
DESIGN OF TEST CASE PRIORITIZATION

TECHNIQUES FOR REGRESSION AND SYSTEM

TEST SUITES

THESIS

submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSOPHY

to

YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY

by

HARISH KUMAR

 Registration No: YMCAUST/Ph07/2010

Under the Supervision of

Dr. NARESH CHAUHAN

PROFESSOR

Department of Computer Engineering

Faculty of Engineering and Technology

YMCA University of Science &Technology

Sector-6, Mathura Road, Faridabad, Haryana, INDIA

OCTOBER, 2017

ii

CANDIDATE’S DECLARATION

I hereby declare that this thesis entitled “DESIGN OF TEST CASE

PRIORITIZATION TECHNIQUES FOR REGRESSION AND SYSTEM TEST

SUITES” being submitted in fulfillment of requirement for the award of Degree of

Doctor of Philosophy in the Department of Computer Engineering under Faculty of

Engineering and Technology of YMCA University of Science and Technology,

Faridabad, during the academic year May 2011 to January 2016,is a bonafide record of

my original work carried out under the guidance and supervision of DR. NARESH

CHAUHAN, PROFESSOR , DEPARTMENT OF COMPUTER ENGINEERING

and has not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been

submitted for the award of any degree either in this university or in any other university.

(HARISH KUMAR)

 Registration No: YMCAUST/Ph07/2010

iii

CERTIFICATE

This is to certify that the thesis titled “DESIGN OF TEST CASE PRIORITIZATION

TECHNIQUES FOR REGRESSION AND SYSTEM TEST SUITES” by HARISH

KUMAR submitted in fulfillment of the requirements for the award of Degree of Doctor

of Philosophy in Department of Computer Engineering under Faculty of Engineering &

Technology of YMCA University of Science & Technology Faridabad, during the

academic year May 2011 to January 2016 is a bonafide record of work carried out under

my guidance and supervision.

I further declare that to the best of my knowledge, the thesis does not contain part of any

work which has been submitted for the award of any degree either in this university or in

any other university.

DR. NARESH CHAUHAN

Professor

Department of Computer Engineering

Faculty of Engineering and Technology

YMCA University of Science & Technology Faridabad

Date:

The Ph.D. viva-voce examination of Research Scholar Harish Kumar

(YMCAUST/Ph07/2010) has been held on ………………………….

(Signature of Supervisors) (Signature of Chairman) (Signature of External Examiner)

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank God, the Almighty, for providing enough courage and

his blessings to me for completion of this thesis.

I would like to express my sincere gratitude to my thesis supervisor, Dr. Naresh

Chauhan, for his continuous guidance, valuable advice, constructive criticism and

helpful discussions. I am very grateful to him for his continual encouragement,

motivation and long hours spent throughout the completion of my work. He always

offered wisdom, insight and a skilled hand in overcoming the hindrances faced. I greatly

value his timely and valuable advices. He gave me the opportunity to learn various new

things, and taught me a lot about research, teaching, and life. Without his warm

encouragement, I would not have been able to accomplish this thesis.

I am grateful to Prof. A. K. Sharma, without his blessings I am not able to reach at this

stage of my life. I am also thankful to Dr. C.K. Nagpal, from whom I have learnt a

lesson of regularity and punctuality in life.

I gratefully acknowledge Dr. Komal Kumar Bhatia, Chairman Computer Engineering

Department a true well-wisher of mine, who always supports at every stage of completion

of this thesis. I express my sincere thanks to Dr. Atul Mishra who always support me

like elder brother and providing his valuable suggestions for accomplishing this task. I

would also like to thanks Dr. Manjeet Singh for his kind support.

I am thankful to Mr. Vedpal for his continuous support and encouragement for the

completion of this thesis. I am thankful to Mr. Umesh and Mr. Sushil Panwar for their

help and support in completing my research work. I extend my thanks to faculty members

of Computer Engineering department for their support and cooperation. Although it is not

possible to name individual, I cannot forget my well-wishers for their persistent support

and cooperation. I am also thankful to all my students who helped me directly or

indirectly in completing my research work.

v

I am also thankful to Dr. Rashmi Popli , Dr. Preeti Sethi and Dr. Anita Arora for their

help and support. I would like to thank Sh. J.P. Sharma, Sh. Mukesh Gupta, Sh.

Mukesh Garg Sh. Sanjay, Sh Neeraj, Sh. Krishan Bhardwaj, Sh.Mohan Singh and

Sh. Jitender, for always providing me their support and necessary resources for the

completion of this thesis.

 I am grateful to my mother Smt. Sheela Devi Tanwar and my father Sh. Ram Chand

Tanwar for their blessings. I can’t forget father’s efforts for making me a true human in

my life. I am thankful to my mother in law Smt. Mani Devi and father in law Mr. Attar

Singh for their blessings. I am also thankful to my foofa ji Sh. Girraj Singh, who always

provide his suggestions for living a cheerful life. I am thankful to my elder brother Mr.

Surjeet Singh (Lambu Ji) for his love and support. I would like to thank my younger

brother Niranjan Tanwar and my sister Anju for their love and support. I am also

thankful to my friends Santosh Kumar and Yogesh Pandey who always motivates me

and made arrangements for getting me refresh after spending long hours while writing

this thesis. I am also thankful for the support received from all members of Tanwar’s

family, especially I can forget the support from my uncles Sh. Shobha Ram, Sh.

Balkishan, Sh. Jiya Ram and Sh. Hem Chand and my aunties. I am also thankful to

my cousins Pankaj Tanwar, Nitesh Tanwar, Sumit Tanwar and Parvesh Tanwar for

their respect and regards towards me.

Finally I would like to express my gratitude to my wife Poonam Tanwar who made a lot

of compromises for the completion of this thesis. I like to thank my dear sons Divyanshu

Tanwar and Yatvik Tanwar for the encouragement they have given to me, probably

without knowing it.

Thanks to all of you!

(HARISH KUMAR)

vi

ABSTRACT

Software testing being a critical element of the software development process is an

important activity consuming almost 40 -50 % time of the total development process and

a large part of resources and effort. However, testing process ensures the quality of the

software, which is the major concern of the end customer. To improve the software

quality, suitable test cases need to be designed and executed. It is a common problem in

software testing that there are large number of test cases which is almost impractical to

execute these test cases due to constraints of resources-, manpower and time. If the test

cases are executed in sequence or in random order this results in that, test cases with

higher risk cannot be detected earlier. Since test cases in the existing test suite can often

be used to test a modified program, the test suite is used for retesting. However, if the test

suite is inadequate for retesting, new test cases may be developed and added to the test

suite.

Keeping in view these problems of test case execution, there is requirement to prioritize

the execution of test cases so as to detect critical bugs early as well as handling of big test

suite becomes easy. Test case prioritization is a process of scheduling the test cases in a

specific order which results in increasing the chances of early bug detection, thereby

improving the software quality. This thesis focuses on the development of test case

prioritization techniques at three levels i.e. unit testing, system testing and regression

testing.

At unit testing level there may be large number of test cases to be executed by the

developer, as the whole control structure of the software needs to be considered during

testing. In this work, a test case prioritization technique for unit testing has been proposed

based on analysis of structure of the program written by the developer. The proposed

technique has been also extended to prioritize the test cases while performing the

regression testing of a software component. The proposed technique has been validated

and applied on three software cases studies. The results obtained show the efficacy of the

proposed technique.

vii

System testing is basically the testing of whole integrated system performed at various

grounds such as performance, security and maximum load etc. This results in a large

number of test cases. So to prioritize the test cases while performing system testing, a

hierarchical system test case prioritization technique is proposed in this thesis, which is

based on 12 comprehensive factors. A tool has been also implemented for this purpose.

Similarly, to deal with large number of test cases during regression testing a module

coupling effect based test case prioritization technique has been presented in this thesis,

that helps the tester in finding the badly affected module due to change in a module. A

tool has also been implemented for the same.

Data flow testing, a technique for performing white box testing, closely examines the

state of the data in the control flow graph, resulting in a richer test suite than the one

obtained from control flow graph based path testing strategies like branch coverage, all

statement coverage, etc. More over the problem becomes severe, when regression testing

is being performed as there is need to execute all the existing test cases along with new

one with even a single change in the code of a module under consideration. To prioritize

the test cases while performing regression testing, a novel technique based on data flow

testing concepts has been presented in this work. All proposed techniques in this thesis

have been validated and the results obtained show the efficacy of the proposed

techniques.

Thus this thesis largely focuses on the challenges found in performing regression testing.

To overcome these challenges, the work presented in this thesis concentrates on

designing and development of test case prioritization techniques that help the software

testers in minimizing the testing efforts, cost and schedule of the project. Most of the

proposed techniques being developed have been tested and implemented.

viii

TABLE OF CONTENTS

Candidate’s Declaration ii

Certificate iii

Acknowledgements iv

Abstract vi

Table of Contents viii

List of Tables xii

List of Figures xvi

List of Abbreviations xix

CHAPTER I: INTRODUCTION 1-8

 1.1Test Case Prioritization 1

 1.2 Motivation and Research Objectives 2

 1.3 Challenges of Test Case Prioritization 5

 1.4 Organization of Thesis 7

CHAPTER II: LITERATURE SURVEY 9-53

 2.1 Introduction 9

 2.2 Regression Testing 11

 2.2.1 Test Suite Minimization 12

 2.2.2 Test Case Selection 13

 2.2.3 Test Case Prioritization 14

 2.3 Coupling and its Types 14

 2.3.1 Content Coupling 15

 2.3.2 Common Coupling

2.3.3 Control Coupling

2.3.4 Stamp Coupling

16

17

18

 2.3.5 Data Coupling 19

 2.4 Cohesion and its Types 20

ix

 2.4.1 Functional Cohesion 20

 2.4.2 Sequential Cohesion 21

 2.4.3 Communicational Cohesion 22

 2.4.4 Procedural Cohesion 24

 2.4.5 Temporal Cohesion 31

 2.4.6 Logical Cohesion

2.4.7 Coincidental Cohesion

33

35

 2.5 Test Case Prioritization Technique 35

 2.5.1 Classification of Test Case

Prioritization(TCP)Technique

36

 2.6 Call Graph 51

 2.7 Conclusion 53

CHAPTER III: STRUCTURED PROGRAMMING BASED UNIT TEST

 CASE PRIORITIZATION(SPUTCP): PROPOSED WORK

55-84

 3.1 Introduction 55

 3.2 SPUTCP Technique 56

 3.2.1 Proposed SPUTCP Factors 56

 3.3 Validation of SPUTCP Approach 59

 3.3.1 Case Study of Employee Record Software 60

 3.3.2 Analysis of Proposed SPUTCP Approach 64

 3.3.3 Case Study of Saving Module of Income Tax Calculator 66

 3.3.4 Case Study of Infix to Postfix Conversion

 3.3.5 Case Study of Restaurant Management System

 3.3.6 Case Study of Library Management System

 3.3.7 Case Study of Income Tax Calculator

69

71

74

77

 3.4 Structure Programming based Unit Regression Test Case

Prioritization Approach

79

 3.4.1 Explanation of the Process of SPURTCP 79

 3.4.2 Validation of Proposed SPURTCP Approach 80

x

 3.4.3 Analysis of Proposed SPRUTCP Approach 82

 3.5 Conclusion 84

CHAPTER IV: HIERARCHICAL SYSTEM TEST CASE

 PRIORITIZATION(HSTCP) : PROPOSED WORK

85-106

 4.1 Introduction 85

 4.2 Proposed HSTCP Approach 86

 4.2.1 Prioritization of Requirements 87

 4.3 Prioritization of the Module 96

 4.4 Test Case Prioritization Process 97

 4.5 Analysis of Proposed HSTCP Approach 98

 4.5.1 Results obtained for HSTCP Approach 100

 4.6 Implementation 104

 4.7 Conclusion 106

CHAPTER V: REGRESSION TEST CASE PRIORITIZATION:

 PROPOSED WORK

107-152

 5.1 Introduction 107

 5.2 Module- Coupling- Effect based Test Case Prioritization(MCETCP)

 Technique

107

 5.2.1 Module Dependence Matrix 108

 5.2.2 Procedure for Making Module Dependence Matrix 109

 5.2.3 Proposed MCETCP Approach 110

 5.2.4 Proposed Algorithm for finding highly coupled

 module

111

 5.2.5 Evaluation & results of MCETCP Approach 112

 5.3 Test Case Prioritization using Data Flow Testing 114

 5.3.1 Analysis of the proposed data flow testing approach 116

 5.4 Control-Structure-Weighted Test Case Prioritization(CSWTCP)

 Technique

141

xi

 5.4.1 Proposed CSWTCP Approach 141

 5.4.2 Preparing a VDG 142

 5.4.3 Calculation of the weight of a node in VDG 143

 5.4.4 Calculating the weight of modified statement

 (WMS)

144

 5.4.5 Calculating the weight of du paths(WDU) 146

 5.4.6 Evaluation & Analysis of CSWTCP Approach 147

 5.5 Conclusion 152

CHAPTER VI: CONCLUSIONS AND FUTURE SCOPE 153-154

 6.1Conclusions 153

 6.2 Benefits of Proposed Work 153

 6.3 Future Scope 154

REFERENCES 155-166

APPENDIX-A 167-171

APPENDIX-B 173-175

APPENDIX-C 177-180

APPENDIX-D 181-189

APPENDIX-E 191-192

BRIEF PROFILE OF RESEARCH SCHOLAR 193

LIST OF PUBLICATIONS OUT OF THESIS 195

xii

LIST OF TABELS

Table 2.1 Statement Coverage 39

Table 2.2 Branch Coverage 39

Table 2.3 Risk Analysis Table 42

Table 3.1 Prioritization factors and their weight for SPUTCP 58

Table 3.2 Case studies for validation of the proposed SPUTCP 60

Table 3.3 Independent paths of employee record case study 62

Table 3.4 Test cases covered and independent paths for employee record case

study

62

Table 3.5 Count of proposed STUTCP factors present in the case of employee

record

63

Table 3.6 Calculated TCPV for case study of employee record 63

Table 3.7 Faults detected for non prioritized order of test cases 64

Table 3.8 Faults detected for prioritized order for employee record case study 65

Table 3.9 Faults Detected for Random Order of Test Cases 65

Table 3.10 APFD Values for Various Techniques for employee record case

study

66

Table 3.11 Independent paths for saving module case study 68

Table 3.12 Factors Covered by the test cases of case study of saving module 68

Table 3.13 Calculated TCPV for case study of saving module 69

Table 3.14 APFD Values for Various Techniques for case study of salary

module

69

Table 3.15 Count of factors present in case study of infix to postfix case study 70

Table 3.16 Calculated TCPV for case study of Infix to postfix 71

Table 3.17 APFD Values for Various Techniques for case study of infix to

postfix conversion

71

Table 3.18 Count of proposed SPUTCP factors in case study of restaurant

management system

72

xiii

Table 3.19 Count of proposed SPUTCP factors in case study of restaurant

management system

72

Table 3.20 Count of proposed SPUTCP factors in case study of restaurant

management system

73

Table 3.21 TCPV for test cases of case study of restaurant management system 73

Table 3.22 Count of proposed SPUTCP factors present in the case study of

Library management system

74

Table 3.23 Count of proposed SPUTCP factors present in the case study of

Library management system

75

Table 3.24 Count of proposed SPUTCP factors present in the case study of

Library management system

75

Table 3.25 Count of proposed SPUTCP factors present in the case study of

Library management system

76

Table 3.26 Comparison of APFD Values 76

Table 3.27 Count of proposed STUTCP factors present in the case of gtc ()

module

77

Table 3.28 Calculated TCPV for case study of gtc () module 78

Table 3.29 Count of factors present in modified Case study of employee record 81

Table 3.30 TCPV of test cases for modified employee record case study 81

Table 3.31 DTCPV for the test cases 82

Table 3.32 Execution of test cases in non prioritized order 82

Table 3.33 Execution of test cases in prioritized order 83

Table 3.34 Execution of test cases in random order 83

Table 3.35 APFD Values for various approaches for modified employee record

case study

84

Table 4.1 Factors considered for requirement prioritization 88

Table 4.2 Module Prioritization 96

Table 4.3 Test Case Prioritization 98

Table 4.4 Requirements Prioritization 99

xiv

Table 4.5 Module prioritization for income tax calculator case study 99

Table 4.6 Test case prioritization for test cases of tax module 100

Table 4.7 Fault detection in Generate Tax details (GTD) requirement 100

Table 4.8 Fault detection in Income tax deduction (ATD) requirement 101

Table 4.9 Fault detection in Accept Savings and Donation details (ASD) 101

Table 4.10 Fault detection in Income detail module of Accept income detail

(AID)

101

Table 4.11 Fault detection in Income detail salaried module of Accept income

detail (AID) requirement

101

Table 4.12 Fault detection Accept Personal detail (APD) 101

Table 4.13 Number and type of faults detected by all requirements 102

Table 5.1 Coupling Types and their values 109

Table 5.2 Cohesion types and their values 109

Table 5.3 Coupling Information for case study software 112

Table 5.4 Cohesion Information for case study software 112

Table 5.5 Module Coupling Matrix(C) 113

Table 5.6 Module Cohesion Matrix (S) 113

Table 5.7 Module Dependence Matrix (D) 113

Table 5.8 Test Case Design for income detail from the Independent Paths 120

Table 5.9 Definition and use of variable ‘len’ income detail module case study 121

Table 5.10 Du paths and test cases 121

Table 5.11 Test Cases for saving module case study from the Independent Paths 126

Table 5.12 Definition and use of variable ‘len’ for saving module 127

Table 5.13 Du paths & Test case coverage of variable ‘len’ 127

Table 5.14 Test Case Design for income detail case study from independent

paths

133

Table 5.15 Definition nodes and Usage nodes of variable or f income detail

case study

135

xv

Table 5.16 Du and dc paths with test coverage for income details module 135

Table 5.17 Fault and Test Cases 137

Table 5.18 New definition and uses of variables 138

Table 5.19 New du paths introduced 139

Table 5.20 Set of test cases after applying data flow TCP approach 139

Table 5.21 Data obtained after analyzing the income detail case study 139

Table 5.22 Weight assigned to the different nodes of VDG of Figure 5.17 144

Table 5.23 Proposed control structure weights 145

Table 5.24 Proposed nesting type weight 145

Table 5.25 Directly changed variables (DCV) & affected variables (AV) and

their node weights in VDG

148

Table 5.26 List of du paths of DCV & AV 148

Table 5.27 Weights of different factors and WT for du paths 149

Table 5.28 Calculated WMS Values using WT value 149

Table 5.29 WDU Values for various du paths 150

Table 5.30 List of du paths arranged in descending values of WDU 150

Table 5.31 Test cases and their weights 151

Table 5.32 Faults and Test Cases 151

xvi

LIST OF FIGURES

Figure 2.1 Different Types of Coupling 14

Figure 2.2 Types of Cohesion 20

Figure 2.3 Classification of Test Case Prioritization Techniques 37

Figure 2.4 Types of Coverage Based TCP 38

Figure 2.5 Call Graph 52

Figure 3.1 Pictorial Representation of SPUTCP Technique 56

Figure 3.2 Algorithm for SPUTCP Approach 59

Figure 3.3 CFG of the case study of employee record software 61

Figure 3.4 Comparison of Proposed SPUTCP, Random and Non Prioritize

approach

66

Figure 3.5 CFG for case study of saving module of income tax calculator

software

67

Figure 3.6 CFG for case study of infix to postfix conversion 70

Figure 3.7 Comparison of Prioritized and Non prioritized approach 74

Figure 3.8 Comparison of APFD Values 77

Figure 3.9 Comparison of Prioritized and Non prioritized approach for

 Case Study of gtc () module

78

Figure 3.10 Algorithm for SPURTCP approach 80

Figure 3.11 Comparison of APFD values of different prioritization

techniques

84

Figure 4.1 Hierarchical System Test Case Prioritization (HSTCP)

Technique

87

Figure 4.2 Implementation Complexity factors 90

Figure 4.3 Expected Faults 93

Figure 4.4 Graph for Proposed HSTCP approach based on requirements 102

Figure 4.5 Graph obtained using PORT approach 102

Figure 4.6 Graph for non – Prioritized test suite 103

Figure 4.7 Comparison between Random, PORT, and HSTCP approach 104

xvii

Figure 4.8 Snapshot 1 of HSTCP Tool 105

Figure 4.9 Snapshot 2 of HSTCP Tool 105

Figure 4.10 Snapshot 3 of HSTCP Tool 105

Figure 4.11 Snapshot 4 of HSTCP Tool 105

Figure 4.12 Snapshot 5 of HSTCP Tool 105

Figure 4.13 Snapshot 6 of HSTCP Tool 105

Figure 5.1 Call Graph Example 108

Figure 5.2 Components Showing the Process of MCETCP 111

Figure 5.3 Algorithm for finding highly coupled module 111

Figure 5.4 Call Graph of Case Study Software 112

Figure 5.5 Case Study Software Call Graph with module dependence

values

114

Figure 5.6 Algorithm for prioritizing the test cases using data flow testing 115

Figure 5.7 Algorithm for prioritizing the test cases within a set 116

Figure 5.8 CFG for income details module 119

Figure 5.9 APFD values for random and proposed data flow TCP for

income detail module

122

Figure 5.10 CFG for saving module of income tax calculator 125

Figure 5.11 APFD values for random and proposed data flow TCP for

saving module case study

128

Figure 5.12 CFG for income details module 132

Figure 5.13 Comparison of Random, Previous and Proposed data flow

testing approach

140

Figure 5.14 Process of CSWTCP 142

Figure 5.15 Algorithm for making VDG 142

Figure 5.16 Code for Sample program 143

Figure 5.17 VDG for sample program 143

Figure 5.18 Algorithm for assigning the weight of nodes in VDG 144

xviii

Figure 5.19 VDG with assigned weights to nodes for the sample program 144

Figure 5.20 VDG for modified program 147

Figure 5.21 VDG for modified program with assigned weights of nodes 148

Figure 5.22 Comparison of APFD values of Random and CSWTCP

Approach

152

xix

LIST OF ABBRIVIATIONS

APFD Average Percentage of Fault Detection

AV Affected Variable

BCO Bee Colony Optimization

CBSS Component Based Software System

CFG Control Flow Graph

CIG Component Interaction Graph

CSWTCP Control-Structure Weighted Test Case Prioritization

DCV Directly Changed Variable

DTCPV Difference between Test Case Prioritization Values

DU Definition Usage

DC Definition Clear

GA Genetic Algorithm

HSTCP Hierarchical System Test Case Prioritization

MCETCP Module-Coupling-Effect based Test Case Prioritization

SDLC Software Development Life Cycle

SPUTCP Structured Programming based Unit Test Case Prioritization

SPURTCP Structured Programming based Unit Regression Test Case

Prioritization

PFV Prioritization Factor Value

RPFV Requirement Prioritization Factor Value

TCP Test Case Prioritization

TCPV Test Case Prioritization Value

TCWP Test Case Weight Prioritization

VDG Variable Dependence Graph

WDU Weight of du Path

WPU P-use Statement Weight

WT Total Weight

1

Chapter I

INTRODUCTION

1.1 TEST CASE PRIORITIZATION

Software testing is an important and critical part of the software development process,

on which quality of software product is strictly dependent. Testing related activities

consume almost half of the total time incurred in the software development process

and also consume a large part of the effort required for producing software [1, 33, 71,

112, 117, 118].

There exist many types of testing and test strategies, however all of them share a

common goal, that is, increasing the software engineer‟s confidence in the proper

functioning of the software [1, 80]. Towards this general goal, a piece of software can

be tested to achieve various more direct objectives such as exposing potential design

flaws or deviations from user‟s requirements, measuring the operational reliability,

evaluating the performance characteristics, and so on. To serve each specific

objective, different techniques can be adopted.

Software testing [15, 82, 93] occurs continuously during the software development

life cycle to detect errors as early as possible. Since test cases in the existing test suite

can often be used to test a modified program, the test suite is used for retesting.

However, if the test suite is inadequate for retesting, new test cases may be developed

and added to the test suite. Thus, the size of test suites grows due to following

reasons.

1. A testing criterion is a rule or collection of rules that imposes requirements on

a set of test cases. Test engineers measure the extent to which a criterion is

satisfied in terms of coverage; a test set achieves 100% coverage if it

completely satisfies the criterion. Coverage is measured in terms of the

requirements that are imposed. Coverage criteria are used as a stopping point

2

to decide when a program is sufficiently tested. In this case, additional tests

are added until the test suite has achieved a specified coverage level according

to a specific adequacy criterion. For example, to achieve statement coverage

adequacy for a program, one would add additional test cases to the test suite

until each statement in that program is executed by at least one of the test

cases.

2. There may be unnecessary test cases in the test suite including both obsolete

and redundant test cases. A change in a program causes a test case to become

obsolete by removing the reason for the test case‟s inclusion in the test suite.

A test case is redundant if other test cases in the test suite provide the same

coverage of the program. Thus, because of the obsolete and redundant test

cases, the size of the test suite continues to grow unnecessarily as software

changes are made.

3. As new test cases are added to the test suite to the new or changed

requirements or to maintain test-suite adequacy, the size of the test suite grows

and the cost of running it on the modified software (i.e., regression testing)

increases.

However due to resource constraints, it is almost impossible to execute all the test

cases. Therefore there is requirement to prioritize the execution of test cases so as to

increase chances of early detection of faults. Test case prioritization is the process of

ordering the test cases of the test suite based on certain criteria like code coverage,

fault detection capability, risk exposure etc. so that critical faults may be detected

earlier. Test case prioritization can be done at Unit testing, Regression Testing and

System testing level. This thesis focuses on test case prioritization at these three

levels.

2. MOTIVATION AND RESEARCH OBJECTIVES

Although there exist many test case prioritization techniques in the literature, there are

certain points where the existing methods can be optimized or there is requirement of

3

new technique. A critical study of literature available in the area of test case

prioritization has been performed and some shortcomings were identified which

motivated to pursue this research work.

1. While performing the white box testing for a module, there may be large

number of test cases executed by the developer to ensure the correct

functionality of their code. This process involves a lot of efforts. But if

somehow a developer is able to get the prioritized order of the test cases which

he/she is going to execute to ensure the correct functionality during the

process of white box testing, makes the task easier.

2. System testing is actually a series of different tests to test the whole system on

various grounds where bugs have the probability to occur. The ground can be

performance, security, maximum load, etc. The integrated system is passed

through various tests based on these grounds and depending on the

environment and type of project. This results in large number of test cases, so

there is need to prioritize the test cases while performing system testing. In

literature [6,36,40] ,the system test cases have been prioritized based on the

requirements considering various factors like types of requirements,

complexity of requirements, mapping of design and code, fault proneness of

mapped code, fault detection rate etc. But there are many factors which have

not been considered till now. These factors are show stoppers requirements,

frequency of execution of requirement, cost, time, penalty etc. So this research

work aims at designing a test case prioritization technique for system test

cases considering these new factors.

3. Regression Testing is considered a problem, as the existing test suite with

probable additional test cases needs to be tested again and again whenever

there is modification. The following difficulties occur in retesting:

 Large systems can take a long time to retest.

 It can be difficult and time-consuming to create the tests

4

 It can be difficult and time consuming to evaluate the tests. Sometimes,

it requires a person in the loop to create and evaluate the results.

 Cost of testing can reduce resources available for software

improvements.

Therefore, there is need to prioritize the test cases while performing regression

testing. In literature, there exist many techniques for regression test case

prioritization. However, these techniques do not consider the effect of changes

in one module being propagated in other modules of the software. These

techniques are not able to prioritize the modules and their test cases which are

badly affected with the changes. Most of the prioritization techniques consider

all the modules with their test cases, prioritizes them with some criterion like

risk based prioritization, coverage based, fault detection rate, etc and find out

the prioritized test cases with the aim of getting high fault detection. But, it

becomes cumbersome to analyze the prioritization techniques by finding fault

detection rate of all test cases in the test suite. Instead of this, if the approach is

to find out the module/modules which are badly affected and then prioritize

the test cases, this will provide the high severity bugs very early.

4. While performing the data flow testing the focus is only on the definition and

use of the variables within the program under test. A define-usage path (du-

path) with respect to a variable v is a path between the definition node and the

usage node of that variable. A definition- clear path (dc- path) with respect to

a variable v is a path between the definition node and the usage node such that

no other node in the path is a defining node of variable v. Usage node can

either be a predicate-usage or a computation-usage node. However, all-du-path

criteria is not able to detect critical bugs earlier due to the following reasons:

 Some of the du-paths may be non-dc. Non-dc paths are the paths wherein

the variable is defined more than once. These du-paths which are non-dc

may be a problematic area for the testers and affect test case prioritization.

5

 There may be a large number of test cases corresponding to all-du-paths.

So it may not be possible to execute all of these test cases.

The main objective of this research is to design test case prioritization techniques for

unit, system and regression test suites. To achieve this objective, the work on

following goals has been performed in this thesis:

 To develop and validate a method for unit test case prioritization based on

the analysis of source code written by the developers.

 To develop and validate a method for System Test case Prioritization

based on types of requirements, complexities included in requirement

mapped design and code, fault proneness of mapped code, fault detection

rate, etc.

 To develop and validate a method for Regression Test case Prioritization

based on module coupling information and data flow testing concepts.

1.2 CHALLENGES OF TEST CASE PRIORITIZATION

 Based on the motivation points considered and thereby objectives defined, this

section discusses the challenges and their solutions while performing test case

prioritization.

Prioritizing the test cases while performing unit testing: The issue is to manage

large number of test cases while performing unit testing of a module as the whole

control structure of the software needs to be covered during testing. Further, the

problem enhances when there is change in an established module due to any reason

such as change in user‟s requirements, appearance of critical bugs, etc.

Solution: In order to cope up with large number of test cases in unit testing, a test

case prioritization technique has been proposed based on analysis of source code

6

written by the developers. This analysis provides the importance level of each

statement in the code based on certain factors.

Prioritizing the test cases while performing system testing: The issue is to manage

large number of test cases while performing system testing as it involves various

grounds of testing such as performance, security, maximum load, etc.

Solution: In order to prioritize system test suite, a requirement based prioritization

approach has been proposed based on a list of 12 comprehensive factors. These

factors filter the important requirements and thereby these requirements are mapped

to their corresponding test cases. Thus a hierarchical test case prioritization

technique to obtain prioritized test suite has been proposed.

Prioritizing the test cases while performing regression testing: The issue is to

rerun all the test cases while performing regression testing with even a single line

change in code.

Solution: In order to have a prioritized regression test suite, a module coupling effect

based test case prioritization technique has been proposed that uses the coupling

information among various modules in the software and thereby identifying the badly

affected module due to change in the software and subsequently prioritize the test

cases of this affected module.

Prioritizing the test cases while performing regression testing using data flow

testing technique: The data usage for a variable affects the white box testing and

thereby the regression testing. There may be large number of test cases corresponding

to all du-paths.

Solution: To resolve this issue a new test case prioritization technique has been

proposed that finds the newly introduced non-dc paths in the modified program and

also finds the paths which have been changed from dc to non-dc paths. Based on these

criteria du-paths are prioritized so that a critical bug is exposed earlier. However,

there may a large number of du-paths having equal priority. To resolve this, a control

structure weighted test case prioritization technique has been proposed in this thesis.

7

This prioritization technique takes into consideration the complexity of the statements,

where the variable has been used, and various aspects of structured programming.

1.4 ORGANIZATION OF THESIS

The thesis has been organised in the following chapters:

Chapter 1: Covers the introduction of the thesis.

Chapter 2: The basic concepts of software testing, regression testing and test case

prioritization are discussed in this chapter. A detailed review of the available test case

prioritization techniques and the problems associated with these techniques are also

discussed.

