## 336302

## December, 2019

B.Sc. (H) MATHEMATICS-III SEMESTER

Group Theory (BMH -302)

## Time : 3 Hours

Max. Marks : 75

## Instructions :

1. It is compulsory to answer all the questions ( 1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

## PART - A

1. (a) If $G$ is a group, then identity element of $G$ is unique.
(b) Dihedral group $D_{3}$ is abelian group or not. Justify your answer.
(c) If $a$ and $b$ are two elements of a group G , then $o(a)=o\left(x a x^{-1}\right)=o\left(x^{-1} a x\right), \forall x \in G$.
(d) Show that a finite group of order $n$ containing an element of order $n$ must be cyclic.
(e) Let $H<G$ and $a, b \in G$. Prove that $H a=H$ iff $a \in H$.
(f) If $H$ and $K$ are normal subgroups of a group $G$ and $H \cap K=(e)$, then $h k=k h$, for each $h \in H$ and $k \in K$.
(g) If a cyclic subgroup $H$ of $G$ is a normal in $G$, then show that every subgroup of $H$ is normal in $G$. (1.5)
(h) Find the external direct product of two cyclic groups :

$$
\begin{equation*}
G_{1}=\left\{a, a^{2}=e_{1}\right\}, \quad G_{2}=\left\{b, b^{2}, b^{3}=e_{2}\right\} \tag{1.5}
\end{equation*}
$$

(i) Show that a finite cyclic group of order $n$ is isomorphic to $Z_{n}$ the group of integer modulo $n$.
(j) Prove that a group $G$ is abelian iff the mapping $t: G \rightarrow G$, given by $f(x)=x^{-1}$, is a homomorphism.

## PART - B

2. (a) If $G$ is a group and if $a, b \in G$, show that $a . b=b . a \Rightarrow(a . b)^{n}=a^{n} \cdot b^{n}, \quad n$ being any positive integer.
(b) Let $G=\{(a, b): a \neq 0, b \in R\}$ and * be a binary composition defined by $(a, b) *(c, d)=(a c, b c+d)$.
Show that $\left(G,{ }^{*}\right)$ is a non-abelian group.
3. (a) If $n$ is a positive integer, show that the set $U_{n}$ of integers less than $n$ and relatively prime to $n$ is a group under multiplication $\bmod n$.
(b) If $G=\langle a\rangle$ be a finite cyclic group of order $n$, then $a^{m}$ is a generator of $G$ iff $0<m<n$ and $(m, n)=1$.
4. Show that the set $A_{n}$ of all even permutation of $S_{n}$ is a normal subgroup of $S_{n}$ and $o\left(S_{n}\right)=\frac{n!}{2}$, where $n!$ denotes factorial $n$.
5. (a) The order of a subgroup of a finite group divides the order of the group.
(b) Prove that there is a one-to-one correspondence between any two right cosets of $H$ in $G$.
6. (a) Let $H$ be a non-empty subset of a group $G$. Show that $H$ is a normal subgroup of $G$ iff $(g x)(g y)^{-1} \in H, \forall g \in G$ and $x, y \in H$.
(b) If $f: G \rightarrow G^{\prime}$ is a homomorphism, then

$$
\begin{equation*}
\text { Kerf }=\{e\} \Leftrightarrow t \text { is one-to-one. } \tag{7}
\end{equation*}
$$

7. If $f$ is a homomorphism of $G$ onto $G^{\prime}$ with kernel $K$, then $\frac{G}{\text { Kerf }} \approx G^{\prime}$ or $\frac{G}{K} \approx G^{\prime}$.
