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ABSTRACT

Power plants, generators of electric power, are lifelines of every country. They majorly

consist of driving units (e.g. motor, turbine), transmission units (e.g. gearbox,

coupling), processing machines (e.g. generator) and auxiliary units (compressor,

pump). Many of these units are rotating equipment which make use of bearings, gears

and rotors. Out of these, bearings are the key mechanical components of rotating

machines in power plants. Whenever a rotating machine of a power plant goes through

unprecedented downtime, a common belief throughout the industry is that the bearing

failed. Failure of a bearing can be disastrous as it can bring huge capital losses. Early

fault detection and diagnosis of bearings in rotating machinery is crucial for increasing

reliability and lifetime of modern power-plant equipment.

Even though considerable prior research has been conducted, most of the research

conducted so far has been tested on simulated data from laboratory setups. Moreover,

majority of the previous studies on Vibration Signal Processing, have focused more on

optimising fault diagnosis classifiers, and few have discussed the reason behind the use

of a set of particular statistical features. Furthermore, many nonlinear signals or

nonlinearities in signals, cannot be examined properly by second order statistical

methods, and this led to researchers exploring higher order statistics (HOS) methods

which help in preserving phase and amplitude of signals.

This research aims to fill this research gap by devising vibration-based

methodologies for detecting embryonic defects in rotating equipment bearing

heterogeneous data sets from Vibration Labs, Online Repositories and Real industrial

system in a 500 MW power plant. It develops a framework of Intelligent Fault

Diagnosis for Vibration based condition monitoring of bearings based on Signal

processing and Artificial Intelligence (AI) Techniques. It mainly proposes two

methodologies: 1. Vibration Signature Analysis using Statistical Features and Machine

Learning and 2. Vibration Signature Analysis using Bispectrum Images and Deep

Transfer Learning.

To achieve this, this research presents a review on the early fault diagnosis of

bearings wherein a number of techniques for rotating machinery are surveyed in terms
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of AI-based intelligent fault diagnosis. It then proposes novel statistical features

following which it develops a strategy to conduct an extensive analysis of new and old

statistical features, in order to derive an optimal set of fault-sensitive features to be fed

as input to Machine Learning classifiers. It also proposes a novel HOS based method

for analyzing Bispectrum of vibration signals using advanced AI techniques of Deep

Transfer Learning.

The main contribution of this research work is three-fold: Firstly, proposing Hjorth

Parameters and Normal negative log likelihood for Gaussian Mixture Model (GMM) for

rolling element ball bearing fault detection and severity estimation; secondly, devising

a strategy to probe a comprehensive set of statistical time domain features with the

objective of identifying optimal feature subset to feed as input to Machine Learning

classifiers for rolling element ball bearing fault detection and severity estimation on data

acquired from an operational power plant; third, in the frequency domain, sensitivity

and effectiveness of Bispectrum for fault diagnosis has been investigated using deep

transfer learning neural networks. The third contribution eliminates the need for manual

feature extraction and also attempts to solve the most omnipresent problem which is

faced with diagnosing most of the data sets - shortage of data samples - in this case, ball

bearing vibration dataset.

The outcomes of this research can be applied for intelligent fault diagnosis of

bearings in rotating machinery of power plants. Hence, this research can serve as a

handbook on advanced statistical techniques in association with artificial intelligence

techniques for researchers working on bearing fault diagnosis.
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CHAPTER I

INTRODUCTION

1.1 PREAMBLE

Electricity is essential for modern life, making Power Plants a necessity for any

country. The main components of power plants are driving units (e.g. electrical or

hydraulic motor, turbine), transmission units (e.g. gearbox, coupling), processing

machines (e.g. generator) and auxiliary units (compressor, pump). Majority of these

components are rotating equipment and hence rely on bearings, gears, rotors, etc.,

among which bearings are the main facilitators of rotatory motion. In the event of a

rotating machine failure in a power plant, the cause is usually attributed to a bearing

failure. Bearing failure is intriguing in the sense that in some cases, a single event can

cause the failure and in others, occurrence of multiple conditions such as irrational

human decisions, harsh environmental conditions and substandard maintenance can

contribute to early failure. This ultimately results in large scale failure of the rotating

component and additional damage to related equipment. In fact, there is a bearing

failure manual released by Electric Power Research Institute for discussing common

bearing faults found in the rotating equipment installed in electric power plants [1].

Bearing failure can be catastrophic, bringing massive monitory losses. Hence, early

fault detection and diagnosis of bearings in rotating machinery is essential to increase

reliability of modern power plants.

Vibration based condition monitoring is highly popular and well-accepted for power

plant rotating machines because the machine vibration response is sensitive to any small

structural or process parameter change. Industry and academia have conducted massive

amounts of research work in the last two decades involving Vibration Signal Processing

and Artificial Intelligence for early failure detection of bearings, thereby increasing the

lifetime of power-plant equipment and avoiding potential damages to other connected

equipment.

Despite considerable prior research being conducted, there is one caveat to it:

seldom, sufficient field data is available from real power plant equipment and hence

most of the research conducted so far has been tested on simulated data from
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laboratory setups. However, laboratory setups being different from industrial

equipment with regards to scale and operating conditions, there is no guarantee that

research solutions validated with simulated data will perform equally well on actual

systems. While conducting experiments the validity of the proposed solution or

algorithm is best confirmed when it’s tested on data from real industrial systems. Also,

continuing with the discussion on the ongoing research involving Vibration Signal

Processing and Artificial Intelligence, researchers are able to utilise the power of

statistical features by applying popular supervised machine learning techniques.

Although all of the surveyed studies have applied various time-domain parameters,

whether conventional or novel and dimensional or dimensionless, for bearing fault

diagnosis, either exclusively or in addition to other frequency domain and

time-frequency features, none of the studies discusses and provides the reason behind

the use of a set of particular statistical features. Majority of the previous studies, till

now, have focused more on optimising fault diagnosis classifiers, and few have

compared established features with novel ones.

Moreover, even though in signal processing, first and second order statistics have

shown their significance in fault diagnosis, many nonlinear signals or non-linearities in

signals, cannot be examined accurately by second order statistical methods, resulting

in researchers to explore higher order statistical (HOS) methods. HOS methods help in

preserving phase and amplitude of signals hence enabling reconstruction of signals and

thereby being more suitable than second-order statistics for fault diagnosis of vibration

signals.

The information gathered on the current limitations and already conducted research

work on bearing fault diagnosis, led on to start this research journey with the motivation

of filling this research gap by devising vibration-based methodologies for detecting

nascent defects in rotating equipment bearings heterogeneous data sets from small-scale

test beds and a real industrial system in a 500 MW power plant. In a nutshell, this

research presents a review on the early fault diagnosis of bearings wherein a number of

techniques for rotating machinery are surveyed in terms of time and frequency domain

statistical features and Artificial Intelligence (AI) based diagnosis. It then emphasises

on features by proposing novel statistical features and developing a strategy to conduct

an extensive analysis of new and old statistical features, so as to derive the most optimal
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set of fault-sensitive features. It also devises a methodology involving HOS methods

specifically Bispectrum analysis of vibration signals using advanced AI techniques of

Deep Learning. This methodology eliminates the need for manual feature extraction and

also attempts to solve the most omnipresent problem faced in diagnosing ball bearing

vibration datasets- shortage of data samples. Finally, this research can also serve as a

handbook for researchers in the field of early fault diagnosis of bearings using advanced

statistical techniques along with Artificial Intelligence.

1.2 RESEARCH OBJECTIVES

Vibration signature analysis techniques are popularly used for fault diagnosis of

rotating machines and are improving with time due to the advances in disciplines such

as Statistics, Signal Processing and Artificial Intelligence. This research is on the

application of vibration signature analysis for fault diagnosis of rotating components

of power plants. The objectives of this research are outlined and listed below:

1. To review and analyze the condition monitoring of power plant components using

vibration signature analysis.

2. To pre-process vibration signals acquired from vibration labs and real power plant

using advanced signal processing techniques capable of handling the non-stationary

and nonlinear character of the vibration signals.

3. To extensively research a comprehensive list of time-domain statistical features and

to propose new advanced statistical features having more sensitivity to faults.

4. To propose a methodology to rank all extracted features in order to generate an

optimal feature subset and apply effective machine learning classifiers for accurate

bearing fault classification and fault severity estimation using vibration signature

analysis.

5. To validate the proposed methodology on real power plant data and verify the

robustness of the proposed method.

6. To investigate the sensitivity and effectiveness of higher order statistics, Bispectrum,

for fault diagnosis by designing a transfer learning based deep learning methodology.
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1.3 ORGANIZATION OF THESIS

This thesis is organized in 9 chapters as explained below. The thesis organization

covering proposed methodologies involving Machine Learning and Deep Transfer

Learning Frameworks is also depicted in the form of a flow chart in Figure 1.1.

Chapter 2 covers the literature review of Vibration-based Fault Diagnosis of

Power-plant Components; Vibration Signature analysis using feature extraction in

time, frequency and time-frequency domains; and Vibration Signature analysis using

artificial intelligence techniques.

Chapter 3 discusses Vibration Data Acquisition from Vibration Research Lab,

Vibration Data Repositories and the Power Plant. Experimental Setup and Dataset

Description for every case is elaborated.

Chapter 4 deals with pre-processing of raw vibration signals prior to feature

extraction. Signal pre-processing technique, Empirical Mode Decomposition (EMD)

and best intrinsic mode function (IMF) selection technique along with the obtained

results are presented in this chapter.

Chapter 5 deals with extraction of fault sensitive features from pre-processed

vibration signals. Conventional Statistical Features as well as proposed Novel

Statistical Features are discussed in this chapter.

Chapter 6 covers Feature Subset Selection from the whole set of extracted features for

the purpose of dimensionality reduction. Theoretical aspects, proposed methodology

and results of Filter Based Feature Ranking and Conventional Search & Swarm Search

Techniques based Feature Subset selection have been discussed in this chapter.

Chapter 7 deals with Fault Diagnosis and Classification using optimal statistical

features subset and machine learning classifiers. Experimental validation involving

three case studies has been detailed.

Chapter 8 examines Fault Detection and Diagnosis using Higher Order Spectrum

Analysis. Theoretical frameworks of Bispectrum, Image based fault diagnosis, Deep

Neural Network Architectures and Transfer Learning have been discussed along with

the results from the experimental study on bearing dataset fault diagnostics.

Chapter 9 summarizes the findings of this research work and gives suggestions for

future work. It also covers the detailed point-by-point comparison of proposed

Machine Learning and Deep Learning frameworks.

4



Figure 1.1: Organization of thesis

5



6



CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter, the literature on condition monitoring of power plant components

using vibration signal processing is reviewed. The literature review is divided into three

parts.

Unscheduled outages of power plants due to sudden failures of key-components

like motors, turbines and pumps may result in severe economic and environmental

implications. Hence monitoring and maintenance methodology capable of providing

the best technical solution to ensure safe operation of the plant is very important. In

the first part, vibration-based fault diagnosis of Power-plant components is covered.