Chapter 3: A test case prioritization technique for unit testing based on analysis of

structure of the program called structured programming based unit test case

prioritization (SPUTCP) technique is presented in this chapter. The proposed

technique is also extended for regression testing, named as structured programming

based unit regression test case prioritization (SPURTCP) and is discussed in this

chapter. The proposed approach is validated to show the efficacy as compared to the

random techniques.

Chapter 4: A hierarchical system test case prioritization (HSTCP) technique for

prioritizing the system test cases is proposed in this chapter. To demonstrate the

proposed approach a tool is developed and its working is also discussed. The

proposed approach is also compared with random as well as previous existing

approach.

Chapter 5: This chapter is concerned with prioritization of test cases while

performing regression testing and is divided in three sections. In first section, a

module-coupling-effect based test case prioritization (MCETCP) technique for

regression testing is proposed. The approach helps in finding a badly affected module

due to change during regression testing and a tool is implemented for the same.

Second section of the chapter discusses a novel test case prioritization technique for

8

regression testing using data flow testing concepts. The third section discusses a

control-structure-weighted test case prioritization (CSWTCP) technique for regression

testing and a tool is also developed for the same. All the proposed techniques in this

chapter are validated and the results obtained show the efficacy of these techniques.

Chapter 6: It concludes the outcome of the work proposed in this thesis. It also

discusses the possibilities of future research work based on the proposed approaches.

9

Chapter II

 LITERATURE SURVEY

2.1 INTRODUCTION

Software testing is the process of analysis so as to find out the difference between the

observed and the required conditions and to evaluate its features [82, 39, 42, 43, 28].

Software Testing is the process of verifying a system or its component with the intent

to check whether it satisfies the desired requirements as stated by the end customer.

This activity is an important and critical part of the software development process, on

which quality of software product is strictly dependent [62]. Testing related

activities consumes almost half of the total time incurred in the software development

process and also consumes a large part of the effort required for producing software.

Software testing helps in developing quality software [82, 60, 61, 64, 89, 115, 103]. It

is a process which continues all the way through software development.

Software testing basically incorporates Verification and Validation activities [15,

120]. The verification and validation activities are the basis for the any type of testing.

It can also be said that the testing process is a combination of verification and

validation. The purpose of verification is to check the software with its specification

at every development phase such that any defect can be detected at an early stage of

testing and will not be allowed to transmit further. The validation process starts

replacing the verification in the later stages of SDLC. Validation is a very general

term to test the software as a whole in accordance with the end user expectations.

Verification and Validation (V&V) are the building blocks of the testing process.

Validation process has following three activities which are also known as the three

levels of validation testing.

 Unit Testing

Unit is the smallest possible testable component of the software [80].Unit

Testing is a basic level of testing which cannot be overlooked and confirms

10

the behaviour of a single module according to its functional requirements [1,

12, 25].

 Integration Testing

This validation technique combines all unit tested modules and performs a test

on their integration. Unit modules are not independent and are related to each

other by interface specifications between them. When one module is combined

with another in an integrated environment, interfacing between units must be

tested. Therefore ensuring proper communication between the modules

integration testing has to be performed.

 System Testing

This particular level of software testing focuses on the testing of entire

integrated system. This type of testing incorporates many types of testing, as

the full system can have various users in different environments. These are

performance testing, load testing, stress testing, compatibility testing etc. The

validity of the whole system is checked against the requirement specifications.

Testing can be classified in many ways. One of the most basic classifications is that

on the basis of the knowledge testing in which code is known is called white box

testing where as the other is called black box testing. The goal of both white box

testing and black box testing is to improve the fault finding capacity of the software.

Towards this general goal, a piece of software can be tested to achieve various more

direct objectives such as exposing potential design flaws or deviations from user‟s

requirements, measuring the operational reliability, evaluating the performance

characteristics, and so on. To serve each specific objective, different techniques can

be adopted. During the review it was realized that testing forms an integral part of

management actives and is even used in medical field and essential in new

technologies like cloud [7, 18, 19, 20, 22, 24, 26, 78, 105, 106]. The development of

ERP systems has also increased the importance of testing [29]. The security

implementations are also highly dependent of good testing [65].

11

Software requirements are continuously changing. Due to these changing

requirements software is modified accordingly to satisfy the needs of the customer.

When software is modified there is always need to write new test cases for the

modified version. These new test cases are executed to ensure that the modifications

do not have any adverse effect on the previously working software. For this purpose

regression testing is performed. This review has been conducted as per the guidelines

proposed by Kichenham [69].

The remainder of this chapter has been organized as follows. In sub- section 2, the

concept of regression testing has been described. Sub-section 3 presents a brief

discussion of coupling, sub-section 4 discusses the concept of cohesion, sub-section 5

pertains to the classification of various test case prioritization techniques and finally

sub-sections 6 deals with the allied concepts and the last section gives the conclusion.

2.2 REGRESSION TESTING

Regression testing is a kind of software testing that intends to find new software bugs,

in existing software system after changes such as modifications, patches or

configuration changes, have been made to the system. The main purpose of regression

testing is to ensure that changes as mentioned above have not introduced new faults in

the software [1, 35, 37, 67]. IEEE software glossary defines regression testing as

follows [58].

Regression testing is the selective retesting of a system or component to verify that

modifications have not caused unintended effects and that the system or component

still complies with its specified requirements.

The main reason for regression testing is to check whether a change made in one part

of the software affects other parts of the software or not [120]. Regression testing can

be performed to test a system by selecting the appropriate minimum set of test cases

needed to adequately cover a particular change [73]. Regression testing is a resource

and time consuming activity. While performing the process of regression testing a

tester has to execute the previous test cases written for ensuring the correct

https://en.wikipedia.org/wiki/Regression_testing#cite_note-1

12

functionality of the software as well as the new test cases which have been introduced

due to the modification. So, there are a large number of test cases required to test the

software. However, due to time and cost constraint it may not be possible that all past

test cases be executed whenever change is made in software.

The three techniques for accomplishing this task are selection, minimization and

prioritization. Minimization techniques describe the elimination of redundant test

cases from a test suite. It attempts to select the minimal set of test cases T, a subset of

initial test case suite, which yields coverage of the modified or effected portion of the

program [80]. Selection technique opts for the test cases that are significant to the

recent modifications [11, 15, 96, 120]. Prioritization techniques prioritize the test case

so that if the testing is prematurely terminated, even then also the fault detection is

maximized. The process increases the plausibility of the test cases being executed in

the given order; they will more closely meet the objective of finding maximum faults

then otherwise [15, 107, 113].

2.2.1 Test Suite Minimization

This section discusses the concept of test suite minimization and its various

approaches that have been put forward in the literature and future directions. The

attributes of good test suite minimization techniques have been considered while

analyzing various techniques.

Test suite minimization is the technique to reduce the size of the test suite [120]. This

can be done by removing the redundant test case. The removal of the redundant test

case has the risk that minimization should not lead to a scenario where robustness of

the testing process is compromised. There are two problems involved here. The

minimization process has been mapped to minimal hitting set formulation. Two

approaches have been suggested in the literature. The first one is to decompose a

bigger requirement into smaller one, so that each requirement is satisfied by a single

test case [1]. The second approach suggests crafting of the test cases in such a way

that they cater to a particular requirement.

13

The minimization problem is an NP Complete problem [120]. Therefore, the

technique used to solve NP Complete problem can be used to solve the above problem

as well. The literature suggests two ways of dealing with the problem. The first is the

application of approximation algorithm and the second is the application of AI based

search techniques like genetic algorithms and Ant Colony Optimization [55, 63, 57,

110]. However, it will be not apt to compare the techniques as they have different

goals.

2.2.2 Test Case Selection

Regression test case selection is similar to test case minimization, in the sense; both of

them reduce the test case suite. However, the key difference in the approach as

observed in the literature is that while the test case selection concentrates on the

changes between the prior and the subsequent version of the program [94, 95]. One of

the earliest studies by Rothermel [94] proposed a technique which reveals the test

cases relevant to modification.

It may be noted that if there are any modifications in the program, then the code is

bound to change. The change in the code, referred to as textual difference can be a

good source of finding out the modifications. This approach was used by Volkolos

and Frankl [30]. In the approach they used a Unix tool called diff for identifying the

differences. The name of the tool developed was Pythia. The tool was capable of

analyzing large software systems written in C [30]. However, it may be noted that

Graph walk approach proposed by Rothermel and Harrold [94] was carried forward in

different works in the 1993-1997 period. Investigation of these graphs showed that

their size may be quadratic. In some of the studies, it was also observed that the

relationship between control dependence graph size and program size is linear. An

experiment performed implemented tools for constructing the two types of control

dependence graphs. This was made to run on about 3000 C functions extracted from a

wide range of source programs. The results supported the earlier conclusions. The

concept of Control dependency graph was extended to system dependency and finally

to System dependency graph. The idea of textual difference explained earlier in the

section depends on the graph walk. In the review many other techniques were also

studied [8, 91, 97, 119].

14

2.2.3 Test Case Prioritization

Prioritization techniques promote reusability by implying effective regression testing.

It is an important phase in software maintenance activities [56, 75]. The goal is

achieved when the software program performs better than the earlier version.

Prioritization of Regression Test Cases is an approach that converts the original test

suite to one that has priority associated with each test case. A test case that covers

large number of potential points of faults may have higher priority.

2.3 COUPLING AND ITS TYPES

One of the major factors in deciding the importance of a module is the type of

coupling. Coupling plays an important role in both the type of data transfer and the

type of error that may crop in. The work presented in this thesis uses the concept of

coupling. Therefore a brief overview of coupling has been discussed in this chapter.

The following section throws some light on the definition and the types of coupling.

Coupling can be defined as the degree to which each program module relies on the

other module [82]. Coupling can be "low" or "high". Generally, data coupling is

considered as the best type of coupling, followed by stamp coupling, control coupling,

common coupling, and content coupling. This is true as practically, no coupling is not

possible.

 The goodness of a type of coupling has been represented in Figure 2.1.

Figure 2.1: Different types of coupling

Data
(Best)

Stamp

Control

Common
Content

• (Worst)

15

The following categories place the coupling from the highest to the lowest coupling.

The categories are as follows:

2.3.1 Content Coupling

Content coupling is when one module modifies or relies on the internal working of

another module. This means when a module accesses the local data of another

module. This implies that changing the way the second module produces data may

results in the changing of the dependent module.

For example result variable in module1 () calculates result as (a*b).

int module1()

{

int result;

…

return result;

}

and in the module2 (int result) , result is effected as result = result+d.

int module2(int result)

{

int d;

…

result=result+d;

return(result);

}

The above is an illustration of content coupling as the value of a variable is changed

in another variable.

Example of Content Coupling:

//Second Function uses the internal working of First Function

int FirstFunction (int a)

{

16

printf ("Inside First Function\n");

 a += 1; //changing value of int a

goto label1; //program control shifts to label1

return a;

}

void SecondFunction ()

{

printf("Inside Second Function\n");

label1:

printf("At Label1\n");

}

2.3.2 Common Coupling

Common coupling between two modules occurs when two modules share the same

global data. For example if the two modules use a global variable, then they are bound

by common coupling. In such cases changing the shared resource implies changing all

the modules using it. One of the illustrations of common coupling is as follows.

int a;

void module1()

{

a=5;

}

void module2()

{

//Uses a;

}

Example of Common Coupling:

int i;

//Here i is the global variable used by First Function and Second Function

int FirstFunction (int a)

17

{

if (a > 0)

 {

i++;

 a = 0;

 }

return a;

}

void SecondFunction()

{

if(i> 0)

 {

i = 1;

 }

else

 {

i = -1;

 }

}

2.3.3 Control coupling

Control coupling is one in which a module controls the flow of another module. This

can be done by passing it information on what is to be done. One of the example of

such kind of coupling can be passing a what-to-do flag to another module.

In Operating System Implementations, the semaphores present an excellent example

of such kind of coupling.

 Example of Control Coupling:

//main controls the flow of abc() Function

int flag;

18

void abc()

{

Flag=-1

}

int main()

{

abc()

flag=0;

}

2.3.4 Stamp Coupling

Stamp coupling is when modules share a composite data structure and use only a part

of it, possibly a different part. One of the examples of such kind of coupling can be

passing a whole record to a function that only needs some part of it. This may result in

changing the way a module reads a record because a field, which the module doesn't

need, has been modified.

 void module1()

 {

 int list[20];

 //Input

 Module2(list);

 }

 void module2(int * list)

 {

 Printf(“%d”,list[5]);

 }

The second module needed only the first element of the array but was provided with

the whole array. Therefore, the above is an example of Stamp coupling.

19

Example of Stamp Coupling

Struct myStruct {

int myint;

char mychar;

longmylong;

}

//Part of structure is used by First Function and Second Function

void First Function ()

 {

My Struct structA;

int x;

 ...

 x = Second Function(structA);

}

int SecondFunction (myStructstructB)

{

return (structB.myint+1);

}

2.3.5 Data Coupling

Data coupling occurs when modules share data through parameters. Each datum is an

elementary piece, and these are the only data shared. Example of the above can be

passing an integer to a function that computes its square root.

For example the following function of a class called Math computes the square root of

the value that is passed inside the function.

x=5;

Math.sqrt(x);

Example of Data Coupling:

intFirstFunction (inti) //i is shared via a parameter

{

i = i+2;

20

return i;

}

intSecondFunction (int k)

{

 k = k+i;

return k;

}

2.4 COHESION AND ITS TYPES

Coupling depicts the interrelation between the modules and cohesion represents the

intra relation. Cohesion is like glue that holds the module together [80]. If cohesion is

high, it signifies how good a module handles its various components. Cohesion can

also be classified as follows (Figure 2.2).

Figure 2.2: Types of Cohesion

2.4.1 Functional Cohesion

There can be many motivations of putting two parts in the same module. One of the

best reasons can be their same functionality. Functional cohesion represents the

scenario wherein two parts were put in the same module as their function is same.

Functional Cohesion (Best)

Sequential Cohesion

Communicational Cohesion

Procedural Cohesion

Temporal Cohesion

Logical Cohesion

Coincidental Cohesion (Worst)

21

Examples of functionally cohesive modules are

1. Computing cosine of angle

2. Calculate net salary of employee

Notice that each of these modules has a strong, single-minded purpose. When its boss

calls it, it carries out just one job to completion without getting involved in any

extracurricular activity.

 main()

 {

 float taxrate = .15;

 float hourly= 10.00;

 int hoursperweek = 40;

 grosspay = hourly * hoursperweek;

 taxes = grosspay * taxrate;

 netpay = grosspay - taxes;

 printf("\nGross pay"%f,grosspay);

 printf("\nTaxes:f",taxes);

 printf("\nNet pay:%f",netpay);

 getch();

}

2.4.2 Sequential Cohesion

The output of one part is an input to another part then there is a strong reason to put

then in the same module. This is referred to as sequential cohesion. Example of this

type of cohesion is given below.

1. /* to insert a new record into the file*/

2. void insert (char *a)

3. {

4. FILE *fp1;

5. emp *temp1=(emp*)malloc(size of(emp));

6. temp1->name=(char*)malloc(200*size of (char));

22

7. fp1=fopen(a,”a+”);

8. if(fp1==NULL);

9. perror(“”);

10. else

11. {

12. printf(“enter the emplyeee id\n”);

13. scanf(“%d”,&temp1->empid);

14. fwrite(“&temp1->empid,sizeof(int),1,fp1”);

15. printf(“enter employee name\n”);

16. scanf(“%[^\n]s”,temp1->name);

17. fwrite(temp1->name,200,1,fp1);

18. count++;

19. }

20. fclose(fp1);

21. free(temp1);

22. free(temp1->name);

23. }

2.4.3 Communicational Cohesion

If two parts of the program are able to communicate, then they are generally put in the

same module. This is referred to as communicational cohesion.

Example of Communication Cohesion:

A communicational cohesive module is one whose elements contribute to activities

that use the same input or output data.

1. Find the title of book

2. Find the price of book

3. Find publisher of book

4. Find author of the book

23

These four activities are related because they all work on the same input data, the

book, which makes the “module” communication ally cohesive.

#include<stdio.h>

#include<conio.h>

struct lib_books

{

char title[20];

char author[15];

int pages;

float price;

};

struct lib_books, book1, book2, book3;

main()

{

int no.;

printf(“Enter book number”);

scanf(“%d”,&no);

switch(no)

{

 Case 1: scanf(“%s %s %d”,&book1.title,&book1.author,&book1.pages);

 printf(“%s %s %d”,book1.title,book1.author,book1.pages);

 break;

Case 2: scanf(“%s %s %d”,&book2.title,&book2.author,&book2.pages);

 printf(“%s %s %d”,book2.title,book2.author,book2.pages);

 break;

Case 3: scanf(“%s %s %d”,&book3.title,&book3.author,&book3.pages);

 printf(“%s %s %d”,book3.title,book3.author,book3.pages);

 break;

default: printf(“WRONG NO”);

}

}

24

2.4.4 Procedural Cohesion

If two parts have been structured in the same manner, then there is a strong reason to

put the two parts in the same module. This is referred to as procedural cohesion.

Example of Procedural Cohesion

A procedurally cohesive module is one whose elements are involved in different and

possibly unrelated activities in which control flows from each activity to the next.

(Remember that in a sequentially cohesive module data, not control, flows from one

activity to the next.) Here is a list of steps in an imaginary procedurally cohesive

module.

1. Clean utensils from previous meal

2. Make phone call

3. Take shower

4. Chop vegetables

5. Set table

#include <stdio.h>

void main()

{

 int total = 45;

 int divider = 7;

 int a = 0;

 int b = 0;

 a = total/divider;

 printf(" total is %d and divider is %d", total, divider);

 printf("\n a is %d.", a);

 b = total%divider;

 printf("\nThere are %d left over.\n", b);

}

25

Another example is given below

int b_sort(int*,int);

 void f_write();

 void avg();

 void fprint();

 void f_sort();

 void roll();

int b_sort(int x[],int n)

{

 int hold,j,pass,i,switched = 1;

 for(pass = 0; pass < n-1 && switched == 1;pass++)

 {

 switched=0;

 for (j=0;j<n-pass-1;j++)

 if (x[j]>x[j+1])

 {

 switched=1;

 hold = x[j];

 x[j] = x[j+1];

 x[j+1]=hold;

 }

 }

return(0);

}

void f_write()

{

 int roll,ch,mark;

 char nam[50];

 FILE *fp;

26

 clrscr();

 fp = fopen("student.txt","a");

 printf("ENTER ROLL NUMBER, NAME , MARKS \n");

 ch =1;

 while(ch)

 {

 scanf("%d%s%d",&roll,&nam,&mark);

 fprintf(fp,"%d %s %d\n",roll,nam,mark);

 printf("\n\n press 1 to continue,0 to stop");

 scanf("%d",&ch);

 }

 fclose(fp) ;

}

void fprint()

{

 int marks[100],rollno[100],x[100],i;

 char name[100][50];

 FILE *fp;

 clrscr();

 fp = fopen("student.txt","r");

 i=0;

 printf("ROLLNO NAME MARK\n");

 while(!feof(fp))

 {

 fscanf(fp,"%d %s %d\n",&rollno[i],&name[i],&marks[i]);

 printf(" %d %s %d\n",rollno[i],name[i],marks[i]);

 i=i+1;

 }

 fclose(fp);

27

 printf("\n\n\nPRESS ANY KEY");

 getch();

 }

void f_sort()

 { int marks[100],rollno[100],x[100],n,i,j;

 char name[100][50];

 FILE *fp,*fm;

 fp = fopen("student.txt","r");

 fm = fopen("marks.txt","w");

 i=0;

 while(! feof(fp))

 {

 fscanf(fp,"%d %s %d\n",&rollno[i],&name[i],&marks[i]);

 x[i]= marks[i];

 i=i+1;

 }

 n=i;

 b_sort(x,n);

 for(i=0;i<n;i++)

 {

 printf(" %d\t",x[i]);

 }

 for(i=0;i<n;i++)

 {

 for (j=0;j<n;j++)

 {

 if(x[i]==marks[j])

 {

 fprintf(fm,"%d %s %d\n",rollno[j],name[j],marks[j]);

28

 }

 }

 }

 fclose(fm);

 fclose(fp);

 printf("\n\n\nPRESS ANY KEY");

 getch();

}

void roll()

{ int i,roll,ch,mark,roll1;

 char name[50];

 FILE *fm;

 ch=1;

 while(ch)

 { clrscr();

 fm = fopen("marks.txt","r");

 printf(" \n ENTER ROLL NUMBER - ");

 scanf("%d",&roll1);

 i=0;

 while(! feof(fm))

 {

 fscanf(fm,"%d %s %d\n",&roll,&nam,&mark);

 if(roll1==roll)

 {printf("\nROLLNO. NAME MARKS\n ");

 printf(" %d %s %d\n",roll,nam,mark);

 break;

 }

 else

 i=i+1;

29

 }

 printf("\n\npress 1 to see student info, 0 to return to main menu\n");

 scanf("%d",&ch);

 fclose(fm);

 }

 }

void avg()

 {

 int marks[100],rollno[100],n,i;

 float avg,x;

 char name[100][50];

 FILE *fm;

 fm = fopen("marks.txt","r");

 i=0;

 while(! feof(fm))

 {

 fscanf(fm,"%d %s %d\n",&rollno[i],&name[i],&marks[i]);

 x = x + marks[i];

 i=i+1;

 }

 n = i;

 avg = x/n;

 printf("AVERAGE MARKS OF %d STUDENTS ARE - %f ",n,avg);

 fclose(fm);

 printf("\n\n\nPRESS ANY KEY");

 getch();

 }

void main()

{

30

 int marks[100],rollno[100],x[100],n,i,j,roll,c,mark,roll1;

 char name[100][10],nam[50];

 while(c!=6)

 {

 clrscr();

 printf("GIVE CHOICE--\n");

 printf(" 1 TO ENTER STUDENT INFO.\n");

 printf(" 2 TO SEE STUDENT.TXT FILE\n");

 printf(" 3 TO SORT FILE ON BASIS OF MARKS\n");

 printf(" 4 TO PRINT STUDENT INFO. USING ROLL NO\n");

 printf(" 5 TO FIND AVERAGE OF MARKS\n");

 printf(" 6 TO EXIT\n\n--");

 scanf("%d",&c);

 clrscr();

 switch(c)

 {

 case 1:

 f_write();

 break;

 case 2:

 fprint();

 break;

 case 3:

 f_sort();

 break;

 case 4: roll();

 break;

 case 5: avg();

31

 break;

 case 6:

 break;

 default:

 break;

 }

 }

 }

2.4.5 Temporal Cohesion

If two parts are to run at the same time, then they can be put in the same module. This

is called temporal cohesion.

Example of Temporal Cohesion

A temporally cohesive module is one whose elements are involved in activities that

are related in time. Picture this late-evening scene:

1. Put out milk bottles

2. Put out cat

3. Turn of tv

4. Brush teeth

These activities are unrelated to one another except that they‟re carried out at a

particular time. They are all part of an end-of-day routine. A temporally cohesive

module also has some of the same difficulties as a procedurally cohesive one. The

programmer is tempted to share code among activities related only by time, and the

module is difficult to reuse, either in this system or in others.

32

main()

{

float time;

printf(“enter time”);

scanf(“%f”,&time);

if (time<12)

{

printf(“do 1 task”);

printf(“do 2 task”);

printf(“do 3 task”);

}

else

{

printf(“do 4 task”);

printf(“do 5 task”);

printf(“do 6task”);

}

}

The following example also demonstrates temporal cohesion.

class employee:

 def getdata(self):

 self.name=input('Enter name\t:')

 self.age=input('Enter age\t:')

 def putdata(self):

 print('Name\t:',self.name)

 print('Age\t:',self.age)

 def __init__(self):

 self.name='ABC'

 self.age=20

e1= employee()

e1.getdata()

33

e1.putdata()

e2=employee()

e2.putdata()

2.4.6 Logical Cohesion

Another reason of putting the two parts in the same group can be their logical

cohesion. This is the ability of the two parts to perform the same logical operation.

Example of Logical Cohesion

Someone contemplating a journey might compile the following list:

1. Go by car

2. Go by train

3. Go by boat

4. Go by plane

What relates these activities? They‟re all means of transport, of course. But a crucial

point is that for any journey, a person must choose a specific subset of these modes of

transport. It‟s unlikely anyone would use them all on any particular journey.

A logically cohesive module contains a number of activities of the same general kind.

Thus, a logically cohesive module is a grab bag of activities. The activities, although

different, are forced to share the one and only interface to the module. The meaning of

each parameter depends on which activity is being used; for certain activities, some of

the parameters will even be left blank (although the calling module still needs to use

them and to know their specific types).

main()

{

 int no.;

printf(“Enter1 number for transport”);

printf(“Enter 2 number for food”);

34

printf(“Enter 3 number for schools”);

printf(“Enter any number”);

scanf(“%d”,&no);

switch (no)

{

 Case 1: printf(“GO By TRAIN”);

 printf(“GO By CAR”);

 printf(“GO By PLANE”);

 break;

 Case 2: printf(“SELF MADE”);

 printf(“HALF MADE”);

 printf(“READYMADE”);

 break;

 Case 3: printf(“DAY SCHOLAR”);

 printf(“BOARDING”);

 break;

 Default: printf(“WRONG NO”);

}

}

The following example also demonstrates logical cohesion.

#include<stdio.h>

#include<conio.h>

void main()

 {

 int x;

 FILE *fp;

 fp=fopen("data.txt","r");

 printf("\nEnter number\t:");

 scanf("%d",&x);

 printf("\ndata %d",x);

 // from file read number

 getch();

35

2.4.7 Coincidental Cohesion

This is a cohesion which occurs by chance. There is no logical reason for this.

However, it may be noted that there cannot be a case where in practical software a

module has no cohesion. The following example demonstrates coincidental cohesion.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

 {

 char str[20];

 clrscr();

 printf("\nEnter string\t:");

 scanf("%s",str);

 printf("\nth string is\t:%s",str);

 strrev(str);

 printf("\n%c",str[7]+str[5]);

 printf("\n%f",float(str[4]));

 getch();

2.5 TEST CASE PRIORITIZATION TECHNIQUES

Test case prioritization techniques schedule test cases for execution in an order that

attempt to increase their effectiveness at meeting some performance goal [120, 84].

Therefore, given any prioritization goal, various prioritization techniques may be

applied to a test suite with the aim of meeting that goal. For example, in an attempt to

increase the rate of fault detection of test suites, prioritization of test cases has been

done in terms of the extent to which they execute modules that, measured historically,

have tended to fail. Alternatively, test cases have to be prioritized in terms of their

36

increasing cost-per-coverage of code components, or in terms of their increasing cost-

per-coverage of features listed in a requirement specification. In any case, the intent

behind the choice of a prioritization technique is to increase the likelihood that the

prioritized test suite can better meet the goal than would an adhoc or random ordering

of test cases.

The test case prioritization can be done at two levels:

(i) Prioritization for Regression Test Suite

This category prioritizes the test suite of regression testing to be performed.

Since regression testing is performed whenever there is a change in the

software, so there is need to identify the test cases corresponding to the

modified modules and the affected modules with change.

(ii) Prioritization for System test Suite

This category prioritizes the test suite while performing the system testing.

Here, the consideration is not the change in the modules. The test cases for the

system testing are prioritized based on several criteria: risk analysis, user

feedback, fault detection rate, etc.

Based on the above mentioned two levels of test case prioritization, there are various

prioritization techniques proposed in the literature. These are discussed in detail in the

next sections.

2.5.1 Classification of Test Case Prioritization (TCP) Techniques

A Study was carried out on the TCP techniques that are being used in literature. These

techniques were then classified in twelve major types as shown in Figure 2.3. All

these TCP techniques are being discussed in the subsequent sections [124,125,126].

37

 Figure.2.3: Classification of Test Case Prioritization Techniques

1. Coverage based TCP

This type of prioritization is based on the code coverage such as statement coverage,

branch coverage, etc. of the test cases. The techniques of prioritization used by

various researchers have been formally documented in various primary and secondary

studies [5, 120]. Test cases are ordered based on the higher coverage based on the

criteria mentioned above. For example, count the number of statements covered by

the test cases. The test case with high number of statement covered will be executed

first.

Researchers have used Bayesian network to prioritize the test cases of a test suite

using coverage based approach [99, 104]. One of the latest work uses requirement

weight along with the concept of coverage to accomplish the above task [41]. Other

researchers have also used the above concept [14].

 Some of the techniques for coverage based TCP (see Figure 2 .4) are discussed

below.

TCP

Techniques
Data Flow

based TCP

Agent based

TCP

Requirement

based TCP

Dynamic TCP

Coverage

based TCP

GA based TCP Optimization

based TCP

Risk based

TCP

Model based

TCP

Fault detection &

fault severity

based TCP

Cost factor

based TCP

 History

based TCP

38

Figure.2.4: Types of Coverage Based TCP

a) Total Statement Coverage Prioritization

This prioritization orders the test cases based on the total number of statements

covered by them. Count the number of statements covered by the test cases and order

them in descending order of this number. If multiple test cases cover the same number

of statements, then a random order may be used. For example, if T1 test case covers 5

statements, T2 covers 3 and T3 covers 12 statements. Then according to this

prioritization the order will be T3, T1, T2.

b) Additional Statement Coverage Prioritization

Total statement coverage prioritization schedules test cases in the order of total

statements coverage achieved. However, it will be useful if statements are executed

that have not yet been covered. Additional statement coverage prioritization

iteratively selects a test case T1, that yields the greatest statement coverage, and then

selects a test case which covers a statement uncovered by the T1. Repeat this process

until all statements covered by at least one test case have been covered.

Coverage Based Test Case

Prioritization

Modified Statements Coverage

Additional Branch Coverage

Total Branch Coverage

Additional Statement Coverage

Total Statement Coverage

Relevant Slice Based Coverage

39

Table 2.1: Statement Coverage

Statement Statement Coverage

 Test case 1 Test case2 Test case 3

1 X X X

2 X X X

3 X X

4 X

5

6 X

7 X X

8 X X

9 X X

For example, consider Table 2.1, according to total statement coverage criteria, the

order is (2, 1, 3). But additional statement coverage select test case 2 first and next it

selects test case 3 as it covers statement 4 which has not been covered by test case 2.

Thus, order according to addition coverage criteria is (2, 3, 1).

c) Total Branch Coverage Prioritization

In this prioritization, the criterion to order is to consider condition branches in a

program instead of statements. Thus, it is the coverage of each possible outcome of a

condition in a predicate. The test case which will cover maximum branch outcomes

will be ordered first. For example, see Table 2.2. Here the order will be (1, 2, 3).

 Table 2.2: Branch Coverage

Branch -

statements

 Branch Coverage

 Test Case 1 Test case 2 Test Case 3

Entry to while X X X

2-true X X X

2-false X

3-true X

3-false X

40

d) Additional Branch Coverage Prioritization

Here, the idea is same as in additional statement coverage that first selects the test

case with maximum coverage of branch outcomes and then selects the test case which

covers the branch outcome not covered by the previous one.

e) Modified Statements based Prioritization

This type of prioritization is based on some priority value assigned to the modified

lines of a program covered by a test case.

Amrita Jyoti, Yogesh Kumar Sharma has proposed a model that achieves 100% code

coverage optimally during version specific regression testing [9]. The prioritization of

test cases was done on the basis of priority value of the modified lines covered by the

test case.

f) Relevant Slice based Prioritization

During regression testing, the modified program is executed on all existing regression

test cases to check that it still works the same way as the original program, except

where change is expected. But re-running the test suite for every change in the

software makes regression testing a time consuming process. If the portion of the

software which has been affected with the change in software can be found out, then

prioritization the test cases has been done based on this information. This has been

called as a slicing technique [23]. The various definitions related to this technique are

given below:

1. Execution Slice

The set of statements executed under a test case is called Execution Slice of the

program.

2. Dynamic Slice

The set of statements executed under a test case and have an effect on the program

output under that test case is called Dynamic Slice of the program with respect to the

output variables.

