336102

December, 2019

B.Sc. (H) Mathematics- 1 SEMESTER

Algebra (BMH-102)

Time : 3 Hours]
[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

1. (a) Find the polar representation of the following complex number

$$
\begin{equation*}
-\frac{1}{2}-i \frac{\sqrt{3}}{2} . \tag{1.5}
\end{equation*}
$$

(b) Write down all the values of $(1+i)^{1 / 3}$.
(c) State De-Moivre's theorem for integral indices. (1.5)
(d) Show that R is an equivalence relation on Z defined as $a R b$ if and only if $a-b$ is divisible by 5 . (1.5)
(e) State Division algorithm for integers.
(f) Prove that $8^{n}-3^{n}$ is a multiple of 5 for all integers $n \geq 1$.
(g) Write the matrix equation $A X=b$ as a vector equation

$$
\left[\begin{array}{ccc}
1 & 1 & 2 \tag{1.5}\\
2 & 4 & -3 \\
3 & 6 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
9 \\
1 \\
0
\end{array}\right]
$$

(h) Determine if the following system is consistent :

$$
\begin{align*}
x+4 y & =5 \\
x+3 y+5 z & =-2 \\
3 x+7 y+7 z & =6 \tag{1.5}
\end{align*}
$$

(i) Prove that $T(0)=0$ where $T: R^{n} \rightarrow R^{m}$ is a linear transformation.
(j) Evaluate $T\left[\begin{array}{l}2 \\ 3\end{array}\right]$ where $T: R^{2} \rightarrow R^{3}$ is a linear transformation such that $T\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $T\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ -1\end{array}\right]$.

PART - B
2. (a) Find $|z|, \arg z, \arg \bar{z}, \arg (-z)$ if $z=(6-6 i)(1+i)$.
(b) If $\cos \alpha+\cos \beta+\cos \gamma=\sin \alpha+\sin \beta+\sin \gamma=0$, prove that
(i) $\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)$.
(ii) $\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$.
3. (a) Solve $z^{6}+i z^{3}+i-1=0$.
(b) Show that f has an inverse where $f: Z \rightarrow N$ be defined as $f(x)=\left\{\begin{array}{ll}2|x| & \text { if } x<0 \\ 2 x+1 & \text { if } x \geq 0\end{array}\right\}$. Also evaluate $f^{-1}(5806)$.
4. (a) Prove that for any set $A,|A|<|P(A)|$, where $P(A)$ is the power set of A.
(b) Prove that the linear congruence relation $a x \equiv b(\bmod n)$ has solution if and only if $\operatorname{gcd}(a, n)$ divides b. 336102/90/111/277
5. (a) Reduce the following matrix to row echelon form and then to reduced echelon form

$$
\left[\begin{array}{rrrr}
2 & -3 & 5 & 1 \tag{8}\\
3 & 1 & -1 & 2 \\
1 & 4 & -6 & 1
\end{array}\right]
$$

(b) Find the values of λ and μ such that the following system of equations

$$
\begin{aligned}
x+y+z & =6 \\
x+2 y+3 z & =10 \\
x+2 y+\lambda z & =\mu
\end{aligned}
$$

have
(i) No solution
(ii) Unique solution
(iii) Infinitely many solutions
6. (a) Check whether the following vectors are linearly dependent? If they are linearly dependent, find a relation between them

$$
v_{1}=\left[\begin{array}{l}
1 \tag{8}\\
3 \\
5
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
-3 \\
9 \\
3
\end{array}\right]
$$