A detailed survey of the techniques used for vibration signature analysis by the

researchers is reviewed and presented.

Extraction of fault sensitive features for vibration based condition monitoring is an

extensively researched domain. In the second part, extraction of fault sensitive

features from the vibration signal in time, frequency and time-frequency domain has

been reviewed.

Fault diagnosis and prognosis in power-plant components is often a

labour-intensive and time-consuming practice, hence researchers are increasingly

interested in automating the diagnosis procedure using artificial intelligence

techniques along with advanced signal processing techniques. In the third part of this

chapter, Tools and techniques from machine learning and deep learning domains, that

can be used in conjunction with effective signal processing techniques for effective

decision making are reviewed.

2.2 VIBRATION-BASED CONDITION MONITORING OF ROTATING

MACHINERY OF POWER-PLANT

A power plant is an industrial facility for the generation of electrical energy from

energy such as heat energy (thermal), chemical energy (nuclear) and mechanical

energy (hydro, wind). Figure 2.1. is a schematic diagram of a Thermal Power Plant. A
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thermal power plant mainly consists of Boiler, Turbine, Condenser and Pump. Firstly,

coal is burnt to produce high temperature and high pressure steam in a boiler. The

steam is passed through a steam turbine to produce rotational motion. The generator,

mechanically coupled to the turbine, thus rotates producing electricity. After imparting

energy to the turbine rotor, the steam passes out of the turbine blades into the

condenser where it condenses to cold water which is then fed to the boiler using a

pump. The figure just depicts a high-level description of a power plant, there are a

number of pumps, like feed-water pumps and circulating pumps, which are

indispensable to an industrial power plant pipeline. All rotating machines like turbines

(e.g. low pressure/ high pressure Turbines), motors, pumps and compressors have

bearings installed inside them in order to reduce frictional losses incurred during

rotational motion.

Figure 2.1: Schematic diagram of Thermal Power Plant

Predictive maintenance is crucial for power plants because it helps in preventing

severe economic and environmental losses which can be incurred due to

unprecedented failures of key-components like motors, turbines and pumps. This is

achieved by ‘Condition Monitoring’. Condition monitoring is the continuous tracking

of the state of an equipment using parameters such as vibration, current, temperature

etc. without interrupting its operation in the power plant. This monitoring is done at

regular intervals in order to detect abnormal changes in the parameter values which is

helpful in indicating the occurrence of faults in these equipment. Since failures occur
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to individual components, the monitoring measurements need to focus on the

particular fault types and severity of the critical components. The goal is to get close to

the ideal target of 100% availability of power plant equipment during operational time

by early fault diagnosis and ordering for spare parts.

The monitoring also helps in avoiding secondary damages to the connected

components which get affected by the faulty component and also to plan the

maintenance activity for increasing the operational time of the plant. C. De Michelis et

al. described condition monitoring and assessment of power plant components in their

work. They presented damage mechanisms and fault diagnostic methods for four main

components of power plants: steam turbine, gas turbine, boiler and heat recovery steam

generator. Current developments and future trends in these areas are also discussed [2].

Effective predictive maintenance of rotary machinery includes several electrical

and non-electrical techniques as shown in Figure 2.2. A detailed study on four types of

condition monitoring techniques i.e. vibration monitoring, noise monitoring, motor

current signature analysis and wear debris analysis of systems in thermal power plant

and also the methods for data analysis has been carried out in their work by Kurien C.,

Srivastava A.K. [3]. A case study on the effectiveness of condition monitoring

techniques (vibration analysis, motor current signature analysis, noise monitoring and

wear debris analysis) for fault diagnosis of three pumps (boiler feed water pump,

auxiliary cooling water pump and condensate extraction pump) in thermal power plant

has been presented by Kurien C., Srivastava A.K. [4].

Figure 2.2: Condition monitoring techniques
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Out of these techniques, vibration is a key part of a strong condition monitoring

regime for a power plant as it contains several units which make use of rotational

equipment for which, performing vibration analysis can help increase the lifetime of

power-plant equipment [5–7]. Vibration monitoring techniques are found to be highly

efficient in determining the defects of the rotating machine at an early stage. Each

rotating machine presents a characteristic vibration that uniquely differentiates it, and

is commonly known as Vibration Signature. When any component of a machine is

subjected to some kind of fault, its measured vibration characteristics will exhibit

changes from normal levels i.e. the vibration signature of the machine will change.

This vibration signature can be processed to give information on the condition of the

machine. Vibration monitoring can detect the presence of unbalanced forces generated

due to misalignment, damaged bearing, unbalance in rotors, looseness of rotating

parts, rubbing of rotating parts, cracked teeth in gear, damaged rotor bar, electrical

defects, resonance, etc. The book “Industrial Approaches in Vibration-Based

Condition Monitoring” by J.K. Sinha is a tutorial for the issues faced by

vibration-based condition monitoring professionals, including good industrial

examples [8]. Vibration based fault diagnosis and prognosis has been an active area of

research for many years [9–12].

The forced shutdown of a power plant or its load reduction is usually due to

failures in its rotating machinery. Therefore its vital that the condition of all rotating

machinery such as steam turbine, gas turbine, generator and major auxiliaries such as

pumps are maintained using a predictive maintenance strategy such as vibration

monitoring, in order to eliminate unexpected breakdowns and ensuring long-term

reliability and availability of machinery .

Steam or gas turbines are the most critical and the most expensive individual

rotating machinery. T. Barszcz has presented Vibration-Based Condition Monitoring of

Wind Turbines in his book [13]. When the turbine condition is known, repairs can be

planned in a timely manner so that there’s no unexpected long production downtime

and the power plant’s electricity consumers are not affected. It also enables monetary

savings and financial planning as the required spares and tools can be arranged ahead

of downtime.

Another category of important rotating machinery is pump. There are a number of
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pumps installed in thermal power plants for effective generation of electricity. Various

pumps used in thermal power plants include boiler feed water pump , auxiliary cooling

water pump, seal oil pump, condensate extraction pump, ash disposal pump and others.

Major reasons for abnormal vibrations in the pumps include damage of the bearings,

imbalance in the rotor, misalignment of the rotating shaft.

Researchers have reviewed state-of-the-art research results that cover basic signal

processing techniques; fault detection, diagnostic and prognostics techniques for

bearings [14–16] and gears [17]. Recently, Wei, Yu et al. reviewed the research works

on early fault diagnosis approaches of gears, rotors, and bearings to present a guide

map for researchers in the field of fault diagnosis in rotating machinery [18]. Othman

A., Damanhuri N.S., Hamzah N. used feature extraction from vibration signals for

effective Fault diagnosis in power plant rotating machinery [19], on the other hand H.

Oh et al. converted vibration signals to images and used deep learning techniques for

fault diagnosis of power plant’s rotor system in their work [20].

Research shows that in rotating machinery, the root cause of faults is often the faulty

bearing. A bearing is a mechanical device designed to reduce friction in a part of a

machine where another part turns or slides. Bearings are frequently used to facilitate

the rotational movements in power plant turbines. These bearings can also be found in

other equipment such as pumps, compressors, and electric motors in thermal, wind, and

hydro power plants. Figure 2.1. shows some of the main bearing positions in a standard

thermal power plant. There are several different types of bearings, including ball and

roller bearings, linear bearing and journal bearings. Rolling bearings are among the

most important components in the vast majority of machines, that are used for rotating

or linear shaft applications. They consist of rolling elements, inner and outer races.

Turbine bearing failures in electric utilities have been responsible for outages

amounting to 1.1% to 1.8% of theoretical power output. In addition to failures in

turbine generators, bearing failures in other rotating equipment, including pumps, fans,

and auxiliary gas turbines and motors, can also lead to plant outages. The Electric

Power Research Institute (EPRI)’s bearing failure manual discusses bearing problems

typical of the rotating equipment in electric utility power plants. The main purpose of

the manual is to provide power plant engineering and service personnel with ways to

properly identify specific modes of bearing damage, as well as root causes, followed

11



by a list of remedial actions applicable to each specific case [1].

Given the serious consequences of such breakdowns, determination of the causes

of bearing failure and methods of effective repair are of paramount importance. When

a little defect such as a crack or chip at the inner or outer surface of the bearing

happens, it could lead to a major disaster to the rotating machine. Mass imbalance,

shaft misalignment and the improper surface of the bearing itself could be the major

factors in the faulty bearing that need to be treated specially. Exacting demands are

made on their load carrying capability, running accuracy, noise levels, friction and

frictional heat, life and reliability. Faults in rolling element bearings are considered a

distinct indicator of decreasing pump performance and failure. Therefore, over the

years bearings have been the subject of extensive research and continuous

improvements.

A detailed manual of bearing failures and their repair in rotating equipment of

power plants is given by Pinkus, Oscar [1]. Hu, Qiao et al. proposed a method using

empirical mode decomposition (EMD), fuzzy feature extraction and support vector

machine (SVM) for fault diagnosis of a 50 MW steam turbo-generator set in a power

plant. They validated their methodology by collecting vibration data from acceleration

transducers mounted on bearing bridges of the low-pressure turbine of the 50 MW

steam turbo-generator set [21]. He, Yongyong et al. investigated the damage and

failure of journal bearing of a power plant’s turboset [22]. A case study on failure

analysis of 320,000 kW steam turbine journal bearing was presented by Mehdizadeh,

M. and Khodabakhshi, F. in their research [23]. Tazi N. and Chatelet E., Bouzidi Y.

discussed wear analysis of wind turbine bearings in their work [24]. Pino G., Ribas

J.R., Guimarães L.F. used HMM with orbit curves and Wavelet Packet Transform for

fault diagnosis of hydro turbine components’ (bearings) degradation [25].

Hence, whenever a machine is experiencing unscheduled downtime, the common

phrase that is used throughout the industry - “The bearing failed”, makes total sense.

2.3 VIBRATION SIGNATURE ANALYSIS USING FEATURES FROM

DIFFERENT DOMAINS

For vibration signature analysis, researchers have identified and extracted many

fault sensitive features in different domains. A review of various vibration feature
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extraction techniques in time domain, frequency domain, and joint time frequency

domain for fault diagnosis in rotating machines is presented in their studies by Yang H.

et al. and Engin S.N. et al. [26, 27]. K. F. Tom has written a detailed primer on feature

xtraction from vibraition signals for prognostics and diagnostics applications [28].

W.Caesarendra and T. Tjahjowidodo presented a review of feature extraction methods

from vibration signals captured from low-speed slew bearing [29].

2.3.1 Vibration Signature Analysis in Time Domain

Vibration signals are initially obtained as a series of digital values representing

proximity, velocity, or acceleration in the time domain. The research on vibration

techniques in the time domain for various types of machinery can be categorized into

the groups as shown in Table 2.1.

Table 2.1: Overview of Time Domain Vibration Feature Extraction techniques.

Raw Signal Based Methods
Statistical Parameters (e.g. RMS, Mean, Variance,

Kurtosis, Skewness, Crest Factor etc.)

