Roll No.

Total Pages : 4

>

336101

December, 2019 B.Sc. (H) (Mathematics) 1st SEMESTER Calculus (BMH-101)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Find the derivatives of $y = 6 \sin h(x/3)$ w.r.t. appropriate variable.

(b) Find the absolute extrema values of $g(t) = 8t - t^4$ on [-2, 1].

- (c) Using L' Hospital rule, Evaluate $\lim_{x \to \infty} \frac{x^n}{e^x}$.
- (d) Using Reduction formula, evaluate $\int \sin^5 2x dx$.

336101/90/111/449

[P.T.O. 11/12

- (e) Find the volume of the solid generated by revolving the region between the y-axis and the curve x = 2/y, 1 ≤ y ≤ 4, about the y-axis.
- (f) Find the focus and the directrix of the parabola $x^2 = 6y$.
- (g) Using discriminant, classify the given equation $x^2 - 3xy + y^2 - x = 0.$
- (h) Show that $u(t) = (\sin t)i + (\cos t)j + \sqrt{3}k$ has constant length and is orthogonal to its derivative.
- (i) Find the unit tangent vector of the helix.
 - $r(t) = (6 \sin 2t)i + (6 \cos 2t)j + k.$
- (j) If $r(t) = (\cos t)i + (\sin t)j + tk$, then find $\lim_{t \to \pi/4} r(t)$.
 - (1.5*10=15)

5

1.1

PART-B

2. (a) Use the steps of graphing procedure, graph the equation $y = x^2 - 4x + 3.$ (7)

2

- (b) Find all the asymptotes of the curve :
 - $y^{3} xy^{2} x^{2}y + x^{3} + x^{2} y^{2} = 0.$ (8)
- 336101/90/111/449

- (a) The region in the first quadrant enclosed by the parabola y = x², the y-axis, and the line y = 1 is revolved about the line x = 3/2 to generate a solid. Find the volume of the solid. (7)
 - (b) Find the arc length of the curve $y = x^{3/2}$ from the point (1, 1) to (2, 2, $\sqrt{2}$). (8)
- (a) The x-axis and y-axis are rotated through an angle π/4 radians about the origin. Find the equation for the hyperbola 2xy = 9 in the new coordinates. (7)
 - (b) Find the polar equation of the circle

$$(x-3)^2 + (y+1)^2 = 4.$$
 (8)

- 5. (a) Show that if r(t) = f(t)i + g(t)j + h(t)k is differentiable at $t = t_0$, then it is continuous at t_0 as well. (7)
 - (b) Prove that if *u* and *v* are differentiable functions of *t*, then

(i)
$$\frac{d}{dt}(u+v) = \frac{du}{dt} + \frac{dv}{dt}$$
,
(ii) $\frac{d}{dt}(u-v) = \frac{du}{dt} - \frac{dv}{dt}$. (8)

3

336101/90/111/449

JP.T.O.

- 6. (a) Using Leibnitz's rule find the nth derivative of $y = e^{x}x^{2}$. (7)
 - (b) Find the area of the surface generated by revolving the curve $y = x^3$, $0 \le x \le 1/2$, about the x-axis. (8)
- 7. (a) Show that the point (2, $\pi/2$) lies on the curve $r = 2 \cos 2\theta$. (7)
 - (b) Show that the radius of curvature at the end of the major axis of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to the semi-latus rectum of the ellipse. (8)

D

51.

336101/90/111/449