## 336202

May 2019

## B.Sc. (H)(Mathematics) II SEMESTER

## DIFFERENTIAL EQUATION

(BMH-202)

Time : 3 Hours]
[Max. Marks : 75

Instructions:
(i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

## PART-A

1. (a) Find the differential equation of all circles of radius ' $a$ ' and centre $(h, k)$.
(b) Solve $(2 x y+y-\tan y) d x+\left(x^{2}-x \tan ^{2} y+\sec ^{2} y\right)$ $d y=0$.
(c) Define explicit and implicit solution of differential equation by giving an example.
(d) Find the complementary function of $\left(D^{2}+4\right) y=0$, where $\mathrm{D}=d / d x$.
(e) Write the expression for the condition of integrability for the equation of the form $\mathrm{P} d x+\mathrm{Q} d y+\mathrm{R} d z=0$.
(f) Find the particular integral only for the equation $\left(\mathrm{D}^{2}-4\right) y=x^{2}$.
(g) Solve the equation $\frac{x d x}{y^{2} z}=\frac{d y}{x z}=\frac{d z}{y^{2}}$ by method of
grouping.
(h) Define Total Differential Equation.
(i) Explain in short the compartmental model.
(j) Write a short note on lake pollution model.

## PART-B

2. (a) Prove that the necessary and sufficient condition for the differential equation $\mathrm{M} d x+\mathrm{N} d y=0$ to be exact is $\frac{\partial \mathrm{M}}{\partial y}=\frac{\partial \mathrm{N}}{\partial x}$, where M and N are functions of $x$ and $y$ having continuous first order derivatives at all points in the rectangular domain.
(b) Solve $(x+2 y)(d x-d y)=d x+d y$.
3. (a) Solve the Cauchy's-Euler equation

$$
\begin{equation*}
\left(x^{2} \mathrm{D}^{2}-x \mathrm{D}+2\right) y=x \log x, \text { where } \mathrm{D}=d / d x \tag{8}
\end{equation*}
$$

(b) Solve the given equation by using the method of variation of parameters :
$\left(D^{2}-2 D+1\right) y=e^{x} \log x$, where $D=d / d x$.
4. (a) Solve the given simultaneous linear differential equation :

$$
2 \frac{d^{2} x}{d t^{2}}+3 \frac{d y}{d t}=4, \quad 2 \frac{d^{2} y}{d t^{2}}-3 \frac{d x}{d t}=0, \text { under the }
$$

condition that $x, y, d x / d t, d y / d t$ all vanish at $t=0$.
(b) Solve the given equation by taking one variable as a constant :

$$
\begin{equation*}
(m z-n y) d x+(n x-l z) d y+(l y-m x) d z=0 \tag{7}
\end{equation*}
$$

5. Define exponential decay model. Formulate an expression for it. Also find the solution of it.
6. (a) Solve $\frac{d y}{d x}+x \sin 2 y=x^{2} \cos ^{2} y$.
(b) Find the complete solution of $\left(\mathrm{D}^{3}+\mathrm{D}^{2}-\mathrm{D}-1\right) y=\cos 2 x$, where $\mathrm{D}=d / d x$.
7. (a) Solve the equation

$$
\begin{equation*}
\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{y\left(z^{2}-x^{2}\right)}=\frac{d z}{z\left(x^{2}-y^{2}\right)} \tag{8}
\end{equation*}
$$

by method of multipliers.
(b) Solve the Legendre's linear equation :

$$
\begin{equation*}
(1+x)^{2} \frac{d^{2} x}{d y^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \log (1+x) \tag{7}
\end{equation*}
$$

