums are homogenous,  isotropic and 

infinitely extended as shown in Fig. (2.3). The total number of layers is considered as N.  The 

refractive index profile of the system can be described by 

Z 

X 
Y 

x=𝑥0 

X 

Z 

A0 A1 

B0 B1 

n1 n2 n3 

A2 

B2 

A3 

B3 

n0 

......................................

......................................

AN 

BN 

nN 

x=xN 

AS 

BS 

d1 d2 d3 dN 



25 
 

  n(x) =

{
 
 
 
 

 
 
 
 
n0,                       𝑥 < 0
n1,                      0 < 𝑥 ≤ 𝑥1
n2,                    𝑥1  < 𝑥 ≤ 𝑥2
.                                            
.                                            
.                                            
.                                           
nN,       𝑥𝑁−1  < 𝑥 ≤ 𝑥𝑁
ns,                              𝑥𝑁  < 𝑥

                                                                            (2.35) 

Here np is the refractive index of pth layer(1 < 𝑝 < 𝑁), the refractive index of surrounding 

medium layer is n0  and the refractive index of Nth layer is nN. The refractive index of substrate 

is ns. The thickness of layers is given by  

d1 = 𝑥1 − 𝑥0 

d2 = 𝑥2 − 𝑥1 

 d3 = 𝑥3 − 𝑥2 

 dN = 𝑥𝑁 − 𝑥𝑁−1  

The electric field of the   plane wave solution of Maxwell’s equations can be written as  

E = E(𝑥)ei(ωt−βz), where β is z-component of wavevector and ω is the angular            frequency. 

  E(x) =

{
 
 
 
 
 
 

 
 
 
 
 
 
A0e

−𝑖𝑘0𝑥(𝑥−𝑥0) + B0e
𝑖𝑘0𝑥(𝑥−𝑥0),                          𝑥 < x0

.

.

.

APe
−𝑖𝑘𝑝𝑥(𝑥−𝑥𝑝) + Bpe

𝑖𝑘𝑝𝑥(𝑥−𝑥𝑝) ,   𝑥𝑝−1 < 𝑥 < 𝑥𝑝
.
.

ANe
−𝑖𝑘𝑥𝑁(𝑥−𝑥𝑁−1) + BNe

𝑖𝑘𝑥𝑁(𝑥−𝑥𝑁−1) ,  𝑥𝑁−1 < 𝑥 < 𝑥𝑁
Ase

−𝑖𝑘𝑥𝑠(𝑥−𝑥𝑁) + Bse
𝑖𝑘𝑥𝑠(𝑥−𝑥𝑁) ,            𝑥𝑁  < 𝑥              

                                  (2.36) 

Where 𝑘𝑝𝑥is the x-component of wave-vector of pth layer given by 

𝑘𝑝𝑥 = ((
npω

c
)
2

− β2)

1

2

= np
ω

c
cos θp   , (p = 1,2,3,4, … . . N, s) 

Here A0, A1, … Ap, … AN, As are the amplitudes of waves travelling towards (+x) direction and 

B0, B1, … . Bp, …BN, Bs are the amplitude of waves travelling towards (-x) direction. The 

amplitudes of plane waves at the interface are related with matrix as  
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(
A0
B0
) = D0

−1D1 (
A1
B1
)                                                                                                         (2.37) 

(
Ap
Bp
) = P1Dp

−1Dp+1 (
Ap+1
Bp+1

)          (p = 1,2, ………… . . N)                                              (2.38) 

Here (p+1) is the substrate layer s, i.e., Ap+1 = As and Bp+1 = Bs 

Dp = (
1 1

np cos θp −np cos θp
)    TE − wave                                                                   (2.39) 

also Dp = (
cos θp cos θp
np −np

)           TM −  wave                                                                 (2.40) 

and Pp = (
ei∅p 0
0 e−i∅p

)                                                                                                      (2.41) 

where ∅p = 𝑘𝑝𝑥dp                                                                                                              (2.42) 

The amplitude of plane wave A0, B0 at the ambient medium (𝑥 = 𝑥0) and As, Bs  at the 

substrate medium (𝑥 = 𝑥𝑁) are correlated now by a matrix as  

(
A0
B0
) = (

M11 M12

M21 M22
) (
As
Bs
)                                                                                                 (2.43) 

where the matrix is given by  

(
M11 M12

M21 M22
) = D0

−1Ds∏Dp

N

p=1

PpDp
−1                                                                                      (2.44) 

2.2.3 Quarter Wave Stack Condition 

There is a specific condition in designing the 1D multi-layered photonic crystal which is called 

quarter wave condition where the thickness of each layer is made equal to quarter of 

wavelength of incident light. Take for example the refractive index of the two layers are n1 =

3.6, n2 = 1.5 for 𝜆0 as central wavelength of incident wave, the corresponding thickness of the 

two layers will be  d1 =
λ0

4n1
, d2 =

λ0

4n2
. The phase corresponding to a path length of quarter 

wave length is  
π

2
 . So ∅p =

π

2
  , and the propagation matrix from Eq. (2.41) becomes 

 Pp = (
i 0
0 i

)                                                                                                                                    (2.45) 

If light is incident form the ambient medium n0 with amplitudes A0, B0 and the exit medium 

(substrate) have amplitudes As, Bs , the reflection coefficient of the system is defined as  
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r =
B0
A0
|
Bs=0

                                                                                                                                       (2.46) 

and the transmission coefficient is defined as  

t =
As
A0
|
Bs=0

                                                                                                                                       (2.47) 

Using the matrix Eq. (2.44), the reflection and transmission coefficient can be written as  

r =
M21

M11
                                                                                                                                              (2.48) 

t =
1

M11
                                                                                                                                              (2.49) 

From Eqs. (2.49 and 2.50) , the reflectance  (R) and transmittance (T) is given by  

R = |r|2 = |
M21

M11
|
2

                                                                                                                           (2.50) 

T = |t|2 =
ns cos θs
n0 cos θ0

|
1

M11
|
2

                                                                                                                         (2.51) 

 

2.2.4 Dispersion Relation and Bloch’s Theorem 

Dispersion relation can be obtained in an infinite periodic multi-layered structure by using 

Bloch’s theorem. Since the multi-layered structure is periodic in x –direction and is invariant 

under lattice translation. Under the translational symmetry with a translational operator ‘Ƭ’ 

we can write  

Ƭ E(𝑥) = E(𝑥 + Ʌ𝑙)                                                                                                                         (2.52)  

where  𝑙 is an integer and Ʌ is the periodicity. 

The electric field can be written in form of Bloch waves as  

E = EK(𝑥)e
−𝑖𝐾𝑥e−𝑖(𝜔𝑡−𝑘𝑥𝑥)                                                                                                           (2.53)           

where  EK(𝑥) is periodic with Ʌ 

 EK(𝑥) = EK(𝑥 + Ʌ)                                                                                                                        (2.54) 

The constant K is known as Bloch wave number. Using Eq. (2.38) and Eq. (2.54) we have the 

eigenvalue equation 
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 (
Am
Bm
) = e−iKɅ (

Am−1
Bm−1

)                                                                                                                  (2.55) 

From Eq. (2.45) and Eq. (2.55) the eigenvalue equation can be written as 

(
M11 M12

M21 M22
) (
Am
Bm
) = eiKɅ (

Am
Bm
)                                                                                                (2.56)  

Eq. (2.56) leads to 

|
M11 − e

iKɅ M12

M21 M22 − e
iKɅ
| = 0                                                                                                     (2.57)          

The solutions are  

eiKɅ =
1

2
(M11 +M22) ± {(

1

2
(M11 +M22))

2

− 1}

1
2⁄

                                                           (2.58) 

Eq.(2.59) gives the dispersion relation between ω, kx and K as 

K(𝑘𝑥, ω) =
1

Ʌ
cos−1 [

1

2
(M11 +M22)]                                                                                         (2.59) 

Here, if the value of  [
1

2
(M11 +M22)] < 1, then this corresponds to real values of Bloch vector 

K, hence this condition will correspond to propagating waves i.e. allowed modes or allowed 

photonic bands. If the value of  [
1

2
(M11 +M22)] > 1, then this corresponds to imaginary values 

of Bloch vector K, hence no propagating solution exists in this condition and this region is 

called photonic bandgap. The value of [
1

2
(M11 +M22)] = 1 corresponds to the band edges. 

From Eq. (2.59) , the dispersion relation can also be written as  

cos KɅ = cos 𝑘1 d1 cos 𝑘2 d2 −
1

2
(
n2
n1
+
n1
n2
) sin 𝑘1d1 sin 𝑘2d2                                             (2.60) 
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2.3 SIMULATION RESULTS OF PHOTONIC BANDGAP REGION IN 1DPC  

2.3.1 Silicon/Silicon-Dioxide (Si/SiO2) 

The plot between the normalised Bloch wave-vector  
KɅ

π
 and normalised frequency 

ωɅ

2πc
 using 

Eq. (2.60) is called dispersion relation curve. Fig. (2.4) shows the dispersion relation with 

allowed bands and photonic bandgap for 20 layered Si / SiO2 with n1 = 3.42, n2 = 1.45,  d1 =

λ0

4n1
= 58.48 nm, d2 =

λ0

4n2
= 137.93 nm and considering central wavelength λ0 = 800 nm  . 

Fig. (2.5) shows the reflectance curve according to Eq. (2.50) for the same above design 

parameters. 

 

Figure (2.4): The Dispersion relation curve plotted for N = 20 and normal incidence. n1=3.42, 

n2=1.45, d1=58.48 nm, d2= 137.93 nm.  The blue curve shows the imaginary part of normalised 

wave-vector  

From the dispersion relation curve Fig. (2.4), the first bandgap exists with the bandgap edges 

from normalised frequency 0.1798, to 0.3097. The lower bandgap edge λL in terms of 

wavelength will be  

λL =
Ʌ

normalised frquency
 =

(137.93 + 58.48)

0.3097
= 634 nm 

The upper bandgap edge 𝜆𝑈 will be  

Bandgap Bandgap 
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λU =
Ʌ

normalised frquency
 =

(137.93 + 58.48)

0.1798
= 1092 nm 

So, the first photonic bandgap edges lie between 634 nm and 1092 nm and the bandgap = 1092 

nm-634 nm= 458 nm. Waves of this wavelength range from 1092 nm-634 nm will not be 

allowed to pass through this multi-layered structure and these waves will be reflected from the 

multi-layered structure. The blue curve in Fig. (2.4) shows the imaginary values of normalised 

Bloch wave-vector where no propagating solution exists. The blue curve shows the maximum 

at the middle of the photonic bandgap. The ambient medium and substrate is taken as air in all 

calculations. 

 

Figure (2.5): The reflectance spectrum plotted for N=20 and normal incidence with n1=3.42, 

n2=1.45, d1=58.48 nm, d2= 137.93 nm.  

We present here simulation results for our TMM model for few 1DPC with dielectric layers. 

The ambient medium and the substrate medium is taken as air in all calculations and for 

simplicity the normal angle of incidence is considered. We are considering N number of layers 

with periodicity Ʌ, and the thickness of each layer is given by the quarter wave stack condition. 

Since normal incidence is considered, the Transverse Electric (TE) and Transverse Magnetic 

(TM) polarisation results will be same. 

 

λL = 634 nm 

λU = 1092 nm 
Bandgap=458 nm 
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2.3.2 Titanium Oxide / Silicon-Dioxide (TiO2 / SiO2) 

One dimensional photonic crystal consisting of 20 layers of alternate layers of high refractive 

index (TiO2=2.67) and low refractive index (SiO2=1.45) at 800 nm is used for simulations. The 

material dispersion effects are ignored in this calculation. The refractive index of ambient 

medium and substrate is taken as 1 in all calculations. The thickness of the two layers is 

according to quarter wave stack condition. If d1, d2 are thicknesses of TiO2 layers and SiO2 

layers, respectively, then according to quarter wave stack condition: 

d1 =
800

4n1
=

800

4 × 2.67
= 74.90 nm, 

d2 =
800

4n1
=

800

4 × 1.45
= 137.93 nm. 

The periodicity Ʌ = (74.90 nm + 137.93 nm) = 212.83 nm Now according to mathematical 

model of TMM from Eq. (2.60), the dispersion relation is shown in Fig. (2.6).  

 

Figure (2.6): Dispersion relation for TiO2/SiO2 multi-layered structure with N=20 for normal 

incidence, the refractive index of the alternating medium is n1 = 2.67, n2 = 1.45, and their 

thickness are d1 = 74.90 nm, d2 = 137.93 nm respectively. 
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The bandgap edges are at normalised frequency =0.2161 and 0.3161 so the bandgap edges in 

terms of wavelength are at 

λL =
Ʌ

normalised frquency
 =

212.83

0.3161
= 673.29 nm 

The upper bandgap edge 𝜆𝑈 will be  

λU =
Ʌ

normalised frquency
 =

212.83

0.2161
=  984.86 nm 

Bandgap = 984.86 − 673.29 = 311.57 nm 

In Fig. (2.6) the blue lines represent the imaginary part of the normalised wave-vector. These 

values of Bloch wave-vector are not allowed so no propagating states exists for these K values. 

Fig. (2.7) shows the reflection spectrum for this multi-layered structure with the bandgap edges 

at  λL = 673 nm; λU = 984 nm, bandgap = 984 − 673 = 311 nm. The waves with this 

range of wavelength will be reflected from the multi-layered structure. 

 

Figure (2.7) Reflectance curve for multi-layered TiO2/SiO2 structure with   n1 = 2.67, n2 =

1.45,  d1 = 74.90 nm,  d2 = 137.93 nm with λ0 = 800 nm. The above curve is plotted for 

N=20 and normal incidence 
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2.3.3 Germanium / Cryolite (Ge / Na3AlF6) 

Another example of one-dimensional photonic crystal is using Cryolite (Na3AlF6) films. A 1D-

PC consisting of 20 alternate layers of high refractive index (Ge = 4.2) and low refractive index 

(Cryolite = 1.34) at 800 nm is used for simulations. The material dispersion effects are ignored 

in this calculation. The thickness of the two layers is according to quarter wave stack condition. 

If d1, d2 are thicknesses of Ge layer and Cryolite layer, respectively, then according to quarter 

wave stack condition 

d1 =
800

4n1
=

800

4 × 4.2
= 47.61 nm 

d2 =
800

4n1
=

800

4 × 1.34
= 149.25 nm 

The periodicity Ʌ = (47.61 + 149.25) = 196.86 nm . Now according to mathematical model 

of TMM from Eq. (2.60), the dispersion relation is shown in Fig. (2.8).  

 

Figure (2.8): Dispersion relation for Ge / Na3AlF6 multi-layered structure with N = 20 for 

normal incidence, the refractive index of the alternating medium are 𝑛1 = 4.2, 𝑛2 = 1.34, and 

their thickness are 𝑑1 = 47.61 𝑛𝑚, 𝑑2 = 149.25 𝑛𝑚, respectively. 
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The first bandgap edges are at normalised frequency =0.1621 and 0.3301 so the bandgap edges 

in terms of wavelength are at 

λL =
Ʌ

normalised frquency
 =

196.86

0.3301
= 596.36 nm 

The upper bandgap edge 𝜆𝑈 will be  

λU =
Ʌ

normalised frquency
 =

196.86

0.1621
=  1214.43 nm 

Bandgap = 1214.43 − 596.36 = 618.07 nm 

In Fig. (2.8) the blue lines represent the imaginary part of the normalised wave-vector. These 

values of Bloch wave-vector are not allowed so no propagating states exists for these K values. 

Fig. (2.9) shows the reflection spectrum for this multi-layered structure with the bandgap edges 

at λL = 596.36 nm; λH = 1214.43 nm,  

Bandgap = 1214.43 − 596.36 = 618.07 nm.  The waves with this range will be reflected 

from the multi-layered structure. 

 

Figure (2.9) Reflectance curve for  𝑛1 = 4.2, 𝑛2 = 1.34,  𝑑1 = 47.61 𝑛𝑚,  𝑑2 = 149.25 𝑛𝑚 

with 𝜆0 = 800 𝑛𝑚. The above curve is plotted for N = 20 and normal incidence 
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2.3.4 Tellurium-Cryolite (Te / Na3AlF6) 

Another example of one-dimensional photonic crystal is using Cryolite (Na3AlF6) films. A 1D-

PC consisting of 20 alternate layers of high refractive index (Te = 4.6) and low refractive index 

(Cryolite = 1.34) at 800 nm is used for simulations. The material dispersion effects are ignored 

in this calculation. The refractive index of ambient medium and substrate is taken as 1 in all 

calculations. The thickness of the two layers is according to quarter wave stack condition. If 

𝑑1, 𝑑2 are thickness of Te layer and cryolite layer respectively, then according to quarter wave 

stack condition 

𝑑1 =
800

4𝑛1
=

800

4 × 4.6
= 43.47 𝑛𝑚 

𝑑2 =
800

4𝑛1
=

800

4 × 1.34
= 149.25 𝑛𝑚 

The periodicity Ʌ = (43.47 + 149.25) = 192.72 𝑛𝑚. Now according to mathematical model 

of TMM from Eq. (2.60), the dispersion relation is shown in Fig. (2.10).  