Time Synchronous Averaged Based Methods

(TSA Signal, Residual Signal, Difference Signal)

Filter Based Methods Demodulation, Adaptive Noise Cancelling

Stochastic and

Advanced Methods

Chaos, Blind Deconvolution, Thresholding,

Autoregressive Model Based Methods

As far as statistical parameters are concerned, several types of statistical features

have been used so far by the researchers for their classification approach. The

conventional time domain statistical parameters, namely, mean value, maximum value,

root mean square value, peak-to-peak value, root, standard deviation, variance,

kurtosis and skewness are the most commonly used dimensional parameters [30–35].

A wide set of dimensionless statistical parameters like Crest factor, Shape factor,

Impulse Factor, Clearance Factor, Skewness Factor and Kurtosis Factor have also been

used to enhance the performance of fault diagnosis systems [36–39].

A major boost in bearing fault diagnosis research was seen when novel statistical

features began to be applied in artificial intelligence techniques. Sreejith B. et al.

proposed a method for pattern recognition by extracting Normal negative
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log-likelihood and Kurtosis values of time domain signals and using them as input to

an artificial neural network [40]. Abbasiona S. et al. used Weibull negative

log-likelihood function of denoised signals and support vector machine (SVM)

classifier for fault classification of rolling bearings [41], while researchers also applied

zero crossings, mean absolute deviation and histogram features in their respective

works [42–44].

The application of a new group of statistical parameters, called as “Hjorth

Parameters”, was explored for diagnosing 4 types of faults in rolling element ball

bearings [45]. Lastly, different kinds of entropies have also been used for intelligent

fault diagnosis in various researches [26], [46–48]. Some recent papers have developed

symmetric cross entropy measures of single valued neutrosophic sets for fault

diagnosis in bearings [49, 50].

Many filter based and Stochastic feature extraction techniques like synchronous

averaging, resonance demodulation, adaptive filtering have also been researched and

utilized to diagnose faults in rolling bearings and gears successfully [51–53].

2.3.2 Vibration Signature Analysis in Frequency Domain

Features providing frequency information of vibration signals such as frequency

domain features and time frequency domain features have been widely investigated by

researchers. An overview of developed frequency domain and time-frequency domain

feature extraction techniques is given in Table.2.2.

Table 2.2: Overview of Frequency Domain and Joint Time-Frequency Domain
Vibration Feature Extraction techniques.

First Order
Spectrum (FFT), Correlation of Spectrum,

Short Time Fourier Transform (STFT),

Continuous Wavelet Transform (CWT), Discrete Wavelet,

Transform (DWT), Discrete Wavelet Packet Analysis (DWPA)

Second Order
Power Spectrum, Power Cepstrum,

Cyclostationarity, Spectrogram,

Wigner Distribution, Scalogram

Third Order Bicoherence Spectrum, Bilinearity, Wigner Bi-Spectra

Fourth Order Wigner Tri-Spectra
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Spectral analysis of the vibration signals is perhaps the most widely used approach

to bearing fault detection [54]. The Fast Fourier Transform (FFT) is the most

conventional diagnosis technique and has been widely used to identify the frequency

features of signals. These signals can be raw signals or pre-processed signals. The

power spectrum, whose amplitude is the square of the amplitude of the spectrum is an

effective method to diagnose machinery faults. The power cepstrum, which is a

logarithm of the power spectrum was also applied to machinery fault diagnosis.

As shown in Table 2.2, frequency analysis techniques are being researched to

effectively extract coefficients by increasing the order of frequency or time frequency

transformation parameters. Higher Order Spectra like Bispectrum and Trispectrum

were used for fault diagnosis in motor bearings [55–57]. Bispectrum along with

Empirical Mode Decomposition for detecting outer race bearing defects has been

utilized in [58]. A novel approach for bearing fault diagnostics, based on bispectrum

features and support vector machine classifier (SVM) is presented in [59], whereas an

approach that combines Bispectrum and fuzzy clustering method for rolling element

bearing fault recognition is presented in [60] . A feature extraction method for bearing

fault detection based on bispectrum contour maps involving dimensionality reduction

by space alignment and identification by SVM and genetic optimisation algorithm is

proposed in [61].

Researchers also proposed the use of composite spectrum for vibration-based

condition monitoring [62–64]. Cyclostationarity is the second order of a frequency

domain synchronised averaging method. The spectral correlation function derived

from second-order Cyclostationarity is an efficient parameter for the early diagnosis of

faults. The application of Cyclostationarity to early diagnosis of spalling in gear teeth

demonstrated the power of this new parameter [65–67]. A comparison between

Cyclostationarity and bilinearity was researched and presented for early diagnosis in

gearboxes. The Bicoherence spectrum, which is a third-order spectrum, has also been

used to monitor bearing condition [68].

2.3.3 Vibration Signature Analysis in Time-Frequency Domain

Time frequency analysis techniques have been studied and applied to machinery

fault diagnosis due to their capability of representing signals in both the time and
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frequency domains [69, 70]. This characteristic of time frequency analysis technique

meets the requirements for analysing vibration signals which are non-stationary.

Preliminary time frequency analysis techniques, windowed Fourier transform and

Short time Fourier transform (STFT) were applied to monitoring the condition of

machinery. The Wigner distribution and the spectrogram are the most well-known

quadratic time frequency representations belonging to the Cohen class which were

applied to diagnosing gear faults. The use of the third- and fourth-order Wigner

moment spectra, called the Wigner bi- and tri-spectra respectively was used to analyse

the signals of rotating machinery [71, 72].

The continuous wavelet transform (CWT) has been developed based on the STFT

with better time frequency resolution and applied to rotating machinery fault

diagnosis. The Scalogram, the squared modulus of the CWT was applied in diagnosing

gear faults. The Discrete wavelet transform (DWT) was also used to diagnose rolling

bearing defects. Discrete wavelet packet analysis (DWPA) and discrete wavelet

analysis also showed their potential in fault diagnosis [73–77].

2.4 VIBRATION SIGNATURE ANALYSIS USING ARTIFICIAL

INTELLIGENCE TECHNIQUES

There are a variety of machine learning algorithms that have been used for

intelligent fault diagnosis for many years. Reviews summarizing the use of artificial

intelligence techniques on motor fault diagnostics can be found in [34], [78]. Liu et al.

gave a comprehensive review of “Artificial algorithms” used in rotating machinery

fault diagnosis [78]. They have discussed advantages and limitations of KNN, Naı̈ve

Bayes, SVM, ANN and Deep learning algorithms. Zhang et al. have presented a

systematic review of “Machine learning and Deep Learning algorithms” for bearing

fault diagnostics [79]. A review on “Meta Classification Algorithms” using WEKA is

presented by Bal and Sharma [80].

Researchers were able to utilize the power of popular supervised machine learning

techniques like Random Forest [32], k-nearest neighbour classifier and its variants [81–

84], Support Vector Machine [39], [46] in the domain of fault diagnosis. The use of

artificial neural networks (ANN) in fault detection was also explored widely [37], [85,

86].
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The potential of Rule based classifiers, in the domain of bearing fault diagnosis,

has also been shown to be promising [87, 88]. Application of Rule based classifiers has

also been successfully extended for severity detection. Li et al. proposed an association

rule mining method based on equal probability discretization to perform a 10 class

prediction on select time-domain and frequency domain features for fault classification

and severity prediction [88].

Researchers have also explored the use of Rough Set Theory and Analogy Based

Reasoning for classification algorithms [89–91]. In machine learning, Analogy-based

reasoning methods allow us to reason out and take decision about objects based on the

similarities between them. Using analogy-based reasoning paradigm, A. Wojna

modified distance metrics and used them to develop improved k-nearest neighbour

classifiers [90]. Rule based and k-nearest neighbours classification algorithms based

on rough set theory have been developed. C. Xin et al. performed bearing fault

diagnosis by Kurtosis computation in time-domain and wavelet analysis in frequency

domain [91]. The fault diagnosis algorithm was built by attribute reduction based on

rough set. X. Zhu, Y. Zhang and Y. Zhu used statistical features and combined the

kernel method and neighborhood rough sets to design the wrapper feature selection

algorithm in their proposed methodology of bearing fault diagnosis [92]. J. Yan et al.

reduced the fault data of rolling bearing by the application of greedy algorithm of

rough set and used neural network for classification [93]. V. Muralidharan and V.

Sugumaran used wavelet features with rough set and fuzzy logic for fault diagnosis of

centrifugal pumps using vibration signals [94]. Rules were generated by applying

Rough set theory and the faults are identified based on the strength of the rules. W. Li,

W. Pan and S. Zhang proposed a rough set and back propagation neural network based

algorithm for rolling bearings fault diagnosis [95]. It was seen that rough set was able

to reduce the dimensionality of the raw feature set and rough sets combined with BP

neural network effectively classified bearing faults. Hence studies proved that rough

set based classifiers can be effectively utilized for bearing vibration signature

analysis. [92–96].

As enormous amounts of vibration data are collected for bearing health monitoring,

it becomes important to integrate different concepts for intelligent decision making for

accurate fault diagnosis. Literature shows a growing research interest in combining a set
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of learning algorithms to generate ensembles for investigating complex problems. These

ensemble algorithms tend to exploit the strengths of the base classifiers to enhance the

overall accuracy There have been numerous studies in the past decade for combining

machine learning classifiers into an ensemble [97–100].

Kotsiantis et al. described ensembles of classifiers for improving classifier

accuracy in their paper titled “Machine learning: A review of classification and

combining techniques” [98]. Dietterich T. reviewed Ensemble Methods in Machine

Learning and explained why ensemble classifiers often perform better than any single

individual classifier [99]. An ensemble of rule-based classifiers for fault diagnosis of

rotating machinery was proposed by Dou et al. to predict potential faults and

subsequent breakdown of rotating machinery by using 6 time- domain and 5

frequency-domain features. A classifier ensemble was constructed and validated on the

vibration data of two types of bearings; SKF6203 and NU205 [87]. Zio et al. proposed

feature-based classifier ensembles for multiple fault diagnosis in rotating machinery. In

their work, a multi-objective genetic algorithm is used for feature selection and

ensembles of classifiers is developed to achieve higher accuracies. A voting technique

is used to effectively combine the predictions of the base classifiers [97] . Sikder et al.

pre-processed vibration data using FFT and then applied an ensemble learning method,

Random Forest for bearing fault diagnosis [101]. The validation for the proposed

scheme was done on the Case Western Reserve University (CWRU) dataset. Sharma,

Amarnath and Kankar used 15 time domain, frequency domain and wavelet-based

features in feature vector and applied ensemble techniques namely rotation forest and

random subspace for fault diagnosis [100]. G. Xu et al. proposed a bearing fault

diagnosis method based on deep convolutional neural network (CNN) and random

forest (RF) ensemble learning. They generated two dimensional gray-scale images

from one dimensional time domain vibration signals, extracted multi-level features

using convolution neural network and used ensemble of multiple Random Forest

classifiers for classification of faults [102]. Karimi and Jazayeri-Rad applied boosting

methods to compare the fault diagnosis performances of single neural networks with

two ensemble neural networks [103]. A detailed description of ensemble classifiers is

given in the book titled “Combining Pattern Classifiers: Methods and Algorithms” by

L. Kuncheva [104].
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Researchers have also explored analysis of different types of vibration images for

efficient fault diagnosis. In this approach, first, the 1-D vibration signal is transformed

into a 2-D image which provides a basis for the image-based feature extraction and fault

diagnosis. Research in this domain can be divided in two major parts:

1. Methodology to convert 1-D vibration signal into 2-D vibration image

2. Methodology to extract fault-sensitive features from vibration images and to use

them for fault classification

Some of the studies that used different types of vibration images and classification

techniques are as follows: Vibration Images and Scale Invariant Feature Transform

(SIFT) [105], Vibration Spectrogram and Quaternion Invariable Moment [106],

Spectrum images of vibration signals and 2D PCA [107], 2D image of vibration signal

and Micro texture analysis plus KNN [108], 2D image of vibration signal based on

recurrence plot (RP) technique and SIFT plus Probabilistic neural network

(PNN) [109], Bispectrum of vibration signal and speeded up robust features

(SURF) [110, 111], vibration images and Convolutional Neural Networks plus transfer

learning [112], fractal features of bispectrum images using digital image processing

and fractal theory in [113].

