220302

December, 2019
 MCA- III SEMESTER

Principle of System Programming and Compiler Design (MCA-17-203)

Time : 3 Hours]

[Max. Marks : 75

Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

1. (a) Generate language for the grammar:

$$
\begin{equation*}
\mathbf{A} \rightarrow \mathbf{B}|\mathbf{C} ; \mathbf{B} \rightarrow \mathbf{a} \mathbf{B} \mathbf{b}| \in \mathbb{I} ; \mathbf{C} \rightarrow \mathbf{a} \mathbf{C} \mathbf{b} \mid \in \tag{1.5}
\end{equation*}
$$

(b) How many minimum number of terminals are required to derive grammar for $(\mathbf{0 1 / 1}) *(\mathbf{0 1})^{*}$?
(c) Remove the ambiguity from the following grammar:

$\mathbf{E} \rightarrow \mathbf{E}+\mathbf{E} / \mathbf{E}-\mathbf{E} / \mathbf{E} \% \mathbf{E} / \mathbf{E}^{*} \mathbf{E} / \mathbf{E} \uparrow \mathbf{E}$

Where \uparrow has top most priority, ${ }^{*}$, and \% have second highest, + and - occupy lowest priority. All operators except \uparrow are left associative.
(d) Write the lexemes, tokens and patterns occurring in the following statement:

$$
\begin{align*}
& \text { int } \mathrm{j} ; \\
& \operatorname{scanf}(" \mathrm{j}=\% \mathrm{~d}, \& \mathrm{j}=\% \mathrm{x} ", \mathrm{j}, \& \mathrm{j}) \text {; } \tag{1.5}
\end{align*}
$$

(e) What is difference between parsing and derivation?
(f) Write the algorithm to remove left recursion from a grammar.
(g) Define peephole optimization.
(h) Write difference between a phase and pass.
(i) Write quadruple, triple and indirect triple for expression:

$$
\begin{equation*}
\mathrm{A}=(\mathrm{B} * \mathrm{C} / \mathrm{D})+\mathrm{C} / \mathrm{D} . \tag{1.5}
\end{equation*}
$$

(j) What is significance of abstract syntax tree?

PART - B

2. (a) For the following grammar
$\mathrm{D} \rightarrow \mathrm{T} \mathbf{L}$;
$L \rightarrow L$, id \mid id
$T \rightarrow$ int | float
Remove left recursion (if required) and Find first and follow for each non-terminal for Resultant grammar.
(b) Construct $\mathrm{LL}(1)$ parsing table for above grammar.
3. (a) Discuss the necessity of code optimization in compilation process.
(b) Construct a Syntax-Directed Translation scheme that translates arithmetic expressions from infix into postfix notation. Show the application of your scheme to the string " $3 * 4+5 * 2$ ".
4. Explain two pass assembler in detail.
5. Write short note on following :
(a) Code generation.
(b) Algorithm to convert minimizing states of DFA.
(c) Canonical collection of $\operatorname{LR}(0)$ item set.
6. (a) Explain machine dependent and machine independent code optimization. Write the three address code for following program fragment:
If x then if $a+b$ then $c+d$ else $c-d$ else $c^{*} d$.
(b) What is the significance of number of pass of compiler? Briefly describe how do various system programs facilitate the execution of program.
7. Consider the grammar:
$\mathrm{S} \rightarrow$ * $\mathrm{L}=\mathrm{R} / \mathrm{R}$
$\mathrm{L} \rightarrow * * \mathrm{R} / \mathrm{id}$
$\mathrm{R} \rightarrow \mathrm{L}$
Construct CLR parsing table for the above grammar.