Figure (2.10): Dispersion relation for Te / Cryolite multi-layered structure with N = 20 for 

normal incidence, the refractive index of the alternating mediums are 𝑛1 = 4.6, 𝑛2 = 1.34, 

and their thickness are d1 = 43.47 nm,  d2 = 149.25 nm, respectively. 
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The first bandgap edges are at normalised frequency = 0.1521 and 0.3291   so the bandgap 

edges in terms of wavelength are at 

λL =
Ʌ

normalised frquency
 =

192.72

0.3291
= 585.59 nm 

The upper bandgap edge 𝜆𝑈 will be  

λU =
Ʌ

normalised frquency
 =

192.72

0.1521
= 1267.06  nm 

Bandgap = 1267.06 − 585.59 = 681.47 nm 

In Fig. (2.10) the blue lines represent the imaginary part of the normalised wave-vector. These 

values of Bloch wave-vector are not allowed so no propagating states exists for these K values. 

Fig. (2.11) shows the reflection spectrum for this multi-layered structure with the bandgap 

edges at λL = 585.59 nm, λU = 1267.06 nm,  

Bandgap = 1267.06 − 585.59 = 681.47 nm.  The waves with this range will be reflected 

from the multi-layered structure. 

Figure (2.11) Reflectance curve for  n1 = 4.6, n2 = 1.34,  d1 = 43.47 nm,  d2 = 149.25 nm 

with λ0 = 800 nm. The above curve is plotted for N = 20 and normal incidence. 
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2.3.5 Silicon-Cryolite (Si / Na3AlF6) 

A 1D-PC consisting of 20 alternate layers of high refractive index (Si = 3.42) and low refractive 

index (Cryolite = 1.34) at 800 nm is used for simulations. The material dispersion effects are 

ignored in this calculation. The refractive index of ambient medium and substrate is taken as 1 

in all calculations. The thickness of the two layers is according to quarter wave stack condition. 

If 𝑑1, 𝑑2 are thickness of Si layer and cryolite layer respectively, then according to quarter wave 

stack condition 

d1 =
800

4n1
=

800

4 × 3.42
= 58.48 nm 

d2 =
800

4n1
=

800

4 × 1.34
= 149.25 nm 

The periodicity Ʌ = (58.48 + 149.25) = 207.73 nm, Now according to mathematical model 

of TMM from Eq. (2.60), the dispersion relation is shown in Fig. (2.12). First bandgap edges 

are at normalised frequency = 0.1851 and 0.3341   so the bandgap edges in terms of wavelength 

are at 

λL =
Ʌ

normalised frquency
 =

207.73

0.3341
= 621.76 nm. 

The upper bandgap edge 𝜆𝑈 will be  

λU =
Ʌ

normalised frquency
 =

207.73

0.1851
= 1122.25  nm. 

Bandgap = 1122.25 − 621.76 = 500.49  nm. 

In Fig. (2.12) the blue lines represent the imaginary part of the normalised wave-vector. These 

values of Bloch wave-vector are not allowed so no propagating states exists for these K values. 

Fig. (2.13) shows the reflection spectrum for this multi-layered structure with the bandgap 

edges at λL = 621.76 nm, λU = 1122.25 nm,  

Bandgap = 1122.25 − 621.76 = 500.49  nm. The waves with this range will be reflected 

from the multi-layered structure. 
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Figure (2.12): Dispersion relation for Si / Cryolite multi-layered structure with N = 20 for 

normal incidence, the refractive index of the alternating medium is n1 = 3.42, n2 = 1.34, and 

their thickness are d1 = 58.48 nm, d2 = 149.25 nm, respectively. 

Figure (2.13) Reflectance curve for  n1 = 3.42, n2 = 1.34,  d1 = 58.48 nm,  d2 = 149.25 nm 

with λ0 = 800 nm. The above curve is plotted for N = 20 and normal incidence 
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2.3.6 Gallium Arsenide / Cryolite (GaAs / Na3AlF6) 

A 1D-PC consisting of 20 alternate layers of high refractive index (GaAs = 3.6) and low 

refractive index (Cryolite = 1.34) at 800 nm is used for simulations. The material dispersion 

effects are ignored in this calculation. The refractive index of ambient medium and substrate is 

taken as 1 in all calculations. The thickness of the two layers is according to quarter wave stack 

condition. If 𝑑1, 𝑑2 are thickness of GaAs layer and cryolite layer respectively, then according 

to quarter wave stack condition 

d1 =
800

4n1
=

800

4 × 3.6
= 55.55 nm 

d2 =
800

4n1
=

800

4 × 1.34
= 149.25 nm 

The periodicity Ʌ = (55.55 + 149.25) = 204.8 nm. Now according to mathematical model 

of TMM from Eq. (2.60), the dispersion relation is shown in Fig. (2.14). The first bandgap 

edges are at normalised frequency = 0.1791 and 0.3331 so the bandgap edges in terms of 

wavelength are at 

λL =
Ʌ

normalised frquency
 =

204.8

0.3331
=  614.83 nm 

The upper bandgap edge 𝜆𝑈 will be  

λU =
Ʌ

normalised frquency
 =

204.8

0.1791
=  1143.49 nm 

Bandgap = 1143.49 − 614.83 = 528.66  nm 
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Figure (2.14): Dispersion relation for GaAs / Cryolite multi-layered structure with N=20 for 

normal incidence, the refractive index of the alternating medium are n1 = 3.6, n2 = 1.34, and 

their thickness are d1 = 55.55 nm,  d2 = 149.25 nm, respectively. 

In Fig. (2.14) the blue dotted lines represent the imaginary part of the normalised wave-vector. 

These values of Bloch wave-vector are not allowed so no propagating states exists for these K 

values. Fig. (2.15) shows the reflection spectrum for this multi-layered structure with the 

bandgap edges at λL = 614.83 nm, λU = 1143.49nm,  

Bandgap = 1143.49 − 614.83 = 528.66  nm. The waves with this range will be reflected 

from the multi-layered structure. 
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Figure (2.15) Reflectance curve for  n1 = 3.6, n2 = 1.34,  d1 = 55.55 nm,  d2 = 149.25 nm 

with λ0 = 800 nm. The above curve is plotted for N = 20 and normal incidence 

2.3.7 Zinc Oxide / Silicon Dioxide (ZnO / SiO2) 

A 1D-PC consisting of 20 alternate layers of high refractive index (ZnO = 2.08) and low 

refractive index (SiO2 = 1.45) at 800 nm is used for simulations. The material dispersion effects 

are ignored in this calculation. The refractive index of ambient medium and substrate is taken 

as 1 in all calculations. The thickness of the two layers is according to quarter wave stack 

condition. If d1, d2 are thickness of ZnO layer and SiO2 layer respectively, then according to 

quarter wave stack condition 

d1 =
800

4n1
=

800

4 × 2.08
= 96.15 nm 

d2 =
800

4n1
=

800

4 × 1.45
=  137.93 nm 

The periodicity Ʌ = (96.15 + 137.93) = 234.08 nm. Now according to mathematical model 

of TMM from Eq. (2.60), the dispersion relation is shown in Fig. (2.16). The first bandgap 

edges are at normalised frequency = 0.2601 and 0.3251 so the bandgap edges in terms of 

wavelength are at 

λL =
Ʌ

normalised frquency
 =

234.08

0.3251
=  720 nm. 
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The upper bandgap edge λU will be  

λU =
Ʌ

normalised frquency
 =

234.08

0.2601
= 900  nm. 

Bandgap = 900 − 720 = 180  nm. 

 

Figure (2.16): Dispersion relation for ZnO/SiO2 multi-layered structure with N = 20 for normal 

incidence, the refractive index of the alternating medium is n1 = 2.08, n2 = 1.45, and their 

thickness are d1 = 96.15 nm, d2 = 137.93 nm respectively. 

In Fig. (2.16) the blue dotted lines represent the imaginary part of the normalised wave-vector. 

These values of Bloch wave-vector are not allowed so no propagating states exists for these K 

values. Fig. (2.17) shows the reflection spectrum for this multi-layered structure with the 

bandgap edges at λL = 720 nm, λU = 900 nm,  

Bandgap = 900 − 720 = 180  nm.  The waves with this range will be reflected from the 

multi-layered structure. 
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Figure (2.17) Reflectance curve for  n1 = 2.08, n2 = 1.45,  d1 = 96.15 nm,  d2 = 137.93 nm 

with λ0 = 800 nm. The above curve is plotted for N = 20 and normal incidence 

2.4 DENSITY OF STATES 

Photonic crystals attract lot of research investigations due to their ability to control the 

properties of photons [2.9-2.12]. Let us consider a collimated light ray of wavelength λ and 

angle of incidence θin falling on the surface of a 1DPC from air reaches the surface of the 1DPC. 

We assume that the wave propagates in x-y plane and we match the frequency and the 

tangential component of wave-vector for the incident and refracted wave across the interfaces. 

Using relation Eq. (2.61) and Eq. (2.62), we can find the wave-vector in the incident medium. 

𝜀𝑟𝜔
2 = 𝑘𝑥

2 + 𝑘𝑦
2
                                                                                                              (2.61) 

tan 𝜃𝑖𝑛 =
𝑘𝑦

𝑘𝑥
                                                                                                                                      (2.62) 

where 𝜔 = 2𝜋𝑓 is the angular frequency ( f is the frequency of light), 𝜀𝑟 is the relative 

permittivity of the incident medium, 𝑘𝑥 and 𝑘𝑦 are the components of wave-vector  

perpendicular and parallel, respectively, to the interface between the homogeneous medium 

and the photonic crystal. We have assumed here 𝑘𝑧 = 0 for simplicity. The dispersion relation 

from the transfer matrix method is computed from Eq. (2.62), and from the dispersion relation 

we can calculate the group velocity using the relation 
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𝑣𝑔 = ∇𝑘𝜔𝑘 = (
𝜕𝜔𝑘
𝜕𝑘𝑥

,
𝜕𝜔𝑘
𝜕𝑘𝑦

,
𝜕𝜔𝑘
𝜕𝑘𝑧

 )                                                                                               (2.63) 

Photonic crystals have the ability to modify the DOS due to which they are getting significant 

attention in high Q value, small mode volume cavities. An increase in DOS of the lasing mode 

causes significant enhancement in the spontaneous emission rate [2.3]. The DOS is defined as  

𝑁(𝜔) =∑
1

𝐴𝐵𝑍
𝑚

∫ 𝛿(𝜔 − 𝜔𝑚(𝑘))

𝐵𝑍

𝑑2𝑘,                                                                                   (2.64) 

where, the integral is over mth band and 𝐴𝐵𝑍is the area of the Brillouin zone (BZ). Eq. (2.64) 

can also be written as 

𝑁(𝜔) =∑
1

𝐴𝐵𝑍
𝑚

∫ ‖
𝑑𝑘

𝑑𝜔
‖

𝐸𝐹𝑆𝑚

𝑑𝑠,                                                                                                  (2.65) 

where the integral is taken along the mth  equi-frequency surfaces (EFS) at frequency 𝜔. The 

DOS was first used in analysing the modification of spontaneous emission in photonic crystals. 

DOS plays an important role in mode confinement in photonic crystal structures and light 

trapping of solar cells. Fig. (2.18) shows the variation of DOS with the normalised frequency 

for a multi-layered Si / SiO2 1DPC with 𝑛1 = 3.42, 𝑛2 = 1.45. It can be seen here that at 

bandgap edges the DOS show sharp rise to maximum value and at other values it is almost 

zero. The comparative study of DOS is shown for different 1DPC structures are shown in Fig. 

(2.19). 
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Figure (2.18): The density of states in Si / SiO2 1DPC for N = 20 and normal incidence, n1 = 

3.42, n2 = 1.45, d1 = 58.48 nm, d2 = 137.93 nm. 

 

 

(a) 
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(b) 

 
(c) 
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                                                 (d) 

 
(e) 
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(f) 

Figure (2.19):  The density of states in 1DPC (a) ZnO/SiO2 (b) Si / SiO2  (c) GaAs/Cryolite  (d) 

Te/ Cryolite  (e) Graphite /Te (f) Ge/ Cryolite ,  for N = 20 and normal incidence. 

2.5 EFFECTIVE INDEX AND GROUP VELOCITY 

Photonic crystal devices which work on the principle of band gap edges have greater 

advantages over conventional waveguides because they offer very high operating speed, 

greater lifetime, tolerance to temperature fluctuations, and capability of high repetition rates. 

All light sources in actual practice are wave-packets and have some frequency spread. When 

we define effective index in terms of group velocity we get some very interesting results. For 

example the effective index of refraction becomes negative for certain frequency ranges and it 

becomes zero at some points and it even becomes much higher than the constituent refractive 

index of the two mediums(𝑛1 and 𝑛2). This concept of group velocity lead to lasing without 

inversion [2.13-2.14]. By using the concept of group velocity some very interesting results 

were obtained which show potential applications of PBG materials in photonic technology. 

From the dispersion relation Eq. (2.61), we obtain the group velocity (𝑣𝑔) as  

𝑣𝑔 = (
𝑑𝜔

𝑑𝑘
) = (

𝑑𝑘

𝑑𝜔
)
−1

                                                                                                                    (2.66) 

Using Eq. (2.60) we can write 
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𝑣𝑔 =
[1 − [cos 𝐴 cos𝐵 −

1
2 𝜂 sin𝐴 sin𝐵]

2

]

1
2⁄

Ʌ

cos 𝐴 sin𝐵 [(
𝑛2𝑑2
𝑐 ) +

1
2 (
𝑛1𝑑1
𝑐 ) 𝜂] + 𝑐𝑜𝑠 𝐵 𝑠𝑖𝑛 𝐴 [(

𝑛1𝑑1
𝑐 ) +

1
2 (
𝑛2𝑑2
𝑐 ) 𝜂]

,            (2.67) 

where,  

𝐴 =
𝑛1𝜔𝑑1
𝑐

 , 𝐵 =
𝑛2𝜔𝑑2
𝑐

 , 𝜂 = (
𝑛1
𝑛2
+
𝑛2
𝑛1
) , Ʌ = 𝑑1 + 𝑑2. 

The expression for the effective index of refraction (𝑛𝑒𝑓𝑓) can be written as  

𝑛𝑒𝑓𝑓 =
𝑐

𝑣𝑔
                                                                                                                                          (2.68) 

Using Eq. (2.68) and Eq. (2.69), we can write  

𝑛𝑒𝑓𝑓 =
cos 𝐴 sin𝐵 [(

𝑛2𝑑2
𝑐 ) +

1
2 (
𝑛1𝑑1
𝑐 ) 𝜂] + 𝑐𝑜𝑠 𝐵 𝑠𝑖𝑛 𝐴 [(

𝑛1𝑑1
𝑐 ) +

1
2 (
𝑛2𝑑2
𝑐 ) 𝜂]

[1 − [cos 𝐴 cos𝐵 −
1
2 𝜂 sin 𝐴 sin𝐵]

2

]

1
2⁄

(
𝑐

Ʌ
) (2.69) 

The variation of normalised group velocity with the normalised frequency is shown in Fig. 

(2.20) for Si/SiO2 with N=10 and normal incidence. The comparative study of variation of 

normalised group velocity in various 1DPC’s is shown in Fig.( 2.21) . We have found the 

normalised group velocity drops to minimum value at the band gap edges.  

 

Figure (2.20): The group velocity in Si / SiO2 1D-PC for N = 10 and normal incidence, 

n1=3.42, n2=1.45, d1=58.48 nm, d2= 137.93 nm 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 

Figure (2.21):  The normalised group velocity  in 1DPC (a) ZnO/SiO2 ,(b) Si / SiO2 , (c) 

GaAs/Cryolite, (d) Te/ Cryolite, (e) Ge/ Cryolite, (f) Graphite /Te  for N = 10 and normal 

incidence. 
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The variation of effective index of refraction with wavelength is shown in Fig. (2.22) for 

Si/SiO2 with N=10 and normal incidence. The comparative study of variation of effective index 

of refraction in various 1DPC’s is shown in Fig.( 2.23) . We have found that the effective index 

of refraction shows drastic variation at the band gap edges. 

 

  

Figure (2.22): The effective index of refraction in Si/SiO2 1D-PC for N=10 and normal 

incidence, n1=3.42, n2=1.45, d1=58.48 nm, d2= 137.93 nm 

 

(a) 
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(b) 

 

 

(c) 
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(d) 

 

 

(e) 
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(f) 

Figure (2.23):  The effective index of refraction  in 1DPC (a) Si / SiO2, (b) ZnO/SiO2 ,(c) 

GaAs/Cryolite, (d) Te/ Cryolite, (e) Graphite /Te, (f) Ge/ Cryolite,  for N = 10 and normal 

incidence. 