In the initial years, machine learning techniques were used to analyse vibration

images for the purpose of fault diagnosis. With the advancements in deep learning,

research in the field of fault diagnosis using vibration images has progressed

tremendously. Conventional machine-learning techniques have a drawback of not

being able to process signals in their raw form, thereby creating a need for manually

extracting features from the signals. This requires domain expertise. On the contrary,

in the case of Deep Learning methods (deep neural networks), feature spaces are

automatically extracted. Figure 2.3. depicts the difference between conventional

machine learning and deep learning process flow. Deep learning enabled fault

diagnosis using images of vibration signals has been researched in recent

years [114–116]. DL-based intelligent fault diagnosis techniques have been reviewed

and summarized in [117–119]. These reviews play an emphasis on intelligent fault

diagnosis of typical rotating machinery, including bearing, gear etc. Like in other

domains, Deep Learning has invaded the domain of machine health monitoring too and

has established its effectiveness [120–123] .
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Figure 2.3: Machine Learning Vs Deep Learning techniques for Vibration Signature
Analysis.

Deep learning can find complicated hidden patterns in large data sets by using the

backpropagation algorithm to calculate its internal parameters that are used to compute

the representation in each layer from the representation in the previous layer [124].

G. Xu et al. proposed an online fault diagnosis method, taking time-domain signal

data from bearing and centrifugal pump, converting it to images and feeding them to a

deep transfer CNN framework consisting of an online LeNet-5 and various offline

CNNs [112]. Y.M. Hsueh et al. proposed a novel methodology for classifying a

three-phase induction motor as faulty or healthy, involving transformation of the raw

signal to grayscale images using pattern recognition followed by extraction of

significant features using deep CNN [125]. Y. Xie and T. Zhang combined compressed

features extracted from a CNN and EMD energy entropy extracted from first few

Intrinsic Mode Functions, to train classification models for bearing fault

detection [126]. D. Verstraete et al. generated image representations of bearing

time-frequency data and used a deep CNN architecture for automatically learning the

features for classification of faults [115].

Specifically, with bispectrum, Deep learning has shown its superiority in various

domains other than condition monitoring. I. Mitiche et al. presented an efficient

method for High Voltage power plant equipment monitoring through the application of

a Deep Residual Neural Network (ResNet) to the Bispectrum images generated from

discharge signals [127]. M. Sohaib and J.M. Kim used CNN based on AdaMa

optimisation for bispectrum analysis, in order to detect bearing faults at different shaft

speed variations with cracks of various scales [128]. The tremendous progress in deep

learning and images have popularized the use of Bispectrum images in other domains

as well. The application of deep neural networks in the enhancement of a bispectrum
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phase retrieval algorithm for astronomical imaging has been explored in [129].

Bispectrum analysis to forecast epileptic seizures has been explored in [130, 131],

wherein they have applied Long Short-Term Memory (LSTM) and 5-layer multilayer

perceptron classifier, respectively.

After the detailed literature survey on condition monitoring and fault diagnosis

using vibration signature analysis, it can be concluded that a vibration-based condition

monitoring system fundamentally includes data acquisition, signal processing and

decision making modules. Standard vibration data acquisition systems consist of pairs

of accelerometers (piezo-electric transducers) mounted on each bearing of the rotating

shaft of the equipment, at right angles from each other. The signal processing module

includes data pre-processing methods and algorithms for feature extraction. The

decision making module includes ML/DL based classification for fault detection.

These basic building blocks of vibration based condition monitoring are shown below

in the Figure 2.4.

Figure 2.4: Block diagram of Vibration Signature Analysis for Fault Diagnosis

2.5 CHAPTER SUMMARY

This chapter presented a review of condition monitoring of rotating machinery of

power plant such as steam turbine, gas turbine, generator and major auxiliaries like

pumps. Fault sensitive features of vibration signals from different domains have been

reviewed and research gaps have been identified. Review of machine learning

techniques give a direction for designing of Ensemble Classifiers.

Furthermore vibration signature analysis using image processing have also been

reviewed to understand a rapidly growing research direction of fault diagnosis using

deep learning.
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The detailed review of existing body of literature leads to following conclusions:

1. From the literature review of condition monitoring and fault diagnosis of Power-

plant components, it is concluded that one of the key and universal component of a

rotating machinery is a bearing which is usually the cause of failure of the machinery

and hence will be a key research area for fault diagnosis in this research work.

2. The study on the research done on fault sensitive features, helped in understanding

that although all of the studies cited above have applied various time-domain

parameters, whether conventional or novel and dimensional or dimensionless, for

bearing fault diagnosis, either exclusively or in addition to other frequency and

time-frequency domain features, none of the studies discusses and provides the

reason behind the use of a set of particular statistical features. Majority of the

previous studies, till now, have focused more on optimising fault diagnosis

classifiers, very few have compared established features with novel ones. Since,

fault diagnostic accuracy depends on the choice of both features and classifier, it is

important to emphasise on features too by proposing novel statistical features

and/or developing a strategy to conduct an extensive analysis of new and old

statistical features, so as to derive the most optimal set of fault-sensitive features.

3. Furthermore, it is also learnt that frequency-domain or spectral analysis of the

vibration signals is becoming a highly effective approach for bearing defect

detection. Higher order spectral analysis methods like Bispectrum analysis are

becoming very popular, over traditional methods like power spectrum, in fault

diagnosis of rolling element bearings since higher order spectrum can provide more

diagnostic information than power spectrum for vibration signals. In particular,

Bispectrum, the 3rd order cumulant, helps retain phase and amplitude information

of vibration signals.

4. Literature review of machine learning techniques show that Ensembles methods

have been applied to a wide range of industrial problems in the area of condition

monitoring. There is empirical evidence of the effectiveness of this approach in

fault diagnosis of rotating machines.

5. From the literature review of vibration signature analysis using image processing

techniques, it is learnt that intelligent fault diagnosis based on deep learning has

become a rapidly growing research domain, and is redefining state-of-the-art
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algorithms in the area of machine health monitoring. Deep learning methods

involve multiple levels of representation, obtained by composing simple but

non-linear modules that each transform the representation at one level (starting with

the raw input) into a representation at a higher, slightly more abstract level. With

the generation of enough such transformations, very complex features can be

learned. This is a key advantage of deep learning.

6. Even though considerable prior research has been conducted on vibration-based

fault diagnosis of rotating machinery components, most of the research conducted

so far has been tested on simulated data from laboratory setups and not on real

industrial system data. As laboratory setups are different from industrial equipment

with regards to scale and operating conditions, there is no guarantee that research

solutions validated with simulated data will perform equally well on actual systems.

So while conducting experiments the validity of the proposed solution or algorithm

is best confirmed when it’s tested on data from real industrial systems.
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CHAPTER III

VIBRATION DATA ACQUISITION

3.1 INTRODUCTION

Data is the foundation for artificial intelligence based fault diagnosis of rotating

machines. Since the degradation of a rotating machine may take many years, the real

data collection can be time consuming. Hence sometimes researchers generate

artificial vibration signals to test their vibration signature analysis methodologies.

Researchers working in the field of Machine Condition Monitoring conduct

experiments in the vibration research labs and collect data using components with

artificially seeded faults. Researchers from few organizations have put efforts in

vibration data collection and made the fault dataset repositories publically available.

These datasets also serve as standards for the comparison and validation of different

algorithms. Neupane, D. and Seok, J. have discussed many open source and closed

source bearing datasets in their review paper of Fault Detection and Diagnosis using

Deep Learning and Case Western Reserve University dataset [132].

This chapter explains Case Western Reserve University (CWRU) dataset [133] and

Machinery Failure Prevention Technology (MFPT) dataset [134] used in this research

work along with their experimental setups for data acquisition.

3.2 FAULT DATA ACQUISITION FROM VIBRATION RESEARCH LAB

This data was acquired by collecting Vibration Signatures of a faulty machine by

controlled experiments on a test rig in the “Vibration Research Lab” of the “Department

of Mechanical Engineering, IIT Delhi” under “Summer Faculty Research Fellowship

Programme-2013”.

3.2.1 Experimental Setup for Data Acquisition

To gain comprehensive knowledge of vibration signatures related to different types

of faults, experiments in a controlled environment were performed on a test rig that

mirrors real world machinery. SpectraQuest’s Machinery Fault Simulator (MFS)

shown in Figure 3.1 is the test rig used for performing these experiments for learning
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the vibration signatures of different types of machine faults [135].

Figure 3.1: SpectraQuest’s Machinery Fault Simulator (MFS)

MFS is a bench-top test rig whose electrical and mechanical specifications are given

in Table 3.1. The experiments were performed on MFS by mounting two Brüel Kjær

Piezoelectric Charge Accelerometer (Type 4371), one at each end. The two channels’

acceleration data was collected simultaneously using a FFT analyzer.

3.2.2 Dataset and Experiment Description

This dataset is composed of multivariate time-series vibration data acquired by

sensors hooked onto the MFS Rig. The dataset comprises following four types of

vibration signals:

1. Normal (no fault): The MFS was carefully aligned to its baseline configuration and

the baseline data was collected at 25 Hz.

2. Misalignment faults (Angular and Parallel): After collecting baseline data, the

inboard bearing house was misaligned intentionally by 300 microns in the vertical

direction to all six locations by inserting 300 micron shims. Thus a parallel

misalignment was introduced. Vibration signatures were recorded for 30 Hz, 35 Hz,

40 Hz and 45 Hz in both the channels. After the acquisition of parallel

misalignment, the outboard bearing house was misaligned by 200 microns in the

vertical direction to the operator’s side. Therefore, an angular misalignment was

introduced. Again, the data was collected under the same rotating speeds. The
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Table 3.1: Specifications of Machinery Fault Simulator

Motor
3 Phase, 1 HP motor, pre-wired self-aligning mounting
system for easy installation/removal

Tachometer
Built-in tachometer with LCD display and one pulse per
revolution

Drive 1 HP variable frequency AC drive with multi-featured front
panel programmable controller

RPM range 0 to 6000 rpm (short duration) variable speed

Voltage 115/230 VAC, Single phase, 60/50 Hz

Current
Measurement

Power leads accessible for current measurements

Shaft Diameter 3/4” diameter; Turned, Ground, & Polished (TGP) steel

Bearing
Two rolling element ball bearings with squeeze lock type.
Split bracket bearing housings with five mounting positions
for shaft span reconfiguration

Rotor Base
18” long, completely movable using jack bolts for easy
horizontal misalignment and standard shims for vertical
misalignment. Pinned for easy realignment.