41

3. Relevant Slice

The set of statements that were executed under a test case and did not affect the

output, but have potential to affect the output produced by a test case is known as

Relevant Slice of the program. It contains the dynamic slice and in addition includes

those statements which, if corrected, may cause the modification of the value of the

variables at which the program failure has been manifested.

If there is change in any statement in the relevant slice, there is a need to rerun the

modified software on only those test cases whose relevant slices contain a modified

statement. Thus, on the basis of relevant slices, prioritization of the test cases has been

done. This technique is helpful for prioritizing the regression test suite which saves

time and effort for regression testing.

Jeffrey and Gupta [23] enhanced the approach of relevant slicing and stated:”If a

modification in the program has to affect the output of a test case in the regression test

suite, it must affect some computation in the relevant slice of the output for that test

case”. Thus, they applied the heuristic for prioritizing test cases such that the test case

with larger number of statements must get higher weight and will get priority for the

execution. A mapping study of the SBSE community in Brazil has used the concept of

the relevant slice for the purpose of prioritization. The model structure has been used

by some researchers for prioritizing test cases for regression testing [38].

2. Risk based TCP

The Risk based test case prioritization is a well defined process that prioritizes

modules for testing [27]. It uses the risk analysis which highlights the potential

problem areas, whose failures have more serious adverse consequences. The testers

use this risk analysis to select most crucial tests. Thus, risk based technique is to

prioritize the test cases based on some potential problems which may occur during the

project.

Risk contains two components:

 Probability of occurrence / Fault Likelihood

42

It tells about how much probability is there of occurrence of the problem.

 Severity of Impact / Failure Impact

If the problem has occurred, how much the impact is there on the software.

Risk analysis uses these two components by first listing the potential problems and

then assigning a probability and severity value for each identified problem as shown

in Risk analysis Table (See Table 2.3). By ranking the results in this table in the form

of risk exposure, the tester can identify the potential problems against which the

software needs to be tested and executed first. For example, the problems in the table

given can be prioritized in the order of P5, P4, P2, P3, P1.

Table 2.3: Risk Analysis Table

Problem

Id

Potential Problem Uncertainty

Factor

Risk Impact Risk

Exposure

P1 Specification

Ambiguity

2 3 6

P2 Interface problems 5 6 30

P3 File corruption 6 4 24

P4 Databases not

synchronized

8 7 56

P5 Unavailability of

modules for

integration

9 10 90

3. Fault Detection & Fault Severity based TCP

This type of test case prioritization is based on finding the faults as early as possible

and also the impact of these faults. The severity of faults has been also taken into

account while prioritizing the test cases of the test suite.

Researchers have proposed numerous test case prioritization techniques to compute

average faults discovered per minute [83]. Using APFD (Average Percentage of Fault

Detection) metric researchers have demonstrated the effectiveness of their proposed

approaches.

Many authors have argued that more effective fault identification at earlier stages of

the testing process could be obtained by the using the algorithms for prioritized test

cases as compared to non prioritized test cases [87, 88]. The techniques have been

successfully applied to the cloud also.

43

Md. Imrul kayes [77] proposed a new metric for accessing rate of fault dependency

detection and an algorithm for prioritizing the test cases. The proposed technique

prioritized the test cases with the goal of maximizing the number of faults dependency

detection that are likely to be found during the execution of the prioritized test suite.

The techniques which considered the severity of faults early in the testing process,

improve the quality of the software [116]. They considered TCP at fault severities in

order to have early detection of severe faults in the regression testing process.

4. Requirement based TCP

This technique is used for prioritizing the test cases for system test cases. The system

test cases become too large in number as this testing is performed on so many

grounds. Since system test cases are largely dependent on the requirements, the

requirements can be analyzed to prioritize the test cases. This technique does not

consider all the requirements on the same level. Some requirements are important as

compared to others [41]. Thus, the test cases corresponding to important and critical

requirements are given more weight as compared to others and these test cases having

more weight are executed earlier.

The requirements imposed at the beginning of the software development life cycle

also helps one to accomplish the task of test case prioritization. During the literature

review it was found that many researchers have clubbed together this along with other

factors to accomplish the task [36]

Hema Srikanth et al. [36] applied requirement engineering approach for prioritizing

the system test cases. It is known as PORT (Prioritization of Requirements for Test).

They have considered the following four factors for analyzing and measuring the

criticality of requirements:

a) Customer-Assigned priority of requirements: The customer assigns a weight (on

a scale of 1 to 10) to each requirement according to the priority which he feels is more

important. The higher number is considered as of the highest priority.

44

b) Requirement Volatility: This is a rating based on the frequency of change of a

requirement. The higher change frequency of a requirement is assigned higher weight

compared to the stable requirements.

c) Developer-perceived implementation complexity: All the requirements are not

equal on the implementation level. The developer having the more difficulty in

implementing a requirement is given more weight.

d) Fault proneness of requirements: This factor is identified based on the previous

versions of the system. If a requirement in an earlier version of system is having more

bugs, i.e. it is error-prone, then this requirement in the current version is given more

weight. This factor cannot be considered for new software.

Based on these four factor values, a Prioritization factor value (PFV) is computed as

given below. PFV is then used to produce a prioritized list of system test cases.

PFVi = ∑ (FVij * FWj) ----------------- (2.1)

where FV = Factor value is the value of factor j corresponding to requirement i.

 FW = Factor weight is the weight given to factor j.

R. Kavitha & N.Suresh Kumar [92] proposed a method to prioritize the regression

testing test cases considering the following factors: (1) customer assigned priority of

requirements, (2) Developer-perceived code implementation complexity, (3) Changes

in requirements, (4) Fault impact of requirements, (5) Completeness ,(6) Traceability

(7) Execution time etc. Based on these factors, a weightage was assigned to each test

case in the software. According to the weightage assigned, the test cases were

prioritized.

Many authors have [109] proposed approaches for prioritizing the test cases, which

ware based on the requirements of the system. The techniques were quite useful in

black box environment. The proposed techniques could be of use when source code or

45

binary code was not available. The main idea was to find the most severe faults early

in the testing process and hence to improve the quality of the system according to the

customer point of view. A genetic algorithm was proposed for test case prioritization

to improve the regression testing. The analysis was done for prioritized and non

prioritized tests to prove the effectiveness of the proposed algorithm.

Patric Berander and Anneliese Anfrews [14] considered an approach that provides

means to find an optimal subset of requirement resulting in trade of desired project

scope against sometime conflicting constraint such as

 Schedule

 Budget

 Resources

 Time to market and quality

They also considered requirement prioritization as the basis of the product strategy.

Maya Daneva and Andera Herrman [6] proposed a conceptual model of requirements

prioritization based on benefit and cost prediction. Other researchers have also used the

concept for achieving the goal [70].

Siripong Roongruangsuwan and Jirapun Daengdej [108] proposed a new

classification of test case prioritization techniques considering a new test case

prioritization method along with practical weight factors like test case complexity,

dependency and test impact etc.

Thillaikarasi Muthusamy et. al. [114] proposed a technique which prioritizes the test

cases based on four groups of practical weight factor such as:

 Customer allotted priority,

 Developer observed code execution complexity,

 Changes in requirements,

 Fault impact,

46

 Completeness and

 Traceability.

5. Data flow based TCP

Data-flow testing is a white box testing technique. The technique has been used by

many researchers to detect improper use of data values due to coding errors [2, 77, 72,

74, 76, 100, 102]. Errors are inadvertently introduced in a program by programmers.

For instance, a software programmer might use a variable without defining it. The

data usage for a variable affects the white box testing and thereby the regression

testing. If the prioritization of regression test suite is based on this concept, the rate of

detection of faults will be high and critical bugs can be discovered earlier.

J. Rummel et al proposed an approach to regression test prioritization that leverages

the all-DUs(definition-use) test adequacy criterion that focuses on the definition and

use of variables within the program under test. DU-paths which are variable usage

paths are taken for the test cases prioritization [98].

Yogesh Kumar, Arvinder Kaur & Bharat Suri proposed an approach for test case

prioritization using DU path as well as DC (definition clear) paths [119, 85]. The idea

was that the DU paths which may not be DC may be very problematic as non DC

paths may be subtle source of errors.

6. Genetic Algorithm (GA) based TCP

Over several years, organisms are evolving on the basis of fundamental principle

“survival of fittest” to accomplish noteworthy results. In 1975, Holland employed

principle of natural evolution to optimization problems and built first GA [34, 53, 54].

In GA, a population P = (c1… cm) is formed from a set of chromosomes and each

chromosome is composed of genes. The GA populates the population of

chromosomes by successively replacing one population with another based on fitness

function assigned to each chromosome. The strong individual is included in next

47

population and individuals with low-fitness are eliminated from each generation [34].

There are two main concepts: crossover and mutation.

 Crossover: The crossing over (key operator) is process of yielding

recombination of alleles via exchange of segments between pairs of

chromosomes. Crossover is applied on an individual by switching one of its

allele with another allele from another individual in the population.

 Mutation: The mutation is a process wherein one allele of gene is randomly

replaced by (or modified to) another to yield new structure .It alters an

individual in the population. It can regenerate all or a single allele in the

selected individual.

In literature many algorithms based on GA have been proposed that automates the

process to prioritize the test suites as per the criteria given to genetic algorithm [9, 90,

109].

Arvinder Kaur, Yogesh Singh et.al proposed a model for prioritizing the test suite on

the basis of the complete code coverage [9]. The proposed model achieves 100 %

code coverage optimally during version specific regression testing.

Yu-Chi Huang & Chin-Yu Huang [40] proposed a cost cognizant test case

prioritization technique which was based on the previous historical records and

genetic algorithm. The test costs, fault severities, and detected faults of each test case

were gathered from the latest regression testing and then used a GA to find an order

with the greatest rate of “units of fault severity detected per unit test cost.” The cost-

cognizant metric, Average Percentage of Faults Detected per Cost (APFDc), was

proposed to evaluate the effectiveness of the cost-cognizant test case prioritization

techniques. Others have also used the above concept [88, 92].

7. Optimization based TCP

In this type of test case prioritization the prioritization of test case in a test suite is

based on certain optimization algorithm.

48

Some researchers [10] used the Bee Colony Optimization (BCO) algorithm for the

regression test suite prioritization based on the code coverage of the program. The

proposed algorithm made effective use of the path construction (exploration) and path

structuring (exploitation) phenomenon of scout bees and forager bees for the

prioritization of the test suite of the modified code.

Camila Loiola Brito Maia, Thiago do Nascimento Ferreira1 [17] proposed an ant

colony optimization based algorithm for prioritizing the test cases considering the

precedence of the test cases. Each ant builds a solution, and when it is necessary to

choose a new vertex (test case), only allowed test cases are seen by the ant,

implementing the precedence constraint of the problem.

8. Agent based TCP

Software agents are autonomous software units which, within their decision space, act

independently in order to pursue their predefined goals. Software agents can flexibly

interact with the environment and with each other and cooperate through negotiations

in order to achieve their goals. Agent-based software systems can reflect the

distribution of information, activities, resources or decision processes, as well as

different viewpoints or conflicting interests of the concrete problem definition.

In this approach software agents interact and cooperate with each other in order to

determine the priority of each test case using information out of the architecture

model, out of the available databases and also the information exchanged between

each other. The agents have prioritization knowledge, which they use to evaluate the

information for prioritizing the test cases.

Cristopz Malz & Peter Gohner [21] presented an Adaptive Test Management System

(ATMS) based on software agents which prioritized test cases considering available

information from test teams and developments teams about the software system and

the test cases. The goal of Adaptive Test Management System was to increase the

number of faults found in the available test time with the determined prioritization

order.

49

9. Dynamic TCP

Nilam Kaushik et. al [81] addressed the challenges posed by in-situ changes during

the testing process. They introduced the idea of dynamic prioritization in regression

testing which uses in-process events to re-order test cases. Dynamic Prioritization

uses the most up-to-date pool of test cases and generates a new test case order based

on in-process events.

10. Model Based TCP

Component based software often consists of a set of self-contained and loosely

coupled components allowing plug-and-play. The components may be implemented

by using different programming languages, executed in various operational platforms

distributed across geographic distances; some components may be developed in-

house, while others may be the third party off-the-shelf components of which the

source code may not be available to the developers. So the cost of maintaining the

component based software is comparatively more than the maintenance of

conventional software system. So when modifying or adding a component and

applying the regression testing, incurs more cost and time. So to reduce these two

factors, a test case prioritization technique is used which is based on two criteria like

maximum state changes and maximum data base access occurred by a test case during

component interaction scenario. The test case having maximum state changes and

database access given higher priority and executed first so that the debugger will not

sit idle as a result, fault will be detected early.

Many researchers have used the concept of Model Based Software testing [13, 59,

100]. Sujata Mohanty, Arup Abhinna Acharya, Durga Prasad Mohapatra [13]

proposed a new prioritization technique to prioritize the test cases to perform

regression testing for Component Based Software System (CBSS). The components

and the state changes for a component based software systems were being represented

by UML state chart diagrams which were then converted into Component Interaction

Graph (CIG) to describe the interrelation among components. The proposed

prioritization algorithm took this CIG as input along with the old test cases and

generated a prioritized test suit taking into account total number of state changes and

50

total number of database access, both direct and indirect, encountered due to each test

case. The algorithm was found to be very effective in maximizing the objective

function and minimizing the cost of system retesting when applied to few JAVA

projects.

11. History based TCP

In this type of test case prioritization the prioritization of test cases is generally based

on the test case execution history. During the extensive review carried out, it was

found that many researchers have also used the history of a test case as the deciding

criteria for the purpose of prioritization. One of the works uses the concept of

billattice theory and hence ignores the negative information. This idea of considering

the positive information only simplifies the thing and hence leads us to a better,

efficient and effective solutions.

It may also be noted that many automata theories have also been used to accomplish

the above tasks. One such work [68], uses a specialized automata for History based

testing. As per the work this method improves the fault finding capacity of the

existing systems.

The development of newer technologies has also helped the cause a lot. Many papers

studied during this review also brought forth the fact that many tools and specialized

languages have also been developed.

Kim & Porter [68] proposed to use information about each test case‟s prior

performance to increase or decrease the probability that it will be used in the current

testing session. This prioritization technique was based on historical data execution.

They conducted a series of experiments to assess the effectiveness of the proposed

technique on the long run performance of resource constrained regression testing.

Qu et.al [86] proposed a prioritization technique which was applied in the black box

testing environment. In this technique the idea was to initialize a test suite using test

history and then adjust the order of test cases based on run time information.

51

12. Cost Factor based TCP

Cost effective based test case prioritization techniques prioritized the test cases based

on costs, such as cost of analysis and cost of prioritization. Many researchers have

considered the cost of a test case as the deciding criteria for its prioritization. This is

referred to as cost factor based test case prioritization. The researchers have gone

beyond model based testing to explore the concept in regression testing. Four latest

works were studied concerning the topic [70, 4, 38, 39].

Leung and White [70] proposed a cost model for regression test selection. It

incorporated various cost of the regression testing. These costs include: the cost of

executing the test case, validating the test cases, the cost of performing the analysis to

support test selection etc. These costs provided a way to compare the test cases for

their effectiveness.

Alexy G. Malishevsky, Gregg Rothermal and Sebastian Elbum [4] has presented a

cost model for prioritizing the test cases which takes into account the cost of

overlooking faults due to discard tests. They defined the following variables for

prioritization the test cases: Cost of analysis, Ca (T) and cost of the prioritization

algorithm, Cp (T) .They calculated the weight prioritization value of each test case by

the following Formula:

WP = Ca (T) + Cp (T) --------------------------------------- (2.2)

where, WP-is the weight prioritization value for each test case, Ca (T) - is the cost of

source code analysis, analysis of changes between old and new versions and,

collection of execution traces, Cp (T) – is the actual cost of running a prioritization

tool and depending on the prioritization algorithm used.

2.6 CALL GRAPH

Graphs are based on the connections among the software components. Connections

are dependency relations also called coupling. A software system can be described by

a call graph. It is the most common graph for structural design Testing. A call graph is

a directed graph (as shown in Figure 2.5) [120], where vertices represent programs,

52

classes, or similar program units, and where an arc (v, w), i.e v->w means that a

program v calls program w. A call graph is a directed graph D= (V, A), where the

vertex set V is the set of programs of the software system and the arc set A= {(u, v) €

VXV | u calls v}. A graph has nodes and edges.

 Figure 2.5: Call Graph

Each vertex may have a weight, such as the number of lines of code of the

corresponding program. A module contains a subset of the vertices, representing a

subset of the programs. The size of a module equals the sum of the vertex weights in

the corresponding subset; the size of its interface is the number of vertices which have

an incoming arc from a different module. Thus the s/w splitting problem can be

formulated as a partitioning problem of a call graph.

NODE COVERAGE……………..call every unit at least once (method coverage)

EDGE COVERAGE…………….. execute every call at least once(call coverage)

A call graph (also known as a call multigraph) is a directed graph that represents

calling relationships between subroutines in a computer program. Specifically, each

node represents a procedure and each edge (f,g) indicates that procedure f calls

procedure g. Thus, a cycle in the graph indicates recursive procedure calls.

Call graphs are a basic program analysis result that can be used for human

understanding of programs, or as a basis for further analyses, such as an analysis that

 A

D C
B

F E

53

tracks the flow of values between procedures. One simple application of call graphs is

finding procedures that are never called. All diagrams follow the notation

 calling function -> called function

2.7 CONCLUSION

Regression testing is needed when a change is made in the software. It is not possible

to rerun all the test cases when some change is made. Therefore it is important to

select some test cases out of all the test cases so that the testing time can be reduced

and at the same time the fault finding capacity of the test case suite remains the same.

There are three ways of doing this. These are prioritization, selection and

minimization. These have been discussed in the chapter. Since this work focuses on

Test Case Prioritization, this chapter discusses the TCP Techniques in detail along

with some other miscellaneous topics required to understand this work.

54

55

Chapter III

STRUCURED PROGRAMMING BASED UNIT TEST

CASE PRIORITIZATION (SPUTCP): PROPOSED WORK

3.1 INTRODUCTION

White-box testing or structural testing is typically focused on the internal structure of

the program. In white box testing, structure means the logic of the program which has

been implemented in the language code. Basis path testing is an important part of

white box testing. It monitors the whole control structure of the program. Based on

the control structure a flow graph is prepared and all the independent paths are

covered and executed during testing [109]. An independent path [79] is any path

through the graph that introduces at least one new set of processing statements or new

conditions. It is considered as a general criterion for detecting more errors as all

statements and all branches are covered while testing.

While performing the white box testing there may be large number of test cases

executed by the developer to ensure the correct functionality of their code. This

process involves a lot of efforts. But if somehow a developer is able to get the

prioritized order of the test cases which he/she is going to execute to ensure the

correct functionality during the process of white box testing makes the task easier.

Keeping this idea in mind a test case prioritization technique for unit testing is

proposed in this chapter. The proposed technique is based on the analysis of the

source code written by the developers. To show the effectiveness of the proposed

approach it is compared with non prioritized and random approach. The APFD value

obtained by proposed approach is more, showing the efficacy of the proposed

approach.

56

3.2 SPUTCP TECHNIQUE

To accomplish the above task a new methodology has been proposed [48]. The

process starts with the crafting of the Control flow diagram of the program under test.

From the control flow diagram, the independent paths are selected. This is followed by

the characterization of each node of the graph based on its criticality. Criticality has

been decided by various factors of structured programming which have a great

potential of introducing the errors in the program. These factors have been decided by

conducting a research survey among a group of researchers from both academics and

industry having a vast experience of computer programming (See Appendix D). The

steps of this process have been depicted in the Figure 3.1.

 Figure 3.1: Pictorial Representation of SPUTCP Technique

As is evident, the factors form the most important part of the process. Further these

factors have been assigned the weights accordingly. These factors are discussed in the

next section.

3.2.1 Proposed SPUTCP Factors

The total eight factors have been considered for the purpose of prioritizing the test

cases of a test suite. These factors are discussed in next section.

1. The Lines of Code: The lines of code is a metric for software evolution. The line

of code is an important evaluation metric. The extensive literature review carried out,

Create CFG

Find
Independent
Paths

Find the
values of
Factors

Find TCPV
of a test case

Prioritize
test cases
based on
TCPV

57

proved the importance of this metric. It has been shown in the evaluation that the path

having more lines of code should be assigned more priority in order to have a better

APFD value. In order to prove the point some programming examples have been

taken for illustration. In the following discussion the example has been elaborated.

The weight of this factor was given as per the suggestions by the experts having

experience in development and those who have worked on large software systems.

2. Type Casting: Type casting is required in the program to get the correct results. It

may be stated here that this is an important metric, as type casting becomes the source

of error in many cases. For example in a modular system if a float is sent to another

module and the receiving module takes it as an integer then the final results can

remarkably vary from the expected ones. However, it is not always the case that we

encounter type casting in each path of the given program.

3. Predicate Statements: The predicate statements diversify a path. Thus, they create

more paths and therefore are an important source of inducing an error in the program.

During the extensive literature review it was found that this factor has been

considered by many researchers to give importance to a path and hence the

corresponding test case.

4. File Access: File access is an important factor while running a program. A tester

should be highly vigilant of any path that uses file. The failure to check these paths

may lead to fatal errors and hence jeopardize the integrity of software. This work,

therefore, gives importance to this metric as well. The weight of this factor has been

assigned in accordance with the suggestions made by the experts, as stated earlier.

5. Dynamic Memory Allocation: The memory allocation to a pointer, of any type,

may lead to severe faults. As it is well known that the memory allocation is of two

types: static and dynamic. The dynamic memory allocation leads to more errors and

hence should be dealt with care.

58

6. Number of Input Variables: The input to a procedure also determines the

importance of a module and hence the paths generated therein. The inputs can be

primitive, complex or even user defined. The different types of input and their number

would therefore be treated differently. Moreover, in a procedural program having

most of the task in the main module, the input is a greater source of contention as

compared to the output.

7. The number of Output Variables: The importance of variables in designing a test

case is well known. This work considers these factors important, if not immensely

important. The paths selected after the formation of the control flow graph would deal

with output variables. These variables and their types increase the importance of path.

The concept has been exemplified in the example taken in the following part. The

weights of these factors have been assigned by consulting the experts.

8. Assignment Statements: The assignment statements change the values of a

variable. These statements are hence important as they can be a source of an incorrect

value as well. This work assigns importance to the assignment statements and gives

them weight in accordance with the suggestions made by the experts.

 All the factors discussed above cannot be at same level. So each factor has been

given a weight accordingly. The considered factors and their corresponding weights

are shown in Table 3.1. The factors weight shows the criticality of the factor in term

of the probability of errors introduced by the factors.

Table 3.1: Prioritization factors and their weight for SPUTCP
S. No. Prioritization Factors Factor weight

1 Line of Code .05

2 Type Casting .15

3 Predicate Statement .175

4 File Access .15

5 Dynamic memory Allocation .225

6 Number of Input Variable .1

7 Number of Output Variable .05

8 Assignment Statement .1

59

Test cases are prioritized on the basis of a Test Case Prioritization Value (TCPV)

which is determined by using the Formula 3.1. Higher the TCPV of the test case

higher is the priority of the test case for execution.

8

1

)1.3.....(..........).........(
j

jiji wfactorvfactorTCPV

where, the vfactor is value of the factor covered by the ith test case , wfactor is the

weight of the jth factor.

The algorithm for the proposed work has been depicted in Figure 3.2.

Begin

Source code (S)

1. Create the control follow graph (CFG) of S.

2. Identify all the independent path of S.

3. Determine the test case covering the independent paths and create the non prioritized list

 of test cases T.

4. Let T‟ be the prioritized order of test cases

 5. While (T not empty)

Begin

6. Identify the factors covered by the test case corresponding to independent path of test case.

7. Calculate the TCPV of the test case by applying the formula 3.1.

8. Order the test cases in the decreasing order on the basis of the TCPV and let it be T‟.

9. T‟ is the new prioritized order of test cases.

End

10. Execute the test cases in prioritize order

End

Figure 3.2: Algorithm for SPUTCP Approach

3.3 VALIDATION OF SPUTCP APPROACH

For validation of the proposed approach it has been applied on three case studies

implemented in C language. The details of the case studies has been presented in

Table 3.2

60

Table 3.2: Case studies for validation of the proposed SPUTCP

S. No Program Name Appendix

1 Employee Record A

2 Saving Module of Income Tax calculator

software

B

3 Postfix to Infix Conversion C

3.3.1 Case Study of Employee Record Software

The first case study is of Employee record software. It is software implemented in C

programming language. The considered case study has 154 lines of code and performs

various operations such as add a new record, display the records and update records.

Before applying the proposed approach some errors have been intentionally

introduced in the program. The Control Flow Graph for the case study considered for

analysis purpose is shown in Figure 3.3.

61

Figure 3.3: CFG of the case study of employee record software

After analysis of the CFG (See Figure 3.3) all independent paths are determined.

Table 3.3 shows all independent paths of the case study.

32-33

61-66

108-112
1-8

20-24

25-29

30-31

35-36 38-39 43-44 41-42

40 37 34

45-46

47

50-52

53

54

55-56

19

67

70-73

69

68

59

57

58

34-100

92

93

86-87

85

101

37

148

75-79

80

81-83

149

84

91
90

102-107

89

145

113

114

118

117

116

115

120

121

122-128

119

134

133

130-132

129

144

143

147

136

141

146

137-140

135

151-153

154

150

62

Table 3.3: Independent paths of employee record case study

S.No. Path

No.

Independent path

1 Path1 1-2-3-4-5-6-7-8-20-21-22-23-24-25-26-27-28-29-30-31-32-33-50-51-52-53-54-

55-56-57-58-69-70-71-72-73-34-47

2 Path2 1-2-3-4-5-6-7-8-20-21-22-23-24-25-26-27-28-29-30-31-32-33-50-51-52-53-54-

55-56-57-59-61-62-63-64-65-66-67-19-68-69-70-71-72-73-34-47

3 Path3 1-2-3-4-5-6-7-8-20-21-22-23-24-25-26-27-28-29-30-31-35-36-75-76-77-78-79-

80-81-82-83-84-85-86-87-37-47

4 Path4 1-2-3-4-5-6-7-8-20-21-22-23-24-25-26-27-28-29-30-31-35-36-75-76-77-78-79-

80-81-82-83-84-89-90-101-102-103-104-105-106-107-37-47

5 Path5 1-2-3-4-5-6-7-8-20-21-22-23-24-25-26-27-28-29-30-31-35-36-75-76-77-78-79-

80-14-81-82-83-84-89-91-92-93-94-95-96-97-98-99-100-93-101-102-103-104-

105-106-107-37-47

6 Path6 1-2-3-4-5-6-7-8-20-21-22-23-24-25-26-27-28-29-30-31-108-109-110-111-112-

113-114-115-116-117-118-154-40-47

7 Path7 1-2-3-4-5-6-7-8-20-21-22-23-24-25-26-27-28-29-30-31-108-109-110-111-112-

113-114-115-116-117-119-120-121-122-123-124-125-126-127-128-121-129-

130-131-132-133-134-135-136-137-138-139-140-141-146-147-150-151-152-

153-154-40-47

8 Path8 1-2-3-4-5-6-7-8-20-21-22-23-24-25-26-27-28-29-30-31-108-109-110-111-112-

113-114-115-116-117-119-120-121-122-123-124-125-126-127-128-121-129-

130-131-132-133-134-135-136-143-144-145-133-146-148-149-150-151-152-

153-154-40-47

9 Path9 1-2-3-4-5-6-7-8-20-21-22-23-24-25-26-27-28-29-30-31-41-42-47

10 Path10 1-2-3-4-5-6-7-8-20-21-22-23-24-25-26-27-28-29-30-31-43-44-45-46-24-25-26-

27-28-29-30-31-41-42-47

Table 3.4 shows the test cases which cover all feasible independent paths for the case

study of employee record software.

 Table 3.4: Test cases covered and independent paths for employee record case study

Test case

id

Value1 Value 2 Result expected Path

followed

TC1 - - ERROR P1

TC2 100 ABC INSERTED P2

TC3 - - NO RECORD

TO DISPLAY

P3

TC4 - -- ERROR P4

TC5 - - 100 ABC

200 XYZ

P5

TC6 - - ERROR P6

TC7 100 MNW UPDATE

SUCCESSFUL

P7

TC8 250 - ENTER

CORRECT ID

P8

TC9 4 - Exit P9

TC10 5 - ENTER

CORRECT

CHOICE

P10

63

After selecting the test cases corresponding to the all feasible independent paths the

factors are determined covered by the test cases. Out of these test cases TC9 and

TC10 are not consider because they do not cover any factors discussed in the

proposed approach.

After counting the value of various proposed factors (See Table 3.5), TCPV for each

case is calculated by using the Formula 3.1. Table 3.6 shows the TCPV for each test

case.

Table 3.5: Count of proposed STUTCP factors present in the case of employee record

Table.3.6: Calculated TCPV for case study of employee record

S. No. Factors TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

1 Line of Code 10 17 14 12 21 11 39 32

2 Type Casting 2 2 2 2 2 2 2 2

3 Conditional

Statement

1 1 1 2 3 1 8 7

4 File Access 2 3 2 2 4 2 8 7

5 Dynamic memory

Allocation

2 2 2 2 2 2 2 2

6 Number of Input

Variable

0 2 0 0 0 0 2 2

7 Number of Output

Variable

0 0 0 0 2 0 2 2

8 Assignment

Statement

3 4 4 4 5 4 8 7

S. No. Factors TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

1 Line of Code 5 8.5 7.0 6.0 10.5 5.5 19.5 16

2 Type Casting .3 .3 .3 .3 .3 .3 .3 .3

3 Conditional

Statement

.175 .175 .175 .35 .525 .175 .875 .875

4 File Access .3 .45 .3 .3 .6 .3 1.20 1.05

5 Dynamic memory

Allocation

.45 .45 .45 .45 .45 .45 .45 .45

6 Number of Input

Variable

0 .2 0 0 0 0 .2 .2

7 Number of Output

Variable

0 0 0 0 .1 0 .1 .1

8 Assignment

Statement

.3 .4 .4 .4 .5 .4 .8 .7

 TCPV 6.525 10.475 8.625 7.8 12.975 7.125 23.425 19.625

64

On the basis of the TCPV (See Table 3.6), the prioritized order of the test cases is

TC7, TC8, TC5, TC2, TC3, TC4, TC6, TC1.

3.3.2 Analysis of the Proposed SPUTCP Approach

For the purpose of analysing the effectiveness of the approach the Average Percentage

of Faults Detected (APFD) metric is used [32]. The formula for calculating the APFD

is given below.

APFD = 1 – (TF1 + TF2 +TF3 +TF4+.....+ TFm) / (n*m) + 1/ (2*n) -------- (3.2)

where, m is the number of faults and n is the number of test cases.

Faults have been introduced in the program which were exposed by the test cases.

APFD values for the random, non prioritized and prioritised order of test cases has

been determined and results obtained are encouraging.

Table 3.7 shows the faults detected by the test cases when test cases are executed in

non prioritized order.