2.6 EFFECT OF REFRACTIVE INDEX CONTRAST ON REFLECTION 

SPECTRUM OF  1DPC 

The variation in the PBG due to change in refractive index contrast for 1DPCs has been 

simulated and shown in Table (2.1). It was found from the observed results that the refractive 

index contrast is an important design parameter for optical characterisation of 1D-PC. The 

increase in refractive index contrast increases the width of PBG, causing red shift in upper 

wavelength edge (λU) of PBG and blue shift in the lower wavelength edge (λL) of PBG. The 

reflection spectrum of 1DPC’s corresponding to Table (2.1) is shown in Fig. (2.24). 
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Table-2.1: Variation of PBG with refractive index contrast for N=20 and normal incidence 

Material   
n1   n2   d1  (nm) d2  (nm) λL  (nm) λU (nm)  

PBG  
(nm) (N=20)   

ZnO/SiO2   2.08 1.45 96.15  137.93  719  901  182    

TiO2/SiO2   2.67 1.45 74.90    137.93    673.29    984.86    311.57    

Si/SiO2   3.42 1.45 58.48    137.93    633.58    1091.16    457.58    

Si/ Na3AlF6   3.42 1.34 58.48    149.25    621.76    1122.25    500.49    

GaAs/ Na3AlF6   3.6 1.34 55.55    149.25    614.83    1143.49    528.66    

Ge/Na3AlF6   4.2 1.34 47.61    149.25    596.36    1214.43    618.07    

Te/ Na3AlF6   4.6 1.34 43.47    149.25    585.59    1267.06   681.47    
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Figure (2.24): Effect of refractive index contrast on reflection spectrum of 1DPC  for N=20, 

and θ=0°, (a) ZnO/SiO2 , (b) TiO2/SiO2 , (c) Si/SiO2, (d)  Si/Na3AlF6 ,  (e) GaAs/Na3AlF6 , (f) 

Ge/Na3AlF6 ,  (g) Te/Na3AlF6. 

2.7  EFFECT  OF  OBLIQUE  INCIDENCE  ON  REFLECTION  SPECTRUM  OF 

1DPC 

The effect of angle of incidence on the PBG is studied for 20 layered (Graphite-Te) 1DPC 

structures. It was found that as the angle of incidence increases, there is blue shift in upper PBG 

edge (𝜆𝑈) and lower PBG edge (𝜆𝐿) for both TE and TM modes [63]. The width of PBG for 

TE modes increases whereas that for TM modes decreases with increase in the angle of 

incidence as shown in Table-2.2. The value of n1 for graphite is 2.87 and that of n2 for Te is 

4.6 and the corresponding thickness of layers are d1=69.7 nm, d2=43.5 nm respectively from 

quarter wave stack condition [1.2]. The reflection spectrum for TE modes and TM modes for 

N=20 is shown in Fig. (2.25) and Fig. (2.26) respectively. 
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Table-2.2: Variation of PBG with angle of incidence for both polarizations. Graphite-Te 1D-

PC and N=20. 

 [Graphite-

Te] 

TE TM 

Lower 

Bandgap 

Edge 

λL(nm) 

Upper 

Bandgap 

Edge λU(nm) 

Bandgap 

(nm) 

Lower 

Bandgap 

Edge 

λL(nm) 

Upper 

Bandgap 

Edge 

λU(nm) 

Bandgap 

(nm) 

N=20 

 

ϴ=0⁰ 
697 939 242 697 939 242 

 

ϴ=30⁰ 
688 932 244 691 926 235 

 

ϴ=60⁰ 
669 919 250 680 899 219 

ϴ=89⁰ 660 912 252 674 885 211 
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Figure (2.25): The reflectance spectra for [Graphite-Te] for TE modes for various incident 

angles (a) θ=0° (b) θ=30°, (c) θ= 60°, (d) θ=89° 

 

Figure (2.26): The reflectance spectra for [Graphite-Te] for TM modes for various incident 

angles (a) θ=0° (b) θ=30°, (c) θ= 60°, (d) θ=89° 

2.8 EFFECT OF AMBIENT MEDIUM ON REFLECTION SPECTRUM OF 1DPC 

The role of ambient medium in the spectral response is simulated for 20 layered Si/SiO2 1D-

PC structure. There was a blue shift in lower and upper PBG edges for both TE and TM modes 

with the increase in refractive index of ambient medium as shown in Table-2.3. The 

corresponding reflection spectrum for TE modes and TM modes is shown in Fig. (2.27) and 

Fig. (2.28), respectively. 
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Table-2.3: Variation of PBG with refractive index of ambient medium for both polarizations, 

θ=30°. 

Si/SiO2 

N=20 

TE TM 

Lower 

Bandgap Edge 

(nm) 

Upper 

Bandgap 

Edge (nm) 

Bandgap 

(nm) 

Lower 

Bandgap Edge 

(nm) 

Upper 

Bandgap 

Edge (nm) 

Bandgap 

(nm) 

na=1 602.6 1071 468.4 617.3 1028 410.7 

na=1.2 590 1063 473 611 999 388 

na=1.4 573 1054 481 603 965 362 

na=1.6 554 1043 489 594 924 330 
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Figure (2.27): Reflection band for Si/SiO2 1D-PC with N=20, TE, θ=30°. The incident ambient 

medium varies as (a) na=1 (b) na=1.2 (c) na=1.4 (d) na=1.6. 

 

 

Figure (2.28): Reflection band for  Si/SiO2 1D-PC  with N=20, TM, θ=30° . The incident 

ambient medium varies as (a) na=1 (b) na=1.2 (c) na=1.4 (d) na=1.6. 

2.9 EFFECT OF NUMBER OF LAYERS ON REFLECTION SPECTRUM OF 1DPC 

Investigations on the impact of number of layers of 1DPC on the spectral response is carried 

out for Si/SiO2 1DPC structure with number of layers varying from N=2, 4, 6, 10 and it was 

found that as the number of layers increases, the PBG narrows with increase in 100% reflection 

regions as shown in Fig. (2.29). 
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Figure (2.29): Reflection band for Si/SiO2 1D-PC at normal incidence for TE modes at (a) 

N=2 (b) N=4 (c) N=6 (d) N=10  

CONCLUSION:  

PBG is simulated by using dispersion relation and reflection spectrum for 20 layered 1D-PCs 

with constituent layers mentioned as in Table-2.1 at central wavelength of 800 nm and normal 

incidence. The analytical expression for DOS is obtained and the optical response of 1DPCs is 

analysed through DOS for all 1DPCs mentioned in Table-2.1. The variation of group velocity 

and effective refractive index is studied for all 1DPCs mentioned in Table-2.1. The variation 

in the PBG due to change in refractive index contrast for 1D-PCs has been simulated and shown 

in Table 2.1. It was found from the observed results that the refractive index contrast is an 

important design parameter for optical characterisation of 1DPC. The increase in refractive 

index contrast increases the width of PBG, causing red shift in upper wavelength edge of PBG 

and blue shift in the lower wavelength edge of PBG.  The effect of angle of incidence on the 

PBG is studied for 20 layered (Graphite-Te) 1DPC structures. It was found as the angle of 

incidence increases, there is blue shift in upper PBG edge and lower PBG edge for both TE 

and TM modes. The width of PBG for TE modes increases whereas that for TM modes 

decreases with increase in the angle of incidence as shown in Table-2.2. The role of ambient 

medium in the spectral response is simulated for 20 layered Si/SiO2 1D-PC structure. There 

was a blue shift in lower and upper PBG edges for both TE and TM modes with the increase 
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in refractive index of ambient medium as shown in Table-2.3. Investigations on the impact of 

number of layers of 1D-PC on the spectral response is carried out for Si/SiO2 1DPC structure 

with number of layers varying from N=2, 4, 6, 10 and it was found that as the number of layers 

increases, the PBG narrows with increase in 100% reflection regions as shown in Fig. (2.29). 
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CHAPTER- III 

 OMNIDIRECTIONAL REFLECTION BAND IN 1DPC  

INTRODUCTION  

This chapter deals with one of the applications of 1DPC as ODR. An ODR is a perfect reflector 

which has high reflectance in a specific wavelength range irrespective of the incident angle and 

the state of polarization. Depending on the potential usage the ODR’s can be designed in the 

wavelength range of interest. One of the applications of ODR is in coating of an enclosure 

which can work as optical cavity. Other applications are in designing of low loss broadband 

waveguide and efficient heat barriers in thermoelectric devices [3.1-3.4]. 

Metallic mirrors reflect over broad range of frequencies at arbitrary incident angles and are 

widely used in imaging, solar energy collection and laser cavities. However, these mirrors have 

absorption losses at infrared and optical frequencies. On the other hand, the dielectric mirrors 

are low loss and their ability to reflect light for arbitrary angle of incidence will depend on the 

existence of complete three 3D bandgap which is a function of periodicity in all the three 

dimensions. The necessary condition for ODR at a given frequency is the absence of 

propagating states existing inside the light cone of ambient medium [3.5-3.7].   

There is no difference in TE modes and TM modes for normal incidence however at 

increasingly oblique incidence, the width of TE bandgap increases whereas that of TM modes 

decreases. There is also considerable blue shift in the central wavelength of bandgap region. 

The criterion for existence of ODR can now be stated as the occurrence of frequency overlap 

of bandgap region for TE modes at normal incidence and TM modes at 90° incidence. The 

thickness of the layers in dielectric mirror is determined by the quarter wave stack condition.  

3.1. DESIGNING OF ODR WITH 1DPC 

We consider a multi-layered 1DPC structure with 20 alternating layers of Si and SiO2 coupled 

to a homogenous ambient medium n0 . The refractive index profile of the structure is shown in 

Fig. 3.1. The refractive index (n1) and thickness (d1) of Si layer is taken as 3.42 and 58.48 nm 

and that for SiO2 layer is 1.45 (n2) and 138 nm (d2), respectively from the quarter wave stack 

condition. The periodicity of structure is d = (d1+d2).  
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Figure (3.1): Refractive index profile of 1D-PC structure  

The variation of PBG in the structure is shown in Table 3.1 at various angles of incidence for 

both TE and TM modes. The width of TE bandgap increases from 458 nm to 511 nm with 

increase in angle of incidence. However, the width of TM bandgap decreases from 458 nm to 

246 nm. There is considerable blue shift in the band edges of bandgap in both TE and TM 

modes as shown in Fig. 3.2 (a & b).  The ODR band is between the lower bandgap edge at 

normal incidence for TE mode (633 nm) and upper bandgap edge at θ=90° for TM mode (818 

nm) as shown in Fig. 3.3. The proposed structure gives 100% reflection within a wide range of 

wavelengths in the visible – NIR region and can be used effectively in wavelength filters, 

optical resonators and mirrors in desired wavelength range.  

Table (3.1): ODR in Si/SiO2 1DPC, n1 = 3.42, n2 = 1.45, d1 = 58.48 nm, d2 = 138 nm, N = 20 

Si/SiO2 TE TM 

N=20 

Lower 

Bandgap 

Edge (nm) 

Upper 

Bandgap 

Edge (nm) 

Bandgap 

(nm) 

Lower 

Bandgap 

Edge (nm) 

Upper 

Bandgap 

Edge (nm) 

Bandgap 

(nm) 

ϴ=0⁰ 633 1091 458 633 1091 458 

ϴ=30⁰ 603 1071 468 618 1027 409 

ϴ=60⁰ 540 1036 496 587 893 306 

𝑛1 
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𝑛2 
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𝑛1 

 

 

𝑑1 

 

𝑛2 

 

 

𝑑2 

 

X 

𝑑 

x=0 x=𝑑1 x=−𝑑2 

𝑛0 
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ϴ=90⁰ 507 1018 511 572 818 246 

ODR= 818 nm-633 nm= 185 nm 

 

Figure (3.2) (a): The reflectance spectra for Si/SiO2 1DPC for TE modes at incident angles 

(a) θ = 0° (b) θ = 30° (c) θ = 60° (d) θ=90°  

 

Figure (3.2) (b) The reflectance spectra for Si/SiO2 1DPC for TM modes at incident angles 

(a) θ = 0° (b) θ = 30° (c) θ = 60° (d) θ=90°  
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Figure (3.3): ODR in Si/SiO2 1D-PC for n1 = 3.42, n2 = 1.45, d1 = 58.48 nm, d2 = 138 nm and 

N = 20.  

3.2 EFFECT OF REFRACTIVE INDEX CONTRAST ON ODR PROPERTY OF 1DPC 

The increase in refractive index contrast (n1/n2) increases the photon confinement in periodic 

refractive index profile structure. This increases the bandgap regions in both TE and TM 

modes. We have investigated the effect of refractive index contrast on the ODR property of 

1DPC by considering four different 1DPC structures namely Si-Na3AlF6, GaAs-Na3AlF6, Ge-

Na3AlF6, and Te-Na3AlF6. The thickness of each layer is calculated by quarter wave stack 

condition and the number of alternate layers in all 1D-PCs is taken as 20. The refractive index 

contrast of all four 1DPCs is shown in Table 3.2. We have calculated the PBG edges of all four 

1DPCs for both TE and TM modes for normal incidence and θ = 90°. The PBG is found to 

increase with increase in refractive contrast for both TE and TM modes. ODR is also found to 

increase with refractive index contrast as shown in Table 3.2. The variation of ODR with 

refractive index contrast is also shown in Fig. (3.4). 

 

 

 

 

 

 

 

ODR 
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Table (3.2): Effect of refractive index contrast on ODR of 1D-PC for N = 20, for (a) Si-Na3AlF6 

(b) GaAs-Na3AlF6 (c) Ge-Na3AlF6  (d) Te-Na3AlF6 

N=20 n1 n2 d1 

(nm) 

d2 

(nm) 

TE 
 

TM 

ODR  

(nm) 
Angle 

of 

incide

nce 

Lower 

Band 

Edge 

(nm) 

Upper 

Band 

Edge 

(nm) 

Band

gap 

(nm) 

Angle 

of 

inciden

ce 

Lower 

Band 

Edge 

(nm) 

Upper 

Band 

Edge 

(nm) 

Band

gap 

(nm) 

Si-

Na3AlF6 
3.42 1.34 58.48  149.25 ϴ=0⁰ 624 1123 499 ϴ=90⁰ 558 777 219 153 

GaAs-

Na3AlF6 
3.6 1.34 55.55  149.25  ϴ=0⁰ 616 1150 534 ϴ=90⁰ 551 794 243 178 

Ge-

Na3AlF6 
4.2 1.34 47.61  149.25  ϴ=0⁰ 600 1223 623 ϴ=90⁰ 537 846 309 246 

Te-

Na3AlF6 
4.6 1.34 43.47  149.25  ϴ=0⁰ 585 1271 686 ϴ=90⁰ 528 878 350 293 

 

 

Figure (3.4): Effect of refractive index contrast on ODR of 1D-PC for N = 20, for (a) Si-

Na3AlF6 (b) GaAs-Na3AlF6 (c) Ge-Na3AlF6  (d) Te-Na3AlF6 
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3.3 EFFECT OF AMBIENT MEDIUM ON ODR BAND 

The effect of ambient medium on ODR is investigated with 20 layered Si-SiO2 1D-PC structure 

with variation of refractive index of ambient medium (na) from 1 to 1.6. We have found that 

ODR width decreases with increase in refractive index of ambient medium as shown in Fig. 

3.5. Also the ODR band disappears as the refractive of ambient medium approaches near to the 

lower refractive index of 1D-PC structure. Ambient medium plays important role in designing 

ODR from 1DPC structures. 

 

Figure (3.5): Variation of ODR in Si/SiO2 1D-PC with refractive index of ambient medium (a) 

na = 1 (b) na = 1.2 (c) na = 1.4 (d) na = 1.6.  

3.4 EFFECT OF NUMBER OF LAYERS ON ODR BAND 

The study of the effect of number of layers on ODR is carried out for Si-NaAlF6 1D-PC 

structure. The number of layers in designing of 1DPC is varied from N = 2 to N = 10. We have 

found that the width of ODR band increases with increase in number of layers as shown in Fig. 

3.6. The reflectance of 1DPC structure increases with number of layers in both TE and TM 

modes. The ODR band becomes sharper and wider with increase in number of layers. 

No ODR 

No ODR 



71 
 

 

Figure (3.6): ODR in Si-Na3AlF6 1D-PC for (a) N = 2 (b) N = 4 (c) N = 6 (d) N = 10.  

