336301

December, 2019
 B.Sc. (H) Mathematics - III SEMESTER Theory of Real Functions (BMH-301)

Time : 3 Hours]
[Max. Marks : 75

Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

1. (a) Show that $\lim _{x \rightarrow c} x^{2}=c^{2}$ for any $c \in R$.
(b) Evaluate the following limit or show that it does not exist $\lim _{x \rightarrow 1+} \frac{x}{x-1}(x \neq 1)$.
(c) State Discontinuity criteria for a function.
(d) Prove that if $f: I \rightarrow R$ has a derivative at $c \in I$, then f is continuous at c.
(e) State Non-uniform continuity criteria for a function.
(f) Define absolute maximum point and absolute minimum point for a function.
(g) State Rolle's Theorem
(h) For the following function find the interval on which the function is increasing and those on which it is decreasing : $f(x)=x^{2}-3 x+5$.
(i) Define convex function.
(j) Approximate $\sqrt[3]{1+x}, x>-1$ with $n=2$ by Taylor's theorem.

PART - B

2. (a) Prove that if $t: A \rightarrow R$ and c is a cluster point of A, then f can have only one limit at c.
(8)
(b) Prove that if $A \subseteq R, f$ and g are functions on A to R, $b \in R$ and $c \in A$ and that f and g are continuous at c, then $f+g . f-g, f g$ and bf are continuous at c. 7
3. (a) Prove that if $A \subseteq R, f$ and g are functions on A to R, $c \in R$ be a cluster point of $A, f(x) \leq g(x)$ for all $x \in A$
$x \neq c$ and $\lim _{x \rightarrow c} f=\infty$ then $\lim _{x \rightarrow c} g=\infty$
(b) State and prove Caratheodory's Theorem.
4. (a) Prove that if $t: I \rightarrow R$ be continuous on I, where l is a closed bounded interval then f is uniformly continuous on I.
(b) Prove that if $f: l \rightarrow R$ be continuous on l. where $l=[a, b]$ is a closed bounded interval then f has an absolute maximum and absolute minimum on I. (7)
5. (a) State and prove Mean value theorem.
(b) Prove that if f is differentiable on $l=[a, b]$ and if k is a number between $f^{\prime}(a)$ and $f^{\prime}(b)$ then there is at least one point $c \in(a, b)$ such that $f^{\prime}(c)=k$. (7)
6. (a) Prove that if $f: l \rightarrow R$ be differentiable on the interval I, then f is increasing on l if and only if $f^{\prime}(x) \geq 0$ for all $x \in I$.
(b) State and prove Taylor's Theorem.
7. (a) Prove that if f and g are continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$ then there exist $c \in(a, b)$ such that

$$
\begin{equation*}
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \tag{8}
\end{equation*}
$$

(b) Prove that if $f: I \rightarrow R$ have a second derivative on I, where I is an open interval, then f is a convex function on I if and only if $f^{\prime \prime}(x) \geq 0$ for all $x \in I$.