Table 3.7: Faults detected for non prioritized order of test cases

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

F1 * *

F2 *

F3 *

F4 * *

F5 *

F6 * * *

F7 * *

F8 * *

F9 *

F10 * * *

Table 3.8 shows the faults detected by the test cases when the test cases are executed

in the prioritized order obtain by applying the proposed approach

65

Table3.8: Faults detected for prioritized order of test cases

 TC7 TC8 TC5 TC2 TC3 TC4 TC6 TC1

F1 * *

F2 *

F3 *

F4 * *

F5 *

F6 * * *

F7 * *

F8 * *

F9 *

F10 * * *

Table 3.9 shows the faults detected by the test cases when they executed in the

random order

 Table 3.9: Faults Detected for Random Order of Test Cases

 TC3 TC5 TC8 TC4 TC1 TC7 TC2 TC6

F1 * *

F2 *

F3 *

F4 * *

F5 *

F6 * * *

F7 * *

F8 * *

F9 *

F10 * * *

A. APFD for the non Prioritized approach

APFD = 1- (1+2+2+3+5+6+7+7+7+6) / 80 + 1/(2*8)

 = 1-(46/80) +1/(16)

 = 49 %

B. APFD for the Random approach

 APFD = 1- (5+7+7+1+2+3+3+3+6+3) / 80 + 1/ (2*8)

 = 1 – (40/80) +1/(16)

 = 56 %

C. APFD for the Proposed approach

 APFD = 1- (4+4+4+3+3+1+1+1+1+1) / 80 + 1/(2*8)

 = 1-(23/80) +1/(16)

 = 78 %

66

Table 3.10 shows the APFD values obtained when the test cases are executed in non

prioritize order, in random order and in prioritized order resulting from applying the

proposed approach.

 Table 3.10: APFD Values for Various Techniques for employee record case study
S. No Applied Technique APFD

1 Non Prioritized 49%

2 Random approach 56%

3 Proposed SPUTCP approach 78%

The comparison of APFD graph of proposed SPUTCP approach, random approach,

and non prioritized approach as shown in graph (See Figure 3.4) shows the

effectiveness of the proposed approach.

 Figure 3.4: Comparison of Proposed SPUTCP, Random and Non Prioritize approach

3.3.3 Case Study of Saving Module of Income Tax Calculator

 Another case study is also taken to validate the proposed approach [48]. The source

code of this example has been given in Appendix B [80]. The control flow graph of

the same is depicted in Figure 3.5.

0%

20%

40%

60%

80%

100%

120%

12% 25% 37% 50% 62% 75% 87% 100%P
e

rc
e

n
ta

ge
 o

f
Fa

u
lt

 D
e

te
ct

e
d

Percentage of Executed Test Cases

NON PRIORITIZE APRCH
(APFD =49%)

PROPOSED APRCH (APFD =
78%)

RANDOM APRCH (APFD =
56%)

67

 Figure 3.5: CFG for case study of saving module of income tax calculator software

The independent paths obtained from the Control flow graph (See Figure 3.5) are

shown in Table 3.11.

N22

N23

N21

N20

N19

N18

N16

N17

N15

N14

N13

N12

N11

N10

N9

N8

N7

N6

N5

N4

N3

N2

N1

R7

R6

R5

R4

R2

1-4

5

6

7

8-10

11

12

13

14-16

17-21

23

24

25-28

29

30

31-33

34

35-37

38-42

43

44-54

55

56-57

R1

R3

68

Table 3.11: Independent paths for saving module case study

S .No. Path id Independent path

1 P1 1-2-3-4-5-56-57

2 P2 1-2-3-4-5-6-7-30-44-45-46-47-48-49-50-51-52-53-54-55-5-56-57

3 P3 1-2-3-4-5-6-7-8-9-10-11-24-29-7-30-44-45-46-47-48-49-50-51-52-53-

54-55-5-56-57

4 P4 1-2-3-4-5-6-7-8-9-10-11-13-17-18-19-20-21-24-29-7-30-44-45-46-47-

48-49-50-51-52-53-54-55-5-56-57

5 P5 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-23-11-24-29-7-30-44-45-46-

47-48-49-50-51-52-53-54-55-5-56-57

6 P6 1-2-3-4-5-6-7-8-9-10-11-24-25-26-27-28-29-7-30-44-45-46-47-48-49-

50-51-52-53-54-55-5-56-57

7 P7 1-2-3-4-5-6-7-30-31-32-33-34-38-39-40-1-42-43-30-44-45-46-47-48-49-

50-51-52-53-54-55-5-56-57

8 P8 1-2-3-4-5-6-7-31-32-33-34-35-36-37-43-30-44-45-46-47-48-49-50-51-

52-53-54-55-5-56-57

The various factors covered by the test cases of saving module case study have been

shown in Table 3.12 and TCPV for each test case has been shown in Table 3.13.

 Table 3.12: Factors Covered by the test cases of case study of saving module

S. No. Factors

covered

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

1 Line of code 7 22 29 45 46 32 31 29

2 Type casting 0 0 0 0 0 0 0 0

3 Conditional

statement

2 4 9 11 11 7 8 7

4 File access 0 0 0 0 0 0 0 0

5 Dynamic

memory

allocation

0 0 0 0 0 0 0 0

6 No of input

variable

0 0 1 1 1 1 0 0

7 No of output

variable

1 6 7 10 12 7 6 6

8 Assignment

statement

5 8 8 10 10 8 8 6

69

 Table 3.13: Calculated TCPV for case study of saving module

S.No. Factors

covered

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

1 Line of code 0.35 1.1 1.45 2.25 2.3 1.6 1.55 1.45

2 Type casting 0 0 0 0 0 0 0 0

3 Conditional

statement

0.35 0.7 1.575 1.325 1.925 1.225 1.4 1.225

4 File access 0 0 0 0 0 0 0 0

5 Dynamic

memory

allocation

0 0 0 0 0 0 0 0

6 No of input

variable

0 0 0.1 0.1 0.1 0.1 0 0

7 No of output

variable

0.05 0.3 0.35 0.5 0.6 0.35 0.3 0.3

8 Assignment

statement

0.5 0.8 0.8 1 1 0.8 0.8 0.6

 TCPV 1.25 2.9 4.275 5.775 5.925 4.075 4.05 3.575

From test case prioritization values shown in Table 3.13, prioritized order of test cases

is TC5, TC4, TC3, TC6, TC7, TC8, TC2, TC1.

Table 3.14 shows the APFD values obtained when the test cases are executed in non

prioritize order, in random order and in prioritized order resulting from applying the

proposed approach.

 Table 3.14: APFD Values for Various Techniques for case study of salary module
S. No Applied Technique APFD

1 Non Prioritized 60%

2 Random approach 52%

3 Proposed SPUTCP approach 77.5%

3.3.4 Case study of Infix to Postfix Conversion

The case study analyzes a program that converts infix expression to that in postfix.

The code has been included in the Appendix C of this thesis. The CFG for the same is

depicted in Figure 3.6. Total nine test cases have been designed for this case study.

Table 3.15 shows the count of factors present in the source code covered by the

various test cases. Table 3.16 shows the test case prioritization value for these nine

test cases. The prioritization order for these test cases based on TCPV is

TC5,TC6,TC9,TC2,TC7,TC3,TC4,TC1,TC8.

70

Figure 3.6: CFG for case study of infix to postfix conversion

Table 3.15: Count of factors present in case study of infix to postfix case study

S.

No.

Factors

covered

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

1 Line of code 6 8 8 8 14 17 8 3 11
2 Type casting 0 0 0 0 0 0 0 0 0
3 Conditional

statement
1 1 1 1 2 1 1 1

0
4 File access 0 0 0 0 0 0 0 0 0
5 Dynamic

memory

allocation

0 0 0 0 0 0 0 0 0

6 No of input

variable
0 0 0 0 0 0 0 0 1

7 No of output

variable
1 0 0 0 0 0 1 0 4

8 Assignment

statement
0 2 1 0 4 2 0 0 0

71

 Table 3.16: Calculated TCPV for case study of Infix to postfix

S.No. Factors covered TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

1 Line of code 0.3 0.4 0.4 0.4 0.7 0.85 0.4 0.15 0.55

2 Type casting 0 0 0 0 0 0 0 0 0

3 Conditional

statement

0.175 0.175 0.175 0.175 0.35 0.175 0.175 0.175 0

4 File access 0 0 0 0 0 0 0 0 0

5 Dynamic memory

allocation

0 0 0 0 0 0 0 0 0

6 No of input

variable

0 0 0 0 0 0 0 0 0.05

7 No of output

variable

0.1 0 0 0 0 0 0.1 0 0.4

8 Assignment

statement

0 0.2 0.1 0 0.4 0.2 0 0 0

 TCPV 0.575 0.775 0.675 0.575 1.45 1.225 0.675 0.325 1

Table 3.17 shows the APFD values obtained when the test cases are executed in non

prioritize order, in random order and in prioritized order resulting from applying the

proposed approach.

 Table 3.17: APFD Values for Various Techniques for case study of infix to postfix conversion
S. No Applied Technique APFD

1 Non Prioritized 52.69%

2 Random approach 48.20%

3 Proposed SPUTCP Approach 77.11%

3.3.5 Case study of Restaurant Management System

The case study is of restaurant management system software taken from the book C

projects by Reeta Sahoo[123]. The LOC of the software is 1325.Total 24 test cases

have been designed in this case study. After counting the value of various proposed

factors, TCPV for each test case is calculated by using the Formula 3.1. Table 3.18,

3.19 and Table 3.20 shows count of proposed factors and Table 3.21, shows the

TCPV for each test case.

72

Table 3.18 Count of proposed SPUTCP factors in case study of restaurant management system

Table 3.19: Count of proposed SPUTCP factors in case study of restaurant management system

S. No. Factors TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

1 Line of Code 135 55 56 74 118 42 114 57

2 Type Casting 0 0 0 0 0 0 0 0

3 Conditional

Statement
29 3 3 4 17 3 17 5

4 File Access 1 0 0 0 2 1 2 1

5 Dynamic memory

Allocation
0 0 0 0 0 0 0 0

6 Number of Input

Variable
0 5 5 6 3 3 3 3

7 Number of Output

Variable
0 1 1 0 1 1 1 1

8 Assignment

Statement
26 9 9 5 12 3 11 5

S. No. Factors TC9 TC10 TC11 TC12 TC13 TC14 TC15 TC16

1 Line of Code 73 70 28 54 58 187 15 19

2 Type Casting 0 0 0 0 0 0 0 0

3 Conditional

Statement
10 12 7 9 9 26 2 3

4 File Access 1 2 1 1 1 8 0 0

5 Dynamic memory

Allocation
0 0 0 0 0 0 0 0

6 Number of Input

Variable
3 3 3 3 3 3 3 3

7 Number of Output

Variable
1 1 1 1 1 1 1 1

8 Assignment

Statement
8 12 6 8 8 17 1 1

73

Table 3.20: Count of proposed SPUTCP factors in the case study of restaurant management system

Table 3.21: TCPV for test cases of case study of restaurant management system

Sr. No. Test Case TCPV

1 TC1 15

2 TC2 4.7

3 TC3 4.8

4 TC4 5.5

5 TC5 11

6 TC6 3.4

7 TC7 10

8 TC8 4.7

9 TC9 6.7

10 T10 7.5

11 TC11 3.7

12 TC12 5.6

13 TC13 5.8

14 TC14 17

15 TC15 1.6

16 TC16 1.9

17 TC17 7.5

18 TC18 14

19 TC19 7.8

20 TC20 0.7

21 TC21 7.9

22 TC22 3.7

23 TC23 7.1

24 TC24 3.4

On the basis of TCPV the prioritized order of test cases is

TC14,TC1,TC18,TC5,TC7,TC21,TC19,TC17,TC10,TC23,TC9,TC13,TC12,TC4,TC

3,TC2,TC8,TC11,TC22,TC24,TC6,TC16,TC15,TC20.

S. No. Factors TC17 TC18 TC19 TC20 TC21 TC22 TC23 TC24

1 Line of Code 82 154 69 13 98 42 86 21

2 Type Casting 0 0 0 0 0 0 0 0

3 Conditional

Statement
12 20 11 0 5 2 5 4

4 File Access 2 8 11 0 5 2 5 2

5 Dynamic memory

Allocation
0 0 0 0 0 0 0 0

6 Number of Input

Variable
3 3 3 0 0 0 0 4

7 Number of Output

Variable
1 1 1 0 3 3 3 0

8 Assignment

Statement
6 16 4 0 12 8 10 9

74

Figure. 3.7 Comparison of Prioritized and Non prioritized approach

 Here results show (See Figure. 3.7) that the proposed prioritized approach provide the

better APFD.

3.3.6 Case study of Library Management System

Another case study of Library Management System has been taken from the book C

projects by Reeta Sahoo[123]. The LOC of the software is 2060. Total 36 test cases

have been designed. After counting the value of various proposed factors, TCPV for

each test case is calculated by using the Formula 3.1. Table 3.22, 3.23, 3.24 and Table

3.25 show count of proposed factors. TCPV for each test case has been calculated by

using the proposed formula.

Table 3.22: Count of proposed SPUTCP factors present in the case study of Library

management system

S.

No.

Factors TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

1 Line of

Code

26 26 51 17 232 42 83 103 147

2 Type

Casting

0 0 0 0 0 0 0 0 0

3 Conditional

Statement

1 1 8 0 10 3 5 6 7

4 File Access 0 0 3 0 2 1 2 1 1

5 Dynamic

memory

Allocation

0 0 0 0 0 0 0 0 0

6 Number of

Input

Variable

0 0 0 3 3 3 3 3 3

7 Number of

Output

Variable

0 0 3 0 1 1 1 1 1

8 Assignment

Statement

15 15 1 8 14 4 8 9 10

75

Table 3.23:Count of proposed SPUTCP factors present in the case study of Library management

system

S.

No.

Factors TC10 TC11 TC12 TC13 TC14 TC15 TC16 TC17 TC18

1 Line of

Code

196 270 89 231 133 172 10 144 120

2 Type

Casting

0 0 0 0 0 0 0 0 0

3 Conditional

Statement
8 17 5 12 8 10 2 12 9

4 File Access 2 1 1 1 8 0 0 2 1

5 Dynamic

memory

Allocation

0 0 0 0 0 0 0 0 0

6 Number of

Input

Variable

3 3 3 3 3 3 3 3 3

7 Number of

Output

Variable

1 1 1 1 1 1 1 1 1

8 Assignment

Statement

12 14 3 11 7 9 1 10 7

Table 3.24: Count of proposed SPUTCP factors present in case study of Library Management

system

S.

No.

Factors TC19 TC20 TC21 TC22 TC23 TC24 TC25 TC26 TC27

1 Line of

Code

176 54 64 84 145 162 61 77 138

2 Type

Casting

0 0 0 0 0 0 0 0 0

3 Conditional

Statement

14 3 5 3 11 13 5 6 11

4 File Access 1 0 2 2 2 0 0 3 0

5 Dynamic

memory

Allocation

0 0 0 0 0 0 0 0 0

6 Number of

Input

Variable

3 0 0 0 0 0 0 0 3

7 Number of

Output

Variable

1 0 0 1 1 0 0 0 0

8 Assignment

Statement

12 2 4 6 10 12 5 6 10

76

Table 3.25 Count of proposed STUTCP factors present in the case study Library management

system

 Factors TC28 TC29 TC30 TC31 TC32 TC33 TC34 TC35 TC36

1 Line of

Code
153 76 66 41 235 92 37 119 107

2 Type

Casting

0 0 0 0 0 0 0 0 0

3 Conditional

Statement

4 3 2 2 8 2 8 8 1

4 File Access 2 1 2 1 1 2 1 1 1

5 Dynamic

memory

Allocation

0 0 0 0 0 0 0 0 0

6 Number of

Input

Variable

3 3 3 3 3 3 3 3 3

7 Number of

Output

Variable

1 1 1 1 1 1 1 1 1

8 Assignment

Statement

6 4 4 1 10 2 1 13 10

 On the basis of the TCPV the test cases are prioritized. The prioritized order of the

test cases is as follows:

TC11,TC5,TC13,TC32,TC10,TC19,TC15,TC24,TC17,TC23,TC9,TC14,TC27,TC28,

TC35,TC18,TC8,TC36,TC7,TC12,TC26,TC33,TC22,TC29,TC21,TC3,T30,TC25,TC

34,TC6,TC20,TC1,TC2,TC31,TC4 and TC 16. The APFD values obtained by

applying the proposed approach show the efficacy of proposed approach. Table 3.26

given shows the comparison of APFD values obtained by applying the different

approaches of test case prioritization.

Table 3.26: Comparison of APFD Values

Sr. No. Techniques APFD

1. Random 56.80%

2. Non-Prioritized 65.55%

3. Proposed SPUTCP Approach 95.41%

The APFD values are shown graphically as Figure 3.8.

77

 Figure. 3.8: Comparison of APFD Values

3.3.7 Case Study Income Tax Calculator

A case study of gtc () module of the income tax calculator software has been

presented for analysis purpose. The LOC of this software is 1161.The two other

modules of this software have already been taken for analysis purpose in the thesis.

After counting the value of various proposed factors, TCPV for each test case is

calculated by using the Formula 3.1. Table 3.27 shows the count of factors and Table

3.28 shows TCPV for each test case.

 Table 3.27: Count of proposed STUTCP factors present in the case of gtc () module

S. No. Factors TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

1 Line of Code 22 23 22 22 23 22 22 23 22

2 Type Casting 0 0 0 0 0 0 0 0 0

3 Conditional

Statement

0 0 0 0 0 0 0 0 0

4 File Access 0 0 0 0 0 0 0 0 0

5 Dynamic memory

Allocation

0 0 0 0 0 0 0 0 0

6 Number of Input

Variable

1 1 1 1 1 1 1 1 1

7 Number of Output

Variable

1 1 1 1 1 1 1 1 1

8 Assignment

Statement

1 1 1 1 1 1 1 1 1

78

 Table.3.28: Calculated TCPV for case study of gtc () module

On the basis of the TCPV (See Table 3.28), the prioritized order of the test cases is

TC2, TC5, TC8, TC1, TC3, TC4, TC6, TC7, and TC9.

For the analysis purpose, some faults have been intentionally introduced in the

software which are exposed by the test cases and the APFD‟s values are calculated.

The APFD values obtained by applying the proposed technique for prioritizing the

test cases comes out to be 85.5% where as non prioritized order of test cases gives

66.66 APFD. The graph shows (See Figure. 3.9) the comparison of both prioritized

and non prioritized approaches.

Figure.3.9: Comparison of Prioritized and Non prioritized approach for Case Study of gtc () module

0%

50%

100%

150%

TC1 TC3 TC5 TC7 TC9

%
 o

f
Fa

u
lt

s
d

e
te

ct
e

d

Test Cases

Non
Prioritized
APFD=66.66%

Prioritized
APFD=85.50%

S. No. Factors TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

1 Line of Code 1.1 1.15 1.1 1.1 1.15 1.1 1.1 1.15 1.1

2 Type Casting 0 0 0 0 0 0 0 0 0

3 Conditional

Statement

0 0 0 0 0 0 0 0 0

4 File Access 0 0 0 0 0 0 0 0 0

5 Dynamic memory

Allocation

0 0 0 0 0 0 0 0 0

6 Number of Input

Variable

.1 .1 .1 .1 .1 .1 .1 .1 .1

7 Number of Output

Variable

.05 .05 .05 .05 .05 .05 .05 .05 .05

8 Assignment

Statement

.1 .1 .1 .1 .1 .1 .1 .1 .1

 TCPV 1.35 1.40 1.35 1.35 1.40 1.35 1.35 1.40 1.35

79

3.4 STRUCURED PROGRAMMING BASED UNIT REGRESSION TEST

CASE PRIORITIZATION (SPURTCP) APPROACH

While performing unit testing, it may be the case that the unit has been tested but

there may be changes in the tested unit. Therefore, there is a need to perform the

regression testing. To reduce the number of test cases during the regression testing,

the same factors have been taken into account for the purpose of prioritizing the test

cases.

3.4.1 Explanation of the Process of SPURTCP

The proposed approach [52] starts with finding the TCPV of the test case before

modifying the program and after the modification is calculated using the Formula

3.1.After that difference between the test case prioritization value (DTCPV) of the test

cases before the modifications and after modification is determined. The DTCPV can

be calculated by using the Formula 3.3 which is given below.

)3.3...(..........).........'(
1

ii

n

i
i TCPVTCPVDTCPV

where n is number of test cases, TCPV‟ is the test case prioritization value of ith test

case after modification and TCPV is the fitness value of the ith test cases before

modification.

The DTCPV of the test cases before and after the modifications shows that the path

has been changed. There may be some considered factors which have been either

added or deleted while modifying the code. The DTCPV of test cases may be positive

or negative value. Both the value shows that the code covered by the test cases has

been changed. The test cases are prioritized on the bases of DTCPV. Higher the value

of DTCPV of a test case means that more changes have been taken place in the code

covered by that test case, so higher chances of the errors in the corresponding path

covered by test case. If the DTCPV for two test cases comes out to be zero, it shows

that no changes have been occurred in the code. So there is no need to execute the

corresponding test case during the regression testing process, therefore reducing the

number of test cases. The algorithm for this approach is shown below in the Figure

3.10.

80

 Let T be the list of test cases ,P is original program, P‟ is modified program, TCPV is the

prioritization value of test case before the modification, DTCPV is after the Modification and T‟ is the

list of prioritized test cases .

Begin

1. If P

While (T not empty)

Begin

2. Determine the prioritization value TCPV of the test cases by using the formula 3.1.

End

3. If P‟

While (T not empty)

Begin

 4. Determine the prioritization value of the test cases using the formula 3.1.

End

5. Determined the difference between the prioritizations values (DTCPV) of the test cases before the

modification and after modification

 DTCPV = TCPV‟ –TCPV

6. Orders the test cases in the decreasing order on the basis of the DTCPV.

7. Create a list T‟ of the prioritized test cases.

Execute the test cases in the prioritizing order.

End

Figure 3.10: Algorithm for SPURTCP approach

3.4.2 Validation of the Proposed SPURTCP Approach

For experimental evaluation and analysis, the proposed approach has been applied on

case study of employee record considered in section 3.3 of this chapter. The case

study is software which performs various operations like add records, display record

and update records of employees. This case study has 154 lines of code. For applying

the approach the case study has been modified. The case study is modified by adding

some new variable or some considered factors proposed in previous section. Modified

case study has 184 lines of code.

After the modification in the case study of employee record, the count of factors

considered for the purpose of test case prioritization is determined and are shown in

Table 3.29.

81

Table 3.29: Count of factors present in modified Case study of employee record

Factors TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Line of Code 12 24 17 15 27 14 52 39

Dynamic

memory

allocation

03 03 03 03 03 03 03 03

Type Casting 03 03 03 03 03 03 03 03

Assignment 04 05 04 04 05 05 11 08

File Access 02 06 02 02 06 02 12 09

Conditional

Statement

1 1 1 02 03 01 05 05

Number of

input variable

0 4 0 0 0 0 4 4

No. of output

variable

0 0 0 0 4 0 4 4

The prioritization values of each test case are calculated using the formula 3.1. Table

3.30 shows the TCPV after modification in the employee record case study.

Table 3.30: TCPV of test cases for modified employee record case study

Factors TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Line of Code 6 12 8.5 7.5 13.5 7 26 19.5

Dynamic

memory

allocation

.675 .675 .675 .675 .675 .675 .675 .675

Type Casting .45 .45 .45 .45 .45 .45 .45 .45

Assignment .4 .5 .4 .4 .5 .5 1.1 .8

File Access .3 .9 .3 .3 .9 .3 1.8 1.35

Conditional

Statement

.175 .175 .175 .35 .525 .175 .875 .875

Number of

input variable

0 .4 0 0 0 0 .4 .4

No. of output

variable

0 0 0 0 .2 0 .2 .2

TCPV 8.0 15.1 11.2 9.675 16.75 9.1 31.5 24.25

82

A) Determining DTCPV and Prioritizing Test Cases

DTCPV of test cases is calculated by using the formula 3.3 and prioritized order of

the test cases is obtained on the basis of the DTCPV. Higher the DTCPV of the test

case highest is the priority of the test case. Table 3.31 shows the DTCPV for all test

cases.

 Table 3.31: DTCPV for the test cases

S. No Test Case ID Finding of DTCPV

1 TC1 DTCPV = 8.0-6.525 =1.475

2 TC2 DTCPV-15.1- 10.475 =4.525

3 TC3 DTCPV=11.2- 8.625 =2.575

4 TC4 DTCPV=9.675 – 7.8 =1.875

5 TC5 DTCPV=16.75 – 12.975 =3.78

6 TC6 DTCPV=9.1-7.125 =1.975

7 TC7 DTCPV=31.5-23.425 =8.075

8 TC8 DTCPV=24.25-19.825 =4.425

From the Table 3.31 the prioritized order of the test cases is TC7, TC2, TC8, TC5,

TC3, TC6, TC4, TC1.

3.4.3 Analysis of the Proposed SPURTCP Approach

To analyse the effectiveness of the proposed work, it is applied on the case study of

the program. The faults exposed by the test cases when executed in non prioritized

order are given in Table 3.32.

Table 3.32: Execution of test cases in non prioritized order
 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

F1 * *

F2 *

F3 *

F4 * * *

F5 *

F6 * * *

F7 * * *

F8 * *

F9 *

F10 *

F11 * *

83

Table 3.33 shows the faults detected when the test case are executed in the

prioritized order obtained by the proposed SPURTCP approach.

Table 3.33: Execution of test cases in prioritized order

 TC7 TC2 TC8 TC5 TC3 TC6 TC4 TC1

F1 * *

F2 *

F3 *

F4 * * *

F5 *

F6 * * *

F7 * * *

F8 * *

F9 *

F10 *

F11 * *

Table 3.34 shows the faults exposed by the test cases when these are executed in

random order.

Table 3.34: Execution of test cases in random order

 TC7 TC2 TC8 TC5 TC3 TC6 TC4 TC1

F1 * *

F2 *

F3 *

F4 * * *

F5 *

F6 * * *

F7 * * *

F8 * *

F9 *

F10 *

F11 * *

Table 3.35 shows the APFD value of the non prioritized approach, random approach

and the prioritized approach.

84

 Table 3.35: APFD Values for various approaches for modified employee record case study

S. No. Applied Technique APFD

1 Non Prioritized Approach 59%

2 Random Approach 73%

3 Proposed SPURTCP Approach 80%

Figure 3.11 shows the comparisons of the non prioritized approach, random

approach and the proposed approach.

 Figure 3.11: Comparison of APFD values of different prioritization techniques

3.5 CONCLUSION

This chapter focuses on the discussion of proposed test case prioritization technique

for unit testing based on analysis of the structure of program considering certain

factors which have a great potential of inducing an error in the code of software. The

proposed technique has also been extended to prioritize the test cases for regression

testing. The proposed approach has been applied to certain case studies. The results

obtained are encouraging.

85

Chapter IV

HIERARCHICAL SYSTEM TEST CASE

PRIORITIZATION (HSTCP): PROPOSED WORK

4.1 INTRODUCTION

Test case prioritization techniques organize the test cases in a test suite by ordering in

such a manner that the most critical test cases are executed first thereby increasing

the effectiveness of testing. The prioritization techniques [50] provide a way to find

out more bugs under resource constrained environment and thus improve the

reliability of the system quickly. Moreover, as faults are revealed earlier, software

engineers have more time to fix the bugs and adjust the project schedule System

Testing encompasses a large number of test cases, which may not be able to get

executed due to constrained time, budget and limitation of the resources. Therefore,

the test cases must be prioritized in some order such that the critical and most

required functionality can be tested early. Researchers have proposed prioritization

techniques based on requirements [101]. In this chapter, a hierarchical approach for

system test case prioritization based on requirements has been proposed that maps

requirements on the system test cases. This approach analyzes and assigns value to

each requirement based on a comprehensive set of twelve factors thereby prioritizing

the requirements. Further, the prioritized requirement is mapped on the highly

relevant module and then prioritized set of test cases.

Many prioritization techniques have been proposed for prioritizing the system test

cases on the basis of requirements. However, the requirements only in consideration

cannot include critical test cases. The implementation complexity and test case

complexity may also effect the test case prioritization. Though Hema Srikanth [36] has

included the developer perceived complexity for implementation factor but it is only

a scaling assigned by developer explicitly. There may be lot of complexities and

issues in design and code of the mapped requirements. All these factors should also be

considered while prioritizing the test cases. The researchers have also considered,

86

fault proneness of requirements only in connection with customer-reported failures.

But, there is need to consider fault-proneness for every requirement with every

affected factor. Moreover, the fault proneness associated with mapped code should

also participate in prioritizing the test cases.

In this chapter, a hierarchical system test case prioritization (HSTCP) approach [45,

49] is proposed wherein the prioritization process is performed at three levels given

below:

(1) The requirements are first prioritized on the basis of twelve factors by

assigning a priority weight age to each requirement.

(2) The highest priority requirements are then mapped to their corresponding

modules to get prioritized modules.

(3) The test cases based on to the highest prioritized module are then put in

order for execution.

The chapter has been organized as follows. The second section of the chapter

presents the proposed work, the third section presents the methodology and the

forth section presents the analysis of the proposed system. The fifth section

presents the implementation and the last section presents the conclusion.

4.2 PROPOSED HSTCP APPROACH

The proposed approach starts with analyzing and assigning value to each

requirement based on a comprehensive set of twelve factors thereby prioritizing the

requirements [45]. After getting the ordered list of requirements, a mapping between

the highest priority requirement and its corresponding modules is performed. The

modules are then prioritized based on cyclomatic complexity and non dc path. The

weighted prioritized module is then selected for testing. It may be possible again that

there are several test cases corresponding to this selected module. For this purpose,

the third level of prioritization is applied by prioritizing these several test cases based

on four factors. In this way HSTCP technique is proposed and discussed in subsequent

87

sections. In the proposed prioritization process almost every stakeholder viz. the

customer, developer, tester, and business analyst participate. The prioritization

process is shown in Figure. 4.1.

Figure 4.1: Hierarchical System Test Case Prioritization (HSTCP) Technique

4.2.1 Prioritization of Requirements

A critical review of the work done by the researchers discussed in chapter 2, in the

direction of system test case prioritization indicates that the following factors have not

been considered that may affect the system test case execution:

 Developer assigned priority: The developer may assign the priority to every

requirement on the basis of its importance.

 Show Stopper Requirements: These are the critical requirements in the

absence of which the software may not work. The developer may therefore

assign the priority to these types of requirements.

 Frequency of Requirements: It is the frequency of a requirement how much

it is being used in the software.

Customer, developer, analyst and tester assign values to the
requirement factors.

Apply the process of the requirements prioritization

On the basis of the prioritized requirements a mapping between the
requirements and their corresponding modules are performed.

Apply the process of prioritization of the modules.

Tester assigns the value to each factor of test case of the prioritize
module.

88

 Expected fault: The developer may analyze the causes which may make

the software error prone.

 Implementation Complexity: It is the criteria how much each requirement is

difficult to implement considering technology dependency, interdependency of

the requirements, complexity of requirement itself, etc.

 Cyclomatic Complexity: It is the logical complexity of a program [80]. The

module with higher complexity may lead to complex test cases.

 Non DC path: In data flow graph of a program, the non-dc paths which are the

path between the definition node and the usage node of the variable wherein the

variable is defined more than once are the problematic areas with respect to the

use of a variable [80]. Therefore, this factor may also be considered for module

prioritization.

Considering these shortcomings, in this work, a comprehensive list of 12 factors has

been identified. There are the various factors on the basis of which process of

prioritization of requirements is performed. These factors are in accordance with

every phase of SDLC. All these factors have been assigned a priority value between 0

to 10.These priority values are assigned by various stakeholders of the project. Table

4.1 shows these factors.

 Table 4.1: Factors considered for requirement prioritization

Sr. No. Factors Phase of SDLC Priority value

assigned by

1 Requirement Volatility Requirement Analysis Customer

2 Customer Assigned Priority Requirement Analysis Customer

3 Implementation Complexity Design Developer

4 Fault Proneness of Requirements Design Developer

5 Developer assigned priority Requirement Analysis Developer

6 Show Stopper requirements Design Developer

7 Frequency of execution of requirement Requirement Analysis Developer

8 Expected Faults Coding Developer

9 Cost Requirement Analysis Analyst

10 Time Requirement Analysis Analyst

11 Penalty Requirement Analysis Customer

12 Traceability Testing Tester

89

1. Requirements Volatility

Requirement volatility is the frequency of changing a requirement during

development cycle of the software.