3.5 ENHANCEMENT OF ODR IN 1DPC USING GRADUAL THICKNESS 

CONSTANT ‘Ƴ’ 

We also propose here the considerable enhancement of omnidirectional reflection band in near 

infrared region by changing the design parameters using a gradual constant ‘Ƴ’ 

 

Figure (3.7): Schematic representation of proposed structure  

 (AB)5(A1B1)
5(A2B2)

5(A3B3)
5(A4B4)

5  

Here we have considered the multi-layered 5 stacks of 5 alternate layers of Si as (A) and SiO2 

as (B). The structure shown in Fig.3.7 is described by the following sequence:      

(AB)5(A1B1)
5(A2B2)

5(A3B3)
5(A4B4)

5                                                     (3.1)  

The refractive index of Si is taken as n 1 = 3.42 and that of SiO2 is taken as n 2 = 1.45  in the 

wavelength range from 400 nm to 2000 nm.The central wavelength for computation is taken 
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as λc = 800 nm. According to quarter wave stack condition, in the stack (AB) the thickness of 

Si layer and SiO2 is a = 58.48 nm, b = 138 nm,  respectively. We have introduced a gradual 

multiplication constant Ƴ such that in stack (A1B1) the thickness of Si layer is a1 =  Ƴa   and 

the thickness of SiO2 is b1 =  Ƴ b. In stack (A2B2) the thickness of Si layer is  a2 =  Ƴa1 and 

the thickness of SiO2 is b2 =  Ƴb1. Similarly in stack (A3B3) the thickness of Si layer is a3 =

 Ƴa2 and that of SiO2 is b3 =  Ƴb2. Also in stack (A4B4) the thickness of Si layer is a4 =  Ƴa3 

and that of SiO2 is b4 =  Ƴb3. There is blue shift in the edges of PBG when we increase the 

angle of incidence and at Brewster’s angle, TM mode will not be reflected and we will not get 

a complete ODR. The incident wave from outside cannot couple to Brewster window if the 

maximum refracted angle from ambient medium  n0 is less than the Brewster’s angle for the 

photonic structure and this will result in reflection of TM modes as well which will give the 

reflection at all angle of incidence. At the n0 and n1 interface, by Snell’s law   

n0 sin θ0 = n1  sin θ1                                                     (3.2) 

where θ0 is the angle of incidence in ambient medium, θ1 is the angle of refraction in 1st 

medium, So maximum refracted angle will be  

θ1max  = sin
−1(n0/n1)  =  sin

−1(1/3.42) =  16.97°                        (3.3)  

Also from Brewster’s law at n1 and n2 interface   

 θB  = tan
−1(n2/n1)  =  tan

−1(1.45 / 3.42) =  22.9°                      (3.4) 

Since (θB  >  θ1max ) condition is satisfied by our design parameters so the incident wave from 

the ambient medium will not get coupled to Brewster’s window, and we will still get ODR 

band. For complete periodicity we take Ƴ =1 in our proposed structure and Fig.3.8 shows 

reflectivity for both TE waves at θ = 0° and TM waves at θ = 89° and the ODR is also shown. 

The upper and lower edges for omnidirectional band gap is found to be λU  = 818 nm and λL =

633 nm, respectively so the ODR is 185 nm which is 7.4 % of the total considered wavelength 

range as shown in Table 3.3. We have changed the design parameter by considering Ƴ = 1.02, 

the reflectivity diagram and omnidirectional reflection band is shown in Fig. 3.8.  The upper 

and lower edges for ODR are found to be λU  = 857 nm and λL = 650 nm so the ODR width 

is 207 nm which is 25.88% of the total considered wavelength range. We have further increased 

this band by taking Ƴ = 1.04, as shown in Fig. 3.8. The upper and lower edges of ODR are 

found to be λU  = 924 nm and λL = 653 nm with ODR width of 271 nm which is 33.88% of 

the total considered wavelength range. To further increase the ODR we have considered 

Ƴ=1.06, the upper and lower edges for ODR are found to be  λU  = 992 nm and λL = 658 nm 
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so the ODR is 334 nm which is 41.75% of the total considered wavelength range. It was found 

that by changing the design parameters of the proposed photonic structure by a gradual constant 

there is considerable increase in the ODR.  The structure can be used as filter device in the 

visible and near infrared region of spectrum. It can also be tuned according to the design 

parameters. These types of optical filters may have potential applications in optical technology 

and optical communication. 

 

Figure (3.8): Enhancement of ODR in 50 layered Si/SiO2 1D-PC with gradual thickness 

constant for n1=3.42, n2=1.45, d1=58.48 nm, d2= 138 nm. 

Table (3.3): Enhancement of ODR in 50 layered Si/SiO2 1D-PC with gradual thickness 

constant for  n1 = 3.42, n2 = 1.45, d1 = 58.48 nm, d2 = 138 nm. 

S.No 
Gradual constant 

(Ƴ) 

Lower bandgap 

edge of ODR  (λL) 

Upper bandgap edge 

of ODR (λU) 
ODR (∆λ) %∆λ/λC 

(for θ=0°, TE) (for θ = 89°, TM) 

1 1 633 818 185 23.13% 

2 1.02 650 857 207 25.88% 

3 1.04 653 924 271 33.88% 

4 1.06 658 992 334 41.75% 
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3.6:  ODR IN POROUS SILICON MULTI-LAYERED STRUCTURES  

Nano-porous silicon (NPS) has become a promising candidate for design of 1D PC optical 

sensors due to tremendous advantages [3.8]. Its large surface to volume ratio, easy fabrication, 

controllable pore sizes and ability of refractive index modulation with depth [3.9] makes it 

suitable for many applications. NPS is now widely used in making 1D PC with defect layers 

for sensing gas, chemicals, biochemical, bio-analytes [3.10-3.11]. The optical characteristic of 

NPS is highly sensitive to the presence of these analytes due to large number of pores inside 

[3.12-3.15]. We have probed the ODR band properties in the 1D PC structure consisting of 10 

periods of alternate layers of NPS and Si. The theoretical analysis is based on the Bruggeman’s 

effective medium approximation (BEMA) [3.16, 3.17] and transfer matrix method (TMM) 

[3.18]. Here we have used alternate layers of NPS as low refractive index and Si as high 

refractive index. In the present study, we have neglected field absorption as the constituent 

materials have negligible absorption coefficients in the wavelength range of interest.  

Nano-porous silicon is a two-phase composite mixture of air and silicon solid phase containing 

silicon walls and nano-pores. The sponge like structure of NPS makes it a useful candidate for 

sensing applications in optical technology. In nano-porous silicon the key parameters for 

modelling are the refractive index n1, the thickness d1 and the porosity P. Considering the 

nano-porous silicon layer is developed on a Si substrate and air as the medium inside the pores, 

the refractive index is related to porosity according to BEMA model by the equation 

(1 − P)
nSi
2  − nNPS

2

nSi
2  − 2nNPS

2 + P
nAir
2  − nNPS

2

nSi
2  − nNPS

2 = 0.                                     (3.5) 

Where nSi is the refractive index of Si substrate, nNPS is the refractive index of nanoporous 

silicon and  nAir is the refractive index of air or medium inside the pores and P is the porosity 

of NPS. This approximation is reasonable because the size of pores is much smaller than the 

wavelength of incident light so the electromagnetic light waves cannot distinguish between Si 

and pores in NPS and it will treat it as a homogenous medium [3.17]. In the present study we 

have considered 10 periods of alternate layers of NPS and Si. The refractive index and porosity 

are related by BEMA as explained in Eq. (3.5). The NPS structure can be easily fabricated by 

electrochemical etching of p-type Si wafer (< 100 >, 0.01 − 0.02 Ω 𝑐𝑚, 275µ𝑚, 20 cm2) 

[3.17]. In electrochemical etching, the applied current density (J) and the etching time (t) is 

responsible for the variation of refractive index n1 and thickness d1 of NPS. The refractive index 

n1 and n2 for NPS and Si, respectively, is taken as n1 = 1.7 and n2 = 3.6 in the wavelength 
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range 400 nm to 2000 nm. The structure of interest is designed around a central wavelength 

λ0 = 1200 nm. This wavelength regime is of high interest as most of optical based device 

applications have been proposed and implemented in this range. The thickness of the individual 

layers is considered according to the quarter wave stack condition. The desired thickness of 

NPS layer is a =  
λ0

4n1
 = 176.47 nm and the thickness of Si layer is b =  

λ0

4n2
 =  83.33 nm 

.The fabrication parameters for this refractive index and thickness of NPS are J = 70mA/cm2, 

etching time t = 2.5 sec [3.17]. The transmission spectrum of 10 period NPS-Si for TE and TM 

modes and the corresponding ODR is shown in Figs (3.9-3.11). The PBG for TE and TM mode 

is represented in Figs. (3.12-3.13), for various angles of incidence. The PBG edges in TE mode 

and TM mode is summarized in Table 3.4 

At the n0 and n1 interface, maximum refracted angle will be  

θ1
max = sin−1

n0

n1
= sin−1

1

1.7
= 36.01°                                                                                         (3.6)       

Also from Brewster’s law at n1 and n2 interface  

θB = tan−1
n2
n1
= tan−1

3.6

1.7
= 64.72°                                                                                           (3.7) 

Since (𝜃𝐵 > 𝜃1
𝑚𝑎𝑥

 ) condition is satisfied by our design parameters so the incident wave from 

the ambient medium will not be coupled in the Brewster’s window, and we will still get ODR. 

The lower bandgap edge for TE mode at θ = 0° is λL = 982 nm and the upper bandgap edge for 

TM mode at θ = 89° is λU = 1270 nm. So, the total ODR band is (1270 nm-982 nm) = 288 nm 

which is considerable and can be used in potential applications in near- infrared frequencies. 
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Table (3.4) :  Photonic bandgap variation with incidence angle in multi-layered NPS-Si. Omni-

direction band (1270 nm-982 nm) =288 nm. 

 

Angle TE TM 

 

Lower 

bandgap edge 

(nm) 

Upper 

bandgap edge 

(nm) 

Bandgap 

(nm) 

Lower 

bandgap 

edge (nm) 

Upper 

bandgap 

edge (nm) 

Bandgap 

(nm) 

0° 982 1544 562 982 1544 562 

30° 947 1525 578 964 1481 517 

60° 873 1485 612 930 1344 414 

90° 835 1464 629 914 1270 356 

 

 

 
 

Figure (3.9) : Transmission spectrum in NPS-Si 1DPC, n1=1.7, n2=3.6, d1=176.47 nm,  d2= 

83.33 nm , λₒ=1200 nm  at normal incidence for TE modes.  

 



77 
 

 

Figure (3.10): Transmission spectrum in  NPS-Si 1DPC, n1=1.7, n2=3.6, d1=176.47 nm,  d2= 

83.33 nm , λₒ=1200 nm  at normal incidence for TM modes  

 

Figure (3.11): ODR in NPS-Si, n1=1.7, n2=3.6, d1=176.47 nm, d2= 83.33 nm , λₒ=1200 nm   
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Figure (3.12): Variation of reflectance with wavelength at different angle of incidence for TE 

modes in multi-layered NPS-Si. 

 

Figure (3.13): Variation of reflectance with wavelength at different angle of incidence for TM 

modes in multi-layered NPS-Si. 

3.6.1: Effect of Infiltration of Chemicals/ Analytes inside Pores:  

In this section we consider the effect of infiltration of liquids in pores of NPS layers of multi-

layered NPS-Si 1DPC. The infiltration of variety of materials into the porous silicon matrix, 

including polymers [3.19] and biological species [3.20] has already been reported. The 

modulation in reflection spectrum of synthetic opal with liquid crystals in void spaces was 
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recently observed [3.21]. The effective refractive index of NPS layer is defined by the porosity 

and the refractive index of medium inside the pores (nvoid) as shown in Eq. (3.5). As the 

refractive index of pores increases, the effective index of refraction of NPS increases, which 

changes the PBG  for both TE and TM modes. The PBG in TE and TM modes are found to be 

decreased with increase in nvoid as shown in Fig (3.14-3.15) and Table (3.5). The ODR is also 

found to be decreased from 284 nm to 250 nm for an increase in nvoid from 1 to 1.3 as shown 

in Fig. (3.16) 

Table (3.5): Variation of ODR with nvoid in NPS-Si 1D-PC. 

 

S.No. nvoid 

TE (θ=0°) TM (θ=89°) 

ODR 
Lower 

Bandgap 

Edge 

(nm) 

Upper 

Bandgap 

Edge 

(nm) 

Bandgap 

(nm) 

Lower 

Bandgap 

Edge 

(nm) 

Upper 

Bandgap 

Edge 

(nm) 

Bandgap 

(nm) 

1 1 982 1535 553 909 1266 357 284 

2 1.1 997 1507 510 924 1272 348 275 

3 1.2 1009 1481 472 939 1272 333 263 

4 1.3 1020 1458 438 953 1270 317 250 

 

 

 



80 
 

Figure (3.14): Reflection spectrum for TE modes in NPS-Si, n1=1.7, n2=3.6, d1=176.47 nm,  

d2= 83.33 nm, λₒ = 1200 nm , with nvoid = 1, 1.1 ,1.2 ,1.3  

 

 

Figure (3.15): Reflection spectrum for TM modes in NPS-Si, n1=1.7, n2=3.6, d1=176.47 nm,  

d2= 83.33 nm , λₒ=1200 nm , with nvoid=1, 1.1 ,1.2 ,1.3  

 

Figure (3.16): ODR band in NPS-Si, n1=1.7, n2=3.6, d1=176.47 nm, d2= 83.33 nm , λₒ=1200 

nm , with nvoid=1, 1.1 ,1.2 ,1.3  
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We have observed that NPS based photonic crystal structures can be tuned and used as 

wavelength filters in the near infrared spectrum which is very useful in many imaging sensors.  

3.7: EFFECT OF MATERIAL DISPERSION IN ODR PROPERTIES OF ZnO-SiO2 

1DPC 

3.7.1 ZnO-SiO2 1DPC without Material Dispersion Effects 

We have investigated the effect of dispersion on the omnidirectional reflection band properties 

in the 1D PC structure consisting of 25 periods of alternate layers of ZnO and SiO2. The 

theoretical analysis is based on TMM. We have taken alternate layers of ZnO as high refractive 

index medium and SiO2 as low refractive index medium. In the study, we have neglected field 

absorption / attenuation as the constituent materials have negligible absorption coefficients in 

the wavelength range of interest.  The index of refraction n1 and n2 for ZnO and SiO2, 

respectively, ignoring material dispersion, is taken as n1 = 2.08 and n2 = 1.46 in the 

wavelength range 400 nm to 2000 nm. The structure of interest is designed around a central 

wavelength λ0 = 1200 nm. This wavelength regime around 1200 nm is of high interest as most 

of optical device applications have been proposed and implemented in this range [3.22-3.24]. 

This wavelength range is very near to wavelength of optical fiber communication systems and 

infrared light with a wavelength around 1330 nm (least dispersion), 1550 nm (best 

transmission) are the best choices for standard silica fibers. The wavelength range of interest 

is also close to the region where optical fibers have small transmission loss (1260 nm to 1625 

nm). The thickness of the individual layers is considered according to the quarter wave stack 

condition. The thickness of ZnO layer is d1  =  
λ0

4n1
 = 144.2 nm and the thickness of SiO2 

layer is d2 = 
λ0

4n2
 =  205.48 nm. The PBG for TE and TM mode is represented in Figs. (3.17 

& 3.18), respectively, for various angles of incidence without the inclusion of material 

dispersion effects.  In TE mode there is considerable blue shift of PBG edges as we increase 

the angle of incidence together with a decrease in the bandwidth of PBG. Similar type of blue 

shift of PBG edges is also observed for TM modes as we increase the angle of incidence but 

PBG width increases. The PBG edges in TE mode and TM mode is summarized in Table (3.6). 

https://www.fiberlabs-inc.com/glossary/optical-fiber/
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Figure (3.17): Reflectivity variation with wavelength at different angle of incidence for TE 

modes in multi-layered ZnO-SiO2 without dispersion effects. 
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Figure (3.18): Reflectivity variation with wavelength at different angle of incidence for TM 

modes in multi-layered ZnO-SiO2 without dispersion effects. 

Table (3.6):  Photonic bandgap variation with incidence angle in multi-layered ZnO-SiO2 

without dispersion effects. ODR band (1079 nm -1158 nm = 79 nm). 

Angle TE TM 

 Lower 

bandgap 

edge (nm) 

Upper 

bandgap 

edge (nm) 

Bandgap 

(nm) 

Lower 

bandgap 

edge (nm) 

Upper 

bandgap 

edge (nm) 

Bandgap 

(nm) 

0° 1079 1351 272 1079 1351 272 

30° 1041 1275 234 1022 1303 281 
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60° 960 1110 150 896 1209 313 

89° 915 1016 101 827 1158 331 

 

The ODR in ZnO-SiO2 multi-layered photonic structure ignoring the dispersion effects is 

shown in Figs. (3.19-3.21), and bandgap edges are mentioned in Table (3.6). The lower 

bandgap edge for TE mode at θ = 0° is λL = 1079 nm and the upper bandgap edge for TM mode 

at θ = 89° is λU = 1158 nm. So the total ODR bandwidth is (1158nm-1079nm) = 79 nm which 

is considerable and can be used in potential applications in near- infrared frequencies. 

 

Figure (3.19): Dispersion relation with variation of angle of incidence for TE modes (Red lines) 

and TM modes (Blue lines) for ZnO2-SiO2. 

In Fig. (3.19), we observe the dispersive characteristics of the 25-period ZnO-SiO2 1DPC 

which shows large overlap of the properties for both TE and TM waves. The ODR region 

observed around 1100 nm is highly prominent. The transmission profile for the structure of 

interest is given in Fig. (3.20). One can observe shifts in the PBG with change in angle of 

incidence for both TE and TM modes of the field. Fig.(3.21) shows the reflection profile for 

both polarizations together with the region for ODR. 
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Figure (3.20): Transmissivity variation with wavelength and angle of incidence for TE modes 

(Red lines) and TM modes (Blue lines) in multi-layered ZnO-SiO2 . 

