Roll No.

Total Pages : 4

305304

Dec., 2018
 B.Sc. Ist Semester MATHEMATICS III
 (BS-301)

Time: 3 Hours]

[Max. Marks : 75

Instructions :

(i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Define trigonometric polynomial.
(b) Find the Inverse Laplace transform of $\frac{1}{(s+a)^{2}}$.
(c) If $L\{f(t)\}=\mathrm{F}(s)$ then show that $\mathrm{L}\left\{\frac{1}{t} f(t)\right\}$

$$
\begin{equation*}
=\int_{s}^{\infty} F(s) d s, \text { provided the integral exist. } \tag{1.5}
\end{equation*}
$$

(d) State and prove change of scale property of Fourier transform.
(e) Find the Fourier Transform of

$$
f(x)= \begin{cases}1 & \text { for }|x|<1 \tag{1.5}\\ 0 & \text { for }|x|>1\end{cases}
$$

(f) Show that $z\left(\frac{1}{n}\right)=z \log \left(\frac{z}{z-1}\right)$.
(g) State Convolution theorem in Z-transform.
(h) State Stoke's theorem.
(i) Prove that $\operatorname{div}\left(\frac{\vec{r}}{r^{3}}\right)=0$.
(j) If $\overrightarrow{\mathrm{F}}=\left(5 x y-6 x^{2}\right) \hat{i}+(2 y-4 x) \hat{j}$, evaluate $\int_{\mathrm{C}} \overrightarrow{\mathrm{F}} \cdot d r$ along the curve C in the $x y$-plane $y=x^{3}$ from the point $(1,1)$ to $(2,8)$.

PART-B

2. (a) Evaluate $\int_{0}^{\infty} \frac{\cos 6 t-\cos 4 t}{t} d t$, by Laplace transform.
(b) Prove that $\int_{-1}^{1} \frac{T_{m}(x) T_{n}(x)}{\sqrt{1-x^{2}}} d x= \begin{cases}0, & m \neq n \\ \frac{\pi}{2}, & m=n \neq 0 \\ \pi, & m=n=0\end{cases}$
where $\mathrm{T}_{n}(x)$ is the Chebyshev's polynomial.
3. (a) Apply Convolution theorem to evaluate

$$
\begin{equation*}
\mathrm{L}^{-1}\left\{\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right\} . \tag{7}
\end{equation*}
$$

(b) Solve $t y^{\prime \prime}+y^{\prime}+4 t y=0$, where $y(0)=3, y^{\prime}(0)=0$.
4. (a) Find the Fourier Cosine transform of $e^{-a x}$, hence evaluate $\int_{0}^{\infty} \frac{\cos \lambda x}{x^{2}+a^{2}} d x$
(b) Using finite Fourier transform, solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$, given that $u(0, t)=0$, and $u(x, 0)=2 x$ when $0<x<4$, $t>0$.
5. (a) Find the Inverse Z-transform of $\frac{5 z}{(2-z)(3 z-1)}$.
(b) Solve $y_{n+2}-6 y_{n+1}+8 y_{n}=2^{n}+6 n$ by Z-transform.
66€／レい／OtV／ちOc9OE
4