Reasoning: Most of errors are found during the requirements gathering and analysis

phase. If the developers implement the particular requirement and that requirement

changes then developer has to redesign and re-implement the same. Due to

reimplementation of requirement it also increases the fault density in the programs.

Studies show that 35 % of the requirements for an average project change before

project completion. The requirement with a higher change frequency is assigned a

higher priority value as compared to the stable requirements.

2. Customer Assigned Priority

Based on the priority of the requirement, the customer assigns a priority value to each

requirement.

Reasoning: Several studies indicate that some requirements of a project are

frequently used and some are rarely used. The studies show that approximately half of

the software functions are never used. Only 36 % of the software function is always

used and most of the faults lie in these functions which are frequently executed. So

the customer is involved to know which requirements are very important to him so

that these are tested earlier to increase the customer satisfaction. Customer assigns

the highest weight to requirement which is very important for him.

3. Implementation Complexity

Each requirement may be analyzed according to how difficult it is to implement.

There are various factors considered during requirement implementation. So before

assigning a priority value to this factor it is necessary to consider all factors related

with that requirement. The priority value for this factor is the sum of the priority

values assigned to these factors. There are 3 factors which are taken into consideration

as shown in Figure 4.2. These 3 factors are discussed below.

90

 Figure 4.2: Implementation Complexity factors

Reasoning: The studies show that more complex is the requirement, more it tends to

have faults. So a priority value is assigned by the developer to this factor.

 Technical dependency: Technology plays a very important role in

development of any software. Implementation technique of software is

varying from technology to technology. With the selection of suitable

technology developer can develop less error prone project within target time

and budget. Some time the customer bounds developer to a particular

technology. Sometimes the proposed requirements are very complex to

implement in selected technology whereas the same requirement can be

implemented in other technology without the much complexity and less error.

So this factor is considered for prioritizing the test cases. For this factor a

priority value between 0 and 3 is assigned.

 Complexity of execution path: Sometimes in the project a requirement is

very simple to implement thereby its complexity is very low. But to execute

that requirement user have to follow the complex path of the execution. So the

long path of execution also affects the complexity of requirement .This factor

assigned a priority value between 0 and 3.

 Dependency scenario: The studies show that more the dependency between

the modules of a requirement higher is its complexity. It means if a

requirement is covered by more than one modules and the dependency among

these modules is high then higher is the complexity of that requirement. For

this factor a priority value between 0 and 4 is assigned.

Implementation

Complexity

Complexity of

Execution Path
Technical

Dependency

Dependency

Scenario

91

4. Fault Proneness of Requirements

Fault proneness signifies those requirements which are associated with faults or which

shows failures in the previous releases of the software. If a requirement in an earlier

version of the system has more bugs, then this requirement in the current version is

given more weight.

Reasoning: Fault proneness factor is important because the requirements which have

shown failures in the earliest release are more faults prone. So it is important to give

more weight to requirements with high fault proneness so that they can be tested on

higher priority. This factor is valid for only those requirements which have been

implemented in earlier version of software and not valid for the new requirements. So

a priority value is assigned accordingly.

5. Developer – Assigned Priority

Developer assigns the priority to every requirement on the basis of the importance of

the requirement. Developer assigns the priority value to each requirement ranging

from 0 to 10.

Reasoning: Developer plays an important role for successfully completion of a

project within target time and budgeted cost. Studies show that more than 50% project

are not completed in the target time and cost. Here the developer analyzes each

requirement and assigns the weight to each requirement on the basis of that

requirement how much it is important for the project. It may happen that lowest

priority given by the customer to a particular requirement is very important for the

project. So the developer gives a weight to each requirement on the basis how much it

contributes towards the success of the project. Larger value of the weight given to a

requirement shows it is very critical to the project.

92

6. Show Stopper Requirements

Show stopper requirement are those requirements on the basis of which software

works. Such requirements are given more importance and assigned the priority value

accordingly.

Reasoning: In every project there are some core requirements on the basis of which

all modules are working .If these requirements are failed then whole project will stop.

For example, consider online ticket booking website. By using website user can

inquire about the train, see the available seats in a particular train, cancel out ticket,

online payments to tickets and book tickets. These are the requirements which are

frequently used. Suppose for a moment the online payment system fails, In this case

users are not able to book the ticket until customer has not paid for the tickets. So

here the online payment system is critical requirement. There may be more than one

requirements on which the whole project works.

7. Frequency of the Execution

In this factor priority value to each requirement is assigned on the basis of its

execution frequency. The more priority value is assigned to the requirements which

are frequently used.

Reasoning: In every project there are some requirements which are never executed in

product and some requirements are frequently executed. The requirement may be

executed directly or may be through the other requirements. Therefore a priority value

is assigned to them on the basis of their frequency of execution. Consider online ticket

booking website. By using website user can inquire about the train, see the available

seats in a particular train, and cancel the tickets, make online payments to tickets and

book tickets are those requirements which are being frequently used. But update the

fair of tickets, update the timings of the trains are those requirements which are not

frequently used.

93

8. Expected Fault

This factor identifies the future implementation faults. In this factor developer

analyzes the causes which make the software error prone.

Reasoning: The study shows that it‟s not possible to implement software without

faults. The reason that may be responsible for generating the fault should be

considered. As the studies show if developer analyzes the fault in the initial phase

then the project will be successfully completed within the time and the budget. The

two factors that we are using are shown in Figure 4.3.

 Figure 4.3: Expected Faults

 Experience level of developer:

The study shows that skills and experience of a developer play an important

role in success full completion of a project. Lower is the experience of a

developer more is the chance of getting a bug in the implementation of a

particular requirement. A developer with lower experience may implements a

requirement with higher complexity whereas the experience developer

implements same requirements with less error. For this type of requirement a

weight between 0 and 5 is assigned.

 New Technology

Sometimes customer bounds the developing team to use a particular platform

to implement their requirement then if that particular technology or platform is

never used by the developer then to work on the new platform is difficult for

the developer. So there are more chances of bug in the requirement so a

priority value between 0 and 5 is assigned. Higher value is assigned for the

Expected Faults

Experience

level of

developer

New

Technology

94

very new technology which is never used and medium value which has been

used in previous projects and zero value for our current technology used by

the developers.

9. Cost

It corresponds to expenditure done to implement the requirements. Here a cost factor

is considered for each requirement and a weight between 1 and 10 is assigned. The

higher value being assigned to the cost factor shows that cost to implement the

requirement is very high.

Reasoning: The software development cost is difficult to predict. The study shows

[16] that 45 % projects complete with overrunning the cost. There are many factors

which influence the cost of requirements. These factors are: complexity of a

requirement, the ability to reuse of the code, amount of testing and the documentation.

Generally the cost is expressed in the term of the staff effort since for the

implementation of a product new persons should be hired, trained them, buy new

resources, new tools. The cost in software development is related to the number of

hours spent by the staff for the implementation of the product. The implementation

cost is usually estimated by developing organization.

10. Time

This factor is the most critical factor in software development cycle. Since in every

organization there is pressure to complete the product with in specified time. So the

time for every requirement is estimated and assigned the priority value accordingly. A

higher value of time factor indicates that it takes higher staff hours to complete the

requirements.

Reasoning: In software industry on every product there is constraint to complete a

product with in time. Time in software developments is related with number of staff

hours. The development time of requirements is influenced by many factors such as

degree of parallelism in development, train the staff, need to develop support

95

infrastructure. Time is directly related with the cost. The more is the time to develop

the requirement the more is the cost to implement the requirement.

11. Penalty

It is the punishment imposed on organization if they are not able to deliver the

complete product within budget in the specified time. Penalty is critical factor in

development of a requirement. This factor shows the penalty associated with each

requirement. The higher value of penalty shows that they incur a high penalty if failed

to deliver the right product. Here a weight between 1 and 10 is assigned.

Reasoning: In software development process it may be possible that a low priority

requirement incurs high penalty if the developer fails to complete the requirement.

Penalty factor is associated with each requirements .It also increases the quality of

product. If a requirement is not fulfilled then it is possible to evaluate the penalty

corresponding to that requirement. High penalty value means high penalty of that

requirement.

12. Traceability

Traceability is the factor when a requirement is traceable to its test cases or not.

Reasoning: If there is pre-prepared test cases available then it is very beneficial for

the developer organization and if the test case are not available then test cases must be

designed for testing the requirements. If there are set of test cases corresponding to

the requirements then assign zero priority value to this factor.

For each requirement, based on these 12 factors a Requirement Prioritization factor

value (RPFV) is calculated by using Formula 4.1.

n

j

jij pfweightpfvalueRPFV
1

)1.4..().........(

Here i represent number of requirements and j represents number of factors.

96

In Formula 4.1 the RPFV represents the prioritization factor value for a requirement

which is the summation of the product of priority value of a factor and the project

factor weight. pfvlaue represents the value for factor for ith requirements and

pfweight represents the factor weight for the jth factor for a particular project .

The value of the RPFV depends on the value of the pfvalue and the pfweight. The

value of the RPFV will vary with a change in the factor weights and the factor value.

The factor weight is assigned by the developer for the each factor. Total factor weight

assigned by the developer to the all factors should not more than one. In this approach

the developer can analyze the complexity of a requirement based on the factor weight

assigned to that requirement.

4.3 PRIORITIZATION OF THE MODULE

In the process of prioritization of module mapping between the chosen prioritized

requirement and its corresponding modules are performed. If there is more than one

module the modules are prioritized. The criteria for module prioritization is based on

the cyclomatic complexity and non dc path. Higher the cyclomatic complexity and

non dc path of the module, higher is the priority of that module. The test cases of the

higher priority module are prioritized first and executed. For each module a module

prioritization value (MPV) is calculated by adding the cyclomatic complexity and the

number of non-dc paths. A module having higher MPV is prioritized first.

Table 4.2 Module Prioritization

Factors M1 M2 M3 M4

Cyclomatic complexity 8 4 4 5

Non Dc path 7 5 6 3

MPV 15 9 10 8

Table 4.2 shows the prioritization of four sample modules on the basis of MPV for

each module. The order of prioritization of modules on the basis of MPV is M1, M3,

M2 and M4.

97

4.4 TEST CASE PRIORITIZATION PROCESS

The test case prioritization process is used to prioritize and schedule the test cases

corresponding to prioritized modules. In this test case prioritization process, there are

some practical weight factors. On the basis of these practical weight factors process

of the test case prioritization is performed. These factors are test Impact, test case

complexity, requirements coverage and the dependency of the test cases as discussed

below.

 Test Case Complexity: Complexity of test case shows that how difficult is a

test case to execute. It shows how much efforts are required to execute the test

case. After analyzing the complexity of test case the value of this factor is

assigned between the value 1 and 10.

 Requirement Coverage: This factor shows that how many requirements are

covered by executing the test case. This factor is scaled between the values

from 1 to 10. The higher value shows the maximum requirements being

covered by the test case. Higher the number of requirements coverage higher

the priority of the test case to be executed first.

 Dependency: This factor shows the dependency of test case on some pre-

requisites. It shows how many pre-requisites are required for each test case

before the execution of the test case. The value of dependency factor is

assigned between the values from 1 to 10.

 Test Impact: Test impact is the most critical factor in test case prioritization.

It shows the impact of test case on a system if it is not executed. So this factor

assesses the importance of the test cases. Here a value between the 1 and 10 is

assigned.

After assigning the prioritize factor value to each factor as discussed above TCWP

(Test case weight prioritization) is computed using Formula 4.2.

n

j

jij fweightfvalueTCWP
1

)2.4..().........(

98

where TCWP is weight Prioritization for each test case calculated from the four

factors, fvalue is value of factors assigned to each test case, fweight is a weight

assigned to each factors.

The test cases are ordered on the basis of value of TCWP. A test case having

maximum value is given highest priority and executed first.

Consider a set of four sample test cases TC1, TC2, TC3, and TC4 which are to be

prioritized.

For these test cases TCWP is calculated by Formula 4.2 and test cases are

prioritized on the basis of the value of TCWP (See Table 4.3).

Table 4.3 Test Case Prioritization

S. No. Factors TC1 TC2 TC3 TC4 Weight

1 Test Impact 4 8 7 9 0.4

2 Test case

Complexity

8 7 5 9 0.3

3 Requirement

coverage

6 2 4 4 0.2

4 Dependency 7 6 6 8 0.1

 TCWP 5.90 6.30 5.70 7.90 1.0

Now the order of the test case for the execution is TC4, TC2, TC1, and TC3. If the

TCWP of the two test cases are same then a random order for execution of test cases

is followed.

4.5 ANALYSIS OF PROPOSED HSTCP APPROACH

To analyze the effectiveness of proposed HSTCP approach, it was applied to the

income tax calculator software which is used to calculate the tax on the income [80].

The software consists of 1160 lines of code and has nine modules named; Income

details non salaried, income details salaried, savings, tax deductions, male Tax,

female tax, senior tax and generates tax. All types of bugs like critical, major and

medium and minor bugs were introduced intentionally so that testing can be

performed on the software using proposed approach. Income tax software is based on

following requirements.

 Accept Personal detail (APD)

 Accept income detail (AID)

99

 Accept tax deduction (ATD)

 Accept Savings and Donation details (ASD)

 Generate tax detail (GTD)

Now considering the twelve factors for requirements prioritization discussed in

Section 3, the corresponding weight values for each requirement was calculated as

shown in Table 4.4.

Table 4.4 Requirements Prioritization

Requirements APD AID ATD ASD GTD Weight factor

Factors

 Customer assigned priority

8 10 9 9 10 0.02

Developer assigned priority

8 9 9 8 10 .08

Requirements volatility

3 0 3 2 8 0.1

Fault Proneness

0 0 0 0 0 0.15

Expected faults

2 3 4 2 3 .10

 Implementation Complexity

3 4 5 3 6 .10

Execution frequency

5 10 9 6 10 .05

Traceability

0 0 0 0 0 .05

Show stopper requirements 0 9 8 0 10 .2

Penalty 1 4 6 3 8 .05

Time 3 6 7 4 6 .05

Cost

4 7 8 6 7 .05

RPFV 2.25 4.77 5.20 2.47 6.25 1.0

Based on computation of RPFV the requirements prioritized list of the requirements is

GTD, ATD, AID, ASD and APD Now the requirements were mapped to their

corresponding modules. The cyclomatic complexity, number of non dc paths and the

number of test cases of the modules are shown in Table 4.5.

Table 4.5: Module prioritization for income tax calculator case study

Requirements Module C complexity Non dc

path

No. of test

cases

MPV

APD Main module 8

AID NON salary

Salary

8

12

7

10

4

6

15

22

ATD Deduction 16 17 10 33

ASD Saving 8 5 4 13

GTD Male Tax

Female Tax

Senior Tax

Tax module

4

4

4

6

0

0

0

0

4

4

4

6

4

4

4

6

100

In the Table 4.5, cyclomatic complexity, non DC paths and the number of test cases

for testing of each module are shown. Here GTD requirement has the highest priority.

There are four modules corresponding to this requirement. On the basis of the values

of cyclomatic complexity and non dc paths, the MPV value for Tax module is more as

compared to other three modules. So the test cases of the tax module have to be

prioritized. Table 4.6 shows the values for different factors for six test cases and the

weight assigned.

Table 4.6: Test case prioritization for test cases of tax module

S. No. Factors TC1 TC2 TC3 TC4 TC5 TC6 Weight

1 Test Impact 4 7 7 9 8 7 0.4

2 Test case

Complexity

8 7 8 9 8 9 0.3

3 Requirement

coverage

0 0 0 0 0 0 0.2

4 Dependency 2 2 2 2 2 2 0.1

 TCWP 4.2 5.1 5.4 6.5 4.8 5.7 1.0

Now by using Formula 4.2 the value of TCWP is calculated for these six test cases of

tax module. The prioritized order of the test cases is TC4, TC6, TC3, TC2, TC5, and

TC1.

4.5.1 Results obtained for HSTCP approach

The Tables (Table 4.7 to Table 4.12) show the number of the faults detected by the

test cases of all prioritized requirements.

Table 4.7 Fault detection in Generate Tax details (GTD) requirement

Test ID Critical Fault Major fault Medium fault Minor fault

1 1 1 1

2 1 1

3 1 1

4 3 1

5 2

6 2 1

101

Table 4.8 Fault detection in Income tax deduction (ATD) requirement

Test ID Critical Major Medium Minor

1 1 1

2 1

3 0

4 1

5 1

6 1

7 1 1

8 1 1

9 0 0 0 0

10 2 4 3

Table 4.9 Fault detection in Accept Savings and Donation details (ASD)

Test ID Critical Major medium Minor

1 1

2 1

3 1

4 1 1

Table 4.10 Fault detection in Income detail module of Accept income detail (AID)

Test id Critical Major Medium Minor

1 1 3

2 1

3 1

4 1 1

Table 4.11: Fault detection in Income detail salaried module of Accept income detail (AID)

requirement

Test id Critical Major Medium Minor

1 1

2

3

4

5 1

6 2

Table 4.12: Fault detection Accept Personal detail (APD)

Test id Critical Major Medium Minor

1 1 1

2 1

3

4

5 1

6

7 1

8

Table 4.13 shows the total faults severity of each requirement. Faults severity is

calculated using the Formula 4.3.

Fault severity = 4* no. of critical bugs+ 3* no of major bugs+2* no of medium

bugs+1* no of minor bugs -- (4.3)

102

Table 4.13: Number and type of faults detected by all requirements

Requirement Critical Major Medium minor Total

Faults

severity

GTD 1 10 0 5 39

ATD 0 4 9 6 36

AID 0 6 0 6 24

ASD 0 2 2 1 11

APD 0 2 1 2 11

The fault severity corresponding to various requirements is shown below in Figure

4.4.

Figure 4.4: Graph for Proposed HSTCP approach based on requirements

A comparison of the proposed HSTCP approach has also performed with random as

well as PORT [36] approach as shown in Figure 4.5 and Figure 4.6.

Figure 4.5: Graph obtained using PORT approach

Proposed Approch

0

5

10

15

20

25

30

35

40

45

GTD ATD AID ASD APD

Requirements

F
au

lt
 S

ev
er

it
y

PORT APPROACH

0

5

10

15

20

25

30

35

40

45

GTD ATD ASD APD AID

Requirements

F
au

lt
 S

ev
er

it
y

103

Figure 4.6: Graph for non – Prioritized test suite

By using the Formula 3.2 for calculating APFD given in chapter 3, APFD values were

calculated for Proposed, PORT and Random approaches which are given below.

APFD For proposed HSTCP approach:

APFD= 1- (1+10+18+8+10+31+21+28) + 1

 57*5 2*57

APFD= 1-107/285+1/114

APFD= .53

APFD For PORT approach:

APFD= 1- (1+10+14+38+18+10+17+41) + 1

 57*5 2*57

APFD= 1-147/285+1/114

APFD= .47

APFD For random approach:

APFD= 1- (1+11+34+51+42+20+24+49) + 1

 57*5 2*57

APFD= 1-207/285+1/114

APFD= .27

Random Approach

0

5

10

15

20

25

30

35

40

45

APD ASD GTD ATD AID

Requirements

F
a
u

lt
 S

e
v
e
ti

ry

104

The comparison is drawn between proposed approach, non – prioritized and PORT

approach. It indicates that value obtained for proposed approach is more than the

previous methods, thereby showing the efficacy of prioritized method. In this way the

proposed HSTCP technique based on requirements approach proves to be more

effective as compared to other two approaches as shown in Figure 4.7.

Figure 4.7: Comparison between Random, PORT, and Proposed HSTCP approach

4.6 IMPLEMENTAION

To implement the proposed approach a tool named as HSTCP has been developed in JAVA

language [49]. This tool will help in prioritizing the requirements and further the modules

and test cases in hierarchical manner. Using this tool the tester is able to execute the test

cases in highly prioritized order, so that test cases may detect critical bugs earlier. Some of

the snapshots of the tool developed are shown in Figures 4.8 to Figure 4.13.

0%

20%

40%

60%

80%

100%

120%

20% 40% 60% 80% 100%

p
e

rc
e

n
ta

ge
 o

f
Fa

u
lt

s
Se

ve
ri

ty
 d

e
te

ct
e

d

Percentage of Requirements Executed

PORT APRCH (APFD =
47%)

HSTCP APRCH
(APFD=53%)

RANDOM APRCH (APFD
= 27%)

105

 Figure 4.8: Snapshot 1of HSTCP tool

 Figure 4.9: Snapshot 2of HSTCP tool

 Figure 4.10: Snapshot 3 of HSTCP tool

 Figure 4.11: Snapshot 4 of HSTCP tool

 Figure 4.12: Snapshot 5of HSTCP tool

 Figure 4.13: Snapshot 6 of HSTCP tool

106

4.7 CONCLUSION

A hierarchical system test case prioritization technique has been presented in this

chapter. The proposed technique maps the requirement to its corresponding design

modules and further mapped to the corresponding test cases. This approach can be

used to improve the rate of severe fault detection for system testing. An experimental

study of income tax calculator software is presented for comparing the effectiveness

of proposed approach with previous approach (PORT) and with random

prioritization approach [36]. The experimental results show that proposed new

prioritization technique is promising in terms of ordering requirements so that faults

are detected earlier in the testing phase. A tool has also been developed for

demonstrating the proposed approach.

107

Chapter V

REGRESSION TEST CASE PRIORITIZATION:

PROPOSED WORK

5.1 INTRODUCTION

This chapter is concerned with prioritizing the test cases for regression testing. Three

techniques for prioritizing the test cases during regression testing have been proposed

in this chapter. The first technique is module-coupling-effect based test case

prioritization technique which basically finds out the badly affected module due to

change in the modules of software under consideration. . The second approach

prioritizes the test cases during regression testing using data flow testing concepts. The

third technique is control structure weighted test case prioritization which is the

extension for the second approach.

5.2 MODULE-COUPLING -EFFECT BASED TEST CASE PRIORITIZATION

(MCETCP) TECHNIQUE

In this section a new technique for prioritizing the test cases while performing

regression testing has been proposed [46]. This technique is based on the module

dependence and coupling between the modules. Module coupling effect can be one of

the criteria for prioritizing test cases in order to carry out the regression testing.

Whenever there is a change in a module, certainly there will be some effect on other

modules which are coupled together. Based on the coupling information between the

modules the highly affected module can be found out. Moreover, the effect is worse

if there is high coupling between the modules causing the high probability of errors.

This may be called as module-coupling effect. In this way if regression test case

prioritization is done based on this module coupling effect, there will be high

percentage of detecting critical errors that have been propagated to other modules due

to any change in a module.

108

For example in Figure 5.1 the modules 17 and 18 are being called by multiple

modules. If there is any change in module 17 and module 18, modules 9, 11 and 12,

13 will be affected respectively. If there is no prioritization, then as a part of

regression testing process, all the test cases of all the affected modules will be

executed thereby increasing the testing time and effort. Instead, if the coupling type

between modules is known, then a prioritization scheme can be developed based on

this coupling information. The modules having worst type of coupling will be

prioritized over other modules and their test cases.

 Figure 5.1: Call Graph Example

After finding out the affected module due to a change in a module, there is need to

execute the test cases of this affected module. However, there may be a large number

of test cases in this module. To prioritize the test cases of this affected module, test

case prioritization technique discussed in Chapter 3, can be applied.

This section proposes a novel, effective and efficient method to accomplish test case

prioritization method discussed above. The proposed method has been tested, verified

and validated and the results have been presented in this section.

5.2.1 Module Dependency Matrix

Module dependence can be identified by coupling and cohesion. A quantitative

measure of the dependence of modules will be useful to find out the stability of the

design. The work is based on the premise that different values can be assigned for

various types of module coupling and cohesion as shown in Tables 5.1 and 5.2.

1 2

3

4

6

7

5

16

6

9 8

10

6

17

6

14

15

6 11

19

6

18

12
13

109

Table 5.1: Coupling Types and their values

 Table 5.2: Cohesion types and their values

A matrix can be obtained by using these two tables, which gives the dependence

among all the modules in a program. This, dependence matrix describes the

probability of having to change module i, given that module j has been changed.

Module Dependence Matrix is derived using the following three steps.

5.2.2 Procedure of Making Module Dependence Matrix

STEP 1:

Determine the coupling among all of the modules in the program. Construct an m*m

coupling matrix, where m is the number of modules in the program. Using Table 5.1

fill each element in the matrix C. Element Cij represents the coupling between module

i and module j. The matrix is symmetric i.e.

 Cij = Cji for all i & j.

Also elements on the diagonal are all 1(Cii =1 for all i)

STEP 2:

Determine strength of each module in the program. Using Table 5.2 record the

corresponding numerical values of cohesion in module cohesion matrix.

Coupling Types Value

Content 0.95

Common 0.70

External 0.60

Control 0.50

Stamp 0.35

Data 0.20

Cohesion Types Value

Coincidental 0.95

Logical 0.40

Temporal 0.60

Procedural 0.40

Communicational 0.25

Sequential 0.20

Functional 0.20

110

STEP 3:

Construct the Module dependence matrix D by the Formula 5.1.

 Dij = 0.15 (Si + Sj) + 0.7 Cij, where Cij ≠ 0

 Dij = 0 where Cij = 0 Dii = 1 for all i. ------------------------ (5.1)

Prioritization of module can be done by comparing non zero entries of D matrix

(Module Dependence Matrix). For Example if module number i has been modified

then find all the existing parent modules (j, k, l…) of that changed module (i) and

after that compare first order dependence matrix entries for particular links viz (i-j, i-

k, i-l & so on). Link having highest module dependence matrix value will get highest

priority & link with low module dependence matrix value will get low priority.

5.2.3 Proposed MCETCP Approach

The functioning of the proposed technique consists of the following components

(shown in Figure 5.2).

 Call Graph Producer

With this component, a call graph can be produced for the given program.

Using this component, the calling sequence among the modules can be known.

 Coupling and Cohesion Identifier

Using the call graph producer component the type of dependency among the

modules is identified, i.e. coupling and cohesion.

 First Order Dependence Matrix Calculator

This component performs four major functions which are described below.

1. Creation of coupling matrix C.

2. Creation of cohesion matrix S.

3. On the basis of C and S create dependency matrix D.

4. Assigning values (non zero and non one entries) to the edges of the call

graph.

111

 Figure 5.2: Components Showing the Process of MCETCP

 Coupling Effect based module level prioritizer

The first order dependence matrix provides the coupling values among the modules.

Using these values, this component identifies the worst affected module due to the

changed module. Thereby we get a prioritized module among several affected

modules.

5.2.4 Proposed Algorithm for finding highly coupled module

First of all a coupling matrix is created by finding coupling values among different

modules. After creating a coupling matrix, a cohesion matrix is created by identifying

the type of cohesion in the individual module. Now, by using these two matrices a

module dependence matrix is created. After this a module which is changing is

identified. Finally the parent module of the changed module is identified with the help

of module dependency matrix. The module with the highest value is prioritized over

other modules. The proposed algorithm is shown in Figure 5.3.

 Figure 5.3: Algorithm for finding highly coupled module

Program as Input Call Graph Producer

Coupling & Cohesion

Identifier

First order dependency matrix

calculator

Coupling Effect Based Module

level prioritizer

Prioritized test suite of

critical module

PRIORITIZATION (P, n)

Begin

(Where P is the complete program and n is number of modules)

1. Identify type of coupling between modules and create coupling matrix C using coupling values.

2. Identify type of cohesion in the individual module and create cohesion matrix S using cohesion values.

3. Using C and S Matrix construct first order dependence matrix D.

4. Identify which module number is changing(c).

5. Identify parent (p) of changed module using first order dependence matrix (D) values.

 (Highest value module will get priority over other module)

End

112

5.2.5 Evaluation & Results of MCETCP approach

To evaluate the proposed MCETCP approach, a case study of software consisting of

10 modules has been taken whose source code has been given in Appendix D. The

coupling and cohesion information of these modules are shown in Table 5.3 and Table

5.4. The Call graph for the case study software is shown in Figure 5.4.

Figure 5.4: Call Graph of Case Study Software

 Table 5.3 Coupling Information for case study software

Type of Coupling No. of modules in

relation

Examples

Data Coupling 3 1-2,1-4,1-6

Stamp Coupling 1 1-3

Control Coupling 4 4-7,4-8,4-9,4-10

Common Coupling 2 2-5,5-9

Message Coupling 1 1-5

 Table 5.4: Cohesion Information for case study software

Module Number Cohesion Type

1 Coincidental

2 Functional

3 Communicational

4 Logical

5 Procedural

6 Functional

7 Functional

8 Functional

9 Functional

10 Functional

1

x

s

2

3

6

7

4

5

10

9 8

113

By using the coupling values (See Table 5.3) among different modules a module

coupling matrix is being prepared as shown in Table 5.5.

 Table 5.5 Module Coupling Matrix(C)

1.0 0.2 0.35 0.2 0.95 0.2 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.70 0.2 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.50 0.50 0.50 0.50

0.0 0.2 0.0 0.0 1.0 0.0 0.0 0.0 0.70 0.0

0.0 0.2 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.2 0.0 0.0 0.0 1.0 0.6 0.0 0.0

0.0 0.0 0.0 0.2 0.0 0.0 0.6 1.0 0.2 0.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 1.0

By using the Cohesion values (See Table 5.4) among different modules a Cohesion

Matrix(S) is being designed as shown in Table 5.6.

 Table 5.6 Module Cohesion Matrix (S)

By using Formula 5.1, a Module dependence Matrix is being designed as shown in

Table 5.7, wherein various module dependence values have also been shown.

 Table 5.7 Module Dependence Matrix (D)

0.95 0.2 0.25 0.4 0.4 0.2 0.2 0.2 0.2 0.2

 1.0 0.31 0.42 0.34 0.0 0.31 0.0 0.0 0.0 0.0

0.31 1.0 0.0 0.0 0.58 0.0 0.0 0.0 0.0 0.0

0.42 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.34 0.0 0.0 1.0 0.0 0.0 0.44 0.44 0.44 0.44

0.0 0.58 0.0 0.0 1.0 0.0 0.0 0.0 0.58 0.0

0.31 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.44 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.44 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.44 0.58 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.44 0.0 0.0 0.0 0.0 0.0 1.0

114

 Figure 5.5: Case Study Software Call Graph with module dependence values

From the module dependence values obtained from call graph (See Figure 5.5) and

from Module Dependence Matrix, we conclude that change in the Module 4

propagates to module 7, 8, 9 and module 10. Modules 7, 8, 9 and 10 are having same

module dependence values (0.44), so the order of prioritization of test cases for these

modules is same. Similarly the change in the module 1 propagates to Module 2, 3, 4

and 6 .The module dependence values for these modules shows that the module 3 is

more affected module as compared to module 2, 4 and 6. So the test cases for the

module 3 have to be prioritized first as compared to module 2, 4 and 6.

A tool is also implemented in C language which finds out the badly affected module

due to change in a particular module. The inputs to this tool are the coupling and

cohesion information among modules.

5.3 TEST CASE PRIORITIZATION USING DATA FLOW TESTING

Data-flow testing is a white box testing technique that can be used to detect improper

use of data values due to coding errors. Errors are inadvertently introduced in a

program by programmers. For instance, a software programmer might use a variable

without defining it. While identifying the test cases of data flow testing, there may be

large number of test cases. It may not be possible for a tester to execute all the test

cases identified in this huge test suite due to time and cost constraints. Therefore,

there is need to prioritize the test cases so that the important test cases that identify the

 0.58

0.44

 0.44

 0.58

1

2

3

6

7

4

5

10

 0.31

0.42

 0.31

 0.44

9

 0.34

8

 0.44

115

critical bugs are executed first. For this purpose the concept of du-and dc-paths has

been taken. There are du-paths which are variable usage paths and the paths wherein

the variable is defined more than once called non-dc paths (non-definition clear paths)

in data flow testing. The du-paths which are not dc-paths are problematic for a tester.

It means that there may be more bugs in the du-paths which are not dc-paths.

