220201

May, 2019
MCA - and Semester
Data Structures (MCA-17-102)

Time: 3 Hours]
[Max. Marks : 75

Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Define Isomorphism using suitable example.
(b) Is $[(p \cdot q) \rightarrow(p \cdot q)]$ a tautology? Use logical equivalence.
(c) Explain in-degree and out-degree of each of the vertex in a graph using example.
(d) Find the generating function for the finite sequence $1,4,16,64,256$.
(e) Determine whether the poset $(\{1,2,3,4,5\})$ and ($\{1,2,4,8,16\}$) are lattices.
(f) Draw the Hasse diagram for the partial ordering $\{(\mathrm{A}, \mathrm{B})\} \mid \mathrm{A} \leq \mathrm{B}\}$ on the power set $\mathrm{P}(\mathrm{S})$, where $S=\{a, b, c\}$.
(g) Write three rules of Hasse diagram?
(h) Is $\sim(p \cdot(\sim p \cdot q))$ and $\sim p \cdot \sim q$ logical equivalent? Use logical equivalence.
(i) Define Homomorphism using suitable example. (1.5)
(j) Give two differences between Euler circuit and Hamiltonian graph.

PART-B

2. (a) Prove that the argument is valid without using truth tables:
(i) $(\mathrm{p} \rightarrow \mathrm{q}) \cdot(\mathrm{r} \rightarrow \mathrm{s}),(\mathrm{p} \cdot \mathrm{r}) \cdot(\mathrm{q} \cdot \mathrm{r}) \cdot \mathrm{q} \cdot \mathrm{s}$.
(ii) $\mathrm{P} \cdot(\mathrm{p} \rightarrow \mathrm{q}), \sim \mathrm{p} \cdot \mathrm{r} \cdot \sim \mathrm{q}$.
(iii) $\mathrm{p} \rightarrow(\mathrm{q} \cdot \mathrm{r}),(\mathrm{s} \cdot \mathrm{t}) \rightarrow \mathrm{q},(\mathrm{q} \cdot \mathrm{r}) \rightarrow(\mathrm{s} \cdot \mathrm{t}) \bullet \mathrm{p} \rightarrow \mathrm{q}$.
(iv) $\mathrm{p} \rightarrow \mathrm{q}, \mathrm{q} \rightarrow \mathrm{r}, \mathrm{r} \rightarrow \mathrm{s}, \sim \mathrm{s}, \mathrm{p}, \mathrm{t} \cdot \mathrm{t}$.
(b) Show that a Hamiltonian path is a spanning tree?
3. (a) Solve the following characteristic equation for two
 roots Il and r 2 .
(i) $y^{\prime \prime}+3 y^{\prime}-10 y=0 \quad y(0)=4, \quad y(0)=-2$.
(ii) $4 y^{\prime \prime}-5 y^{\prime}=0$
$y(-2)=0, \quad y(-2)=7$.
(b) List all the rules of inferences using suitable examples with tautology.
4. Determine whether the following are tautology, contingency, and contradictions? Using truth table
(a) $\alpha=(\mathrm{p} \rightarrow(\mathrm{q} \cdot \mathrm{r})) \cdot((\sim \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{r}))$
(b) $(\mathrm{H} \rightarrow(\mathrm{I} \cdot \mathrm{J})) \rightarrow \sim(\mathrm{H} \rightarrow \mathrm{I})$.
(c) $\mathrm{q} \cdot(\mathrm{p} \cdot \sim \mathrm{q}) \cdot(\sim \mathrm{p} \cdot \sim \mathrm{q})$.
5. (a) Which of these relations on $\{0,1,2,3\}$ are equivalence relations?
(i) $\{(0,0),(1,1),(2,2),(3,3)\}$
(ii) $\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0)$,
$(2,2),(3,3)\}$.
(b) Explain chromatic number of the graph c_{n} where $\mathrm{n} \geq 3$? write each step.
6. (a) Find the coefficients of $x^{5} y^{8}$ in $(x+y)^{3}$.
(b) Give any two differences between Prim's and Kruskal's algorithm using a suitable example.
7. Use depth first search to produce a spanning tree of a given graph. Write each step.