 

Figure (3.21): Reflectivity variation with wavelength for TE modes at θ = 0° and TM modes θ 

= 89° in multi-layered ZnO-SiO2 without dispersion effects. ODR band (1079 nm -1158 nm = 

79 nm). 
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3.7.2 Effect of Material Dispersion 

 

In this section we consider the effect of material dispersion on the electromagnetic wave 

propagation properties across a 1DPC consisting of 25-periods of alternating layers of ZnO and 

SiO2. In order to include material dispersion in our formalism we use the Sellmeier equations 

cited in reference [3.25]. The Sellmeier equation for the refractive index of ZnO is expressed 

as  

𝑛1
2(𝜆) = 𝐴 +

𝐵𝜆2

𝜆2−𝐶2
+

𝐷𝜆2

𝜆2−𝐸2
,                                    (3.8) 

 

where A, B, C, D and E are Sellmeier coefficients,  λ is the wavelength of light in (nm). We 

have taken the value of parameters cited in reference [3.26]. 

 

Table (3.7): Sellmeier coefficients for ZnO thin film. 

 

A B C (nm) D E (nm) 

2.0065 1.5748×106 107 1.5868 260.63 

 
 

The refractive index of SiO2 is given by the Sellmeier equation as  

𝑛2
2(𝜆) = 1 +

𝐵1λ
2

λ
2−𝐶1

+
𝐵2λ

2

λ
2−𝐶2

+
𝐵3λ

2

λ
2−𝐶3

,                               (3.9) 

 

where, B1, B2, B3, C1, C2, and C3 are Sellmeier coefficients and we have taken the value of 

these coefficients as cited in reference in [3.25, 3.27]. 

Table (3.8):  Sellmeier coefficients for SiO2. 

B1 B2 B3 C1 (nm2) C2   (nm2) C3 (nm2) 

0.6694 0.43458 0.8716 4480.1 13284 95341000 

 

Under the influence of material dispersion, the reflection band of the desired structure 

undergoes changes such that for both TE modes and TM modes, we observe red shift in the 

lower bandgap edge and a blue shift in upper bandgap edge. At normal incidence (θ = 0°), the 

lower edge of bandgap was at 1079 nm in the absence of material dispersion. The edge got red 

shifted to 1103 nm with dispersion effects. The upper bandgap edge was at 1351 nm without 

dispersion and with the inclusion of material dispersion, it blue shifts to 1315 nm. Similar 

properties such as decrease in the width of photonic bandgap, for higher angles of incidence, 

are observed for both TE and TM modes. The photonic bandgap edges for TE and TM modes 

are summarized in Table 4.The comparative shift due to dispersion for both TE and TM modes 
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is shown in Fig. (3.22) and Fig. (3.23), respectively. Figs. (3.24 & 3.25) show the dispersive 

characteristics and transmission profile of the 25-period ZnO-SiO2 1DPC structure, 

respectively. The effective group velocity for the structure is 

 𝑣𝑔 = 
𝑑𝜔

𝑑𝐾
= [

𝑑𝐾

𝑑𝜔
]
−1

= [−
𝜆2

𝑐

𝑑𝐾

𝑑𝜆
]
−1

.  

Putting 𝑑 = 𝑑1 + 𝑑2 and using Eqs. (3.8-3.9) and Eq. (2.61), we get,  

 

𝑑𝐾

𝑑𝜆
= −

1

𝑑 sin𝐾𝑑
[sin

𝑛1𝑑1

𝜆
 cos

𝑛2𝑑2

𝜆
(−

1

2

𝑑2

𝜆

𝑑𝑛2

𝑑𝜆
(
𝑛1

𝑛2
+
𝑛2

𝑛1
) +

1

2

𝑑2

𝜆2
(𝑛1 +

𝑛2
2

𝑛1
) + 𝑑1 (−𝜆

𝑑𝑛1

𝑑𝜆
+

𝑛1))    + cos
𝑛1𝑑1

𝜆
   sin

𝑛2𝑑2

𝜆
(−

1

2

𝑑1

𝜆

𝑑𝑛1

𝑑𝜆
(
𝑛1

𝑛2
+
𝑛2

𝑛1
) +

1

2

𝑑1

𝜆2
(𝑛2 +

𝑛1
2

𝑛2
) + 𝑑2 (−𝜆

𝑑𝑛2

𝑑𝜆
+ 𝑛2)) +

sin
𝑛1𝑑1

𝜆
sin

𝑛2𝑑2

𝜆
(
1

2

𝑑𝑛2

𝑑𝜆
(
𝑛1

𝑛22
−

1

𝑛1
) +

1

2

𝑑𝑛1

𝑑𝜆
(
𝑛2

𝑛12
−

1

𝑛2
))],                     (3.10) 

 
𝑑𝑛1

𝑑𝜆
= −

𝜆

𝑛1
[

𝐵𝐶2

(𝜆2−𝐶2)2
+

𝐷𝐸2

(𝜆2−𝐸2)2
],                                                           (3.11) 

𝑑𝑛2

𝑑𝜆
= −

𝜆

𝑛2
[

𝐵1𝐶1

(𝜆2−𝐶1)2
+

𝐵2𝐶2

(𝜆2−𝐶2)2
+

𝐵3𝐶3

(𝜆2−𝐶3)2
].                                                                                (3.12) 

 

Table (3.9):  Photonic bandgap variation with incidence angle in ZnO-SiO2 1DPC with 

dispersion effects. The region of ODR (1103 nm -1133nm = 30 nm). 

Angle TE TM 

 Lower 

bandgap 

edge (nm) 

Upper 

bandgap 

edge (nm) 

Bandgap 

(nm) 

Lower 

bandgap 

edge (nm) 

Upper 

bandgap 

edge (nm) 

Bandgap 

(nm) 

0° 1103 1315 212 1103 1315 212 

30° 1058 1239 181 1041 1263 222 

60° 960 1075 115 906 1156 250 

89° 914 984 70 831 1133 302 
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Figure (3.22): Reflectivity variation with wavelength for TE modes at θ = 0°, 30°, 60°, and 89° 

in ZnO-SiO2 1DPC with material dispersion effects.  
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Figure (3.23): Reflectivity variation with wavelength for TM modes at θ=0°, 30°,60°, and 89° 

in ZnO-SiO2 1DPC with material dispersion effects. 
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Figure (3.24): Dispersion relation with variation of angle of incidence for TE modes (Red lines) 

and TM modes (Blue lines) for ZnO2-SiO2 1DPC with material dispersion.  

 

Figure (3.25): Transmissivity variation with wavelength and angle of incidence for TE modes 

(Red lines) and TM modes (Blue lines) in ZnO-SiO2 1DPC with material dispersion effects. 
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Table (3.10): Omnidirectional bandgap in ZnO-SiO2 1DPC with dispersion effects. 

TE TM  

Omnidirectional bandgap Angle Lower 

bandgap 

edge (nm) 

Upper 

bandgap 

edge (nm) 

Angle Lower 

bandgap 

edge (nm) 

Upper 

bandgap 

edge (nm) 

0° 1103 1315 89° 831 1133 1133 nm-1103 nm=30 nm 

 

From Eqs. (3.10-3.12) one can infer that in presence of material dispersion, the effective group 

velocity as well as the group velocity dispersion (GVD) = 
𝜕

𝜕𝜔
(
1

𝑣𝑔
) =  

𝜕2𝐾

𝜕𝜔2
 , get highly sensitive 

to the changes in the refractive indices for each wavelength. This in turn results in the 

enhancement of both 𝑣𝑔and GVD. As a consequence, we observe that the omnidirectional 

bandgap reduces considerably due to material dispersion effects. The photonic band edges for 

TE modes at θ = 0° are at lower bandgap edge at 1103 nm and upper bandgap edge at 1315 

nm. Similarly, the photonic bandgap edges for TM modes at θ = 89° are at lower bandgap edge 

at 831 nm and upper band gap edge at 1133 nm. So, we obtain a reduced omnidirectional gap 

of 30 nm (1133 nm -1103 nm) due to material dispersion effects. With ZnO films being the 

material of choice for high refractive index, one can perform extensive tuning of the bandgap 

properties by appropriately varying the dopant element and level together with the material 

dispersion properties. The dopants create additional mode or microcavity in the bandgap region 

which can be tuned by the concentration of dopant and temperature [3.28-3.36]. In the present 

case, the inclusion of the material dispersion properties of the constituent layers results in a red 

shift in the ODR band position and bandgap. This interplay of the structural characteristics 

together with the material properties in the case of 25-period ZnO based 1DPC makes it a 

unique candidate for designing of novel optical / opto-electronic devices. 

CONCLUSIONS: 

1DPC structures mentioned in Table (3.2) are designed to be used as ODR to get the reflection 

spectrum in the desired wavelength range using Transfer Matrix Method. In 20 layered Si/SiO2, 

ODR band is found to be from 818 nm to 633 nm as shown in Table (3.1). The proposed 

structure gives 100% reflection within a wide range of wavelengths in the visible-N IR region 

and can be used effectively in wavelength filters, optical resonators and mirrors in desired 

wavelength range. The variation in the ODR band due to change in refractive index contrast 
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for 1DPCs has been simulated and shown in Table (3.2). It was found from the observed results 

that the refractive index contrast is an important design parameter for optical characterisation 

of ODR. The width of ODR increases with the increase in refractive index contrast. As the 

refractive index contrast increases, the lower ODR band edge is blue shifted and the upper 

ODR band edge is red shifted, which widens the ODR band. The role of ambient medium in 

the optical response of ODR is simulated for 20 layered Si/SiO2 1DPC structure. The width of 

ODR band is found to be decreased and blue shifted with increase in the refractive index of 

ambient medium. When the refractive index of ambient medium approaches the lower 

refractive index of constituent layer, the ODR band disappears as shown in Fig.(3.5). The effect 

of number of layers is simulated for the designing of ODR. The number of layers in ODR is an 

important parameter due to fabrication challenges. The width of ODR is found to be sharpened 

with increase in the higher reflectance region in Si/Na3AlF6 1DPC with the increase in number 

of layers as shown in Fig.(3.6). There is a considerable enhancement of ODR band in 25 layered 

Si-SiO2 1DPC by changing the thickness parameters using a gradual constant ‘Ƴ’ around 

central wavelength of 800 nm as shown in Table (3.3).The proposed structure gives high 

reflection within a wide range of wavelengths in the visible and near infrared region and can 

be used effectively in wavelength filters, optical resonators and mirrors.  

Based on theoretical framework of BEMA and TMM, ODR band in PS/Si 1D-PC is studied.  

The effect of infiltration of liquids/chemicals inside pores of PS on ODR is simulated. There 

is enhancement of ODR in PS based 1D-PC with increase in refractive index of infiltrated 

liquids in pores as shown in Table (3.5). The structure gives broad inhibition of transmission 

frequencies within a wide range of wavelengths in the near infrared region (1269 nm- 985 nm) 

which can be tuned according to the design parameters and porosity.  

The numerical study of the effect of material dispersion on the ODR properties in the case of 

1D-PC consisting of alternate layers of ZnO and SiO2 is investigated. Taking into account the 

material dispersion properties, shift in the wavelength range for ODR from (1079 − 1158 nm) 

to (1133 − 1103 nm) is observed as shown in Table-9 and 10. This shows the narrowing of the 

bandwidth for ODR from 79 nm to 30 nm as a result of material dispersion. The wavelength 

range of interest is close to optical communication wavelengths and is useful in many optical 

device applications. The effect of material dispersion on the spectral response of ODR is 

included and it is found that it plays an important role in designing and analysis of 1DPC .  
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CHAPTER- IV 

 MICROCAVITY DEFECT IN 1DPC 

INTRODUCTION: 

This chapter deals with simulation study of single defects in 1DPC to make resonant 

microcavities. PCs with defects lead to localised electromagnetic modes inside the bandgap 

region [4.1-4.5]. Many useful devices are designed using impurities in the PCs, e.g. micro-

cavities, linear waveguides, etc. Impurities destroy the perfect translational symmetry in the 

photonic crystals. This can be achieved in a periodic dielectric by a number of different 

methods e.g. adding impurity dielectric materials to a unit cell, removing dielectric materials 

from a unit cell, by changing the dielectric constant of materials in a cell and by changing the 

size/geometry of materials in a cell in the lattice [4.6-4.10]. The overall effect will be a 

localized change of the average dielectric constant of the medium. Impurities at single site 

serve as high Q microcavities. Such structures bind resonantly localized cavity modes in the 

stop band of the photonic crystal. Since no light in the stop band can pass through the 

surrounding periodic regions, the impurity mode will be evanescent outside the defect layer. 

Thus a resonance occurs in a very narrow frequency range inside the stop band. The structure 

is then called a resonant microcavity, and the confined resonant mode about the structure is 

called the resonant excitation. The efficiency of the resonant cavity is characterized by a quality 

factor or Q value, which is a measure of the number of oscillations of light in the cavity before 

damping eventually, causes the original excitation to decay away. The resonant excitations in 

such cavities are the basis of laser systems, Fabry-Perot oscillators, and photonic microcavities. 

The Q-value for resonant cavity is defined as  

𝑄 =
𝜆0

∆𝜆
.                                        (4.1) 

Where λ0 is the central wavelength of resonant cavity and ∆λ is the full width at half maxima 

(FWHM) of resonant cavity. 

4.1. DESIGN OF 1DPC MICROCAVITY 

Microcavities with Si/SiO2 and Si/Air with defect in the form of doubled thickness of middle 

layer were simulated with parameters shown in Fig. 4.1 and Tables (4.1- 4.2). The introduction 

of defect layer creates localised photonic state in the bandgap region. The incident light coupled 

with the defect mode is transmitted by the structure. This represents a sharp transmission peak 

in the bandgap region for the 1DPC structure [4.11-4.16]. The position of this peak can be 

controlled by changing the refractive index or thickness of the defect layer. We have done 
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comparative analysis of the transmission spectrum of Si/SiO2 1DPC with defect layer of double 

thickness of SiO2 and Si layer, respectively at the middle of the structure for wavelength range 

1000 nm to 3000 nm with the central wavelength at 1550 nm as shown in Figs.4.2 and 4.3. 

 

 

Figure 4.1: Design parameters of a Si/SiO2 1DPC microcavity with double width of defect 

layer at resonant wavelength λo=1550 nm. 

Table 4.1: Parameters of a quarter wavelength stack comprising SiO2 low index layers and Si 

high index layers and with double width of SiO2 layer to be the defect at resonant wavelength 

λo=1550 nm  

Layer Material 

Refractive 

Index Thickness 

A SiO2 1.45 267.24 nm 

B Si 3.42 113.30 nm 

Defect SiO2 1.45 534.48 nm 
 

Table 4.2: Parameters of a quarter wavelength stack comprising SiO2 low index layers and Si 

high index layers and with double width of Si  layer to be the defect at resonant wavelength 

λo=1550 nm 

Layer Material 

Refractive 

Index Thickness 

A SiO2 1.45 267.24 nm 

B Si 3.42 113.30 nm 

Defect Si 3.42 226.6 nm 
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(a) 

 

(b) 

Figure 4.2: (a) Resonant microcavity mode in Si/SiO2 1D-PC with SiO2 defect layer of double 

thickness with n1 = 1.45, n2 = 3.42, d1 = 267.24 nm, d2 = 113.30 nm, N = 11, ndefect =

1.45, ddefect = 534.48 nm. (b) Enlarged view of resonant cavity mode showing the full width 

at half maxima (FWHM). 

Resonant 

Microcavity 

FWHM=24 nm  

 

N=11, SiO2 defect  
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(a) 

 

(b) 

Figure-4.3: (a) Resonant microcavity mode in Si/SiO2 1D-PC with Si defect layer of double 

thickness with n1 = 1.45, n2 = 3.42, d1 = 267.24 nm, d2 = 113.30 nm, N = 11, ndefect =

3.42, ddefect = 226.6 nm. (b) Enlarged view of resonant cavity mode showing the full width 

at half maxima (FWHM). 

 

FWHM=16 nm  

 

N=11, Si defect  
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4.2. OPTIMISING Q-VALUE FOR 1DPC MICROCAVITY 

It is observed that increasing the number of constituent layers narrows the PBG and sharpens 

the bandgap edges. Q-value in the transmission peak is increased due to higher reflectivity of 

Bragg mirrors as number of layers is increased. In Si/SiO2 1DPC microcavity with Si as defect 

layer, the Q-value has increased from 15.9 to 258 for an increase of pair of layers from 7 to 13 

as shown in Fig.(4.4). Similarly in Si/SiO2 microcavity with SiO2 as defect layer, the Q-value 

of defect mode has increased from 9.7 to 155 for an increase of pair of layers from 7 to 13 as 

shown in Fig. (4.5). Q-values for Si defect layer is much higher than the SiO2 defect layer. In 

Si/Air 1DPC with defect layer as air, the Q-values increase from 6.5 to 258.3 for an increase 

in the number of pair of layers from 5 to 11 as shown in Fig.( 4.6). In Si/Air 1D-PC with defect 

layer as Si, the Q-value is found to increase from 11.5 to 517 as shown in Fig (4.7).  It is 

observed that Si/Air 1DPC structures have higher Q values than Si/SiO2 structures due to high 

refractive index contrast. So high refractive index contrast and high refractive index defect 

layer is required for creating a microcavity with high Q-values as shown in Fig.(4.8).  

 

(a) 

 

 

 

Q=15.9 N=7 
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           (b) 

 

       (c)     

N=11 Q=96.87 

Q=44.3 N=9 
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(d) 

Figure 4.4: Resonant microcavity mode in Si/SiO2 1DPC with Si defect layer with n1 = 1.45, 

n2 = 3.42, d1 = 267.24 nm, d2 = 113.30 nm, ndefect = 3.42, ddefect = 226.6 nm, (a) N = 

7, (b) N = 9, (c) N = 11, (d) N = 13. 

