- 6. (a) Make a planar graph and show that it is planar using Euler's formula. (4)
 - (b) Write algorithm to find shortest path in a weighted graph. (6)
 - (c) Describe Chomsky hierarchy of grammars. (5)
- 7. (a) Convert the following Mealy machine to Moore machine. (5)

Current State	Input Symbol					
	a		b			
	Next State	Output	Next State	Output		
$\rightarrow q_0$	q ₁	1	q ₂	1		
q ₁	q ₂	0	\mathbf{q}_0	1		
9 ₂	q ₀	1	q ₁	0		

(b) Convert the following NFA to DFA.

Current state	Input symbol			
	a	b		
$\rightarrow q_0$	q ₂	q ₀ , q ₁		
$\rightarrow q_0$ q_1	$\begin{array}{ c c c } q_2 & q_1 \\ q_1, q_f & q_0 \end{array}$			
q ₂	$q_1, q_f q_0$			
q _f	· · · · · · · · · · · · · · · · · · ·			
	q_f is the final state.			

(c) Design the finite automata for the following regular expressions.

(i)
$$1(10)^{*}(11+00)$$
 (ii) $(a+b)^{*}cc(d+e)$ (5)

Roll No.

Total Pages : 4

220101

December, 2019 MCA- 1 SEMESTER Mathematical Foundation of Computer Science (MCA-17-101)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

(5)

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

- 1. (a) Let $f(x) = x^2 + 5$ and g(x) = 2x + 3. Compute fog(x)and gof(x). (1.5)
 - (b) Which specific property is possessed by an abelian group. (1.5)
 - (c) Define tautology and contradiction with the help of example. (1.5)

220101	/1	30/1	11	1	/27
--------	----	------	----	---	-----

[P.T.O. 11/12

220101/130/111/27

4

- (d) Write truth table for implication and bi-implication.
 - (1.5)

- (e) Write the following sentence in the form of predicate: "Ram and Sham are friends." (1.5)
- (f) Name the characteristic properties possessed by partial order relation. (1.5)
- (g) Define cut point with the help of an example. (1.5)
- (h) What is the difference between Eulerian circuit and Hamiltonian circuit. (1.5)
- Write the language corresponding to following regular expression : (a + b*)cc. (1.5)
- (j) In the conventional statement, $G = (V, \Sigma, P, S)$ define the meaning of V and Σ . (1.5)

PART - B

- (a) Let A = {1, 2, 3, 4, 5}. A relation R is defined on A such that aRb iff a ≤ b. Make the relation matrix for R. Check if relation R is reflexive, symmetric, asymmetric and antisymmetric.
 - (b) Explain recursively defined function with the help of two examples. (4)
 - (c) Write short note on permutation group. (5)

2

220101/130/111/27

3. (a) State and prove Langrange's Theorem. (6)
(b) Describe Modus ponen and Modus tollen with the help of suitable example. (4)
(c) Write the following sentences using quantifiers and predicate logic : All that glitters is not gold. Some bird don't fly. (5)

6-61-111

- (a) Obtain principal disjunctive normal form of
 (~p ∨ ~q) → (~p Λ r)
 - (b) Let A = {a, b, c}. Let P(A) be the power set of A. Prove that (P(A), ⊆) is a poset. Draw Hasse diagram for this relation and check if it is a lattice. (10)
- (a) Define the following types of lattices with the help of example:
 - (i) Complemented Lattice.
 - (ii) Distributed Lattice. (6)
 - (b) Define the following types of graphs with the help of suitable examples:

Weighted Graph, Multigraph, Subgraph. (3)

P.T.O.

- (c) Explain isomorphism and homomorphism. (6)
- 220101/130/111/27 3