Further, if a program is modified the probability of errors may increase because after

modification new du paths may get introduced and some of these du paths may also

be not definition clear, that is these paths may also be more prone for errors.

Therefore, a test case prioritization technique is required that will take care of these

problems. In this work, a new technique for test case prioritization is proposed that

prioritized the test cases while performing regression testing [47]. For this purpose a

list of newly introduced non-dc paths is prepared and the set of test cases

corresponding to these paths are put at highest priority in the test suite of modified

program. The set of test cases is referred as Set-1. It may happen that because of

modification in the program that some existing dc paths may became non-dc.

The set of test cases corresponding to these paths are taken at the next priority

and this set of test cases may be referred as „set-2‟. Further, there may be some non-dc

paths of the original program, which are still non-dc after modification of the

program. The set of test cases for such paths may be referred as „set3‟.Finally, there

are some test cases which do not cover non-dc paths, i.e. these test cases cover dc-

paths. This may be referred as „set4‟.Using these four concepts, an algorithm has been

designed for prioritizing the test suite as shown in Figure 5.6.

Begin

Step1. Note down whether changes have introduced new definitions of Variables as well as uses.

Step2. Find out new du paths if introduced.

Step3. Design test cases for these new du paths if required.

Step4. List the non-dc paths out of these du paths.

Step5. Put the test cases corresponding to these listed non-dc paths on highest priority (Set-1) for

testing in test suite.

Step6. List the du-dc paths of original program, which have now become non-dc after modification of

program.

Step 7. Put the test cases corresponding to these listed non-dc paths (Set-2) on the next priority.

Step 8. List the non-dc paths of the original program, which are still non-dc after modification of the

program.

Step 9. Put the test cases corresponding to these listed non-dc paths (Set-3) on the next priority.

Step 10. Put all the remaining test cases i.e. the test cases which do not cover any non-dc path (Set-4)

at next but equal priority.

End

Figure 5.6: Algorithm for prioritizing the test cases using data flow testing

116

However, the test cases within a set are not prioritized. So to prioritize the test case

within a set, an algorithm is designed which is shown in Figure 5.7.

 Figure 5.7: Algorithm for prioritizing the test cases within a set

5.3.1 Analysis of the proposed data flow testing approach

To analyze the efficacy of the proposed work it has been applied on three different modules

of case study of Income tax calculator software [80].

A) Case Study 1: Income details for Income Tax Calculator

Source Code of income tax details module of Income tax calculator software has given below.

Source Code of Case Study 1:

float income_details_non_sal()

 {

1‟ char source[20]="abc";

2‟ float amount,total =0;

3‟ int flag1=1,flag2=1,i;

4‟ char income_ch='y';

1 while((income_ch=='y')||(income_ch=='Y'))

2 {

3 while(flag1==1)

4 {

5 printf("\nEnter SOURCE\t:");

6 gets(source);

Begin

Step1

 If a test case covers more no. of paths in set-1

 Then place it at the highest priority.

Step2

 If two test cases (in Step1) covers equal no. of paths in set-1,

 Then the test case which covers more no. of paths in set-2 in the modified program is placed at the

next priority.

Step 3

 If two test cases (in Step2) covers equal no. of paths in set-2 in the modified program

 Then the test case which covers maximum no. of lines of code in the modified program is

placed at next priority.

End

117

7 for(i=0;i<strlen(source);i++)

8 {

9 if(((toascii(source[i]) >= 65) && (toascii(source[i]) <= 122)) ||

(toascii(source[i]) == 32))

10 {

11 flag1=0;

12 }

13 else

14 {

15 printf("\nSource can contain only charcter Error

at position number %d",i);

16 flag1=1;

17 break;

18 }

19 }//end for

20 if((strlen(source)<3)||(strlen(source)>20))

21 {

22 printf("\nSource can contain a max of 20 characters");

23 flag1=1;

24 }

25 }

26 while(flag2==1)

27 {

28 printf("\nEnter Amount\t:");

29 scanf("%f",&amount);

30 if(amount>0)

31 {

32 flag2=0;

33 }

34 else

35 {

36 printf("\nAmount cannot be less than or equal to 0");

37 flag2=1;

38 }

118

39 }

40 printf("\n\nPress any key to proceed");

41 getch();

42 clrscr();

43 patt("INCOME Details");

44 printf("\nSOURCE\t:%s",source);

45 printf("\nAMOUNT\t:%f",amount);

46 total=total+amount;

47 printf("\nDo you want to enter more(y/n)\t:");

48 income_ch=getche();

49 flag1=1;

50 flag2=1;

51 }

52 printf("\nTotal\t\t:%f",total);

53 return(total);

54 }

119

 Figure 5.8: CFG for income details module

The control flow graph of income detail is depicted in Figure 5.8. Test cases for the

same are shown in Table 5.8.Since the cyclomatic complexity of the graph is 8, so

there will be 8 independent paths in the graph as shown below:

N21

N20

N19

N18

N17

N16

N15

N14

N12

N11

N10

N9

R7

N8

N7

N6

N5

N3

N4

N2

R5

R4

R3

1

2

3

4,5,6

7

8

9

10,11 ,12

13-17

19

20

21-24

25

26

27-29

30

31-33

34-38

39

40-50

51

52-54

R2

R1

R6

N13

N22

N23

1’-4’ N1

120

1) N1N2N23

2) N1N2 N3 N4 N15 N21 N22 N2 N23

3) N1N2 N3 N4 N5 N6 N12 N14 N4 N15 N21 N22 N2 N23

4) N1N2 N3 N4 N5 N6 N7 N8 N10 N12 N14 N4 N15 N21 N22 N2 N23

5) N1N2 N3 N4 N5 N6 N7 N8 N9 N11 N6 N12 N14 N4 N15 N21 N22 N2 N23

6) N1N2 N3 N4 N5 N6 N7 N8 N9 N11 N6 N12 N13 N14 N4 N15 N21 N22 N2 N23

7) N1N2 N3 N4 N15 N16 N17 N19 N20 N15 N21 N22 N2 N23

8) N1N2 N3 N4 N15 N16 N17 N18 N20 N15 N21 N22 N2 N23

Table 5.8: Test Case Design for income detail from the Independent Paths

Test

Case

ID

Inputs Expected

Output

Independent path

covered by Test Case

Total lines of code

covered by test case Source Amount

1 Agriculture 400000 Source

Agriculture

Amount

400000

Do you want

to enter

more(y/n) Y

1), 2), 3), 5), 8)

42 lines

 Others 100000 Source Others

Amount

100000

Do you want

to enter

more(y/n) N

 Total 500000

2 1234 Source can

contain only

character.

1), 2), 3), 4) 19 lines

3 Agriculture

and others

 Source can

contain a max

of 20

characters.

1), 2), 3), 6) 24 lines

4 Agriculture 0 Amount

cannot be less

than or equal

to 0

1), 2), 3), 5), 7) 31 lines

Now the following modifications have been made to the program. ExamDiff tool is

used to find out the changes made in modified version as compared to old version of

program. The changes detected are as follows:

1. Line 7 is a new addition i.e (len=strlen(source)).

2. A new variable len is introduced in modified version.

121

3. „strlen(source)‟ string is replaced by variable „len‟ in lines 8 and 21.

 The proposed data flow testing approach is applied on modified income detail

module case study in the following steps:

1. Changes have introduced new definition of variable „len‟ and also its use (See

Table 5.9).

Table 5.9: Definition and use of variable „len‟ for income detail module case study

Variable Defined at Used at

Len 7 8,21

2. New du paths introduced due to modification and the test cases which covers

these paths are shown in Table 5.10.

Table 5.10: Du paths and test cases

Variable du Path(beg-end) dc? Test case which

covers this path

len 7-8 yes 1,2,3,4

 7-21 yes 1,3,4

3. There is no need to design any new test case because all the new du paths get

covered by existing test cases.

4. No new non-dc path gets introduced in the program after modification.

5. No dc path of original program changed its status to non-dc after

modifications in the program.

6. The test cases corresponding to non-dc paths of original program are:

TC1, TC2, TC3, TC4

7. There is no remaining test case in this program.

So the prioritized test suite for this case study after applying the proposed approach is

{TC1, TC3, TC2, TC4}

122

To evaluate the effectiveness of the approach the test cases are executed in random

order and in prioritized order. The APFD values for the same have been shown in the

Figure 5.9.

 Figure 5.9: APFD values for random and proposed data flow TCP for income detail module

B) Case Study 2: Saving Module for Income Tax Calculator

Source Code of saving module of Income tax calculator software is given below.

Source Code for Case study 2:

float savings()

 {

1 char saving_type[20];

2 float amount,total=0;

3 int flag1=1,flag2=1,i;

4 char sav_ch='y';

5 while((sav_ch=='y')||(sav_ch=='Y'))

6 {

7 while(flag1==1)

8 {

9 printf("\nEnter Saving type\t:");

10 gets(saving_type);

11 for(i=0;i<strlen(saving_type);i++)

12 {

0

20

40

60

80

100

120

TC1 TC2 TC3 TC4

P
er

ce
n

ta
g

e
o

f
F

a
u

lt
s

D
e
te

c
te

d

Test Case Executed

RANDOM APPROACH
(APFD = 50%)

PROPOSED APPROACH
(APFD = 75%)

123

13 if(((toascii(saving_type[i])>= 65) && (toascii(saving_type[i]) <= 122)) ||

 (toascii(saving_type[i]) == 32))

14 {

15 flag1=0;

16 }

17 else

18 {

19 printf("\nSaving type can contain only character Error at position number

%d",i);

20 flag1=1;

21 break;

22 }

23 }

24 if((strlen(saving_type)<3)||(strlen(saving_type)>20))

25 {

26 printf("\nPlease enter between 3 to 20 characters ");

27 flag1=1;

28 }

29 }

30 while(flag2==1)

31 {

32 printf("\nEnter Amount\t:");

33 scanf("%f",&amount);

34 if(amount>0)

35 {

36 flag2=0;

37 }

38 else

39 {

40 printf("\nAmount cannot be less than or equal to 0");

41 flag2=1;

42 }

43 }

44 printf("\n\nPress any key to proceed");

124

45 getch();

46 clrscr();

47 patt("SAVING Details");

48 printf("\nSAVING TYPE\t:%s",saving_type);

49 printf("\nAMOUNT\t\t\t:%f",amount);

50 total=total+amount;

51 printf("\nDo you want to enter more(y for yes)\t:");

52 sav_ch=getche();

53 flag1=1;

54 flag2=1;

55 }

56 printf("\nTotal\t\t:%f",total);

57 return(total);

58 }

125

Figure 5.9: DD Graph for Case Study 2

 Figure 5.10: CFG for saving module of income tax calculator

N22

N23

N21

N20

N19

N18

N16

N17

N15

N14

N13

N12

N11

N10

N9

N8

N7

N6

N5

N4

N3

N2

N1

R7

R6

R5

R4

R2

1-4

5

6

7

8-10

11

12

13

14-16

17-21

23

24

25-28

29

30

31-33

34

35-37

38-42

43

44-54

55

56-57

R1

R3

126

The CFG for saving module case study is shown in Figure 5.10. Cyclomatic

complexity of the graph is 8, so there are 8 independent paths in the graph as shown

below and the test cases corresponding to these paths are shown in Table 5.11.

1) N1 N2 N23

2) N1 N2 N3 N4 N15 N21 N22 N2 N23

3) N1 N2 N3 N4 N5 N6 N12 N14 N4 N15 N21 N22 N2 N23

4) N1 N2 N3 N4 N5 N6 N7 N8 N10 N12 N14 N4 N15 N21 N22 N2 N23

5) N1 N2 N3 N4 N5 N6 N7 N8 N9 N11 N6 N12 N14 N4 N15 N21 N22 N2 N23

6) N1 N2 N3 N4 N5 N6 N12 N13 N14 N4 N15 N21 N22 N2 N23

7) N1 N2 N3 N4 N15 N16 N17 N19 N20 N15 N21 N22 N2 N23

8) N1 N2 N3 N4 N15 N16 N17 N18 N20 N15 N21 N22 N2 N23

Table 5.11: Test Cases for saving module case study from the Independent Paths

Test

Case

ID

Inputs Expected

Output

Independent

path covered by

Test Case

Total lines of

code covered by

test case

Saving Type Amount Enter

more?

1 NSC 5000 Saving type NSC

Amount 5000

1), 2), 3), 5), 8) 43 lines

 Y

PPF 1200 Saving type PPF

Amount 1200

 N Total 6200

2 123 Saving type can

contain only

character

2), 3), 4), 18 lines

3 PF Please enter

between 3 to 20

characters

2), 3), 6) 23 lines

4 PPF 0 Amount cannot

be less than or

equal to 0.

2), 3), 7) 28 lines

The changes detected are as follows:

1. line 10a is a new addition (len = strlen(saving_type))

2. A new variable len is introduced in modified version

3. „strlen(savings_type)‟ string is replaced by variable „len‟ in lines 11 and 24.

127

The step wise execution of the proposed data flow approach for saving module case

study is given below.

1. Changes have introduced new definition of variable „len‟ and also its use

shown in Table 5.12

 Table 5.12: Definition and use of variable „len‟ for saving module

Variable Defined at Used at

len 10a 11,24

2. New du paths introduced with the definition of variable „len‟ are shown in

Table 5.13.

Table 5.13: Du paths & Test case coverage of variable „len‟

 Variable du Path(beg-end) dc? Test case which

covers this path

len 10a-11 Yes 1,2,3,4

10a-24 Yes 1,3,4

3. There is no need to design any new test case because all the new du paths get

covered by existing test cases.

4. No new non-dc path gets introduced in the program after modification.

5. No dc path of original program changed its status to non-dc after

modifications in the program.

6. The list of test cases corresponding to non-dc paths of original program are:

TC1, TC2, TC3, TC4

7. There is no remaining test case in this program

So the prioritized test suite for this program after applying the proposed approach and

technique applied for original program is

{TC1, TC3, TC4, TC2}

128

To evaluate the effectiveness of the approach the test cases are executed in random

order and in prioritized order. The APFD values for the same have been shown in the

Figure 5.11.

 Figure 5.11: APFD values for random and proposed data flow TCP for saving module case

study

C) Case Study 3: Income details module for Income Tax Calculator

Source Code of income details module of Income tax calculator software.

Source code of case study 3:

double income_details_sal()

{

1‟ float t_d, d1, d2, sal1, sal2, sal3, t_sal, sal_all, sal_all_tot=0, ei, t_ei=0,

 net_t_sal=0, bal;

2‟ char sal_ch='y',ei_ch='y';

3‟ int f1=1,f2=1,f3=1,f4=1;

4‟ double gross;

1 while(f2==1)

2 {

3 printf("\n1.\tGROSS SALARY\t:");

0

20

40

60

80

100

120

TC1 TC2 TC3 TC4

P
er

ce
n

ta
g

e
o

f
fa

u
lt

s
d

et
ec

te
d

Test Case Executed

PROPOSED
APPROCH(APFD= 62.5 %)

RANDOM
APPROACH(APFD=47.5)

129

4 printf("\n\ta) Salary as per the provisions contained in the section

17(1)\t:");

5 scanf("%f",&sal1);

6 printf("\n\tb) Value of the perquisites under section 17(2)\n(As per

form number 12BA , wherever applicable)\t:");

7 scanf("%f",&sal2);

8 printf("\n\tc) Profits in lieu of salary under section 17(3)\n(As per form

number 12BA , wherever applicable)\t:");

9 scanf("%f",&sal3);

10 if((sal1<0)||(sal2<0)||(sal3<0))

11 {

12 f2=1;

13 }

14 else

15 {

16 f2=0;

17 }

18 }

19 t_sal=sal1+sal2+sal3;

20 printf("\n\td)\tTotal\n\t\t\t\t:%f",t_sal);

21 sal_all_tot=0;

22 while((sal_ch=='y')||(sal_ch=='Y'))

23 {

24 while(f1==1)

25 {

26 printf("\n2.\tAllowance to the extent exempt under section

10\t:");

27 scanf("%f",&sal_all);

28 if(sal_all<0)

29 {

30 printf("\nEnter correct value");

31 }

32 else

33 {

130

34 f1=0;

35 }

36 }

37 sal_all_tot=sal_all_tot+sal_all;

38 printf("\nEnter more?(Y/N)\t:");

39 sal_ch=getche();

40 if((sal_ch=='y')||(sal_ch=='Y')||(sal_ch=='n')||(sal_ch=='N'))

41 {

42 f1=0;

43 }

44 else

45 {

46 printf("\nPlease enter y or n");

47 }

48 }

49 printf("\nTotal allowance\t\t:%f",sal_all_tot);

50 bal=t_sal-sal_all_tot;

51 printf("\nBalance\t:%f",bal);

52 while(f3==1)

53 {

54 printf("\n3.\tDeductions\t:");

55 printf("\n\tEntertainment allowance(EA)\t:");

56 scanf("%f",&d1);

57 printf("\tTax on employment (TE)\t:");

58 scanf("%f",&d2);

59 if((d1<0)||(d2<0))

60 {

61 f3=1;

62 }

63 else

64 {

65 f3=0;

66 }

67 }

131

68 t_d=d1+d2;

69 printf("\nTotal deductions\t:%f",t_d);

70 net_t_sal=bal-t_d;

71 printf("\n4.\tINCOME CHARGABLE UNDER THE HEAD

SALARIES‟\t:%f",net_t_sal);

72 while((ei_ch=='y')||(ei_ch=='Y'))

73 {

74 while(f4==1)

75 {

76 printf("\n5.\tAny other income reported by the Employee\t:");

77 printf("\n\t\tEnter Income\t:");

78 scanf("%f",&ei);

79 if(ei<0)

80 {

81 f4=1;

82 }

83 else

84 {

85 f4=0;

86 }

87 }

88 t_ei=t_ei+ei;

89 printf("\n\t\tEnter more?(Y/N)\t:");

90 ei_ch=getche();

91 }

92 gross=net_t_sal+t_ei;

93 printf("\n6.Gross Total Income:\t%f",gross);

94 return(gross);

95 }

132

Figure 5.12: CFG for income details module

The CFG for income detail module case study is depicted in Figure 5.12. Cyclomatic

complexity of the graph is 12, so there will be 12 independent paths in the graph as

N41

N42

N40

N39

N38

N37

N36

N35

N34

N33

N32

N31

N30

N29

N27

N26 N25

N24

N22

N21

N20

N17

N16

N15

N14

N13

N12

N11

N10

N9

N8

N7

N6

N4

N5

N3

N2

R11

R10

R9

R7

R6

R5

R4

R3

R1

1

2-9

10

11-13

14-17

18

19

20-21

22

23

24

25-27

28

29-31

32-35

36

37-39 40

41-43 44-47

48

49

50-51

52

53-58

59

60-62

63-66

67

68-71

72

73

74

75-78

79

80-82

83-86

87

88-91

92

93-95

R2

R8

N18

N19

N23

N28

1’-4’
N1

133

shown below:

1) N1 N2 N8 N9 N10 N23 N24 N25 N26 N32 N41 N42

2) N1 N2 N3 N4 N6 N7 N2 N8 N9 N10 N23 N24 N25 N26 N32 N41 N42

3) N1 N2 N3 N4 N5 N7 N2 N8 N9 N10 N23 N24 N25 N26 N32 N41 N42

4) N1 N2 N8 N9 N10 N11 N12 N18 N19 N22 N21 N10 N23 N24 N25 N26 N32 N41 N42

5) N1 N2 N8 N9 N10 N11 N12 N13 N14 N16 N17 N12 N18 N19 N22 N21 N10 N23 N24 N25

N26 N32 N41 N42

6) N1 N2 N8 N9 N10 N11 N12 N13 N14 N15 N17 N12 N18 N19 N22 N21 N10 N23 N24 N25

N26 N32 N41 N42

7) N1 N2 N8 N9 N10 N11 N12 N18 N19 N20 N21 N10 N23 N24 N25 N26 N32 N41 N42

8) N1 N2 N8 N9 N10 N23 N24 N25 N27 N28 N30 N31 N25 N26 N32 N41 N42

9) N1 N2 N8 N9 N10 N23 N24 N25 N27 N28 N29 N31 N25 N26 N32 N41 N42

10) N1 N2 N8 N9 N10 N23 N24 N25 N27 N28 N30 N31 N25 N26 N32 N33 N34 N40 N32 N41

N42

11) N1 N2 N8 N9 N10 N23 N24 N25 N27 N28 N30 N31 N25 N26 N32 N33 N34 N35 N36 N38

N39 N34 N40 N32 N41 N42

12) N1 N2 N8 N9 N10 N23 N24 N25 N27 N28 N30 N31 N25 N26 N32 N33 N34 N35 N36 N37

N39 N34 N40 N32 N41 N42

Table 5.14: Test Case Design for income detail case study from independent paths

Test

Case

ID

Inputs Expected

Output

Independent

path covered

by Test Case
Sal

1

Sal

2

Sal

3

Sal_al

l

Enter

more?

EA TE Other

Inco

me

1 200

0

400

0

900

0

 Total

15000

1), 2), 5), 7),

8), 10), 11)

 2000 Y

 1000 n Total

Allowanc

e 3000

Balance

12000

 200 300 Total

deduction

s 500

Income

under

Head

Salaries

11500

 12000 Enter

more? Y

134

 12000 Enter

more? N

Gross

Total

Income:

35500

2 200

0

-

300

500 2), 3)

3 200

0

400

0

900

0

 Total

15000

2), 6)

 -300 Enter

correct

value

4 200

0

400

0

900

0

 Total

15000

2), 4), 5), 7)

 1000 t Please

enter y or

n

5 200

0

400

0

900

0

 Total

15000

2), 5), 7), 9)

 1000 n Total

Allowanc

e 1000

Balance

14000

 -

100

200

6 200

0

400

0

900

0

 Total

15000

2), 5), 7), 8),

10), 12)

 2000 Y

 1000 n Total

Allowanc

e 3000

Balance

12000

 200 300 Total

deduction

s 500

Income

under

Head

Salaries

11500

 -1000

The definition nodes and usage nodes for different variables are shown in Table 5.15.

135

Table 5.15: Definition nodes and Usage nodes of variable or f income detail case study

Variable Defined At Used At

t_d 68 69, 70

d1 56 59, 68

d2 58 59, 68

sal1 5 10, 19

sal2 7 10, 19

sal3 9 10, 19

t_sal 19 20

sal_all 27 28, 37

sal_all_tot 21, 37 37, 49, 50

Ei 78 79, 88

t_ei 1‟, 88 88, 92

net_t_sal 1‟, 70 71, 92

Bal 50 70

sal_ch 2‟, 39 40

ei_ch 2‟, 90 72

f1 3‟, 34, 42 24

f2 3‟, 12, 16 1

f3 3‟, 61, 65 52

f4 3‟, 81, 85 74

Gross 92 93

The du and dc paths with their test case coverage are shown in Table 5.16.

Table 5.16: Du and dc paths with test coverage for income details module

Variable du Path(beg-

end)

dc? Test case

which covers

this path

t_d 68-69 Yes 1,6

 68-70 Yes 1,6

d1 56-59 Yes 1,5,6

 56-68 Yes 1,6

d2 58-59 Yes 1,5,6

 58-68 Yes 1,6

sal1 5-10 Yes 1,2,3,4,5,6

 5-19 Yes 1,3,4,5,6

sal2 7-10 Yes 1,2,3,4,5,6

 7-19 Yes 1,3,4,5,6

sal3 9-10 Yes 1,2,3,4,5,6

 9-19 Yes 1,3,4,5,6

t_sal 19-20 Yes 1,3,4,5,6

sal_all 27-28 Yes 1,3,4,5,6

 27-37 Yes 1,4,5,6

sal_all_tot 21-37 No 1,4,5,6

 21-49 No 1,5,6

136

 21-50 No 1,5,6

 37-37 No 1,6

 37-49 Yes 1,5,6

 37-50 Yes 1,5,6

Ei 78-79 Yes 1,6

 78-88 Yes 1

t_ei 1‟-88 No 1

 1‟-92 No 1

 88-88 No 1

 88-92 Yes 1

net_t_sal 1‟-71 No 1,6

 1‟-92 No 1

 70-71 Yes 1,6

 70-92 Yes 1

Bal 50-70 Yes 1,6

sal_ch 2‟-40 No 1,4,5,6

 39-40 Yes 1,4,5,6

ei_ch 2‟-72 Yes 1,6

 90-72 Yes 1

f1 3‟-24 Yes 1,3,4,5,6

 34-24 Yes 1,4,6

 42-24 Yes 1,6

f2 3‟-1 Yes 1,2,3,4,5,6

 12-1 Yes 2

 16-1 Yes 1,3,4,5,6

f3 3‟-52 Yes 1,5,6

 61-52 Yes 5

 65-52 Yes 1,6

f4 3‟-74 Yes 1,6

 81-74 Yes 6

 85-74 Yes 1

Gross 92-93 Yes 1

137

We have total 10 faults is this program in line numbers 22,30,42,46,61,72,74,81,85,92

which are given fault Id‟s as F1,F2,F3,F4,F5,F6,F7,F8,F9,F10 respectively, which are

shown in Table 5.17.

Table 5.17: Fault and Test Cases

Fault

ID

Fault detected by

TC1 TC2 TC3 TC4 TC5 TC6

F1 * - * * * *

F2 - - - - - *

F3 * - - - * *

F4 - - - * - -

F5 - - - - * -

F6 * - - - - *

F7 * - - - - *

F8 - - - - - *

F9 * - - - - -

F10 * - - - - -

Random (unprioritized) test suite is {TC1, TC2, TC3, TC4, TC5, TC6}

APFD for random (unprioritized) test suite:

APFD = 1- 1+6+1+4+5+1+1+6 +1 +1 + 1

 6*10 2*6

 =0.63, i.e. 63%.

After this the following changes have been made to this original program

1. Line 9a is added which results in introducing new definitions of variable

„t_sal‟.

2. Line 19 is modified

3. Line 51a is a new addition which has introduced new definitions of variable

„t_d‟.

4. Line 68 is modified.

The modified code is as follows:

9a t_sal=0;

19 t_sal= t_sal+sal1+sal2+sal3;

51a t_d=0;

138

68 t_d=t_d+d1+d2;

Now applying the proposed algorithm for this program stepwise we obtain the

following:

1. Changes have introduced new definition and uses of variables „t_sal‟ and „t_d‟

shown in Table 5.18.

Table 5.18: New definition and uses of variables

Variable Defined at Used at

t_sal 9a,19 19,20

t_d 51a,68 68,69,70

2. New du paths introduced are shown the Table 5.19.

3. There is no need to design any new test case because all the new du Paths get

covered by existing test cases.

4. New non-dc paths get introduced in the program (Set-1) after modifications

are :{ 9a-19, 9a-20, 51a-68, 51a-69, 51a-70} as shown in Table 5.19.

Test cases corresponding to these listed paths are {TC1, TC3, TC4, TC5,

TC6}.

5. The dc paths of the original program which changed their status to non-dc

after modifications in the program are :{ 19-20,68-69,68-70}

Test cases corresponding to these listed paths (Set-2) are {TC1, TC3, TC4,

TC5, TC6}

6. The test cases corresponding to non dc paths(Set-3)of the original program

are:

 {TC1,TC4,TC5,TC6}

7. The remaining test cases (Set-4) in this program are :{TC2}

139

 Table 5.19: New du paths introduced

Variable du

Path(beg-

end)

Previous

status dc?

New

status

of path

dc?

Test case

which

covers

this path

t_sal 9a-19 New path No 1,3,4,5,6

 9a-20 New path No 1,3,4,5

 19-20 Yes No 1,3,4,5

t_d 51a-68 New path No 1,6

 51a-69 New path No 1,6

 51a-70 New path No 1,6

 68-69 Yes No 1,6

 68-70 Yes No 1,6

The prioritized set after the above process is shown in the Table 5.20.

Table 5.20: Set of test cases after applying data flow TCP approach

Test cases Set Test cases

Set-1 TC1,TC3,TC4,TC5,TC6

Set-2 TC1,TC3,TC4,TC5,TC6

Set-3 TC1,TC4,TC5,TC6

Set-4 TC2

Since set 1 and set 2 contains same no. of test cases and set 3 is a subset of set 1and

set 2 ,the test suite consists of the test cases as TC1,TC3,TC4,TC5,TC6,TC2.

However these test cases are not prioritized. So to prioritize the test cases within a set,

algorithm shown in Figure 5.2 is applied.

After analysing case study 3, we obtain the following data as shown in the Table 5.21.

 Table 5.21: Data obtained after analyzing the income detail case study

Test case id Total newly introduced

non-dc paths covered in

modified program

Total paths

covered which has

changed from dc

to non-dc in

modified program

Total lines

covered in the

modified program

TC1 5 3 83

TC2 0 0 18

TC3 2 1 35

TC4 2 1 45

TC5 2 1 59

TC6 4 2 75

140

Finally the prioritized test suite for this case study after applying the algorithm (See

Figure 5.7) is:

{TC1, TC6, TC5, TC4, TC3, TC2}

Now the APFD value for the prioritized test suite is:

APFD = 1- 1+2+1+4+3+1+1+2+1+1 + 1

 6*10 2*6

=0.80, i.e. 80%.

Further, the modified program when applied to the previous approach [119] of

Yogesh Singh et. al, the prioritized order of test cases obtained is TC1, TC3, TC4,

TC5, TC6, TC2.

The APFD for the test suite obtained using previous approach is:

APFD = 1- 1+5+1+3+4+1+1+5+1+1 + 1

 6*10 2*6

 =0.70, i.e. 70%.

From the above calculations it is clear that prioritized test suite with the proposed

approach gives better APFD value as shown in Figure 5.13.

Figure 5.13: Comparison of Random, Previous and Proposed data flow testing approach

141

5.4 CONTROL-STRUCTURE-WEIGHTED TEST CASE PRIORITIZATION

(CSWTCP) TECHNIQUE

After prioritizing test cases for modified program on the basis of newly introduced

non-dc paths and changed status of existing dc paths to non-dc paths, there remains a

big set of test cases corresponding to dc paths which are given the same priority. So

next step is to make a criterion to prioritize the left out same priority test cases to

make test suite more effective. For this purpose, a control-structure weighted test case

prioritization method is being proposed in this work .In this method complexity of the

statements where the variable has been used is taken considering various aspects of

structure of programming.

5.4.1 Proposed CSWTCP Approach

In this subsection, a test case prioritization technique has been proposed for the case

when a program has been modified. The prioritization is based on the nature of

statements where the modification has taken place. In order to accomplish this task, a

control-structure weighted test case prioritization method is being proposed in this

work. In the method complexity of the statements is taken considering various aspects

of structure of programming.

In the proposed technique, Variable Dependence Graph (VDG) is prepared for

variables whose definition or use has changed in new version of software and directly

and indirectly, affected variables by these changed variables is listed out. This is

followed by listing the du paths of these variables and giving weights to the paths

considering following factors:

 Type of control structure present in the statement where variables are used.

 Number of Boolean conditions present in the statement.

 Number of p-use statements present in the path.

 Nesting level of the statement.

 Nesting type of the statement.

142

This is followed by creating a sorted list of du-paths according to the calculated

weight based on above factors. The test cases corresponding to these sorted du-paths

are given order to make a prioritized test suite. The complete procedure of applying

this method is shown in Figure 5.14 and various algorithms are explained in further

sections of the chapter.

Begin

Step1: Notify the changes in the new version of program as compared to old version.

Step 2: Note the line numbers in the code of new version where the use of variable has been changed.

Step 3: Make a VDG by using algorithm (See Figure 5.15).

Step 4: Looking at the VDG, find out different types of variables in the graph and put the „weight of

every node‟ (WV) in VDG according to the algorithm (See Figure 5.18).

Step 5: Make a list of all the variables in the VDG and their DU-dc paths.

Step 6: Calculate the „weight of modified statement‟ (WMS) considering four factors according to the

procedure explained in section 5.4.4..

