/	\bigcirc	
	No	
KOII	NO	

Total Pages : 3

204104

Dec., 2018 BCA, Ist Semester LOGICAL ORGANIZATION OF COMPUTER-1 (BCA-17-104)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

(i) It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.

Answer any four questions from Part -B in detail.

Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1	. (a)	Find the number of locations in memory	if 16-bit
		address bus is used?	(1.5)
	(b)	Find the octal equivalent of $(111100101)_2$	(1.5)
	A. (=)	Define : bit, byte, word.	(1.5)
	(d)	What is the size of memory if FFFF is	the last
		address that can be referenced for memory	chip?
			(1.5)
	(e)	State De-Morgan's law with an example.	(1.5)

204104/270/111/6

[P.T.O.

(f) Represent -222 in signed 2's complement notation.

(1.5)

(10)

- (g) Convert BCD 268 into binary, octal and hexadecimal representation. (1.5)
- (h) Convert from infix to postfix notation : A+B*[C*D+E*(F+G)] (1.5)
- (i) How can the parity bit be used to check a given code word in odd parity system? (1.5)
- (j) Why is floating point number more difficult to represent and process than a fixed point integer? (1.5)

PART-B

- (a) Using signed 2's complement representation, perform the arithmetic operations given below with binary numbers and with negative numbers. Use 7 bits to accommodate each number together with its sign. In each case determine if there is an overflow.
 - (i) (+35) + (+40)
 - (ii) (-35) + (-40)
 - (b) Write note on different Character codes. Explain with suitable examples. (5)
- 3. (a) Simplify and minimize using K-Map the following function

$$\mathbf{F} = \mathbf{\Sigma} \ (0,2,3,5,7,9,11,13,14) \tag{8}$$

(b) Find the POS form for the boolean function

 $F(A,B,C,D) = \Sigma (0,1,2,5,8,9,10)$ (7)

204104/270/111/6

2

(a) Simplify the Boolean expression using Boolean algebra

(i) $\overline{x} \overline{y}z + \overline{x}yz + x\overline{y}$

4.

- (ii) $xyz + \overline{x}z + yz$ (6)
- (b) Implement the following functions using NAND and inverter gates

$$\mathbf{F} = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{B}\mathbf{B} + \mathbf{B}\mathbf{C} \tag{5}$$

- (c) What is parity checker? Using logic gates, Construct a 4-bit even parity generator. (4)
- (a) Design a 5×32 decoder using 3×8 decoder. Explain with proper tabulation. (8)
 - (b) Implement the function using MUX $F = \Sigma(0,1,3,4,8,9,15)$ (7)
- 6. (a) List the truth table for 3-variable XOR function $Z = A \oplus B \oplus C$ (6)
 - (b) A lighting system used at the staircase makes use of two switches with one being at the top and other at the bottom of the stairs. Make a truth table for this given system. Give its logical equation in SOP form. Also, Realize the circuit using minimum (i) NAND (ii) NOR gates.
- 7. (a) Design a 4-bit magnitude comparator with three outputs : A > B, A < B and A = B. (7)
 - (b) Implement a BCD to seven segment converter. (8)

/

3