Rotors Two 6” balance rotors with two rows of holes

Belt Mechanism
Two double groove “V” belt with one set screw mounting and
one bush/key mounting

Reciprocating
Mechanism

Adjustable spring engagement timing and two stroke settings.

Gearbox and Brake
Accessible three-way straight cut bevel gearbox with 1.5:1
ratio (20 gear input).

Centrifugal Pump 1⁄2 HP, 27psi at 0gpm, 25gpm at 0psi with water at 4000rpm

Instrumentation
Connectors

16 BNC connector plate under the rotor base linked to BNC
connector panel mounted on the edge for the base plate for
direct connection to data collectors

Safety Cover
Lockable clear, impact resistant hinged plastic cover with
motor interlock switch to shut down motor when cover is
raised

Foundation
1/2” die cast aluminium base, base stiffener and eight rubber
Vibration isolators
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acceleration data was exported to a FFT analyzer to determine the effect of

misalignment on Spectrum. The raw data was exported to MATLAB for further

processing. The change in vibration levels with machinery alignment condition was

investigated and it was observed that misalignment produces several harmonics of

the running speed.

3. Imbalance fault: Seeded fault data with load values within the range from 5g to 25g

was recorded. The number of sequences acquired per weight were 10. The effect of

mechanical imbalance on the machine vibration was studied and it was noticed that

the level of vibration increased significantly in an unbalanced machine.

4. Bearing faults (inner race, outer race and ball-bearing): Rolling element

bearings are the most susceptible elements to fault occurrence in rotating machines.

To investigate the vibration signature of faulty bearings, three defective bearings

with bearing faults (inner race, outer race and ball-bearing) were placed one at a

time in two different positions: a) bearing between the rotor and the motor and b)

rotor between the bearing and the motor. Vibration signals were measured for each

case and their Kurtosis values were calculated. Bearing faults were practically

undetectable in the absence of imbalance. So, small masses were added to induce a

detectable effect, with different rotation frequencies as before.

3.3 FAULT DATA ACQUISITION FROM CWRU AND MFPT

REPOSITORIES

3.3.1 CWRU Experimental Setup and Dataset Description

Case Western Reserve University (CWRU) Bearing Data Set [133] has been used

in this research. The setup for vibration data acquisition, shown in Figure 3.2. and

Figure 3.3., consists of a 2 HP Electric motor, transducer/encoder, dynamometer and

accelerometers. Specifications of CWRU Test rig and experimental setup is listed in

Table 3.2. Data for normal bearings is recorded using the drive-end bearing SKF6205

for motor loads of 0, 1, 2, 3 horsepower (motor speeds of 1797, 1772, 1750, 1730

RPM respectively). Then faults are introduced in the bearings using Electro-discharge

machining. Faults of diameters: 0.007 inches, 0.014 inches, 0.021 inches are induced

in the SKF6205 bearing and 0.028 inches in its NTN equivalent. Different parts of

deep groove ball bearing used in the rig are shown in Figure 3.4.
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Figure 3.2: CWRU test rig

Figure 3.3: Schematic diagram of CWRU experimental setup

Figure 3.4: Parts of 6205 SKF deep groove ball bearing
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Table 3.2: Specifications of CWRU test rig and experimental setup.

Bearing specification

Position Number Type Inside
Diameter

Outside
Diameter Thickness Ball

Diameter
Pitch
Diameter

Drive
end
bearing

6205-
2RS
JEM
SKF

deep
groove
ball
bearing

0.9843
inch

2.0472
inch

0.5906
inch

0.3126
inch

1.537
inch

Fan
end
bearing

6203-
2RS
JEM
SKF

deep
groove
ball
bearing

0.6693
inch

1.5748
inch

0.4724
inch

0.2656
inch

1.122
inch

Sampling Frequency

Drive
end 12000 samples/sec and 48000 samples/sec

Fan
end 48000 samples/sec

Motor Speed

1797 RPM, 1772 RPM, 1750 RPM, 1730 RPM

Motor Load

0 HP, 1 HP, 2 HP, 3 HP

Fault Types

Inner Race, Outer Race, Ball Bearing

Fault Size Diameter

0.007 inch, 0.014 inch, 0.021 inch, 0.028 inch

Data Files Used

Training 13648

Test 3412

Total 17060
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After reinstalling these faulted bearings into the test motor, vibration data is again

recorded for same motor loads as in the case of normal bearings. Four cases are

considered: outer raceway fault, inner raceway fault, rolling element (ball) fault, and

the normal (no fault). The defect of outer raceway fault is located at 6 o’clock

(orthogonal to the load zone). Vibration data is collected using a 16 channel DAT

recorder for single-point drive end defects at 12,000 samples/second. Rotation rate and

horsepower data are gathered through a torque transducer/encoder.

Data samples of size 1024 points were extracted from these vibration signals in a

linear non-overlapping fashion, i.e. for each signal, the first 1024 points were extracted

as its first data sample, the next 1024 points as its second data sample and so on. A total

of 17060 samples consisting of 3314 normal, 4735 inner race, 4272 outer race and 4739

ball bearing samples were extracted. Using these samples 3 datasets were prepared.

Table 3.3: CWRU dataset A for Fault Type Detection.

Class No of Train samples No of Test samples Total
Normal 2649 665 3314

Inner Race 3774 961 4735
Outer Race 3473 799 4272

Ball Bearing 3752 987 4739
Total 13648 3412 17060

Table 3.4: CWRU dataset B for Fault Severity Detection.

Class Fault Type Fault
size

No of
Train

Samples

No of
Test

Samples
Total

Normal – – 2663 651 3314
IR 007 Inner Race 0.007” 1135 292 1427
IR 014 Inner Race 0.014” 1139 277 1416
IR 021 Inner Race 0.021” 1152 269 1421
IR 028 Inner Race 0.028” 373 98 471
OR 007 Outer Race 0.007” 1158 267 1425
OR 014 Outer Race 0.014” 1126 296 1422
OR 021 Outer Race 0.021” 1134 291 1425
BB 007 Ball Bearing 0.007” 1131 288 1419
BB 014 Ball Bearing 0.014” 1136 289 1425
BB 021 Ball Bearing 0.021” 1125 299 1424
BB 028 Ball Bearing 0.028” 376 95 471

Total 13648 3412 17060
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Table 3.5: CWRU dataset C for Fault Diagnosis using Bispectrum Images.

Class Ball Bearing Inner Race Outer Race Normal Total

(Fault Diameter

in inches)

0.007 0.014 0.007 0.014 0.007 0.014

Train set 331 332 333 330 332 332 1160 3150

Validation set 71 72 72 71 72 71 249 678

Test set 71 71 71 71 71 71 248 674

The three datasets are: Dataset A for Fault Type Detection listed in Table 3.3,

Dataset B for Fault Severity Detection listed in Table 3.4 and Dataset C listed in

Table 3.5 for Fault Diagnosis using Bispectrum images. Dataset A has data labelled

into 4 classes- outer raceway defect, inner raceway defect, ball bearing defect, and

normal whereas Dataset B, has the data labelled into 12 classes defined by fault types

and fault sizes (in inches). Dataset C has 7 classes - Normal class, Inner Race with

0.007 inch and 0.014 inch, Outer Race with 0.007 inch and 0.014 inch, and finally Ball

Bearing with 0.007 inch and 0.014 inch.

3.3.2 MFPT Experimental Setup and Dataset Description

The second repository dataset used in this research is the dataset provided by the

Machinery Failure Prevention Technology (MFPT) Society [134]. The MFPT data was

acquired from a NICE bearing [136] as shown in Figure 3.5. It has roller diameter of

5.97 mm, pitch diameter of 31.62 mm, contact angle of 0 degree and an input shaft rate

of 25 Hz. A single radial accelerometer has been used to obtain the data. The acquired

data is stored in a MATLAB® double-precision, binary format *.mat file. In addition

to acceleration data, the data files also include sampling rate, Motor Speed and Motor

Load as shown in Table 3.6.

The dataset consists of data files collected from a bearing test rig and from real

machines. Data collected from test rig includes 3 files of healthy bearing under fixed

load, 3 files with vibration signals from bearing having outer race faults under fixed

load, 7 files with vibration signals from bearing having outer race faults under seven

types of loads and 7 files with vibration signals from bearing having inner race faults

under seven types of loads.
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Figure 3.5: Bearing used in MFPT experimental setup

Data related to following three conditions has been used for this research work:

• Baseline (No Fault): 3 baseline or healthy conditions with a sample rate of 97,656 Hz

and 270 lbs of load recorded for 6 sec.

• Fault in Outer Race: 7 outer race fault conditions with a sample rate of 48,828 Hz and

various loads of 25, 50, 100, 150, 200, 250, 300 lbs recorded for 3 sec.

• Fault in Inner Race: 7 inner race fault conditions with sample rate of 48,828 Hz. and

various loads of 0, 50, 100, 150, 200, 250, 300 lbs recorded for 3 sec.

In order to match the sample rate of other fault sets, the baseline data set was down-

sampled to 48,828 Hz. The original vibration signals were split into pieces such that

each file contains 2048 points. Vibration data after segmentation include 498 files of

Inner Race Faults, 498 files of Outer Race Faults and 430 files of Normal bearing signals

as listed in Table 3.7.

33



Table 3.6: Specifications of MFPT experimental setup.

Bearing Specification

Bearing type NICE Ball bearing

Roller diameter: rd 0.235

Pitch diameter: pd 1.245

Number of elements: ne 8

Contact angle: ca 0

Motor Speed
25 Hz or 1500 RPM

Motor Load
0, 25, 50, 100, 150, 200, 250 , 270 and 300 pounds

Sampling Frequency
48,828 Hz, 97,656 Hz

Fault Types
Inner Race, Outer Race

Data file format
MATLAB double-precision, binary format *.mat file

Data Files Used
Baseline or healthy condition 3 with a sample rate of 97,656 Hz, 270

lbs of load, 6 sec. of duration

Fault in Outer Race 7 with a sample rate of 48,828 Hz,
various loads of 25, 50, 100, 150, 200,
250, 300 lbs, 3 sec. of duration

Fault in Inner Race 7 with a sample rate of 48,828 Hz,
various loads of 0, 50, 100, 150, 200,
250, 300 lbs, 3 sec. of duration

Table 3.7: MFPT dataset

Class Bearing
Condition

Number of
Train

Samples

Number of
Test Samples

Total

Normal No fault 343 86 429

IR Inner Race fault 398 99 497

OR Outer Race fault 398 99 497

Total 1139 284 1423
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3.4 FAULT DATA ACQUISITION FROM POWER PLANT

The vibration data for validation of the proposed methodology was taken from a

motor of an operational power plant. Data was acquired from Rolling Element Bearing

of an electric motor of service water pump of 500 MW Kosti Thermal Power Plant

commissioned by Bharat Heavy Electricals Limited, India.