 

(a) 

N=13 Q=258 

N=7 Q=9.7 
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(b) 

 

 

(c) 

Q=29.24 N=9 

Q=64.5 N=11 
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      (d) 

Figure 4.5: Resonant microcavity mode in Si/SiO2 1DPC with SiO2 defect layer with n1 =

1.45, n2 = 3.42, d1 = 267.24 nm, d2 = 113.30 nm, ndefect = 1.45, ddefect = 534.48 nm, 

(a) N = 7, (b) N = 9, (c) N = 11, (d) N = 13.  

 

(a) 

Q=155 N=13 

Q=6.5 N=5 
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(b) 

  

(c) 

N=9 Q=77.5 

Q=20.9 N=7 
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(d) 

Figure 4.6: Resonant microcavity mode in Si/Air 1DPC with Air defect layer with n1 = 1, 

n2 = 3.42, d1 = 387.5 nm, d2 = 113.30 nm, ndefect = 1, ddefect = 775 nm, (a) N = 5, (b) N 

=7, (c) N = 9, (d) N = 11. 

.  

(a) 

N=11 Q=258.3 

Q=11.5 N=5 
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(b) 

 

       (c)    

Q=155 N=9 

N=7 Q=43.05 
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(d) 

Figure 4.7: Resonant microcavity mode in Si/Air 1DPC with Si defect layer n1 = 1, n2 = 3.42, 

d1 = 387.5 nm, d2 = 113.30 nm, ndefect = 3.42, ddefect = 226.6 nm, (a) N = 5,  

(b) N = 7, (c) N = 9, (d) N = 11. 

 

 

Q=517 N=11 
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Figure 4.8: Variation of logarithmic Q-value with increasing the number of layers in Si/SiO2 

and Si/Air 1DPC with defect of constituent layers.  

4.3 ONE DIMENSIONAL POROUS SILICON MICROCAVITY CHEMICAL 

SENSORS 

We present a numerical study of the effect of anisotropy on the spectral characteristics of one 

dimensional porous silicon micro-cavity (1D-PSMC) with single defect layer. These structures 

have strong potential applications in optical sensing of chemicals and bio-analytes. 

Bruggeman’s effective medium approximation (BEMA) and (4 × 4) general transfer matrix 

method (TMM) is used for theoretical modelling of the spectral response of anisotropic 1D-

PSMC. The potential of this structure as a sensing material is illustrated by analysing 

wavelength shift in the defect mode induced by the infiltration of biochemical analytes of 

different refractive indices inside the pores. In recent years, porous silicon (PS) has become 

material of choice for designing of 1D-PC for sensing applications due to numerous advantages 

[4.17]. Its large surface to volume ratio, easy fabrication technology, controllable pore sizes, 

convenient surface chemistry and ability to modulate its refractive index as function of porosity 

makes it suitable for many applications [4.18]. 

Structures based on PS provide the necessary link between the silicon technology and 

optoelectronic devices. It facilitates the integration with standard micro-electronics platforms 

[4.19]. Porous silicon consists of many air voids (pores) and silicon residuals and can be 

described as a homogenous mixture of silicon and air. It is classified into three types based on 

porosity: nano-porous, mesoporous and macro-porous. In nano-porous and mesoporous silicon 

the size of the pores and the silicon residual is of the order of few to tens of nanometres so PS 

can be optically described as an ‘effective medium’ whose optical properties depend on the 

porosity [4.20]. 1DPC based on PS multilayer is formed by electrochemical etching where the 

porosity and hence the refractive index depends only on the current density once the other 

etching parameters are fixed. The thickness of these PS layers is controlled by etching exposure 

time [4.21-4.27]. Thus, by periodically varying the applied current density and the etching 

exposure time, a 1DPC as a dielectric multilayer structure is formed. 

Bulk silicon is widely used as the target material for designing optical components because of 

its well-developed processing technology. Due to diamond like cubic crystalline structure, 

silicon offers inherent isotropic properties [4.28]. Nano-structuring can induce and control the 

birefringence in the bulk material. Porous silicon is known to exhibit large optical anisotropy 
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in the visible and infrared spectral regions [4.29]. Mesoporous silicon layers with pore 

dimensions of around 10nm to 30nm produced on the monocrystalline silicon substrate with 

low surface symmetry offers the properties of negative birefringence crystal whose 

birefringence magnitude can go up to ∆𝑛 = 𝑛𝑜 − 𝑛𝑒 = 0.24, where 𝑛𝑜and 𝑛𝑒 are refractive 

index of ordinary ray (O-ray) and extraordinary ray (E-ray), respectively [4.30-4.31]. The 

magnitude of the birefringence depends on the pore size or porosity of the silicon. An increase 

in porosity decreases the effective index of both O-ray and E-ray but increases the difference 

between them resulting in an enhanced birefringence magnitude [4.32-4.33]. 

Large optical birefringence in (110) oriented mesoporous silicon layers was also observed 

[4.34]. The property of birefringence in mesoporous and nano-porous silicon enables us  to 

develop anisotropic  one dimensional porous silicon based photonic crystal (1D-PSPC) which 

can find potential applications as waveplates, polarization rotators, optical isolators, beam 

splitters and optical sensors [4.35]. The porous character of PS enables the infiltration of liquids 

and gases which allows further control of its optical properties and promotes its application in 

optical sensing devices [4.36-4.41]. Many researchers are working on the development of nano-

optical devices and optical sensors using PS for the future applications because its optical 

properties are highly sensitive to the presence of biological or chemical specimens inside the 

pores. Fauchet et. al. developed optical biosensors using PS structures [4.42-4.43]. Solanki et. 

al. demonstrated the photovoltaic solar cell applications using PS [4.44]. Many research groups 

are working on characterisation and application of PS for the emerging nanotechnological 

applications [4.45-4.52]. Many researchers have worked theoretically and experimentally on 

porous silicon microcavity used for optical sensing applications [4.53-4.55]. 

Selective and accurate sensing of different chemical, biochemical and biological analytes is the 

need of the hour considering the ongoing effort to develop a sustainable environment. We 

present here a theoretical model of designing multi-layered 1D-PSMC with a defect layer also 

made up of PS for optical sensing of different chemicals, bio-chemicals and bio-analytes. We 

have analysed the sensitivity of this structure with and without anisotropic effects. 

4.3.1 Theory 

The sponge like structure of PS makes it suitable for optical sensing applications. The 

reflectance spectrum of a 1D-PSMC depends on the interferometric Fabry-Perot relationship 

[4.56-4.63]. Light reflected from the successive interfaces of 1D-PSMC constructively 
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interferes to give the reflection spectrum. The reflection spectrum fringes are governed by the 

thickness of layers 𝑑 and the effective refractive index of PS  𝑛, by the relation  

𝑚𝜆0

2
= 𝑛𝐿𝑑𝐿 + 𝑛𝐻𝑑𝐻 ,                       (4.2) 

where, 𝑚 is an integer, 𝜆0 is resonance wavelength of micro-cavity, 𝑛𝐿 and 𝑛𝐻 are the low and 

high effective refractive index of PS and 𝑑𝐿and 𝑑𝐻 are the thickness of the layers of low and 

high effective refractive index of PS, respectively. When the pores of PS are filled with an 

analyte, the effective refractive index of PS increases from 𝑛𝑃𝑆 to 𝑛𝑃𝑆 + ∆𝑛 and hence due to 

increased optical thickness of the structure we observe a red shift for the resonant wavelength 

of micro-cavity from 𝜆0 to 𝜆0 + ∆𝜆 in the reflection spectrum. By analysing the wavelength 

shift ∆λ in the reflection spectrum, the refractive index of analyte can be estimated. The 1D-

PSMC device structure depends on the effective refractive index of PS, thickness of layers (𝑑) 

and the porosity (P). The refractive index of PS is related to porosity by BEMA model, 

described by equation [4.58, 4.64-4.66] 

(1 − P) 
εSi − εeff

εSi + 2εeff
+ P

εvoid − εeff

εvoid + 2εeff
= 0.                                                                                         (4.3)  

Since 𝜀 ∝ 𝑛2 the above relation can also be written as  

(1 − P)
nSi 
2 − nPS 

2

nSi 
2 + 2 nPS 

2 + P
nvoid  
2 − nPS 

2

nvoid  
2 + 2 nPS 

2 = 0                                                                                         (4.4)          

where 𝜀𝑆𝑖   and 𝜀𝑒𝑓𝑓 are the dielectric constant of silicon and PS, respectively, and 𝜀𝑣𝑜𝑖𝑑 is the 

dielectric constant of medium inside the pores. The refractive index of silicon is  𝑛𝑆𝑖 and 𝑛𝑣𝑜𝑖𝑑 

is the refractive index of the medium inside the pores. This approximation becomes acceptable 

since the wavelength of incident light is near visible-NIR, which is much higher than the size 

of the pores so the electromagnetic radiation does not distinguish between silicon and void and 

treat the PS structure as a homogenous medium. 

In an anisotropic layered media, the four magnetic and electric components of plane wave are 

no longer spatially independent and mode coupling occurs. Consequently a 4 × 4 matrix 

method is required to find the reflection and transmission coefficients. Berreman showed a 

general algorithm of finding reflection and transmission coefficients in an anisotropic slab 

using 4 × 4 matrix method by solving the Maxwell equations and applying boundary 

conditions at the interfaces [4.62]. This general algorithm can be used for both isotropic and 

anisotropic optical responses. Yeh [4.61] and Schubert [4.59-4.60] have developed a general 
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model for anisotropic and isotropic thin film systems based on Berreman’s matrix formulation 

involving the incidence and exit medium transition matrices which is known as the general 

transfer matrix. 

4.3.2 General Transfer Matrix 

Consider an N layered system with parallel interfaces. Let us assume that the light wave of 

wave vector 𝑘𝑎 is coming from incident ambient medium (−∞ < 𝑧 < 0) of refractive index 

 𝑛𝑎  and Ф𝑎 as the angle of incidence. Let x-z plane is the plane of incidence so 𝑘𝑎 will not 

have a component along y-direction. Let 𝐴𝑝 , 𝐵𝑝 represent the complex amplitudes of p –mode 

for incident and reflected waves and 𝐴𝑠 , 𝐵𝑠 represent the same for s-mode waves, as shown in 

Fig. 4.9.  The exit substrate medium (𝑧𝑁 < 𝑧 < ∞) does not contain the back reflected 

amplitudes (𝐷𝑠 = 0,𝐷𝑝 = 0), so there exist only two amplitudes 𝐶𝑠 and 𝐶𝑝 for the transmitted 

s and p modes.  

 

 

 

 

 

 

 

 

Figure 4.9:  Incident, reflected and transmitted p and s modes of light wave with their wave 

vectors  ka, k′a, kf , respectively. 

The four complex amplitudes of incident medium and the two complex amplitudes of the exit 

medium are related by the general transfer matrix T for any multi-layered structure defined as  

(

𝐴𝑠
𝐵𝑠
𝐴𝑝
𝐵𝑝

) = 𝑇(
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)                                                                (4.5) 
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If  𝑑𝑖 is the thickness of 𝑖𝑡ℎ layer, a partial transfer matrix 𝑇𝑖𝑝 that connects the in-plane wave 

components at the interfaces at 𝑧 = 𝑧𝑖 with those at the next interface at 𝑧 = 𝑧𝑖 + 𝑑𝑖 can be 

defined for both isotropic and anisotropic layers. Hence the ordered product of these partial 

matrices for all N layers connect the in-plane components from first interface (𝑧 = 0) to last 

interface(𝑧 = 𝑧𝑁). Similarly, the incident matrix 𝐿𝑎 projects the in-plane wave components of 

incident and reflected waves at the first interface and the exit matrix 𝐿𝑓 projects the transmitted 

amplitudes from last interface to the exit medium. The general transfer matrix T as defined in 

Eq. (4.5) can be obtained by Schubert’s method [4.60] taking the product of all inverted partial 

matrices 𝑇𝑖𝑝 for each layer and the incident matrix and exit matrix in order of their existence. 

𝑇 = 𝐿𝑎
−1∏[𝑇𝑖𝑝(𝑑𝑖)]

−1
𝑁

𝑖=1

 𝐿𝑓 = 𝐿𝑎
−1∏𝑇𝑖𝑝(−𝑑𝑖)

𝑁

𝑖=1

 𝐿𝑓                                                          (4.6) 

𝑇𝑖𝑝 does not require matrix inversion due to symmetry of coordinate system and the incident 

matrix and exit matrix is described as follows: 

𝐿𝑎
−1 =

1

2

(

 

0                  1
0                   1

−1 (𝑛𝑎 𝑐𝑜𝑠Ф𝑎)⁄ 0

   1 (𝑛𝑎 𝑐𝑜𝑠Ф𝑎)⁄ 0

1 𝑐𝑜𝑠Ф𝑎⁄ 0

−1 𝑐𝑜𝑠 Ф𝑎⁄ 0

                      0          1 𝑛𝑎⁄

                      0          1 𝑛𝑎⁄ )

                                                      (4.7) 

𝐿𝑓 =

(
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0 0
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                  (4.8) 

where 𝑛𝑓 is the refractive index of exit medium. The partial transfer matrix 𝑇𝑝 is defined as 

follows  

𝑇𝑝 = exp (𝑖
𝜔

𝑐
∆𝑑)                                                                                                                             (4.9) 

This matrix connects the in-plane components of electric and magnetic field at interfaces 

separated by a distance 𝑑. The frequency of incident light is 𝜔 and velocity of light is 𝑐. The 

matrix ∆ defined in Eq. (4.9) depends on the dielectric tensor 𝜀 and the 𝑥 − component 𝑘𝑥 of 

wave vector 𝑘𝑎 as follows 
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∆ =
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                                    (4.10) 

where 𝜀𝑛𝑚 are the components of dielectric tensor. The reflection and transmission 

coefficients of the multi-layered system can be calculated using the general transfer matrix 

elements of 𝑇 as demonstrated by Yeh [4.61]. 

𝑟𝑠𝑠 = (
𝐵𝑠
𝐴𝑠
) =

𝑇21𝑇33 − 𝑇23𝑇31
𝑇11𝑇33 − 𝑇13𝑇31

                                                                                                    (4.11) 

𝑟𝑝𝑝 = (
𝐵𝑝

𝐴𝑝
) =

𝑇11𝑇43 − 𝑇41𝑇13
𝑇11𝑇33 − 𝑇13𝑇31

                                                                                                    (4.12) 

𝑡𝑠𝑠 = (
𝐶𝑠
𝐴𝑠
) =

𝑇33
𝑇11𝑇33 − 𝑇13𝑇31

                                                                                                     (4.13) 

𝑡𝑝𝑝 = (
𝐶𝑝

𝐴𝑝
) =

𝑇11
𝑇11𝑇33 − 𝑇13𝑇31

                                                                                                   (4.14) 

The reflectance R and transmittance  ɽ  can be calculated as  

𝑅 = |𝑟|2                                                                                                                                              (4.15) 

ɽ =
𝑛𝑓

𝑛𝑎
|𝑡|2                                                                                                                                          (4.16) 

4.3.3 Isotropic Transfer Matrix  

The (4 × 4) general transfer matrix reduces to (2 × 2) isotropic transfer matrix when we 

ignore the anisotropic effects. In an isotropic layered media, the p-modes (electric field vector 

parallel to the plane of incidence) and s- modes (electric field vector perpendicular to the 

plane of incidence) of a plane electromagnetic wave are uncoupled and they are dealt 

independently with 2 × 2 Abéles matrix method [4.72-4.75] for finding the reflection and 

transmission coefficients. The matrix ∆ defined in Eq. (4.10) is now modified in isotropic 1D-

PSMC as  
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∆ =

(

 
 
 
 
 
 

−𝑘𝑥
𝜀𝑧𝑥
𝜀𝑥𝑥

−𝑘𝑥
𝜀𝑧𝑦

𝜀𝑥𝑥

0 0

0 1 −
𝑘𝑥

2

𝜀𝑥𝑥

−1     0

𝜀𝑦𝑧
𝜀𝑧𝑥
𝜀𝑥𝑥

− 𝜀𝑦𝑥 𝑘𝑥
2 − 𝜀𝑥𝑥 + 𝜀𝑦𝑧

𝜀𝑧𝑦

𝜀𝑥𝑥

𝜀𝑥𝑥 − 𝜀𝑥𝑧
𝜀𝑧𝑥
𝜀𝑥𝑥

𝜀𝑥𝑦 − 𝜀𝑥𝑧
𝜀𝑧𝑦

𝜀𝑥𝑥

0 𝑘𝑥
𝜀𝑦𝑧

𝜀𝑥𝑥

0 −𝑘𝑥
𝜀𝑥𝑧
𝜀𝑥𝑥)

 
 
 
 
 
 

                                  (4.17) 

The modified partial transfer matrix 𝑇𝑝 , and the isotropic transfer matrix T is calculated by 

Eq. (4.9) and Eq. (4.6), respectively. The reflection and transmission coefficients of the 

isotropic multi-layered system can be calculated using the Eqs. (4.11-4.14). 

