Mar. 2022

M.Sc.(Chem.) I SEMESTER

Mathematics for Chemists (CH-104XB)

Time: 90 Minutes

Instructions:
 1. It is compulsory to answer all the questions (1 marks each) of Part -A in short.

2. Answer any three questions from Part -B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Q1 (a) Simplify $\log _{c} b \times \log _{a} c \times \log _{b} a$
(b) Find an unit vector normal to the plane of $\vec{A}=\widehat{3} \imath-2 \hat{\jmath}+4 \hat{k}$ and $\vec{B}=\hat{\imath}+\hat{\jmath}-2 \hat{k}$
(c) Factorize $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|$
(d) Given $\log 2=0.30103$ and $\log 3=0.47712$; find $\log 0.005$.
(e) Find the slope of the line passing through $A(2,3)$ and $B(4,7)$
(f) If $y=x^{\log x}$, find $\frac{d y}{d x}$
(g) Evaluate $\int_{a}^{b} \frac{\log x d x}{x}$
(h) Find the Laplace Transform of $t \sin ^{2} t$
(i) Define Parseval's identity for Fourier Transform
(j) Evaluate $\int_{3}^{4} \frac{d x}{x^{3}}$

PART-B

Q2 With the help of Matrices, Solve the following system of linear equations using $x+2 y+z=7 ; x+3 z=11 ; 2 x-3 y=1$

Q3 Prove that $\frac{1}{\log _{a}(a b c d)}+\frac{1}{\log _{b}(a b c d)}+\frac{1}{\log _{c}(a b c d)}+\frac{1}{\log _{d}(a b c d)}=1$

Q4 Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ for $u=\frac{1}{\sqrt{x^{2}+y^{2}}}$

Q5 Find the area bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$

Q6 By the method of least squares, fit a second degree parabola to the following data

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	1.1	1.3	1.6	2.0	2.7	3.4	4.1