Figure 3.6: Experimental setup consisting of vertical electric motor of service water
pump at Kosti Thermal Power Plant.

The setup, shown in Figure 3.6., consists of a 7 HP vertical electric motor of

service water pump of Power-plant. Data for normal baseline bearings was recorded

using the deep groove ball bearing SKF6303-2Z/C3 with dimensions 17mm X 47mm

X 14mm at drive-end with motor speed of 3000 rpm. Vibration data was collected at

12,000 samples/second. Vibration data was taken for 2 different timestamps and for

both vertical and horizontal positions, leading to a total of 4 vibration signals.

3.5 CHAPTER SUMMARY

This chapter discusses the acquisition of vibration data used in this research. Data

acquired from Vibration labs and real Power-plant is explained. Specifications of the

experimental setup for each experimental study is elaborated.
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CHAPTER IV

PRE-PROCESSING OF VIBRATION SIGNALS

4.1 INTRODUCTION

Vibration signals collected from sensors are often contaminated by noise and it is

difficult to diagnose machine faults, if these signals are used in raw form. Faults can go

undetected without pre-processing of vibration signals, hence effective pre-processing

techniques are needed to increase the fault diagnosis accuracy at later stages. For

example, when a rolling bearing operates, vibration signals captured from it exhibit

modulation. Therefore, different methods for analyzing the demodulation of rolling

bearing signals have been established, envelope demodulation method being a popular

choice. The limitation of the conventional envelope analysis is that it requires a proper

filtering band to be chosen in order to obtain reliable results since the selection of the

filtering band has a great influence on the accuracy of the analysis result.

To overcome this limitation, many researchers have adopted the Empirical Mode

Decomposition (EMD) method that treats the signals as “fast oscillations

superimposed on slow oscillations” and decomposes the parent signal into a number of

Intrinsic Mode Functions (IMFs). These IMFs are time-varying mono-component

(single frequency) functions, which can be regarded as a self-adaptive filter whose

bandwidth and central frequency change with the signal itself. Since the

decomposition is based on the local characteristic time scale of the data, EMD is an

adaptive data-driven method and therefore it is especially suitable for the analysis of

non-linear and non-stationary signals such as bearing vibration signals.

Empirical mode decomposition (EMD) has been extensively studied and widely

applied in fault diagnosis of rotating machinery [31], [137–139]. An extensive review

on empirical mode decomposition in fault diagnosis of rotating machinery is available

in [140]. Variants of EMD, like Bi-variate EMD and Ensemble EMD for multi-fault

diagnosis are also found in the literature [141–144]. It is important to note that not

all the constituent signals, that is IMFs, generated by EMD, bear fault information.

Different criteria, such as - correlation coefficient and kurtosis - have been used to

select significant IMFs [48], [35].
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4.2 EMPIRICAL MODE DECOMPOSITION

Empirical Mode Decomposition (EMD) was proposed by Huang et al. as a

mathematical tool to analyze a non-stationary and non-linear signal by decomposing it

into different IMFs [137].

Figure 4.1: Flowchart of Empirical Mode Decomposition (EMD)

The EMD Algorithm is shown as a flow-chart in Figure 4.1. and its steps are explained

below:

Step 1: Identification of all local maxima and local minima for the input vibration x(n)

signal.

Step 2: Connecting all local maxima points using cubic spline function and calculating

upper envelope.

Step 3: Connecting all local minima points using cubic spline function and calculating

lower envelope.

Step 4: Calculating the mean value of upper and lower envelopes.

Step 5: Updating the signal by subtracting the mean calculated in step 4 by using the
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formula x(n)new = x(n)�mean and repeating steps 1 to 5 on the updated signal until it

can be considered as an IMF i.e. the difference between the number of extrema and the

number of zero crossings is at most one and the mean value of the both of the envelopes

is zero.

Step 6: Subtracting first IMF from x(n) to obtain residue (rm) i.e. residue= x(n)�IMF1

Step 7: Iterating the above steps on the residue to find all the IMFs of the vibration

signal; the algorithm will terminate when the residue becomes a monotonic function.

Thus, after Empirical mode decomposition, the vibration signal x(n) can be represented

as a sum of IMFs and residue:

x(n) =
m

Â
i=1

IMFi + rm (4.1)

4.3 BEST INTRINSIC MODE FUNCTION SELECTION

Although the EMD process decomposes raw vibration signal into a number of

IMFs, the main fault information is often contained in only a few IMFs. If all the IMFs

are considered, the dataset will increase considerably and some IMFs might serve as

noise affecting the classification analysis. Research studies also show that IMF

selection alleviates the problems of mode mixing and spurious modes that might arise

because of working with insignificant IMFs. That’s why researchers have used

different criteria to select IMFs in their proposed methodologies for designing an

efficient fault diagnosis system [145, 146]. Some of them are: cross correlation,

kurtosis, energy, power-harmonic ratio etc. [145, 147, 148].

In this research, the best IMFs were selected based on Pearson correlation

coefficient. The IMF having the largest correlation coefficient with the original signal

is selected as the best IMF since it retains most of the information of the original

signal, thereby ensuring that the features extracted from the selected IMF accurately

represent the parent signal. The Pearson correlation coefficient rX ,Y was computed as:

rX ,Y =
E[(X �µX)(Y �µY )]

sX sY
(4.2)

where E is the expectation, sX and sY are standard deviations of X and Y, µX and µY

are means of X and Y respectively.
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4.4 RESULTS AND DISCUSSION

Vibration signals were decomposed by EMD resulting in 12-17 IMFs along with

residue for each signal. Eight out of seventeen IMFs generated by Empirical Mode

Decomposition for sample vibration signal with Inner Race Fault of 0.007 inches are

shown in the Figure 4.2.

The IMF having the highest Pearson correlation rX ,Y with the parent signal was

taken as its representative signal. The larger the value of rX ,Y , the stronger the

correlation between two signals. Table 4.1 shows the calculated values of rX ,Y for 12

IMFs of parent signals taken from the classes: Inner race 0.007 inch fault (IR007),

Inner race 0.021 inch fault (IR021), Ball bearing 0.007 inch fault (BB007) and Ball

bearing 0.021 inch fault (BB021). Plots of the best IMFs selected on the basis of

Pearson correlation coefficient for each of the 12 classes from CWRU Dataset B are

shown in Figure 4.3. These selected best IMFs will be used later for fault sensitive

feature extraction.

Table 4.1: Pearson Correlation Coefficient between a raw vibration signal and each of
its IMFs.

IMF No.
Pearson Correlation Coefficient

IR 007 IR 021 BB 007 BB 021

1 0.7732 0.909 0.9018 0.8925

2 0.679 0.7286 0.6647 0.6375

3 0.5711 0.5134 0.5282 0.5286

4 0.6099 0.4344 0.5131 0.5046

5 0.6174 0.674 0.6324 0.6102

6 0.6927 0.8245 0.7028 0.6432

7 0.722 0.7871 0.6702 0.5587

8 0.6656 0.6234 0.6691 0.5329

9 0.6563 0.0898 0.7705 0.5329

10 0.677 0.5651 0.5731 0.392

11 0.5092 0.7159 0.6447 0.247

12 0.2464 0.5056 0.6099 0.1647
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Figure 4.2: Plots of vibration signal with 0.007” Inner Race fault (x axis is time & y axis
is voltage), shown in a); and its Intrinsic Mode Functions obtained after EMD, shown
in b) to i).
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(a) Normal

(b) IR 007

(c) IR 014

(d) IR 021

(e) IR 028

(f) OR 007

(g) OR 014

(h) OR 021

Figure 4.3: Plots of the best IMFs selected on the basis of Pearson Correlation
Coefficient for each of the 12 classes from CWRU Dataset B.
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(i) BB 007

(j) BB 014

(k) BB 021

(l) BB 028

Figure 4.3: Plots of the best IMFs selected on the basis of Pearson Correlation
Coefficient for each of the 12 classes from CWRU Dataset B. (Contd.)

4.5 CHAPTER SUMMARY

This chapter deals with the vibration signal pre-processing techniques. Empirical

mode decomposition (EMD) is one of the most powerful signal processing techniques

and has been extensively studied and widely applied in fault diagnosis of rotating

machinery. The results of EMD and best Intrinsic Mode Function (IMF) selection out

of the many IMFs generated by EMD process are presented in this chapter.
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CHAPTER V

FEATURE EXTRACTION FROM VIBRATION

SIGNALS

5.1 INTRODUCTION

In vibration based condition monitoring of power plant components, a variety of

vibration feature extraction techniques (in time domain, frequency domain, and

time-frequency domain) have been proposed during the past few decades to extract

useful diagnostic information from raw or pre-processed vibration signals. Effective

and efficient feature extraction techniques are critical for reliable fault diagnosis using

vibration signature analysis. These techniques can locate certain components in signals

to assist detection of machine faults. The features extracted from these techniques can

be useful in pinpointing the source of abnormalities in vibration and thus these

techniques have been successfully applied to turbine-generators, pumps, and fans in

power-plants to prevent trip-out and fatigue induced damage.

Literature review in Chapter 2 proves that statistical time domain features have

been effectively used by many researchers in their extracted feature set along with

various other features [34], [37], [149]. This chapter discusses definition, significance

and values of 31 statistical time domain features extracted from best Intrinsic Mode

Function obtained by Empirical Mode Decomposition of bearing vibration signals for

various fault conditions in Chapter 4. Out of these 31 features, 4 features are novel

features proposed in this research for effective fault diagnosis. This chapter also

discusses concept and results of Higher Order Spectral Feature “Bispectrum”,

extracted from frequency domain and stored in the form of images.

5.2 TIME DOMAIN FEATURES

Time domain statistical features extracted from pre-processed vibration signal in

this research can be grouped as:

1. Conventional Statistical Features

2. Proposed Novel Statistical Features
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In this research work a comprehensive set of 31 statistical features have been used.

Table 5.1 lists the notations of all features as T1, T2, T3, T4, T5,....... T30, T30*.

