336201

May 2019
B.Sc. (Mathematics) 2nd SEMESTER

REAL ANALYSIS

(BMH-201)

Time : 3 Hours]
[Max. Marks : 75

Instructions:
(i) It is compulsory to answer all the questions $(1.5$ marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Define Open set and closed set.
(b) Determine the set A of all real numbers x such that

$$
\begin{equation*}
2 x+3 \leq 6 \tag{1.5}
\end{equation*}
$$

(c) State Bernoulli's Inequality.
(d) If $y>0$, then show that there exists $n_{y} \in \mathrm{~N}$ such that

$$
\begin{equation*}
n_{y}-1 \leq y \leq n_{y} . \tag{1.5}
\end{equation*}
$$

(e) Define Limit point of a set.
(f) Show that $\lim \left(\frac{3 n+2}{n+1}\right)=3$.
(g) Show that a convergent sequence of real numbers is bounded.
(1.5)
(h) Show that if X and Y are sequences such that X and $\mathrm{X}+\mathrm{Y}$ are convergent, then Y is convergent. (1.5)
(i) Show that the series $\frac{1.2}{3^{2} \cdot 4^{2}}+\frac{3.4}{5^{2} \cdot 6^{2}}+\frac{5.6}{7^{2} \cdot 8^{2}}+\cdots \ldots$ is convergent.
(j) Test for convergence of the series $\sum \frac{n^{2}-1}{n^{2}+1} x^{n}, x>0$.

PART-B

2. (a) State and Prove Cantor's Theorem.
(b) If a, b, c be any elements of R then
(i) If $a>b$ and $b>c$, then prove that $a>c$.
(ii) If $a>b$, then prove that $a+c>b+c$.
3. (a) State and Prove Completeness Property of R.
4. (a Prove that every Absolutely convergent series is convergent.
(b) Apply Cauchy's Integral Test to test the convergence

$$
\begin{equation*}
\text { of } \sum_{n=1}^{\infty} \frac{1}{n^{2}+1} \tag{7}
\end{equation*}
$$