Step 7: Calculate the weight of du-paths by using WMS and two more factors according to the

procedure explained in section 5.4.5.

Step 8: Make a sorted list du paths according to the weight of du-path (WDU) thus calculated

Step 9: Make a set of prioritized test cases corresponding to sorted du-path list.

End

Figure 5.14: Process of CSWTCP

5.4.2 Preparing a VDG

In this section the procedure for preparing a VDG has been explained. The proposed

algorithm works on the statements of a program and finds the assignment statements.

After this it looks for the variables and makes nodes correspondingly. The proposed

algorithm for making VDG is shown in Figure 5.15.

Figure 5.15: Algorithm for making VDG

Begin

Step1. Scan the modified statements where assignment is being used.

Step2. Go to first assignment statement.

Step3. Make a node for the variable on the left side.

Step4. Note down the variables on the right side of the statement

Step5. Make nodes for these variables as children of the parent node made in step 3

Step6. Go to next assignment statement.

Step7. Repeat step 3-6.

End

143

The following sample program exemplifies the above algorithms. The VDG

corresponding to code shown in Figure 5.16 is shown in Figure 5.17.

 Figure 5.16: Code for Sample program

 Figure 5.17: VDG for sample program

5.4.3 Calculation of the Weight of a Node in VDG

To calculate the weight of a node in VDG, two types of variables in VDG are taken

into consideration as given below:

(i) Directly Changed Variables: Variables which are at most one edge away

from the changed variable node.

(ii) Affected Variables: Variables which are more than one edge away from the

changed variable node.

The proposed algorithm for calculating the weight of node in VDG is shown in Figure

5.18.

 k

 z

 x y

void main()

{

int x,y,z,k;

x = 5;

y = 2;

z = x + y;

k = z * 2 ;

printf(“Value of k is = %d”, k);

}

144

 Figure 5.18: Algorithm for assigning the weight of nodes in VDG

The weights assigned to the different nodes using algorithm (See Figure 5.18) for the

VDG shown in Figure 5.17 are shown in Figure 5.19 and also the assigned values are

shown in Table 5.22.

Figure 5.19: VDG with assigned weights to nodes for the sample program

Table 5.22: Weight assigned to the different nodes of VDG of Figure 5.17
Variable Name Status in VDG Node weight in VDG

X Directly changed variables 1

Y Directly changed variables 1

Z Affected variables 0.5+0.5=1.0

K Affected variables 0.25+0.25=0.5

5.4.4 Calculating the Weight of Modified Statement (WMS)

To calculate the weight of modified statement (WMS) the following four factors are

proposed.

1. Control structure present in the statement

2. Number of Boolean conditions present in the statement

3. Nesting level of statement

4. Nesting type of the statement

Begin

Step 1. Note down the modified variables.

Step 2. Put the weight 1 (one) for directly changed variables in the VDG.

Step3. Put the weight half of its immediate parent node at each above level from the directly

changed variables.

Step 4. If a node has more than one child then add up the weight because of all these nodes.

Step 5. Repeat steps 3 and 4 till the weight is assigned to all the nodes in the VDG.

End

k

z

x y

0.5

1.0

1.0 1.0

145

The procedure for calculating WMS considering all above mentioned factors is

explained below:

 Weight of control structure (WC): The control structure present in the

statement is assigned a weight according to the Table 5.23.

Table 5.23: Proposed control structure weights

Sr. No. Control structure Weight

1 IF-THEN-ELSE 1

2 SWITCH-CASE 0.5

3 WHILE-DO 0.1

4 DO-WHILE 0.11

5 RECURSION 0.01

6 NO CONTROL

STRUCTURE
_

 Boolean conditions weight (NB): NB depends upon the number of Boolean

conditions present in the statement where variable is being used. So the

weight assigned is equal to the number of boolean conditions present in the

statement i.e., If n number of boolean conditions are present, then weight

assigned is n.

 Nesting level weight (NLW): NLW depends upon the nesting level of

statement in structure of program. Its value is assigned as 10
-n+1

 where „n‟ is

the nesting level of the statement.

 Nesting type weight (WNLT): WNLT depends upon the nesting type of the

statement where variable is being used program. Its value is assigned as per

weight given in Table 5.24.

Table 5.24: Proposed nesting type weight

Sr. No. Nesting level type Weight

1 Loop under loop 0.5

2 condition statement under loop 1.0

3 loop under conditional statement 1.5

4 condition statement under condition statement 2.0

5 c-use statement under loop 2.5

6 c-use statement under main /No nesting 3.0

146

The total weight (WT) of all the four factors considered above is calculated using

Formula 5.2.

 WT = WC*NB*NLW*WNLT -------------------- (5.2)

Weight of Modified statement (WMS) is calculated according using Formula 5.3.

 WMS = C*e
-WT

 ---------------------- (5.3)

Here C is a constant, its value is taken as 10.

5.4.5 Calculating the Weight of du Paths (WDU)

Weight of du-paths (WDU) depends upon two more following factors besides

WMS. These proposed factors are:

 P-use statements in du path

 Directly changed and Affected Variables in VDG

The criteria for assigning weight to these two actors for finally calculating the weight

of du-path is explained below:

 P-use statements weight (WPU): WPU depends upon the no. of p-use

statements present in the du path. Its value is taken as equal to no. of p-use

statements present in the du-path.

 Directly changed and Affected Variables Weights in VDG (WV): WV is

calculated according to the algorithm (See Figure 5.18).

Considering all these factors and the weights assigned to these factors, the final

weight of a du-path is calculated by using Formula 5.4 given below:

 WDU = WMS + WPU + WV--------------------------- (5.4)

147

Thus du-paths on the same priority level have been considered for prioritization based

on control structure weights and their corresponding complexity.

5.4.6 Evaluation & Analysis of CSWTCP approach

For analyzing this proposed approach the case study discussed section 5.3.1.3 has

been taken. A tool is implemented in PHP language. All the values and

implementations shown in this section for this case study have been taken with the

help of this tool.

The given case study is modified and the changes with their line numbers in the

modified case study are as follows:

16 t_sal=0;

26 t_sal= t_sal+sal1+sal2+sal3;

60 t_d=0;

77 t_d=t_d+d1+d2;

First of all VDG for the program considering changed variable is created as shown in

Figure 5.20.

Figure 5.20: VDG for modified program

Then the nodes in this VDG are assigned weights according to the algorithm (See

Figure 5.18) and the weights assigned are shown in Figure 5.21 and Table 5.25.

148

Fig. 5.21: VDG for modified program with assigned weights of nodes

 Table 5.25: Directly changed variables (DCV) & affected variables (AV) and their node weights in

VDG
Variable

Name

Status of variable

in VDG

Node weight in VDG

t_sal DCV 1

t_d DCV 1

Bal AV 0.5

net_t_sal AV 0.25+0.5=0.75

Gross AV 0.125+0.25=0.375

The list of du paths of the changed and affected variables shown in VDG (see Figure

5.20) is prepared as shown in Table 5.26.

Table 5.26: List of du paths of DCV & AV

Variable name du-path

Bal 59-60

59-80

Gross 102-103

102-104

net_t_sal 3-81

3-102

80-81

80-102

t_d 61-78

61-79

61-80

78-78

78-79

78-80

t_sal 17-27

17-28

17-59

27-27

27-28

27-59

149

The WT for these du paths is calculated considering four factors by using Formula

5.2. The values of these four factors and WT is shown in Table 5.27.

Table 5.27: Weights of different factors and WT for du paths

Var

name

Du

path

WC NB NLW WNLT Total

weight(WT)

Bal 59-60 - - 1 - 1

Bal 59-80 - - 1 - 1

Gross 102-103 - - 1 - 1

Gross 102-104 - - 1 - 1

net_t_sal 3-81 - - 1 - 1

net_t_sal 3-102 - - 1 - 1

net_t_sal 80-81 - - 1 - 1

net_t_sal 80-102 - - 1 - 1

t_d 61-78 - - 1 - 1

t_d 61-79 - - 1 - 1

t_d 61-80 - - 1 - 1

t_d 78-78 - - 1 - 1

t_d 78-79 - - 1 - 1

t_d 78-80 - - 1 - 1

t_sal 17-27 - - 1 - 1

t_sal 17-28 - - 1 - 1

t_sal 17-59 - - 1 - 1

t_sal 27-27 - - 1 - 1

t_sal 27-28 - - 1 - 1

t_sal 27-59 - - 1 - 1

The WMS for the modified statements is calculated using WT. Table 5.28 shows the

values for the WMS calculated using values of WT for different du-paths using

Formula 5.3.

 Table 5.28: Calculated WMS Values using WT value
Var

name

Du

path

Total

weight(WT)

C =10 e
-wt

e=2.71828

WMS

bal 59-60 1 10 0.3678 3.67

bal 59-80 1 10 0.3678 3.67

gross 102-103 1 10 0.3678 3.67

gross 102-104 1 10 0.3678 3.67

net_t_sal 3-81 1 10 0.3678 3.67

net_t_sal 3-102 1 10 0.3678 3.67

net_t_sal 80-81 1 10 0.3678 3.67

net_t_sal 80-102 1 10 0.3678 3.67

t_d 61-78 1 10 0.3678 3.67

t_d 61-79 1 10 0.3678 3.67

t_d 61-80 1 10 0.3678 3.67

t_d 78-78 1 10 0.3678 3.67

t_d 78-79 1 10 0.3678 3.67

t_d 78-80 1 10 0.3678 3.67

t_sal 17-27 1 10 0.3678 3.67

t_sal 17-28 1 10 0.3678 3.67

t_sal 17-59 1 10 0.3678 3.67

t_sal 27-27 1 10 0.3678 3.67

t_sal 27-28 1 10 0.3678 3.67

t_sal 27-59 1 10 0.3678 3.67

150

Then WDU(weight of du-path) is calculated and du paths are arranged according to

these weights and test cases are arranged in test suite according to this sorted list of

weights of du paths.

Table 5.29 shows the WDU (weight of du-path) values, calculated using values of

WMS, WPU and WV by using the Formula 5.4.

Table 5.29: WDU Values for various du paths

Var

name

Du

path

WMS WPU WV WDU

bal 59-60 3.67 0 0.5 4.17

bal 59-80 3.67 2 0.5 6.17

gross 102-103 3.67 0 0.375 4.05

gross 102-104 3.67 0 0.375 4.05

net_t_sal 3-81 3.67 8 0.75 12.42

net_t_sal 3-102 3.67 11 0.75 15.42

net_t_sal 80-81 3.67 0 0.75 4.42

net_t_sal 80-102 3.67 3 0.75 7.42

t_d 61-78 3.67 2 1 6.67

t_d 61-79 3.67 2 1 6.67

t_d 61-80 3.67 2 1 6.67

t_d 78-78 3.67 0 1 4.67

t_d 78-79 3.67 0 1 4.67

t_d 78-80 3.67 0 1 4.67

t_sal 17-27 3.67 1 1 5.67

t_sal 17-28 3.67 1 1 5.67

t_sal 17-59 3.67 5 1 9.67

t_sal 27-27 3.67 0 1 4.67

t_sal 27-28 3.67 0 1 4.67

t_sal 27-59 3.67 4 1 8.67

Now a sorted list of du paths is prepared by arranging du paths in the descending

values of WDU for them as shown in Table 5.30.

Table 5.30: List of du paths arranged in descending values of WDU

Variable

used

Du

path

WDU Test Cases

Covered

net_t_sal 3-102 15.42 1

net_t_sal 3-81 12.42 1,6

t_sal 17-59 9.67 3,4,5

t_sal 27-59 8.67 3,4,5

net_t_sal 80-102 7.42 1,6

t_d 61-78 6.67 1,6

t_d 61-79 6.67 1,6
t_d 61-80 6.67 1,6

Bal 59-80 6.17 1,6

t_sal 17-27 5.67 3,4,5

t_sal 17-28 5.67 3,4,5

151

t_sal 27-27 4.67 3,4,5

t-sal 27-28 4.67 3,4,5

t_d 78-78 4.67 1,6

t_d 78-79 4.67 1,6

t_d 78-80 4.67 1,6

net_t_sal 80-81 4.42 1,6

Bal 59-60 4.17 1,6

Gross 102-103 4.05 1

Gross 102-104 4.05 1

Since some du paths are covered by multiple test cases ,the final weight of test case

after the modification has been taken place in the program is obtained by adding the

corresponding weight of du paths and are shown in Table 5.31.

Table 5.31: Test cases and their weights

Test Cases Total Weight

TC1 92.14

TC3 39.02

TC4 39.02

TC5 39.02

TC6 68.62

On the basis of the weights shown in Table 5.31, we can prioritize the test cases as,

TC1,TC6,TC3,TC4,TC5. Since TC2 is not covering any modified path, so in the test

suite it is placed at the least priority. Hence the final prioritized test suite is.

{TC1, TC6, TC3, TC4, TC5, TC2}

To measure the effectiveness of the proposed CSWTCP approach, the faults were

taken in the sample program [80]. We have total 10 faults is this program in line

numbers 22,30,42,46,61,72,74,81,85,92 which are given fault Id‟s as

F1,F2,F3,F4,F5,F6,F7,F8,F9,F10 respectively, shown in Table 5.32.

Table 5.32: Faults and Test Cases

Fault

ID

Fault detected by

TC1 TC2 TC3 TC4 TC5 TC6

F1 * - * * * *

F2 - - - - - *

F3 * - - - * *

F4 - - - * - -

F5 - - - - * -

F6 * - - - - *

F7 * - - - - *

F8 - - - - - *

F9 * - - - - -

F10 * - - - - -

Random (unprioritized) test suite is {TC1, TC2, TC3, TC4, TC5, TC6}

152

APFD for random (unprioritized) test suite:

APFD = 1- 1+6+1+4+5+1+1+6 +1 +1 + 1

 6*10 2*6

 = 63.30%.

The prioritized test suite is: {TC1, TC6, TC3, TC4, TC5, TC2}

Now the APFD value for the prioritized test suite is:

APFD = 1- 1+2+1+4+5+1+1+2+1+1 + 1

 6*10 2*6

 =76.70%.

From the above calculations it is clear that the proposed approach gives better APFD

value as shown in Figure 5.22.

Figure 5.22 Comparison of APFD values of Random and CSWTCP Approach

5.5 CONCLUSION

In this chapter three techniques for regression test case prioritization has been

discussed. The first technique is based on module coupling information among the

modules. The proposed technique helps in finding the badly affected module due to

change in a module. The second technique prioritizes the test cases while performing

regression testing using data flow testing concepts. The third approach is control

structure weighted test case prioritization technique which is the extension of the

second approach. The proposed approaches have been applied on certain case studies

and the results have been validated.

153

Chapter VI

CONCLUSIONS AND FUTURE SCOPE

6.1 CONCLUSIONS

This chapter presents the achievements of this research and lists the scope of future

work. The outcome of this research contributed in designing of various techniques in

the area of test case prioritization and development of various tools for the proposed

techniques have been designed. This research will help the software testers in

minimizing the efforts and cost incurred in software testing process.

6.2 BENIFITS OF THE PROPOSED WORK

 Identification of the Badly Affected Module

The work proposed in this thesis will help the testes in finding the badly

affected module due to change in one module which results in reducing the

efforts and time incurred in software testing process. Once the badly affected

module has been identified, the test cases for this particular module can be

prioritized.

 Managing Risks in Software Projects through Test Case Prioritization

The ultimate goal of the test case prioritization process is the early fault

detection. The identification of critical bugs at early stages of development

process helps in managing the risks associated with a software project.

 Tools for Test Case Prioritization

To help the software testers during the process of software testing, some tools

for the proposed test case prioritization techniques have been designed. These

tools will help the testers in prioritizing the test cases for system testing and at

regression test levels.

154

6.3 FUTURE SCOPE

The work presented in this thesis can be extended with the following list of possible

future research issues.

 Test Case Prioritization for Object Oriented Software

The present work has been tested with procedural programs. The next step

may be to identify the factors in Object oriented paradigm so that the proposed

test case prioritization techniques can be extended to object oriented software.

 Testing the Proposed Techniques for the large projects

The proposed test case prioritization techniques have been tested on small

projects. It would be better if these are applied on large scale industry projects.

 Acceptance Test Case Prioritization

In this thesis the test case prioritization process has been done at unit, system

and regression testing levels. But there may be large number of tests cases

while performing acceptance testing. The future work may be related to

analyze the factors that must be considered for acceptance testing and thereby

helps in prioritizing the test cases in acceptance testing.

167

APPENDIX-A

 Source Code of Employee Record Case Study

1. /*

2. *C program to creat employee file

3. */

4. #include<stdio.h>

5. #include<stdlib.h>

6. #include<errno.h>

7. #include<string.h>

8. .

9. struct emprec

10. {

11. Int empid;

12. char *name;

13. };

14. typedef struct emprec emp;

15. .

16. void insert (char *a);

17. void display (char *a);

18. void update (char *a);

19. int count;

20. void main(int argc, char *argv[]);

21. {

22. int choice;

23. .

24. while(1)

25. {

26. printf(“enter the choice\n”);

27. printf(“1. Insert a new record\n2. Display the record”);

28. printf(“3. Update a record”);

29. scanf(“%d”,&choice);

30. switch(choice)

31. {

168

32. case 1:

33. insert(argv[1]);

34. break;

35. case 2:

36. display(argv[1]);

37. break;

38. case 3:

39. update(argv[1]);

40. break;

41. case 4:

42. exit(0);

43. default :

44. printf(“enter the correct choice\n”);

45. }

46. }

47. }

48. .

49. /* to insert a new record into the file*/

50. void insert (char *a)

51. {

52. FILE *fp1;

53. emp *temp1=(emp*)malloc(size of(emp));

54. temp1->name=(char*)malloc(200*size of (char));

55. .

56. fp1=fopen(a,”a+”);

57. if(fp1==NULL);

58. perror(“”);

59. else

60. {

61. printf(“enter the emplyeee id\n”);

62. scanf(“%d”,&temp1->empid);

63. fwrite(“&temp1->empid,sizeof(int),1,fp1”);

64. printf(“enter employee name\n”);

65. scanf(“%[^\n]s”,temp1->name);

169

66. fwrite(temp1->name,200,1,fp1);

67. count++;

68. }

69. fclose(fp1);

70. free(temp1);

71. free(temp1->name);

72. }

73. .

74. /*to display the records

75. void diplay(char *a)

76. {

77. FILE fp1;

78. char ch;

79. int var=count;

80. emp *temp=(emp*)malloc(sizeof(emp));

81. temp->name=(char *)malloc(200*sizeof(char));

82. .

83. fp1=fopen(a,”r”);

84. if(count==0)

85. {

86. printf(“no record to display\n”);

87. return;

88. }

89. if(fp1==NULL)

90. perror(“ ”);

91. else

92. {

93. while(var)

94. {

95. fread(&temp->empid, sizeof(int),1,fp1);

96. printf(“%d”temp->empid);

97. fread(temp->name,200,1,fp1);

98. printf(“%s\n”,temp->name);

99. var--;

170

100. }

101. }

102. fclose(fp1);

103. free(temp);

104. free(temp->name);

105. }

106. .

107. /*to update the given record*/

108. void update(char *a)

109. {

110. FILE *fp1;

111. char ch, name[200];

112. int var=count,id,c;

113. emp *temp=(emp *)malloc(sizeof (emp));

114. temp->name= (char *)malloc(200*sizeof(char));

115. .

116. fp1=fopen(a,”r++”);

117. if(fp1==NULL)

118. perror(“ ”);

119. else

120. {

121. while(var)

122. {

123. fread(&temp->empid, sizeof(int),1,fp1);

124. printf(“%d”,temp->empid);

125. fread(temp->name,200,1,fp1);

126. printf(“%s\n”,temp->name);

127. var--;

128. }

129. printf(“enter which employee id to be updated\n”);

130. scanf(“%d”,&id);

131. fseek(fp1,0,0);

132. var=count;

133. while(var)

171

134. {

135. fread(&temp->empid, sizeof(int),1,fp1);

136. if(id==temp->empid)

137. {

138. printf(“enter employee name for update”);

139. scanf(“%[^\n]s”,name);

140. c=fwrite(name,200,1,fp1)

141. break;

142. }

143. fread(temp->name,200,1 ,fp1);

144. var--;

145. }

146. if(c==1);

147. pritnf(“update successful\n”);

148. else

149. printf(“update unsuccessfull\n”);

150. fclose(fp1);

151. free(temp);

152. free(temp->name);

153. }

154. }

172

173

APPENDIX-B

Source Code of Saving Module

float savings()

1 char saving_type[20];

2 float amount,total=0;

3 int flag1=1,flag2=1,i;

4 char sav_ch='y';

5 while((sav_ch=='y')||(sav_ch=='Y'))

6 {

7 while(flag1==1)

8 {

9 printf("\nEnter Saving type\t:");

10 gets(saving_type);

11 for(i=0;i<strlen(saving_type);i++)

12 {

13 if(((toascii(saving_type[i])>= 65) && (toascii(saving_type[i]) <= 122)) ||

 (toascii(saving_type[i]) == 32))

14 {

15 flag1=0;

16 }

17 else

18 {

174

19 printf("\nSaving type can contain only charcter Error at

position number %d",i);

20 flag1=1;

21 break;

22 }

23 }

24 if((strlen(saving_type)<3)||(strlen(saving_type)>20))

25 {

26 printf("\nPlease enter between 3 to 20 characters ");

27 flag1=1;

28 }

29 }

30 while(flag2==1)

31 {

32 printf("\nEnter Amount\t:");

33 scanf("%f",&amount);

34 if(amount>0)

35 {

36 flag2=0;

37 }

38 else

39 {

40 printf("\nAmount cannot be less than or equal to 0");

175

41 flag2=1;

42 }

43 }

44 printf("\n\nPress any key to proceed");

45 getch();

46 clrscr();

47 patt("SAVING Details");

48 printf("\nSAVING TYPE\t:%s",saving_type);

49 printf("\nAMOUNT\t\t\t:%f",amount);

50 total=total+amount;

51 printf("\nDo you want to enter more(y for yes)\t:");

52 sav_ch=getche();

53 flag1=1;

54 flag2=1;

55 }

56 printf("\nTotal\t\t:%f",total);

57 return(total);

58}

176

177

APPENDIX-C

Source code of infix to postfix conversion

#include <stdio.h>

#include <stdlib.h>

Int top = 10;

//create a structure called node

1. struct node

2. {

3. char ch;

4. struct node *next;

5. struct node *prev;

6. } *stack[11];

//type define the structure

typedef struct node node;

 //Create a function for push

1. void push(node *str)

2. {

3. if (top <= 0)

4. printf("Stack is Full ");

5. else

6. {

7. stack[top] = str;

8. top--;

9. }

10. }

 //create a function called pop which return a node pointer

1. node *pop()

178

2. {

3. node *exp;

4. if (top >= 10)

a. printf("Stack is Empty ");

5. else

b. exp = stack[++top];

6. return exp;

7. }

// The convert function takes the expression as the input and converts it

1. void convert(char exp[])

2. {

3. node *op1, *op2;

4. node *temp;

5. int i;

6. for (i=0;exp[i]!='\0';i++)

7. if (exp[i] >= 'a'&& exp[i] <= 'z'|| exp[i] >= 'A' && exp[i] <= 'Z')

8. {

9. temp = (node*)malloc(sizeof(node));

10. temp->ch = exp[i];

11. temp->next = NULL;

12. temp->prev = NULL;

13. push(temp);

14. }

15. else if (exp[i] == '+' || exp[i] == '-' || exp[i] == '*' || exp[i] == '/' ||

16. exp[i] == '^')

17. {

179

18. op1 = pop();

19. op2 = pop();

20. temp = (node*)malloc(sizeof(node));

21. temp->ch = exp[i];

22. temp->next = op1;

23. temp->prev = op2;

24. push(temp);

25. }

26. }

 // The display function displays the expression

1. void display(node *temp)

2. {

3. if (temp != NULL)

4. {

5. display(temp->prev);

6. printf("%c", temp->ch);

7. display(temp->next);

8. }

9. }

//Finally the main function

1. void main()

2. {

3. char exp[50];

4. clrscr();

5. printf("Enter the postfix expression :");

6. scanf("%s", exp);

180

7. convert(exp);

8. printf("\nThe Equivalant Infix expression is:");

9. display(pop());

10. printf("\n\n");

11. getch();

12. }

181

APPENDIX-D

Source code of Case Study Software

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#include<string.h>

#include<ctype.h>

//Structure Declaration

struct emp

{

int empnum;

char empname[20];

float salary;

};

typedef struct emp ER;

ER e1;

//Global variable declaration

int sum=1;

float pro_inc;

void main()

{

clrscr();

//Prototype declaration

int addnum(int,int);

ER record_change(ER);

void work(int);

void sum_len_strings();

182

void relevant1(int,int);

//variable declaration

int n1,n2,result,flag,len,n,a;

//example of Data Coupling

printf("\n Enter two numbers(integers)");

scanf("%d %d",&n1,&n2);

result=addnum(n1,n2);

printf("Modified value of %d and %d = %d",n1,n2,result);

//example of Stamp Coupling

printf("\n ENTER THE EMPLOYEE INFORMAION:\n\n");

printf("Enter Employee number(between 1-50)\n");

scanf("%d",&e1.empnum);

printf("Enter Employee name(atleast 5 character)\n");

scanf("%s",&e1.empname);

printf("Enter Employee salary(five figures)\n");

scanf("%f",&e1.salary);

printf("\n\nEmployee information before change is:\n");

printf("\nEMPLOYEE NUMBER = %d",e1.empnum);

len=strlen(e1.empname);

if(len>=5)

printf("\nEMPLOYEE NAME = %s",e1.empname);

else

printf("\nEMPLOYEE NAME = Defaulter");

printf("\nEMPLOYEE SALARY = %7.2f",e1.salary);

e1=record_change(e1);

printf("\n\nEmployee information after change is:\n");

printf("\n(NEW) EMPLOYEE NUMBER = %d\t",e1.empnum);

183

printf("\n(NEW) EMPLOYEE SALARY = %7.2f",e1.salary);

//example of control coupling

printf("\n Enter flag(between 1-4) value for the employee");

scanf("%d",&flag);

work(flag);

//example of common coupling

sum_len_strings();

//example of data coupling

printf("\n Enter number of Entries in a match=");

scanf("%d",&n);

printf("\n Enter interested candidates=");

scanf("%d",&a);

relevant1(n,a);

getch();

}

//Module 2

int addnum(int val1,int val2)

{

 sum=val1+val2+sum;

 return(sum);

}

//Module 3

ER record_change(ER e1)

{

ER e2;

if(e1.empnum<=50)

e2.empnum=1000+e1.empnum;

184

else

e2.empnum=0;

if(e1.salary>=10000)

e2.salary=10*e1.salary;

else

e2.salary=0;

return(e2);

}

//Module 4

void work(int f)

{

void rules_for_job();

void budget_company();

void producers_details(float);

void items_purchased();

switch(f)

{

case 1:printf("\n HR department");

 rules_for_job();

 break;

case 2:printf("\n FINANCE department");

 budget_company();

 break;

case 3:printf("\n PRODUCTION department");

 pro_inc=2.35;

 producers_details(pro_inc);

 break;

185

case 4:printf("\n PURCHASE department");

 items_purchased();

 break;

default: printf("\n you havent entered the correct value");

}

}

//Module 7

void rules_for_job()

{

printf("\n Rule1: Qualification Graduade");

printf("\n Rule2: Computer knowledge");

printf("\n Rule3: Percentage >75%");

}

//Module 8

void budget_company()

{

float total;

float salaries,infra,maint;

printf("\n Enter cost of salaries,infrastructure,maintenance");

scanf("%f %f %f",&salaries,&infra,&maint);

if(salaries>=50000)

{

total=salaries+infra+maint;

printf("\nCost=%7.2f",total);

}

else

{

186

total=0;

printf("\nCost=%7.2f",total);

}

}

//Module 9

void producers_details(float pro_inc)

{

printf("\n producers are 200 in number");

printf("\n producers are from NCR region");

printf("\n for a successful producer 10 years experience is required");

printf("\n %f lakhs",pro_inc);

}

//Module 10

void items_purchased()

{

int no;

float tot,cost;

printf("\n enter no. of item to be purchased");

scanf("%d",&no);

printf("\n enter cost of each item");

scanf("%f",&cost);

if(no>=1)

{

tot=no*cost;

printf("\nTotal money spent=%7.2f",tot);

}

else

187

{

tot=0*cost;

printf("\nTotal money spent=%7.2f",tot);

}

}

//Module 5

void sum_len_strings()

{

void producers_details(float);

char firstn[10];

char lastn[10];

int l1,l2,i,ch,flag;

printf("\n Enter first name of the employee(Only English Alphbets)");

scanf("%s",&firstn);

printf("\n Enter last name of the employee(Only English Alphabets)");

scanf("%s",&lastn);

l1=strlen(firstn);

l2=strlen(lastn);

for(i=0;i<=l1-1;i++)

{

ch=isalpha(firstn[i]);

 if(ch!=0)

 flag=1;

 else

 flag=0;

}

188

for(i=0;i<=l2-1;i++)

{

ch=isalpha(lastn[i]);

 if(ch!=0)

 flag=1;

 else

 flag=0;

}

if(flag==1)

{

sum=l1+l2+sum;

printf("Length of FULL NAME = %d",sum);

producers_details(pro_inc);

}

else

printf("\n You havent entered first name and last name correctly");

}

//Module 6

void relevant1(int n,int a)

{

int s,b,i,x;

if(a>=0 && n>0)

{

x=1;

b=a+x;

a=a+1;

189

i=1;

s=0;

while(i<=n)

{

 if(b>0)

 {

 if(a>1)

 {

 x=2;

 }

 }

 s+=x;

 i++;

}

printf("\nVALUE =%d",s);

}

else

printf("\n not possible");

}

190

191

APPENDIX-E

A research survey was done while working on this thesis. The Questionnaire was

prepared and distributed to a group of researchers, students, faculty members and

software developers. In total, we received 120 responses. The details regarding the

Questionnaire prepared and its result analysis are given here.

 Survey for Ph.D. work

While doing structured programming there are various factors which have a great

potential of introducing the errors in the program. I have pointed out the following

factors which are given in the table below. You are kindly requested to spare your

valuable time for providing the weights to these factors on a scale from 0 to 1. Here

weights represent the potential of a factor to introduce error in the program while

performing structured programming.

Sr.

No.

Factors

0≤Weight< 0.2 0.2≤Weight <0.5 0.5≤Weight<0.8 0.8≤Weight<1

1. Line of Code

2. Type Casting

3 Predicate

Statement

4. File Access

5. Dynamic memory

Allocation

6. Number of Input

Variable

7. Number of Output

Variable

8. Assignment

Statement

The information regarding Name, Designation and Organization is Optional.

Name : _____________________

Designation: _______________________

Organization: _______________________

192

The graph represents the result analysis of the survey conducted.

0

20

40

60

80

100

120

f1 f2 f3 f4 f5 f6 f7 f8

N
o

.o
f

re
sp

o
n

se
s

Factors

Range 1

Range 2

Range 3

Range 4

193

BRIEF PROFILE OF RESEARCH SCHOLAR

Harish Kumar is perusing his Ph.D. in Computer Engineering from YMCA University

of Science & Technology, Faridabad. He has done his M.Tech. (CE) from M.D.U.

Rohtak in year 2006, B.Tech. (CE) from M.D.U. Rohtak in the year 2004. He has 12

years experience in teaching various computer subjects. Presently he is working as

Assistant Professor in Department of Computer Engineering in YMCA University of

Science & Technology, Faridabad. His interests include Computer Programming,

Software Project Management, Software Engineering, IT Management and Software

Testing. He has published 14 research papers in various, International Journals and

International Conferences.

194

155

REFERENCES

[1] Aditya P. Mathur, “Foundation of Software Testing, Pearson Education,” 2nd

Edition, 2008.