Table 5.1: Notations of Statistical Time Domain Features

T1 T2 T3 T4 T5

Arithmetic
Mean

RMS Root Max
Peak
-to-
Peak

T6 T7 T8 T9 T10
Standard
deviation

Median
25th

Percentile
75th

Percentile
Skewness

T11 T12 T13 T14 T15

Kurtosis
Crest
factor

Shape
factor

Impulse
factor

Clearance
/Margin
Factor

T16 T17 T18 T19 T20

Skewness
Factor

Kurtosis
Factor

Geometric
Mean

RSSQ
Mean

Absolute
Deviation

T21 T22 T23 T24 T25
Median

Absolute
Deviation

Zero
crossing

rate
Entropy

Histogram
upper
bound

Histogram
lower
bound

T26 T27 T28 T29 T30/T30*

First
Hjorth

parameter

Second
Hjorth

parameter

Third
Hjorth

parameter

Weibull
Negative

log likelihood

Normal
Negative

log likelihood
for single

Gaussian/ GMM

5.2.1 Conventional Statistical Features

Table 5.2 shows the mathematical expression and significance of Statistical Time

Domain Features for a sampled vibration signal , where xi are individual data points of

sampled vibrational signal and i=1 to N is the length of vibration signal i.e.

x[n] = xi = x1,x2,x3......xN . (5.1)
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The dimensional statistical features are T1, T2, T3, T4, T5, T6, T7, T8. T9. T10,

T11, T18 and T19 and dimensionless statistical features are T12, T13, T14, T15, T16,

T17. They are self-explanatory from the mathematical expressions given in Table 5.2.

Table 5.2: Mathematical expression and significance of Statistical Time Domain
Features

Nota Feature Mathematical Expression Significance
tion

T1
Arithmetic
Mean
(AM)

1
N

N

Â
i=1

xi

Average value of a signal
is termed as mean value.
This is the DC value of
the vibration signal and
is the measure of central
tendency.

T2
Root Mean
Square
(RMS)

s
1
N

N

Â
i=1

x2
i

The Root Mean Square
value is generally the most
useful because it is directly
related to the energy
content of the vibration
signal. As faults get
developed, the Root Mean
Square value increases
progressively.

T3 Root (
1
N

N

Â
i=1

p
|xi|)2

This is computed as the
square of mean of the root
of the signal.

T4 Max max(|x|)

This is the maximum value
of the signal. The peak
value is valuable for shock
events.

T5
Peak–to-

Peak
max(|x|)�min(|x|)

Peak–to-Peak value of
a vibration signal is
the difference between
maximum and minimum
values in a signal, that
provides the maximum
excursion of the wave.
This is useful when
looking at the displacement
information.
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T6
Standard
deviation

(SD)

s
1

N �1

N

Â
i=1

(xi �µ)2

The standard deviation is
the average deviation of the
signal if the averaging
is done with power
instead of amplitude
(power µ voltage2). It
is the measure of energy
content in the vibration
signal. The standard
deviation only measures
the AC component of a
signal, while the rms value
measures both the AC and
DC components.

T7 Median 50(N +1)
100

th observation

The median is the same
as the 50th percentile or
second quartile (Q2), since
it is that number such that
50% observations are found
less than or equal to it.

T8
25th

Percentile
25(N +1)

100
th observation

This is the lower or first
quartile (Q1). It is a
number such that 25% of
observations are less than
or equal to it.

T9
75th

Percentile
75(N +1)

100
th observation

This is the upper or third
quartile (Q3). It is a
number such that 75% of
observations are less than
or equal to it.

T10 Skewness
(SK)

1
s3 (

1
N �1

N

Â
i=1

(xi �µ)3)

Skewness measures the
asymmetry of probability
density function of
vibration signal.

T11 Kurtosis
(KU)

1
s4 (

1
N �1

N

Â
i=1

(xi �µ)4)

Kurtosis measures the
degree of flatness of the
pdf near its center. It is a
measure of whether the data
is peaked or flat relative to
a normal distribution.
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T12 Crest Factor
(CF)

max(|x|)q
1
N ÂN

i=1 x2
i

Crest Factor is defined
as the max value of a
waveform divided by
its RMS value (T4/T2).
CF is a measure of how
much impact occurs
during rolling element
and raceway contact in
the bearing and hence
is appropriate for “spiky
signals”.

T13 Shape Factor
(SHF)

q
1
N ÂN

i=1 x2
i

1
N ÂN

i=1 |xi|

Shape factor is defined as
Root Mean Square value
divided by mean value of a
signal (T2/T1).

T14
Impulse
Factor
(IF)

max(|x|)
1
N ÂN

i=1 |xi|

Impulse factor is defined as
max value divided by mean
value of a signal (T4/T1).

T15
Margin
Factor
(MF)

max(|x|)
( 1

N ÂN
i=1

p
|xi|)2

Margin or Clearance factor
is known as the ratio of max
value and root value of a
signal (T4/T3).

T16
Skewness

Factor
(SF)

1
s3

1
N�1 ÂN

i=1(xi �µ)3

(
q

1
N ÂN

i=1 x2
i )

3

Skewness Factor is defined
as skewness divided by
(rms)3 of a signal.

T17
Kurtosis
Factor
(KF)

1
s4 (

1
N�1 ÂN

i=1(xi �µ)4)

(
q

1
N ÂN

i=1 x2
i )

4

Kurtosis Factor is defined
as Kurtosis divided by
(rms)4 of a signal.

T18
Geometric

Mean
(G-Mean)

(
N

’
i=1

xi)
1/N

Geometric-mean is the Nth
root of the product of N
numbers. N is the total
number of samples of the
vibration signal.

49



T19
Root-Sum-
of-squares
(RSSQ)

s
N

Â
=1

|xi|2

RSSQ level of x(n) is
defined as square root of
sum of square values of
x(n). It is also referred to as
L2 norm.

T20
Mean

Absolute
Deviation
(MAD)

mean(|xi �µ|)
It is defined as the mean
of the absolute deviations
from the data’s mean.

T21
Median

Absolute
Deviation
(MeAD)

median(|xi �median(xi)|)

It is defined as the median
of the absolute deviations
from the data’s median.
MeAD is a measure of
statistical dispersion. As
compared to standard
deviation, its more resilient
to outliers in a data set.

T22
Zero

crossing
rate

(ZCR)

number o f zero crossings
total number o f points

A point where a signal
changes sign from positive
to negative or negative
to positive is called a
zero-crossing point. Zero
crossing rate denotes the
number of times the signal
level crosses zero point
during a constant period
of time. It hence provides
a good understanding of
the frequency of the signal
and is very useful for
separating signals with
different frequencies.

T23 Entropy �
N

Â
i=1

h(xi)log2h(xi)

Entropy, e(X), is a
statistical measure of the
uncertainty and randomness
of a sampled vibration data.
Entropy estimation is a
two stage process: first,
a histogram is estimated,
and then the entropy is
calculated.
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T24
Histogram

upper
bound (HU)

max(xi)+
max(xi)�min( xi

N�1)

2

A histogram is a discrete
PDF that is used to
characterize the amplitude
of the vibrational data.
Histogram Upper Bound
is defined as shown in the
formula.

T25
Histogram

lower
bound
(HL)

max(xi)�
max(xi)�min( xi

N�1)

2

The lower bound of
Histogram is defined as
shown in the formula.

T26
Hjorth

parameter-
Activity

(HA)

1
N �1

N

Â
i=1

(xi �µ)2

Hjorth Parameter 1
i.e. activity parameter
represents the variance
of a time function. This
indicates the surface of
the power spectrum in the
frequency domain.

T27
Hjorth

parameter-
Mobility

(HM)

standard deviation o f x
0
(n)

standard deviationo f x(n)

Mobility represents the
mean frequency or the
proportion of standard
deviation of the power
spectrum. It is defined
as the ratio of standard
deviation of the first
derivative of the vibration
signal and the standard
deviation of the vibration
signal.

T28
Hjorth

parameter-
Complexity

(HC)

Mobility o f x
0
(n)

Mobility o f x(n)

Complexity is defined
as the ratio of mobility
of the first derivative of
vibration signal to the
mobility of the vibration
signal. It compares the
signal’s similarity to a pure
sine wave, where the value
converges to 1 if the signal
is more similar.
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T29
Weibull
Negative

log likelihood
(WNLL)

�
N

Â
i=1

log f (a,b|xi)

This gives the negative log
likelihood that weibull
distribution fits the
sample data. Here, f is
the weibull distribution,
and a and b are the scale
and shape parameters of the
distribution respectively.

T30

Normal
Negative

log likelihood
for single
Gaussian
(NNLL)

�
N

Â
i=1

log[
1

s
p

2p
exp

�(xi �µ)2

2s2 ]

It gives the negative of
the likelihood that a normal
distribution of given mean
and standard deviation fits
the sample data.

T30*

Normal
Negative log

likelihood
for Gaussian

mixture
model

�
N

Â
i=1

log(
K

Â
k=1

pkN(xi|µk,Â
k
))

It gives the negative of the
likelihood that a Gaussian
mixture model of k means
and k standard deviations
fits the sample data.
It is an improvement over
T30.

T20 and T21 are the arithmetic means of the absolute deviations of each xi from

mean and median respectively. T22 is the rate of zero crossing (ZCR) and can be defined

as the ratio of number of zero crossings to the total number of points in the signal. In

other words, ZCR is the rate at which a signal changes sign from negative to positive

or vice versa, thus providing a good understanding of the frequency of the signal and

hence very useful for separating signals with different frequencies. T23 or entropy, is a

measure of randomness of the values of a vibration signal.

The two histogram features T24 and T25 are Histogram upper and lower bound

respectively. T29 or Weibull Negative log likelihood, is computed as below:

T 29 =�log’i=1 f (a,b|xi) =�ÂN
i=1 log f (a,b|xi) (5.2)

T30 or Normal Negative log likelihood for single Gaussian is computed as:

T 30 =�ÂN
i=1 log[ 1

s
p

2p exp�(xi�µ)2

2s2 ] (5.3)
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5.2.2 Proposed Novel Statistical Features

Finding fault sensitive features has been a hot topic of research for analysis of not

just bearing vibration signals but other types of signals too. Hjorth derived three

statistical features: Activity, Mobility and Complexity, based on the concept of

variance in order to characterize Electroencephalogram (EEG) pattern [150]. Since

then, these Hjorth Parameters have been frequently used by researchers to study

electrical activity of the human brain for neurological disorders through

electroencephalography (EEG) signals dataset acquired from EEG readings collected

from patient cohorts.

Some of the studies that used these parameters to analyse EEG signals are: Hjorth

Mobility and Complexity [151], Hjorth Activity and Mobility [152], Hjorth Activity

and Complexity along with fuzzy detection [153], Hjorth parameters in association

with Power Spectral Density and Adaptive Autoregressive coefficients as feature

vector for Extreme Learning Machine [154], Hjorth Parameters combined with

Genetic Algorithm along with Principal Component analysis followed by k-Nearest

Neighbour classification [155], Hjorth Parameters and four classifiers: Support Vector

Machine, k-Nearest Neighbour, Classification Trees and Artificial Neural

Network [156].

In addition to EEG analysis, Hjorth Parameters have been found to be useful in other

domains such as Lung sound analysis [157], In-hand object recognition via surface

textures [158] etc.

This work does the unprecedented research of evaluating the effectiveness of Hjorth

parameters for rolling element bearing fault diagnosis. Furthermore, it also introduces

and explores another entirely unconnected and new statistical feature Normal Negative

log likelihood for Gaussian mixture model distribution.

As per the nomenclature in this research work, T26, T27 & T28 statistical

parameters are the Hjorth parameters in the list of 31 statistical parameters and the

fourth proposed novel feature known as Normal Negative log likelihood for Gaussian

mixture model distribution is T30*.