4.3.4 Results and Discussion 

We have analysed and compared the effect of anisotropy on the spectral characteristics and 

sensitivity of two photonic bandgap microcavity sensors 1D-PSMC-1 and 1D-PSMC-2 of 

same constituent materials but different thickness parameters. Each structure consists of 12 

alternate layers of porous silicon with different porosity and a defect layer of porous silicon 

in the middle of structure as shown in Fig. 4.10. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10:  Schematic diagram of (a) 1D-PSMC-1 and (b) 1D-PSMC-2 

 

TE 

𝐵⃗റ 

𝐸⃗റ 
𝑘⃗റ 

𝑘⃗റ 

TM 

𝐸⃗റ 

𝐵⃗റ 

Defect Layer 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

𝑛𝐴 

 

A 

𝑑𝐴 

𝑛𝐵 

 

B 

𝑑𝐵 

 

z 

x 

y 

TE 

𝐵⃗റ 

𝐸⃗റ 
𝑘⃗റ 

𝑘⃗റ 

TM 

𝐸⃗റ 

𝐵⃗റ 

Defect Layer 

𝑛𝐶  

 

C 

𝑑𝐶  

𝑛𝐷 

 

D 

𝑑𝐷 

 

𝑛𝐶  

 

C 

𝑑𝐶  

𝑛𝐷 

 

D 

𝑑𝐷 

 

𝑛𝐶  

 

C 

𝑑𝐶  

𝑛𝐷 

 

D 

𝑑𝐷 

 

𝑛𝐶  

 

C 

𝑑𝐶  

𝑛𝐷 

 

D 

𝑑𝐷 

 

𝑛𝐷 

 

D 

𝑑𝐷 

 

𝑛𝐶  

 

C 

𝑑𝐶  

𝑛𝐷 

 

D 

𝑑𝐷 

 

𝑛𝐶  

 

C 

𝑑𝐶  

𝑛𝐷 

 

D 

𝑑𝐷 

 

z 

x 

y 



113 
 

4.3.5 Anisotropic 1D-PSMC Sensor 

Optical anisotropy in porous silicon required anisotropic etching of Si where etching rate 

differs for different crystallographic directions. As a result, the pores in porous silicon are 

elongated in the direction of larger etching rate and are oriented in the direction perpendicular 

to the etching plane [4.73]. This leads to violation of cubic symmetry of Si single crystal. 

Etching (110) plane gives in-plane negative uniaxial anisotropy due to anisotropic dielectric 

nano-structuring. Both the anisotropic 1D-PSMC structures consists of 12 periodic alternating 

anisotropic negative uniaxial porous silicon layers A and C with porosity of 0.46 and B and 

D with porosity 0.72, respectively as shown in Fig. (4.10). The periodicity is broken by 

inserting a defect layer of porosity 0.72 in the middle of both the sensor structures. We assume 

the Cartesian principal axes of all the anisotropic porous silicon layers including the defect 

layer oriented parallel to the axes of the laboratory coordinate system so that the azimuthal 

angle for all the layers is zero in both the sensors. The refractive index of incident and exit 

medium is taken as air (na = 1, nf = 1) and the angle of incidence for both sensor structures 

is taken as Фa = 10°. The dielectric tensor of all the layers including the defect layers in both 

the sensors becomes diagonally anisotropic of the form 

ε = (

εxx 0 0
0 εyy 0

0 0 εzz

)                                                                                                                 (4.18) 

We have applied BEMA model to find the elements of dielectric tensor in both the anisotropic 

1D-PSMC sensors. In the case of 1D-PSMC-1, the porosity of layer A and B gives the elements 

of dielectric tensor as εAxx = 5.01, εAyy = 4.8, εAzz = 5.01 and εBxx = 2.25, εByy =

1.85, εBzz = 2.25  using Eqs. (4.4-4.5). In anisotropic 1D-PSMC -2, the porosity of constituent 

layers is same as of anisotropic 1D-PSMC-1, so the elements of dielectric tensor will be  εCxx =

5.01, εCyy = 4.8, εCzz = 5.01 and εDxx = 2.25, εDyy = 1.85, εDzz = 2.25. The dielectric 

tensor elements of defect layers are taken as εDxx = 2.25, εDyy = 1.85, εDzz = 2.25  for both 

the anisotropic sensors. The refractive indices for ordinary and extraordinary rays for both layer 

A and layer C are 2.24 and 2.19, respectively. The refractive indices for ordinary and 

extraordinary rays for both layer B and layer D are 1.5 and 1.36, respectively [4.30]. In 1D-

PSMC-1, the thickness of A layer is taken as 89.3 nm and the thickness of B layer and the 

defect layer is taken as 163 nm. In 1D-PSMC-2 sensor, the thickness of C layer is taken as 

178.6 nm and the thickness of D layer and the defect layer is taken as 163 nm. 
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We have used General transfer matrix to calculate the reflectivity of both 1D-PSMC sensors. 

The selected wavelength range of interest is from 400 nm to 2000 nm. The numerically 

designed anisotropic 1D-PSMC-1 structure has micro-cavity mode at λ = 833 nm for s-

polarization and at λ = 895 nm for p-polarization for air inside the pores (nvoid = 1)  as shown 

in Fig. (4.11). Designed anisotropic 1D-PSMC-2 structure has microcavity mode at λ =

1137 nm for s-polarization and at λ = 1216 nm for p-polarization for (nvoid = 1) as shown 

in Fig. (4.12). When the biochemical analyte is introduced inside the pores, the refractive index 

of all porous silicon layers increases, thus increasing the optical path of the waves which 

corresponds to red shift in the micro-cavity wavelength (∆λ). We have observed a linear 

relationship between increase in refractive index inside the pores (∆n)  and the red shift of 

micro-cavity wavelength  ∆λ for both the polarizations. The estimated red shift ∆λ  for different 

refractive index of the analyte is shown in Table-(4.3-4.6) for both anisotropic 1D-PSMC 

sensors. The observed wavelength shift with (nvoid > 1) for both the anisotropic sensors is 

shown in Fig. (4.13-4.16) for both the polarizations. Thus, we get a fair idea of the  refrative 

index of  chemical or bio-analyte through our designed Anisotropic 1D-PSMC structures. 

Table 4.3:  Wavelength red-shift in anisotropic 1D-PSMC-1 with change in the refractive index 

of analyte inside the pores for s-polarization 

Anisotropic 1D-PSMC-1, s-polarization (θ = 10°) 

Refractive 

index of 

Analyte 

inside the 

pores 

Micro-cavity 

wavelength (nm) 

with air in pores       

( 𝑛𝑣𝑜𝑖𝑑 =1) 

Micro-cavity wavelength (nm)  

with analyte in pores                       

( 𝑛𝑣𝑜𝑖𝑑 > 1 ) 

wavelength 

shift 
(∆𝜆) nm 

1.1 833 855 22 

1.2 833 874 41 

1.3 833 893 60 

1.4 833 909 76 

1.5 833 925 92 
 

Table 4.4:  Wavelength red-shift in anisotropic 1D-PSMC-1 with change in the refractive index 

of analyte inside the pores for p-polarization. 
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Anisotropic 1D-PSMC-1, p- polarization (θ = 10°) 

Refractive 
index of 
Analyte 

inside the 
pores 

Micro-cavity wavelength 
(nm) with air in pores          

( 𝑛𝑣𝑜𝑖𝑑 =1) 

Micro-cavity wavelength 
(nm)  with analyte in pores                      

( 𝑛𝑣𝑜𝑖𝑑 > 1 ) 

wavelength 
shift (∆𝜆) nm 

1.1 895 911 16 

1.2 895 926 31 

1.3 895 939 44 

1.4 895 952 57 

1.5 895 964 69 

 

Table 4.5:  Wavelength red-shift in anisotropic 1D-PSMC-2 with change in the refractive index 

of analyte inside the pores for s-polarization 

Anisotropic 1D-PSMC-2, s-polarization (θ = 10°) 

Refractive 

index of 

Analyte 

inside the 

pores 

Micro-cavity 

wavelength (nm) with 

air in pores   ( 𝑛𝑣𝑜𝑖𝑑 =1) 

Micro-cavity wavelength (nm)  

with analyte in pores                       

( 𝑛𝑣𝑜𝑖𝑑 > 1 ) 

wavelength 

shift 
(∆𝜆) nm 

1.1 1137 1166 29 

1.2 1137 1192 55 

1.3 1137 1216 79 

1.4 1137 1238 101 

1.5 1137 1258 121 
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Table 4.6:  Wavelength red-shift in anisotropic 1D-PSMC-2 with change in the refractive index 

of analyte inside the pores for p-polarization 

Anisotropic 1D-PSMC-2, p- polarization (θ = 10°) 

Refractive 
index of 
Analyte 

inside the 
pores 

Micro-cavity 
wavelength (nm) with 

air in pores   ( 𝑛𝑣𝑜𝑖𝑑 =1) 

Micro-cavity wavelength (nm)  
with analyte in pores                      

( 𝑛𝑣𝑜𝑖𝑑 > 1 ) 

wavelength 
shift 

(∆𝜆) nm 

1.1 1216 1238 22 

1.2 1216 1259 43 

1.3 1216 1277 61 

1.4 1216 1294 78 

1.5 1216 1310 94 

 

 

Figure 4.11:  The reflectance (red lines) and transmittance (black lines) spectrum for s and p- 

polarizations for anisotropic 1D-PSMC-1 for nvoid = 1 
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Figure 4.12:  The reflectance (red lines) and transmittance (black lines) spectrum for s and p- 

polarizations for anisotropic 1D-PSMC-2 for nvoid = 1 

 

Figure 4.13:  Reflection spectrum of anisotropic 1D-PSMC-1 sensor and wavelength red-shift 

observed with change in the refractive index of analyte inside the pores (red lines) (a) nvoid =
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1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) nvoid = 1.4 (e) nvoid = 1.5, with respect to air in pores 

(nvoid = 1) for s-polarization (black lines). 

 

Figure 4.14:  Reflection spectrum of anisotropic 1D-PSMC-1 sensor and wavelength red-shift 

observed with change in the refractive index of analyte inside the pores (red lines) (a) nvoid =

1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) nvoid = 1.4 (e) nvoid = 1.5 with respect to air in pores 

(nvoid = 1) for p-polarization (black lines). 
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Figure 4.15:  Reflection spectrum of anisotropic 1D-PSMC-2 sensor and wavelength red-shift 

observed with change in the refractive index of analyte inside the pores (red lines) (a) nvoid =

1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) nvoid = 1.4 (e) nvoid = 1.5 with respect to air in pores 

(nvoid = 1) for s-polarization (black lines). 
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Figure 4.16:  Reflection spectrum of anisotropic 1D-PSMC-2 sensor and wavelength red-shift 

observed with change in the refractive index of analyte inside the pores (red lines) (a) nvoid =

1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) nvoid = 1.4 (e) nvoid = 1.5 with respect to air in pores 

(nvoid = 1) for p-polarization (black lines). 

4.3.6 Isotropic 1D-PSMC Sensor 

Porous (100) Si surfaces have isotropic in-plane optical properties due to the equivalence of 

(010) and (001) crystallographic planes [4.31]. As a result, the pores in porous silicon are not 

elongated in a particular direction which leads to no violation of cubic symmetry of Si crystal. 

In our isotropic sensors 1D-PSMC-1 and 1D-PSMC-2 we have ignored the anisotropic effects 

and all the other design parameters of 1D-PSMC-1 and 1D-PSMC-2 remains the same as of 

anisotropic sensors. The refractive index of incidence and exit medium is taken as air (na =

1, nf = 1). The angle of incidence on this structure is taken as Фa = 0°. The dielectric tensor 

of all the layers of porous silicon including the defect layer for both the isotropic sensors is of 

the form  

𝜀 = (
𝜀𝑥𝑥 0 0
0 𝜀𝑥𝑥 0
0 0 𝜀𝑥𝑥

)                                                                                                                (4.19)     

BEMA model as referred in previous section II is applied to calculate the elements of 

dielectric tensor in both isotropic sensors. In isotropic 1D-PSMC-1 sensor the porosity of layer 

A gives the elements of dielectric tensor of A as  εAxx = εAyy = εAzz = 5.01 and the porosity 

of B layer gives  εBxx =  εByy = εBzz = 2.25  and the dielectric tensor elements of defect layer 

is taken as εBxx = εByy = εBzz = 2.25 . In isotropic 1D-PSMC -2, the porosity of constituent 

layers is same as isotropic 1D-PSMC-1, so the elements of dielectric tensor will be  εCxx =

 εCyy = εCzz = 5.01 and εDxx = εDyy = εDzz = 2.25. The dielectric tensor elements of defect 

layers are taken as εDxx = εDyy = εDzz = 2.25  for both the isotropic sensors. In isotropic 1D-

PSMC-1 sensor the refractive index of layer A, B and the defect layer is 2.24, 1.5, and 1.5 

respectively to match with anisotropic 1D-PSMC-1. In isotropic 1D-PSMC-2 sensor the 

refractive index of layer C, D and defect layer is 2.24, 1.5, and 1.5 respectively to match with 

anisotropic 1D-PSMC-2. The thickness of A layer, B layer and the defect layer in isotropic 1D-

PSMC -1   is 89.3 nm, 163 nm, 163 nm  respectively to match with anisotropic 1D-PSMC-1. 

The thickness of C layer, D layer and the defect layer in isotropic 1D-PSMC-2 is 

178.6 nm, 163 nm, 163 nm  respectively to match with anisotropic 1D-PSMC-2.  
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We have used the isotropic transfer matrix referred in subsection B of section II to calculate 

the reflectivity of both isotropic 1D-PSMC sensors. The reflectivity for different polarizations 

Rss, Rpp and the transmissivity Tss , Tpp for both sensors is shown in Figs. (4.17- 4.18) with 

air inside the pores (nvoid = 1). The designed isotropic 1D-PSMC-1 structure is having the 

micro-cavity resonant wavelength at λ0 = 907 nm for both s-polarization and p-polarization 

with nvoid = 1 as shown in Fig. (4.17). The designed isotropic 1D-PSMC-2 sensor is having 

the microcavity wavelength at λ0 = 1234 nm for both the polarizations with nvoid = 1 as 

shown in Fig. (4.18). When the biochemical analyte is introduced inside the pores, the 

refractive index of constituent layers in both the sensors increases, thus increasing the optical 

path of the waves which corresponds to red shift in the micro-cavity wavelength (∆λ). We 

observed a linear relationship between the increase of refractive index inside the pores to the 

red shift of micro-cavity wavelength  ∆λ in both the sensors for both the polarizations. It was 

also shown experimentally by Patel et.al. [4.57] that after the complete evaporation of chemical 

analyte, the micro-cavity wavelength returns to its initial position at nvoid = 1. This implies 

that the wavelength shift is indicative of the presence of chemical analyte inside the pores. 

The observed red shift in the microcavity wavelength with the change in refractive index inside 

the pores is shown in Tables (4.7-4.8) in both the isotropic sensors for both the polarizations. 

The observed wavelength shift for both isotropic sensors with (nvoid > 1) is also shown in 

Figs. (4.19-4.20) for both the polarizations. 

Table  4.7 :  Wavelength red-shift observed in isotropic 1D-PSMC-1 with change in the 

refractive index of analyte inside the pores for s-polarization and p-polarization. 

Isotropic 1D-PSMC-1, s-polarization and p-polarization  (θ = 0°) 

Refractive index of 
Analyte inside the pores 

Micro-cavity 
wavelength (nm) 
with air in pores     

( nvoid =1) 

Micro-cavity 
wavelength(nm)  
with analyte in 

pores  ( nvoid > 1 ) 

wavelength 
shift 

(∆λ) nm 

1.1 907 924 17 

1.2 907 939 32 

1.3 907 953 46 

1.4 907 966 59 

1.5 907 979 72 
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Table 4.8 :  Wavelength red-shift observed in isotropic 1D-PSMC-2 with change in the 

refractive index of analyte inside the pores for s-polarization and p-polarization.  

Isotropic 1D-PSMC-2, s-polarization and p-polarization  (θ = 0°) 

 Refractive index of 
Analyte inside the pores 

Micro-cavity 
wavelength (nm) 
with air in pores     

( nvoid =1) 

Micro-cavity 
wavelength(nm)  
with analyte in 

pores  ( nvoid > 1 ) 

wavelength 
shift 

(∆λ) nm 

1.1 1234 1256 22 

1.2 1234 1277 43 

1.3 1234 1296 59 

1.4 1234 1314 80 

1.5 1234 1330 96 

 

 

 

Figure 4.17:  The reflectance spectrum (red lines) and transmittance spectrum (black lines) for 

s and p- polarization for isotropic 1D-PSMC-1 for nvoid = 1 
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Figure 4.18:  The reflectance spectrum (red lines) and transmittance spectrum (black lines) 

for s and p- polarization for isotropic 1D-PSMC-2 for nvoid = 1 

 

Figure 4.19:  Reflection spectrum of isotropic 1D-PSMC-1 sensor and wavelength red-shift 

observed with change in the refractive index of analyte inside the pores (red lines)  (a) nvoid =
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1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) nvoid = 1.4 (e) nvoid = 1.5 with respect to air in pores 

(nvoid = 1)(black lines).  