[2] Prabu, M., Narasimhan, D., Raghuram, S., “An Effective Tool for Optimizing

the Number of Test Paths in Data Flow Testing for Anomaly Detection,”

Computational Intelligence, Cyber Security and Computational Models, In

proceedings of ICC3 2015, pp. 505- 518, Singapore.

[3] Akira K.Onoma, Wei-Tek Tsai, Mustafa Poonawal and Hiroshi Suganuma,

“Regression Testing in an Industrial Environment,” Communication of the

ACM, Vol. 41, No. 5, 1998, pp. 81-86.

[4] Alexy G. Malishevsky, Gregg Rothermal and Sebastian Elbum, “Modelling

the cost-benefits tradeoffs for regression testing techniques,” in Proceedings of

the International Conference on Software Maintenance, IEEE Computer

Society, Washington, DC., USA. , 2002, pp. 204-214.

[5] Cagatay Catal and Deepti Mishra, “Test case prioritization: a systematic

mapping study,” Software Quality Journal, Vol. 21, No. 3, September 2013,

pp.445-478.

[6] Andrea Hermann, Maya Daneva, “Requirement Prioritization based on Benefit

and Cost Prediction: An Agenda of Future Research,” In 16th IEEE

International Requirement Engineering Conference, 2008.

[7] Anna Börjesson, Lena Holmberg, Helena Holmström, Agneta Nilsson, “Use of

Appreciative Inquiry in Successful Process Improvement,” In Organizational

Dynamics of Technology-Based Innovation: Diversifying the Research

Agenda, Vol. 235 Series IFIP International Federation for Information

Processing, 2007, pp. 181-196.

[8] Antonio Mauricio et. al., “A systematic Review of Software Requirements

Selection and Prioritization Using SBSE Approaches,” Search Based Software

Engineering: Lecture Notes in Computer Science, Vol. 8084, 2014, pp. 188-

208.

[9] K.K. Aggrawal, Yogesh Singh, and A. Kaur, “Code coverage based technique

for prioritizing test cases for regression testing,” SIGSOFT Software Engg.

Notes, Vol. 29, No. 5, September 2004, pp. 1-4.

156

[10] Muthusamy Boopati,Ramlingam Sujata,Chandran Senthil Kr & Srinivasan

Narasimman, "Quantification of S/w Code Coverage Using Artificial Bee

Colony Optimization based on Markov Approach", Arabian Journal of

Science and Engg.(Springer)., vol. 42, Issue no. 8, 2017, pp. 3503-3519.

[11] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani,

“Effective Regression Test Case Selection: A Systematic Literature

Review,” ACM Comput. Surv. Vol. 50, No. 2, Article 29 May 2017, pp. 1-32.

[12] Avesani, P, Bazzanella, C, Perini, A & Susi, A 2005, „Facing scalability

issues in requirements prioritization with machine learning techniques‟, In

Proceedings of the 13th IEEE International Conference on Requirements

Engineering, 2005 pp. 297-305.

[13] B. Korel, J.Laski, “Algorithmic software fault localization,” In Annual

Hawaii International Conference on System Sciences, pp. 246-252, 1991.

[14] Berander, Patrik , Andrews, Anneliese, “Requirements Prioritization,”

Engineering and Managing Software Requirements, 2005, pp. 69–94.

[15] Bertolino and E. Marchetti, “Software testing,” (chapt.5).In P. Bourque and

R. Dupuis: editors, Guide to Software Engineering, Body of Knowledge, IEEE

Computer Society, 2004.

[16] C. Simons, E.C. Paraiso, “Regression test cases prioritization using Failure

Pursuit Sampling,” In 10th International Conference on Intelligent Systems

Design and Applications (ISDA), IEEE, 2010,pp. 923 - 928 .

[17] Camila Loiola Brito Maia, Thiago do Nascimento Ferreira, Fabrício Gomes

de, “An evolutionary approach to software test allocation,” Computational

Intelligence and Information Technology, Vol. 250, No. 1, 2013,pp. 637-641.

[18] Changyu Dong, NarankerDulay, “Shinren: Non-monotonic Trust

Management for Distributed Systems,” Trust Management IV, Vol. 321 of the

series IFIP Advances in Information and Communication Technology, pp 125-

140.

[19] Claudio Bartolini, Cesare Stefanelli, Mauro Tortonesi, “SYMIAN: A

Simulation Tool for the Optimization of the IT Incident Management

Process,” Managing Large-Scale Service Deployment, Vol. 5273, 2009,pp. 83-

94.

[20] Claudio Bartolini, Mathias Sallé, “Business Driven Prioritization of Service

Incidents,” Utility Computing, Vol. 3278, 2004,pp. 64-75.

157

[21] Cristopz Malz & Peter Gohner, “Agent Based Test Case Prioritization,” in

Fourth International Conference on Software Testing, Verification &

Validation Workshops, 2011, pp 149-152.

[22] David LB Schwappach, “The equivalence of numbers: The social value of

avoiding health decline: An experimental web-based study,” BMC Medical

Informatics and Decision Making, 2002, pp 1-12.

[23] Dennis Jeffrey, Neelam Gupta, “Test Case Prioritization using Relevant

Slices,” in Proceedings of 30th Annual International Computer software and

applications conference (COMPSAC ’06), Vol. 1, 2006, pp. 411-420.

[24] Django Armstrong et. al., “Contextualization: dynamic configuration of

virtual machines,” Journal of Cloud Computing, First Online, 2015, pp 1-15.

[25] Duggal, G & Suri, B, “Understanding regression testing techniques,” In

Proceedings of the 2nd National Conference on Challenges and

Opportunities‟, COIT,2008.

[26] Dominique Mirandolle, Inge van de Weerd, SjaakBrinkkemper, “Incremental

Method Engineering for Process Improvement - A Case Study,” Engineering

Methods in the Service-Oriented Context, Volume 351 of the series IFIP

Advances in Information and Communication Technology,2011, pp 4-18.

[27] Emmanuele Zambon, SandroEtalle, Roel J. Wieringa, Pieter Hartel, “Model-

based qualitative risk assessment for availability of IT infrastructures,”

Software & Systems Modelling, Vol. 10, No. 4, 2011, pp. 553-580.

[28] Engstro m., E. Runeson, “Improving Regression Testing transparency and

Efficiency with History based Prioritization,” An Industrial Case Study

Software testing Verification and Validation, in IEEE fourth International

Conference, IEEE, 2011, pp376-379.

[29] Nancy E. Parks, “Testing & quantifying ERP usability,” In Proceedings of

the 1st Annual conference on Research in information technology (RIIT '12),

ACM, New York, NY, USA, 2012, pp. 31-36.

[30] F.I. Vokolos, P.G. Frankl, “Pythia a regression test selection tool based on

textual differencing,” in 3rd International Conference on Reliability, Quality

and Safety of Software-Intensive Systems, IFIP TC5 WG5.4, Chapman & Hall,

1997, pp. 3–21.

158

[31] Freitas, Jerffeson Teixeira de Souza, “An Ant Colony optimization approach

to the software testing with dependent requirements,” International

Symposium Search based Software Engg, 2011,pp 142-157.

[32] G. Rothermel, et. al., "Prioritizing Test Cases for Regression Testing," IEEE

Trans. Software Eng., vol. 27, no. 10, 2001, pp. 929-948.

[33] G.J. Myers, “The Art of Software Testing,” John Wiley & Sons, 1979.

[34] Goldberg, E., “Genetic Algorithms in Search, Optimization and Machine

learning,” Pearson Publication, 1989.

[35] H. Agarwal, J.R. Horgan, E.W. Krauser, S. London, “Incremental Regression

Testing,” In IEEE International Conference on Software Maintenance, 1993,

pp. 348-357.

[36] H. Srikanth, L. Williams, J. Osborne, “Towards the Prioritization of system

test cases,” Software testing Verification and reliability, Vol. 24, Issue 4,2014,

pp 320-337.

[37] H.Lenng and L.White, “Insights into regression Testing,” In Proceedings of

the International Conference on Software Maintenance, 1989, pp. 60-69.

[38] Hadi Hemmati et. al., “Reducing the cost of Model- Based Testing through

Test case Diversity,” Testing Software and System, Vol. 6435, 2010, pp. 63-

78.

[39] H. Do, S. M. Mirarab, L. Tahvildari, and G. Rothermel, “An empirical study

of the effect of time constraints on the cost-benefits of regression testing,” In

Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of Software Engineering,2008, pp.71–82.

[40] Huang, Y. C. ; Chin-Yu Huang; Jun-Ru Chang; Tsan-Yuan Chen, "Design

and Analysis of Cost-Cognizant Test Case Prioritization Using Genetic

Algorithm with Test History," In Computer Software and Applications

Conference (COMPSAC), 2010 IEEE 34th Annual ,2010, pp.413-418.

[41] Hans Heerkens, “Designing and Accessing a Course on Prioritization and

Importance Assessment in Strategic non routine Requirements in Engineering

Processes,” Requirements Engineering, 2014, First Online, pp. 1-16.

[42] Hartmann, J. and Robson, D.J. , “Approaches to regression testing,” In

Proceedings of the Conference on Software Maintenance - 1988 (IEEE Cat.

No.88CH2615-3). IEEE Computer Society Press, 368-72, 1988.

159

[43] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T., “Experiments on the

effectiveness of dataflow- and control-flow-based test adequacy criteria,” In

ICSE-16. 16th International Conference on Software Engineering (Cat.

No.94CH3409-0). IEEE Computer Society Press, pp. 191-200, 1994.

[44] Harish Kumar & Naresh Chauhan, “A Coupling effect based test case

prioritization technique,” In Computing for sustainable global development,2
nd

international conference on,2015,pp 1341-1345.

[45] Harish Kumar & Naresh Chauhan, “A Hierarchical System Test Case

Prioritization Technique based on Requirements,” In 13th Annual

International Software Testing Conference, 04-05 December 2013, Bangalore

India, 2013.

[46] Harish Kumar & Naresh Chauhan, “A Module Coupling Slice Based Test

case Prioritization Technique”, International Journal of Modern Education

and Computer science(IJMECS), Vol. 7 , No. 7, 2015, pp 8-16.

[47] Harish Kumar & Naresh Chauhan, “A Regression Testing Technique Using

Du-Dc Paths,” YMCAUST IJR (YMCAUST International Journal of

Research), Vol. 3, No. 1, 2015, pp 99-104.

[48] Harish Kumar & Naresh Chauhan, “A Unit – Test Case Prioritization

Technique Based on Source Code Analysis,” International Journal of

Advanced Research in Computer Science and Software Engineering, Vol. 5,

No. 4, 2015.

[49] Harish Kumar & Naresh Chauhan, “HSTCP: A Tool for Hierarchical System

Test Case Prioritization,” International Journal of Knowledge Based Computer

Systems, Vol. 3, No. 1, 2015, pp 8-12.

[50] Harish Kumar & Naresh Chauhan, “Identifying and analyzing the research

challenges in Test case prioritization” International Journal of Computer

Science & Engineering System, Vol. 6, No. 3, 2012, pp. 88-98.

[51] Harish Kumar & Naresh Chauhan, “Test Case Prioritization Technique using

Aggregate Weight of the independent path,” Journal of Computer Science and

Software Engineering, Vol. 1, No. 1, 2015, pp. 8-16.

[52] Harish Kumar & Naresh Chauhan, “A novel approach to test case

prioritization for regression testing”, in International Federation of

Information processing(IFIP) and South-East Asia regional computer

160

confederation(SEARCC), organised by CSI, 2015,BVICAM Delhi.

(Proceedings to be published by Springer).

[53] Hinton, G. E. and Sejnowski, T., “Optimal perceptual inference,” In

Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 1983, pp. 448-453.

[54] Hirsh, H. , “Explanation-based generalization in a logic programming

environment,” In Proceedings of the Tenth International Joint Conference on

Artificial Intelligence (IJCAI-87), Milan, Italy. Morgan Kaufmann, 1987,

pp221-227.

[55] S. Biswas, M. S. Kaiser and S. A. Mamun, "Applying Ant Colony

Optimization in software testing to generate prioritized optimal path and test

data," 2015 International Conference on Electrical Engineering and

Information Communication Technology (ICEEICT),Dhaka,2015,pp.1-6.

[56] Aitor Arrieta,Shuai Wang,Goiuria Sagardui and D. Marijan, A. Gotlieb, S.

Sen, "Test case prioritization for continuous regression testing: An industrial

case study", Proc. 29th IEEE Int. Conf. Softw. Maintenance, pp. 540-543,

2013.

[57] Huaizhong Li, C. Peng Lam, “Using Anti-Ant-like Agents to Generate Test

Threads from the UML Diagrams,” In International Conference on Testing of

Communicating Systems, 2005,pp 69-80.

[58] IEEE Standard 610 (1990) definition of test cases [online].

[59] Joao Felipe et. al., “ Revealing influence of model structure and test profile

on the prioritization of test cases in the context of model based testing,”

Journal of Software Engineering Research and Development, Online First,

2015, pp. 1-28.

[60] Jedlitschka, A.and Pfahl, D., “Reporting Guidelines for Controlled

Experiments in Software Engineering,” In Proceedings of ACM/ IEEE

International Symposium on Empirical Software Engineering, 2005,pp 95-

104.

[61] Juristo, N., Moreno, A.M., Vegas, S., and Solari, M., “In search of what we

experimentally know about unit testing [software testing],” IEEE Software,

Vol. 23, No. 6, 2006,pp72-80.

161

[62] Jos. J. M. Trienekens et. al., “Quality specifications and metrication results

from a case study in a mission critical software domain,” Software Quality

Journal, 2010, Vol. 18, No. 4, pp. 459- 490.

[63] Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria, “Test Case

Prioritization of Configurable Cyber-Physical Systems with Weight-Based

Search Algorithms,” In Proceedings of the Genetic and Evolutionary

Computation Conference 2016 (GECCO '16), Tobias Friedrich (Ed.). ACM,

New York, NY, USA, pp. 1053-1060.

[64] Kampenes Vigdis, B., Dybå, T., Hannay Jo, E., and Sjöberg Dag, I.K., “A

systematic review of effect size in software engineering experiments,”

Information and Software Technology Vol. 49, No. 11, 2007,pp. 1073-1073.

[65] Kakali Chatterjee, et. al., “A Framework for the development of secure

software,” CSI Transactions on ICT, Vol. 1, No. 2, 2013, pp. 143-157.

[66] Burnstein, A. Homyen, R. Grom and C.R. Carlson, “A Model to Assess

Testing Process Maturity,” CROSSTALK 1998, Software Technology Support

Center, Hill Air Force Base, Utah.

[67] Kim, J.-M., Porter, A., and Rothermel, G., “An empirical study of regression

test application frequency. Software Testing, Verification and Reliability,”

Vol. 15, No. 4, 2005,pp. 257-279.

[68] Kim, J.M., A.Porter, “A history based test case prioritization technique for

regression testing in resource constrained environment,” In Proceedings of the

24th International Conference on Software Engineering, 2002, pp. 119-129.

[69] Kitchenham, B.A et. al. , “Systematic literature reviews in software

engineering .A tertiary study,” Information & Software Technology .INFSOF ,

Vol. 52, No. 8, 2010,pp. 792-805.

[70] Leung, H.K.N. and L. White, “A cost model to compare regression test

strategies” In Proceedings Conference on software maintenance, IEEE

Computer Society Press, 1991, pp. 201-208.

[71] Louise Tamres, Introducing Software Testing, Pearson Education, 1st

Edition, 2002.

[72] M. Hutchins, H. Foster, T. Goradia and T. Ostrand, "Experiments on the

Effectiveness of Dataflow- and Control-Flow-Based Test Adequacy Criteria,"

Proc. 16th International Conference of. Software Engg., IEEE, 1994,pp. 191-

200.

162

[73] Lijun Mei, Zhenyu Zhang, W. K. Chan, and T. H. Tse., “Test case

prioritization for regression testing of service-oriented business applications,”

In Proceedings of the 18th international conference on World wide

web (WWW '09). ACM, New York, NY, USA, 2009, pp. 901-910.

[74] Ma Z., Zhao J., “Test Case Prioritization Based on Analysis of Program

Structure,” In 15th Asia-Pacific Software Engineering Conference, APSEC

'08, IEEE, 2008,pp. 471 – 478.

[75] Dan Hao, Lingming Zhang, Lu Zhang, Gregg Rothermel, and Hong Mei, “A

Unified Test Case Prioritization Approach,” ACM Trans. Software Engg.

Methodol, Vol. 24, No. 2, Article 10, December 2014, pp. 1-31.

[76] Matthew J.Rummel, Gregory M.Kapfhammer and Andrew Thall, “Towards

the prioritization of regression test suites with data flow information,” in

Proceedings of the 2005 ACM symposium on Applied Computing New York,

NY, USA, 2005.

[77] Md. Imrul Kayes, “Test Case Prioritization for Regression Testing based on

fault dependency,” in IEEE 3rd International Conference on Electronics

Computer Technology, India, 2011.

[78] Mohammad Hashemian, Kevin Stanley, Nathaniel Osgood, “Leveraging

H1N1 infection transmission modelling with proximity sensor micro data,”

BMC Medical Informatics and Decision Making, December 2012.

[79] MuraleedharanNavarikuth, Subramanian Neelakantan, KalpanaSachan,

UdayPratap Singh, Rahul Kumar, AntashreeMallick, “A dynamic firewall

architecture based on multi-source analysis,” CSI Transactions on ICT, Vol. 1,

No. 4, 2013, pp. 317-329

[80] Naresh Chauhan, Software Testing – Principle and Practice, Oxford

University Press, 1st Edition, 2010.

[81] Nilam Kaushik, Mark Moore, “Dynamic Prioritization in Regression

Testing,” in Fourth International Conference on Software Testing,

Verification and Validation Workshops, 2011, pp. 135-138.

[82] Pankaj Jalote, “An Integrated Approach to Software Engineering,” Narosa

Publishing House, Second Edition, 2003.

[83] S. Elbaum, A. G. Malishevsky and G. Rothermel, "Test case prioritization: a

family of empirical studies," IEEE Transactions on Software Engineering,

Vol. 28, No. 2, 2002, pp. 159-182.

163

[84] P. Hallman, “Prioritization with Precedence,” In 3rd International

Symposium on Search Based Software Engineering, Hungary, 2011.

[85] Qingfeng, D. “An improved algorithm for basis path testing,” In Bussiness

management and electronic information, IEEE, 2011, pp. 175-178.

[86] Qu, B., C.Nie, B.Xu and X.Zhang, “Test Case prioritization for black box

testing,” in Proceedings of 31st Annual Intentional Computer Software

Application Conference, 2007, pp. 465-474.

[87] Panda, Namita, Acharya, Arup Abhinna, Bhuyan, Prachet, Mohapatra, Durga

Prasad, “Test Case Prioritization Using UML State Chart Diagram and End-

User Priority,” Computational Intelligence in Data Mining: Proceedings of the

International Conference on CIDM, 10-11 December 2016, pp. 573-580.

[88] Hema Srikanth, Mikaela Cashman, and Myra B. Cohen, “Test case

prioritization of build acceptance tests for an enterprise cloud

application,” Journal of System Software, Vol. 119, September 2016, pp. 122-

135.

[89] Rothermel, G., Elbaum, S., Malishevsky, A.G., Kallakuri, P., and Xuemei, Q.

“On test suite composition and cost-effective regression testing”. ACM

Transactions on Software Engineering and Methodology, Vol. 13, No. 3,

2004, pp 227-331.

[90] R. W. Kristen, “Prioritizing Regression Test Suites for Time-Constrained

Execution Using a Genetic Algorithm,” Department of Computer Science,

Allegheny College, 2005.

[91] K. K. Aggrawal, Yogesh Singh, and A. Kaur, “Code coverage based

technique for prioritizing test cases for regression testing,” SIGSOFT Software

Engg. Notes, Vol. 29, No. 5, September 2004, pp. 1-4.

[92] R. Kavitha, Dr. N. Suresh Kumar “Factors oriented test case prioritization

technique in regression testing,” European Journal of Scientific Research,

Vol.55, No. 2, 2011, pp. 261-274.

[93] Rothermal, G. Elbaum, S., “Putting your best tests forward,” IEEE Software,

Vol. 20 No. 5, 2003, pp. 74-77.

[94] Rothermel and M.J. Harrold, “A Framework for evaluating regression test

selection techniques,” In Proceedings of 16th International Conference on

Software Engineering, 1994.

164

[95] Rothermel and M.J. Harrold, “Analyzing regression test selection

techniques,” IEEE Transactions on Software Engineering, Vol. 22 ,No. 8

,1996, pp. 529-551.

[96] Rothermel and M.J. Harrold, “Empirical studies of a safe regression test

selection technique,” IEEE Transactions on Software Engineering, Vol. 24,

No. 6, 1998, pp. 401-419.

[97] D. Marijan, A. Gotlieb, S. Sen, "Test case prioritization for continuous

regression testing: An industrial case study", Proc. 29th IEEE Int. Conf. Softw.

Maintenance, 2013, pp. 540-543.

[98] Rummel J. M. et. al., “Towards the prioritization of regression test suites

with data flow information,” In Proceedings of the 2005 ACM symposium on

Applied computing, 2005, pp. 1499-1504.

[99] S. Mirarab, L. Tahvildari, An Empirical Study on Bayesian Network-based

Approach for Test Case Prioritization, 1st International Conference on

Software Testing, Verification, and Validation, 2008,pp. 278 – 287.

[100] Sanjukta Mohanty, Arup Abhinna Acharya, Durga Prasad Mohapatra, “A

Model Based Prioritization Technique for Component Based Software

Retesting Using UML State Chart Diagram,” In 3rd International Conference

on Electronics Computer Technology, IEEE, 2011.

[101] X. Wang and H. Zeng, "History-Based Dynamic Test Case Prioritization

for Requirement Properties in Regression Testing," 2016 IEEE/ACM

International Workshop on Continuous Software Evolution and Delivery

(CSED), Austin, TX, 2016, pp. 41-47.

[102] Sherriff, M., et. al. ,”Prioritization of Regression Tests using Singular Value

Decomposition with Empirical Change Records,” In The 18th IEEE

International Symposium on Software Reliability, ISSRE '07, 2007,pp. 81 –

90.

[103] Sanjeev, A.S.M. and Wibowo, B., “Regression test selection based on

version changes of components” In Tenth Asia-Pacific Software Engineering

Conference, IEEE Computer Society, 2003,pp. 78-85.

[104] Siavash Mirarab, LadanTahvildari, “A Prioritization Approach for

Software Test Cases Based on Bayesian Networks,” In International

conference Fundamental Approaches to Software Engineering, Vol. 4422,

2007, pp. 276-290.

165

[105] Simone Barbagallo et. al., “Optimization and Planning of operating theatre

activities: an original definition of pathways and process modelling,” BMC

Medical Informatics and Decision Making, 2015, pp. 1-16.

[106] Simone Barbagallo, Luca Corradi, Jean de Ville de Goyet, Marina Iannucci,

Ivan Porro, Nicola Rosso , Elena Tanfani, Angela Testi, “Optimization and

planning of operating theatre activities: an original definition of pathways and

process modelling,” BMC Medical Informatics and Decision Making, 2015.

[107] Siripong R., Jirapun D., “Test Case Prioritization Techniques,” Journal of

theoretical and applied information technology, Vol. 18, No.2,2010,pp. 45-60.

[108] Siripong Roongruangsuwan and Jirapun Daengdej, “A Test Case

Prioritization Method with Practical Weight Factors,” Journal of Software

Engineering, Vol. 4, No. 3, 2010, pp. 193 – 214.

[109] Avinash Gupta, Anshu Gupta and Dharmender Kushwaha, "Test Case

Reduction using Decision Table for Requirements Specifications", In

proceedings of the International Congress on Informatics and Communication

Technology, June 2016, pp. 411-418.

[110] Y. Bian, Z. Li, R. Zhao and D. Gong, "Epistasis Based ACO for Regression

Test Case Prioritization," IEEE Transactions on Emerging Topics in

Computational Intelligence, Vol. 1, No. 3, 2017, pp. 213-223.

[111] T. Gyimothy, A. Beszedes, I. Forgacs, “An efficient relevant slicing method

for debugging,” ACM SIGSOFT Foundations of Software Engineering, 1999,

pp. 303-321.

[112] T. McCabe, “A Complexity Measure,” IEEE Trans. On Software

Engineering, Vol.2, No.4, 1976, pp. 308-320.

[113] Thangavel Prem Jacob & Thavasi Anandam Ravi, “A novel approach for

test suite prioritization,” Journal of Computer Science, Vol. 10, No. 1, 2014,

pp.138-142.

[114] Thillaikarasi Muthusamy, Seetharaman.K, "Effectiveness of Test Case

Prioritization techniques based on Regression Testing," International Journal

of Software Engineering and Applications (IJSEA), Vol. 5,No.6,2014, pp. 113-

-123.

[115] Toshihiko, K., Shingo, T., and Norihisa, D., “Regression test selection

based on intermediate code for virtual machines,” In Proceedings

166

International Conference on Software Maintenance ICSM IEEE Comput. Soc,

Vol. 420, No. 9, 2003.

[116] Y. Zhang, D. Towey, T. Y. Chen, Z. Zheng and K. Y. Cai, "A random and

coverage-based approach for fault localization prioritization," 2016 Chinese

Control and Decision Conference(CCDC),Yinchuan,2016,pp.3354-3361

[117] Wesley K. G. Assuncao et. al., “A Mapping Study of Brazilian SBSE

community,” Journal of Software Engineering and Development, Online First,

2014, pp. 1-16.

[118] Wesley KG Assunção, Márcio de O Barros, Thelma E Colanzi, Arilo C

Dias-Neto, Matheus HE Paixão, Jerffeson T de Souza, Silvia R Vergilio, “A

mapping study of the Brazilian SBSE community,” Journal of Software

Engineering Research and Development, Vol. 2,No. 3,2014.

[119] Yogesh Kumar, Arvinder Kaur & Bharti Suri, “Empirical Validation of

variable based Test Case Prioritization/Selection Techniques,” International

Journal of Digital Content Technology and its applications, Vol. 3, No. 3,

2009.

[120] Yoo S., Harman M., “Regression testing minimization, selection and

prioritization: a survey,” Software Testing, Verification & Reliability, John

Wiley and Sons Ltd ,Vol. 22, No. 2, 2012, pp. 67-120.

[121] Zhang Zhonglin, M.L., “An improved Method of acquiring basis path for

software testing,” in ICCSE’ , 2010, pp.1891- 1894.

[122] Zultner R., “Quality Function Deployment for Software: Satisfying

Customers,” American Programmer, 1992, pp. 28-41.

[123] Reeta Sahoo, C Projects, Khanna Book Publishing,4th Edition,2013.

[124] G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, “Prioritizing Test cases

For Regression Testing”. IEEE Transactions on Software Engineering, vol. 27,

no. 10, October, 2001, pp 929-948.

[125] Kamna Solanki & Yudhvir Singh, “Novel Classification of Test Case

Prioritization Techniques”, International Journal of Computer Applications

(0975 – 8887) Volume 100– No.12, August 2014, pp 36-42.

[126] Z.Q. Zhou, “Using Coverage Information to Guide Test case Selection in

Adaptive Random Testing”, in Proceedings of the 34th Annual IEEE

Computer Software and Applications Conference Workshops (COMPSAC

2010). IEEE Computer Society, 2010, pp. 208-212.

195

LIST OF PUBLICATIONS OUT OF THESIS

List of Published Papers in International Journals

S.

No

Title of the paper Name of the Journal

where Published

No. Volume &

Issue

Year Pages

1. Identifying and

analyzing the research

challenges in Test case

prioritization.

International Journal of

Computer Science &

Engineering System

0974-

4406

Volume 6,

Issue 3.

2012 88-98

2. A Regression Testing

Technique Using Du-

Dc Paths.

YMCA UST

International Journal of

Research

2319-

9377

Volume3,

Issue 1.

2015 99-104

3. HSTCP: A Tool for

Hierarchical System

Test Case Prioritization

International Journal of

Knowledge Based

Computer Systems

2321-

5623

Volume 3,

Issue 1

2015 8-12

4. A Unit – Test Case

Prioritization

Technique Based on

Source Code Analysis

International Journal of

Advanced Research in

Computer Science and

Software Engineering

2277-

128X

Volume 5,

Issue 4

2015 405-410

5. A Module Coupling

Slice Based Test case

Prioritization

Technique

International Journal of

Modern Education and

Computer Science

(IJMECS),

2075-

017X

Volume 7,

Issue 7

2015 8-16

List of Communicated Papers in International Journals

S.

No

Title of the paper Name of the Journal

where Published

No. Volume &

Issue

Year Pages

1. A Hierarchical System

Test Case Prioritization

(HSTCP) Technique

based on Requirements.

International Journal of

software engineering,

Technology and

Applications(IJSETA)

2053-

2474

2. A Control Structure

Weighted Test Case

Prioritization

Technique.

International Journal of

Information

Technology (BJIT).

2511-

2112

196

197

LIST OF RESEARCH PAPERS

 List of Published Papers

INTERNATIONAL CONFERENCES

1. Harish Kumar, Vedpal & Naresh Chauhan, “A Hierarchical System Test Case

Prioritization Technique based on Requirements”, Published in 13th Annual

International Software Testing Conference in India, 04 – 05, December 2013,

Bangalore, India.

2. Harish Kumar & Naresh Chauhan, “A Coupling effect based test case prioritization

technique,” Computing for sustainable global development, 2
nd

 international conference

on,2015,pp 1341-1345.

3. Harish Kumar & Naresh Chauhan, “A novel approach to test case prioritization for

regression testing”, in International Federation of Information processing(IFIP) and

South-East Asia regional computer confederation(SEARCC), organised by CSI,

2015,BVICAM Delhi. (Proceedings to be published by Springer).

INTERNATIONAL JOURNALS

1. Harish Kumar & Naresh Chauhan, “Identifying and analyzing the research challenges

in Test case prioritization”, in International Journal of Computer Science &

Engineering System, Vol. 6, No. 3, 2012, pp. 88-98.

2. Harish Kumar & Naresh Chauhan, “A Regression Testing Technique Using Du-

Dc Paths” in YMCAUST IJR (YMCAUST International Journal of Research) Vol.3

Issue I. Jan, 2015 pp 99-104 ISSN: 2319-9377.

3. Harish Kumar & Naresh Chauhan, “A Unit – Test Case Prioritization Technique Based

on Source Code Analysis” in International Journal of Advanced Research in Computer

Science and Software Engineering, Volume 5 Issue 4 April 2015 ISSN: 2277 128X.

4. Harish Kumar & Naresh Chauhan, “HSTCP: A Tool for Hierarchical System Test

Case Prioritization”, in International Journal of Knowledge Based Computer Systems,

Vol. 3 Issue 1, 2015, pp 8-12.

198

5. Harish Kumar & Naresh Chauhan, “A Module Coupling Slice Based Test case

Prioritization Technique”, in International Journal of Modern Education and Computer

Science(IJMECS) Vol. 7 ,No. 7, July,2015,pp 8-16. ISSN: 2075-0161 (Print), ISSN:

2075-017X (Online).

NATIONAL JOURNAL

1. Harish Kumar & Naresh Chauhan, “Test Case Prioritization Using Aggregate Weight

of the Independent Path”, Published in Journal of Computer Science Engineering and

Software Testing,Volume 1 Issue 1, 2015.

List of Communicated Papers

1. Harish Kumar, Vedpal & Naresh Chauhan, “A Hierarchical System Test Case

Prioritization (HSTCP) Technique based on Requirements, Communicated in

International Journal of software engineering, Technology and Applications (IJSETA).

Inderscience Publishers.

2. Harish Kumar & Naresh Chauhan “A Control Structure Weighted Test case

Prioritization Technique” communicated in International Journal of Information

Technology(BJIT), Published by Springer.