  

Figure 4.20:  Reflection spectrum of isotropic 1D-PSMC-2 sensor and wavelength red-shift 

observed with change in the refractive index of analyte inside the pores (red lines) (a) nvoid =

1.1 (b) nvoid = 1.2 (c) nvoid = 1.3 (d) nvoid = 1.4 (e) nvoid = 1.5 with respect to air in pores 

(nvoid = 1)(black lines). 

4.3.7  Sensitivity 

In anisotropic and isotropic sensors referred in subsections (4.3.5 and 4.3.6) , it is observed 

that there is red-shift in micro-cavity wavelength as the refractive index of analyte in the pores 

of the sensor is increased as shown in Figs. (4.13-4.16) and Figs. (4.19-4.20). There is a linear 

relationship between the wavelength shift and the increase in refractive index of analyte for 

both the anisotropic and isotropic sensors as shown in Fig. (4.21). This is due to the variations 

in effective refractive index and optical path of the sensor device structure according to the 

change in refractive index of the biochemical analyte absorbed in its pores. Sensitivity is an 

important issue to evaluate the performance of the sensor. The sensitivity is calculated as the 

ratio of obtained red-shift in micro-cavity wavelength ∆λ due to a small change in the 

refractive index of chemical analyte ∆n inside the pores. Sensitivity S is defined as  
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𝑆 =
∆𝜆

∆𝑛
                                                                                                                                             (4.20) 

We have compared the sensitivity of anisotropic and isotropic sensors. The sensitivity of the 

sensors is dependent on the design parameters of its structure. The maximum sensitivity in 

anisotropic 1D-PSMC-2 sensor is found to be 260 and the same for isotropic 1D-PSMC-2 

sensor is found to be 210 from the analysis of data of Table-(4.5) and Table-(4.8) respectively. 

The maximum sensitivity in anisotropic 1D-PSMC-1 sensor is found to be 190 and the same 

for isotropic 1D-PSMC-1 sensor is found to be 150 from the analysis of data of Table-(4.3) 

and Table-(4.7) respectively. Anisotropic sensors are found to be more sensitive than 

isotropic sensors. The reason being the s-polarization wave in anisotropic sensor is more 

sensitive to the variation in refractive index of the constituent layers of the sensor structure. 

It is also observed from Fig. (4.21) that the sensitivity of anisotropic 1D-PSMC-1 sensor is 

different from the sensitivity of anisotropic 1D-PSMC-2 sensor due to change in thickness of 

the two sensors. The observed sensitivity of isotropic ID-PSMC-1 sensor is also different 

from the sensitivity of isotropic 1D-PSMC-2 due to the difference in thickness of the two 

structures. The observed sensitivity in both the anisotropic and isotropic sensors decreases 

with increasing the refractive index of analyte in the pores of the structures.   
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Figure 4.21: . Sensitivity comparision of anisotropic 1D-PSMC sensors   and  isotropic 1D-

PSMC sensors 

4.3.8 Conclusion 

We have numerically designed two anisotropic sensors 1D-PSMC-1 and 1D-PSMC-2 with 

different thickness parameters in subsection (4.3.5). Numerical study was based on 

Bruggeman’s effective medium approximation model and the (4 × 4) general transfer matrix 

method referred in subsection (4.3.2). In subsection (4.3.6), we have theoretically designed 

two isotropic sensors 1D-PSMC-1 and 1D-PSMC-2 ignoring the anisotropic effects. 

Simulations are done for the wavelength shift due to different analytes inside the pores. Both 

structures can be used for sensing the refractive index of chemicals or bio-analytes. 

Investigations were carried out on anisotropic and isotropic 1D-PSMC sensors for different 

analytes. We have found that wavelength shift ∆𝜆 is linearly related to change in refractive 

index of chemical analyte ∆𝑛 inside the pores. A slight change of refractive index of chemical 

analyte inside the pores causes a significant red shift in the micro-cavity wavelength, which 

can be easily monitored by analysing the reflection spectrum with existing optical 

spectroscopy. Higher wavelength shift was observed for higher refractive index solvents 

inside the pores. The comparative analysis of sensitivity in section (4.3.7) shows that the 

anisotropic sensors are more sensitive than the isotropic sensors. Manipulation and control 

over the design parameters can effectively tune the sensitivity of 1D-PSMC sensors to the 

desired levels together with the tunability of the micro-cavity wavelength. The observed 

sensitivity in both the anisotropic and isotropic sensors decreases with increasing the 

refractive index of analyte in the pores of the structures. These 1D-PSMC sensor devices can 

be of potential applications in chemical, biochemical and bio-analyte sensing elements. 
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CHAPTER-V 

 METALLO-DIELECTRIC 1DPC 

INTRODUCTION 

The interference effects in 1D-Metallo-Dieletric photonic crystals (1D-MDPC) give rise to 

tunable range of frequencies for transmission. Metals are highly reflective and absorptive in 

most part of EM spectrum including radio-waves, microwaves and ultraviolet. Metals are 

mostly used for their reflective and radiation shielding purposes. However, many dielectric   

structures are transparent in visible region and they provide minimal loss to propagation of 

light beam [5.1-5.6]. It is highly desirable to have access to structures which can reflect the 

longer wavelengths and be transparent in visible region i.e. transparent metallic structures.  

Most of the work on 1D-MDPCs is focussed on 2D and 3D structures where metal is embedded 

with dielectric to enhance the reflectivity [5.7-5.10]. We have found that metallo-dielectric 

periodic structures give controlled transmission in visible region and shield low and very low 

frequencies. Inside the metallic region the electromagnetic waves become evanescent wave and 

hence decay in amplitude. The characteristic distance in the metal within which the amplitude 

of the field reduces to (
1

𝑒
)
𝑡ℎ

of its value at surface of metal is known as skin depth (ϛ). It is 

related to the imaginary part of complex refractive index(𝑛𝑖)  as  

ϛ =
𝑐

2𝑛𝑖𝜔
= 

𝜆

4𝜋𝑛𝑖
.                                                                                                              (5.1) 

Where c is the velocity of light in vacuum and λ is wavelength of incident wave. In case of 

silver (Ag),  𝑛𝑖 = 3 for λ = 5 x 10−7m, so the skin depth from Eq. 5.1 turns out to be ϛ = 10 

nm.  For microwave frequencies the real and imaginary part of complex refractive index is of 

the order of 104 . The wavelength of microwaves inside the metal is 𝜆 =
1 𝑐𝑚

𝑛
= 10−6𝑚. 

The optical path length of microwaves inside 10 nm thick metal layer is 10-4 m which is 100 

times λ. Hence 10 nm metal layer is opaque to microwave radiations.  

We have considered alternate layers of 1D-MDPC with Ag and cryolite as metal and dielectric 

layers respectively. The transmission characteristics of 1D-MDPC with formation of structural 

and plasmonics bandgaps are studied. The structural bandgap is due to interference effects 

whereas the plasmonics bandgap is due to the bulk metal property. The transmission properties 

of such structures as a number of factors like angle of incidence, number of layers and effect 

of variation of thickness of constituent layers is studied in this chapter. Transparent 1D-MDPCs 
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find applications in devices like microwave open door cavity, solar heat shields, laser safety 

goggles, sunglasses for protection from UV rays, and Radio waves shields. 

5.1 DRUDE’S MODEL 

This model provides a theoretical expression of dielectric constant and hence refractive index 

inside metal for low and high frequencies. The wave equation of oscillating free electrons in 

an oscillating electric field E (t) of light polarised in y- direction is given by  

𝑚0
𝑑2𝑥

𝑑𝑡2
+𝑚0𝛾

𝑑𝑥

𝑑𝑡
+  𝑒 𝐸(𝑡) = 0                 (5.2) 

Where  𝐸(𝑡) = 𝐸0𝑒
−𝑖𝜔𝑡, 𝑚0= mass of electron, γ = damping coefficient 

Substituting 𝑥 = 𝑥0𝑒
−𝑖𝜔𝑡    in Eq. (5.2) we will get  

𝑥 =
𝑒𝐸

𝑚0(𝜔2+𝑖𝛾𝜔)
                   (5.3) 

The Electric displacement vector    𝐷⃗⃗  is expressed as  

 𝐷⃗⃗ = 𝜀0𝐸⃗ +𝑃⃗                                                                            (5.4) 

 𝐷⃗⃗ = 𝜀0𝐸⃗ −
𝑁𝑒2𝐸

𝑚0(𝜔2+𝑖𝛾𝜔)
                       (5.5) 

Therefore  

𝜀(𝜔) = 1 −
𝑁𝑒2

𝜀0𝑚0(𝜔2+𝑖𝛾𝜔)
                         (5.6) 

or 

𝜀(𝜔) = 1 −
𝜔𝑝

2

(𝜔2+𝑖𝛾𝜔)
                         (5.7) 

Where  𝜔𝑝 = plasma frequency given by 

𝜔𝑝
2 = (

𝑁𝑒2

𝜀0𝑚0
)

1

2
                       (5.8)  

5.2 DESIGN OF 1D-MDPC 

1D-MDPC with metals of higher dielectric permittivity will result in lower number of periods 

to achieve PBG. We have designed 1D-MDPC structure with Cryolite and Silver layers and 

analysed its spectral response. The thickness of Cryolite layers and Silver layers are taken as 

200 nm and 10 nm, respectively. The complex refractive index of Ag is calculated from its 

plasmonic frequency and damping coefficient. In case of Ag, ωp = 2175 THz and γ = 6.5 THz. 

It was found that the structural band gap in this structure exists from 300 nm to 570 nm and 

plasmonics band gap exists from 970 nm to very low frequencies.  The resonance transmission 

band appears from 570 nm to 970 nm as shown in Fig.5.1. The corresponding profile of density 

of states is shown in Fig.5.2 
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Figure 5.1: Transmittance spectrum for Metallo-Dielectric 1D-PC with d1=200nm (Cryolite) 

d2=10 nm (Ag)  

 

Figure 5.2 Density of states in Metallo-Dielectric 1D-PC with d1=200 nm (Cryolite) d2=10 nm 

(Ag)  

 

Structural 

Bandgap 

Plasmonic Bandgap 

Structural Bandgap 
Plasmonic Bandgap 
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5.3. EFFECT OF NUMBER OF LAYERS OF  1D-MDPC  ON SPECTRAL RESPONSE 

The effect of number of layers of 1D-MDPC is analysed and it was found that when the number 

of layers is decreased there is no change in the plasmonics band gap and structural bandgap, 

only the transmission peak decreases. The comparison of transmission spectrum for N=6, and 

N=10 is shown in Fig.5.3 

 

Figure 5.3: Spectral response of 1D-MDPC with change in number of layers  

5.4. EFFECT OF THICKNESS FILL FACTOR OF Ag IN CRYOLITE/Ag 1D-MDPC 

The ratio of thickness of Ag layer to thickness of unit cell of 1D-MDPC is known as thickness 

fill factor. The effect of thickness fill factor of metals in 1D-MDPC is studied with doubling 

the fill factor of Ag in Cryolite-Ag multilayer structure. It was found that the upper wavelength 

edge of transmission band is blue shifted while the lower wavelength transmission band edge 

remains unchanged as the fill factor is increased causing the shrinking of transmission band. 

The structural band gap and plasmonics band gap increases with increasing the fill factor as 

shown in Fig.5.4 
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Figure 5.4: Spectral response of 1D-MDPC with change in thickness Fill-Factor of metal layer  

5.5. EFFECT OF ANGLE OF INCIDENCE ON SPECTRAL RESPONSE OF 1D-MDPC 

The effect of oblique incidence is also analysed in 1D-MDPCs with Cryolite-Ag multilayers.  

The increase in angle of incidence causes a blue shift of transmission band for both the 

polarisations as shown in Fig.5.5-5.6 
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Figure 5.5: Spectral response of TE modes in 1D-MDPC with change in angle of incidence 

 

Figure 5.6: Spectral response of TM modes in 1D-MDPC with change in angle of incidence 
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5.6 EFFECT OF PLASMONIC FREQUENCY AND DAMPING COEFFICIENT 

The effect of plasmonics frequency and damping coefficient is simulated by taking three 

different 1D-MDPCs with different metals (Silver, Gold and Aluminium). The plasmonic 

frequency and damping coefficient of Ag is 2175 THz and 4.35 THz and that for Au is 2175 

THz and 6.5 THz respectively. The plasmonic frequency and damping coefficient of Al is 3750 

THz and 19.4 THz.  The plasmonics bandgap and structural bandgap of Cryolite-Ag and 

Cryolite-Au coincide with same width because both the metals are having almost same 

plasmonics frequency. Cryolite-Ag is having higher transmission peak than Au due to lower 

damping coefficient as shown in Fig.5.7. The transmission band width in Cryolite-Al is small 

in comparison to Cryolite-Ag due to large damping coefficient of Al. The width of structural 

bandgap and plasmonics bandgap is wider in Cryolite-Al 1D-MDPC as shown in Fig.5.8.  

 

Figure 5.7: Comparative Spectral response of 1D-MDPC with Ag and Au 
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Figure 5.8: Comparative Spectral response of 1D-MDPC with Ag and Al 

 

CONCLUSIONS  

We have designed 1D-MDPC using Ag and Cryolite as the constituent layers. The optical 

properties of the absorptive medium are deduced from Drude’s model. The transmission 

spectrum of this structure shows there are structural and plasmonic bandgaps. The effect of 

various design parameters of 1D-MDPC like, number of layers and thickness fill factor on the 

structural and plasmonic bandgaps is analysed. The effect of plasmonic frequency and damping 

coefficient and angle of incidence is also studied for these structures.  We have found that light 

can be transmitted through periodic, metallic structures, and by controlling the thickness of the 

dielectric or semiconductor sandwiched between the metal films, as well as the thickness of 

each metal film, the transparency regions can be tuned. The 1D-MDPC have induced 

transparency and shielding abilities which make them useful in transparent metal film device 

in a microwave oven door cavity, solar heat shields, laser safety goggles, sunglasses for 

protection from ultraviolet light, and other applications where transparent conductor oxides 

like indium tin oxide are required to ensure good transmission of light and good conductivity 

at the same time.  
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CHAPTER-VI 

 CONCLUSION AND FUTURE SCOPE OF WORK 

6.1 CONCLUSIONS  

1. One dimensional photonic crystal and their applications have been studied through 

literature review. The various tools for optical characterisation of 1DPCs were 

examined. The selected 1DPCs were studied by solving the Maxwell’s equations in 

periodic medium. Transfer matrix method was used for simulations of reflection and 

transmission coefficients in 1DPCs. The expression for DOS, group velocity and 

effective index was analysed and it was observed that the group velocity and effective 

refractive index show abrupt variation at the PBG edges. The effect of various design 

parameters on the spectral response of selected 1DPCs were also studied. The 1DPCs 

create stop band filters and band pass filters which can be tuned according to the desired 

application in devices with change in design parameters.  

2. ODRs were designed with selected 1DPCs and the effect of their design parameters 

were analysed. The enhancement in ODR band width have been proposed in selected 

1DPCs with varying the thickness parameter using a gradual constant. ODR with PS/ 

Si 1DPC was designed and analysed for infiltration of liquids inside pores of PS. The 

structure showed a wide ODR band in the near infrared region and introduction of bio-

chemicals in the pores of structure changed the ODR band and its width. The effect of 

material dispersion in multi-layered ZnO/SiO2 ODR structure was explored and it was 

found that the material dispersion effects shrink the ODR band width from 79 nm to 30 

nm. ODRs are used as high-quality mirrors in opto-electronic devices. 

3. Microcavity structures were designed from 1DPCs using TMM and the Q-values with 

different defect layers were calculated. The Q-value of defect modes increased with 

increase in the refractive index contrast of 1DPC and the refractive index of defect 

layer. Two biochemical sensors with microcavity wavelength at 800 nm and 1200 nm 

were designed with porous Si layers. The shifts in microcavity wavelength due to 

introduction of analytes were used for sensing purpose. Effect of anisotropy was 

analysed on these structures and anisotropic 1DPC microcavity sensors were found to 

be more sensitive than isotropic 1DPC microcavity sensors.  

4. 1D-MDPC structures were designed and their spectral response was analysed. The 

effect of various design parameters was studied for its optimisation. The designed 1D-
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MDPC structures find applications in Radio and micro wave shields, transparent 

conductors, laser safety goggles, sunglasses for protection from UV rays etc. 

6.2. FUTURE SCOPE OF WORK 

1. The theoretical design of 1DPC can be realised experimentally with different design 

parameters to have the PBG in the desired region of application. It can act as band pass 

filter, stop band filter and selective wavelength filter in the desired application range.  

2. Experimental work can be done to design ODR device which will be useful in many 

optoelectronic devices. 

3. Experimentally the 1DPC microcavity structures can be designed using porous silicon 

layers. The device is useful in sensing applications of gasses, chemicals, bio-analytes and 

environmental pollutants. 

4. 1D-MDPC can be designed experimentally which are transparent in visible region and 

blocking all other longer wavelengths. These transparent 1D-MDPCs find applications in 

devices like microwave open door cavity, solar heat shields, laser safety goggles, sunglasses 

for protection from UV rays. 
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