The mathematical expressions and the explanation of these parameters is given

below:
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1. Hjorth Activity (HA) : The first Hjorth parameter, Activity, represents signal power

and can be computed by calculating the variance of the vibration signal amplitude.

i.e.

Activity(x(t)) = variance(x(t)) (5.4)

where x(t) is the vibration signal.

If x(n) = xi = {x1,x2,x3. . . . . . ..xN} is the sampled vibration signal, then the standard

deviation( s ) of x(n) is :

s =

s
1

N �1

N

Â
n=1

(x(n)�µ)2 (5.5)

where µ = 1
N ÂN

n=1 |x(n)| is the mean of x(n).

So, activity of x(n) is defined as:

Activity(x(n)) = s2 (5.6)

2. Hjorth Mobility (HM): The second Hjorth parameter, Mobility, is defined as the

square root of the ratio of variance of the first derivative of the vibration signal d(x(t))
dt

to the variance of the vibration signal x(t) or as the ratio of the standard deviation

of the first derivative of the vibration signal sx0 to the standard deviation sx of the

vibration signal.

Mobility(x(t)) =

s
Variance(dx(t)

dt )

Variance(x(t))
=

sx0

sx
(5.7)

If x(n) = xi = {x1,x2,x3. . . . . . ..xN} is sampled vibration signal,

then the first difference is defined as:

x0(n) = x(n+1)� x(n) f or n = 1,2, ...N (5.8)

If s1 = standard deviation of the first difference of the vibration signal x0(n),

then Mobility of x(n) is defined as:

Mobility(x(n)) =
s1

s
(5.9)
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3. Hjorth Complexity (HC): The third Hjorth parameter, Complexity, is defined as

the ratio of mobility of the first derivative of vibration signal to the mobility of the

vibration signal. It gives an estimate of the bandwidth of the signal. It indicates how

closely the vibration signal resembles a pure sine wave.

Complexity(x(t)) =
Mobility(x

0
(t))

Mobility(x(t))
=

Mobility(dx(t)
dt )

Mobility(x(t))
=

vuut
sx00
sx0
sx0
sx

(5.10)

Where sx00 is the standard deviation of the second derivative of the vibration signal

x00(t).

For sampled vibration signal x(n) = xi = {x1,x2,x3. . . . . . ..xN}, the Complexity of

x(n) is defined as:

Complexity(x(n)) =

s
s2
s1
s1
s

(5.11)

where

s1 : standard deviation of the first difference of the vibration signal x0(n)

s2 : standard deviation of the second difference of the vibration signal x00(n).

4. Normal Negative log likelihood for Gaussian mixture model distribution: The

fourth novel statistical feature proposed in this research work is T30*, which is

Normal Negative log likelihood for Gaussian Mixture Model distribution. It is an

improvement over T30 (Normal Negative Log-Likelihood for Single Gaussian)

which gives the negative of the likelihood that a normal distribution of given mean

and standard deviation fits the sample data, in this case, the sample data being the

representative IMF of bearing vibration signal.

The Normal Negative Log Likelihood for Gaussian Mixture model (T30*) gives the

negative of the likelihood that a GMM of k means and k standard deviations fits the

sample data.

Mathematical formula for Normal Negative log likelihood of GMM can be defined

as:

�logPr(p,µ,Â) =�ÂN
i=1 log(ÂK

k=1 pkN(xi|µk,Âk)) (5.12)

where pk is the mixing coefficient of the kth Gaussian.

Here k was instantiated as the number of local maxima in the probability distribution

of the sample vibration data.
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5.2.3 Results and Discussion

The results of feature extraction and effectiveness of proposed novel features are as

below:

1. Numerical values of all statistical features extracted from the best IMF of a sample

of vibration signals taken from CWRU Dataset are listed in Table 5.3. The first

column in this table contains the names of the Matlab files used for storing the

signals. The second column represents fault class and the remaining columns

represent the statistical features. These features will be ranked in the next chapter in

order to investigate their effectiveness and also to find an optimal feature subset for

fault type diagnosis and severity detection.

2. Numerical values of three Hjorth Parameters (HA, HM, HC) obtained from the best

IMF of few sample vibration signals taken from CWRU experimental rig have been

recorded in Table 5.4.

To investigate the effectiveness of Hjorth parameters in the prediction of bearing

faults, scatter plots for the pairs of the three parameters have been studied,

particularly the layout and structure of the clusters obtained in these plots. These

plots are reported in Figure 5.1. The data points are coloured according to their true

labels.

From Figure 5.1. a), it can be seen that the plot of Hjorth Activity and Hjorth

Mobility forms a number of distinct, well defined clusters with slight overlapping in

few clusters.

From Figure 5.1. b), it is seen that the plot of Hjorth Mobility and Hjorth Complexity

too has a number of distinct clusters though those are less well defined and show

relatively more overlapping.

From Figure 5.1. c), it is seen that the clusters are not distinct in the plot of Hjorth

Activity and Hjorth Complexity. They are not well defined and show a lot of

overlapping.

Hence, it can be concluded that the pair of Activity and Mobility is capable of

comfortably distributing the bearing vibration data into clusters. These parameters

can be useful for machine learning classifiers in performing accurate fault

diagnosis.
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(a) Activity and Mobility

(b) Mobility and Complexity

(c) Activity and Complexity

Figure 5.1: Scatter plots for each of the three pairs of Hjorth parameters.
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Table 5.3: Numerical values of Statistical parameters for sample vibration signals.
The first column contains the names of the Matlab files used for storing the signals.

Filename Class T1 T2 T3 T4 T5 T6

05 BA time

100 best imf

.mat

Inner

Race

-0.0005

T7

-0.0010

T13

-128.2

T19

2.1098

T25

-0.1904

0.0659

T8

-0.0436

T14

-497.685

T20

0.0525

T26

0.0044

0.0445

T9

0.0443

T15

5.7556

T21

0.0442

T27

0.6449

0.2559

T10

-0.106

T16

-369.738

T22

0.2148

T28

1.1506

0.256

T11

3.099

T17

164000.6

T23

-1.396

T29

-2032.33

0.066

T12

3.882

T18

0.035

T24

-0.234

T30

-1331.46

105 BA time

101 best imf

ṁat

Inner

Race

T1

0.0003

T7

0.0016

T13

223.2820

T19

1.9176

T25

-0.1271

T2

0.0599

T8

-0.0421

T14

680.5035

T20

0.0483

T26

0.0036

T3

0.0412

T9

0.044

T15

4.432

T21

0.0435

T27

0.6936

T4

0.1826

T10

-0.0126

T16

-58.3245

T22

0.2314

T28

1.1212

T5

0.182

T11

2.805

T17

217539.5

T23

-1.49

T29

-2126.73

T6

0.06

T12

3.048

T18

0.033

T24

-0.164

T30

-1429.21

105 DE time

100 best imf

.mat

Inner

Race

T1

0.0006

T7

-0.0068

T13

481.2894

T19

8.7531

T25

-0.8253

T2

0.2735

T8

-0.14

T14

2095.182

T20

0.1989

T26

0.0749

T3

0.1616

T9

0.1465

T15

7.3669

T21

0.1437

T27

1.4574

T4

1.1908

T10

0.0341

T16

1.6653

T22

0.5283

T28

1.0405

T5

1.191

T11

5.305

T17

947.622

T23

0.010

T29

-636.742

T6

0.274

T12

4.353

T18

0.123

T24

-1.062

T30

125.548
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105 DE time

101 best imf

.mat

Inner

Race

T1

0.003

T7

496.6332

T13

-1.1073

T19

8.5066

T25

-0.8716

T2

-0.1296

T8

2288.8202

T14

2095.182

T20

0.1898

T26

0.0707

T3

0.134

T9

8.0478

T15

7.3669

T21

0.132

T27

1.4378

T4

-0.0274

T10

-1.4562

T16

1.6653

T22

0.5225

T28

1.0443

T5

5.592

T11

1119.748

T17

947.622

T23

-0.046

T29

-680.718

T6

4.609

T12

0.115

T18

0.123

T24

-1.062

T30

96.303

105 FE time

100 best imf

.mat

Inner

Race

T1

0.0082

T7

0.0104

T13

20.5513

T19

5.3724

T25

-0.4089

T2

0.1679

T8

-0.1036

T14

82.4341

T20

0.1319

T26

0.0281

T3

0.1137

T9

0.1179

T15

5.9238

T21

0.1114

T27

1.3253

T4

0.6734

T10

-0.0102

T16

-2.1558

T22

0.5879

T28

1.19

T5

0.673

T11

4.134

T17

5204.191

T23

-0.469

T29

-1105.545

T6

0.168

T12

4.011

T18

0.093

T24

-0.536

T30

-375.517

105 FE time

101 best imf

.mat

Inner

Race

T1

0.0086

T7

0.0121

T13

19.628

T19

5.428

T25

-0.5386

T2

0.1696

T8

-0.1039

T14

88.3155

T20

0.1331

T26

0.0287

T3

0.1151

T9

0.1163

T15

6.6296

T21

0.1099

T27

1.2723

T4

0.7632

T10

0.1066

T16

21.837

T22

0.5723

T28

1.2223

T5

0.763

T11

4.390

T17

5303.249

T23

-0.466

T29

-1099.272

T6

0.169

T12

4.499

T18

0.095

T24

-0.688

T30

-365.088
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Table 5.4: Numerical values of Hjorth parameters for sample vibration signals. The first
column contains the names of the Matlab files used for storing the signals.

Filename Class HA HM HC
Normal 3100 DE time
154 best imf.mat

Normal 0.001198587 0.47914082 1.078444013

Normal 2 99 DE time
201 best imf.mat

Normal 0.001014132 0.973725602 1.07729559

Normal 0 97 FE time
93 best imf.mat

Normal 0.00320465 0.624952755 1.397140811

211 BA time
111 best imf.mat

Inner
Race

0.002050358 0.278848771 1.148809846

211 DE time
42 best imf.mat

Inner
Race

0.206956722 1.383336326 1.005922226

198 DE time
88 best imf.mat

Outer
Race

0.007234727 1.563411856 1.029569729

131 FE time
64 best imf.mat

Outer
Race

0.063591347 1.615458314 1.073613976

170 DE time
22 best imf.mat

Inner
Race

0.035018519 1.463248107 1.029223682

118 DE time
74 best imf.mat

Ball
Bearing

0.013313157 1.468992945 1.015068866

237 FE time
10 best imf.mat

Outer
Race

0.02815248 1.760488596 1.048879752

Normal 299 FE time
208 best imf.mat

Normal 0.001682639 0.876762229 1.171696348

197 DE time
109 best imf.mat

Outer
Race

0.008830986 1.566142927 1.028934363

234 BA time
76 best imf.mat

Outer
Race

0.004193641 0.495338199 1.299229055

200 DE time
53 best imf.mat

Outer
Race

0.013163485 1.545402627 1.034146996

172 BA time
67 best imf.mat

Inner
Race

0.001758115 0.640674039 1.123165077

Normal 2 99 FE time
272 best imf.mat

Normal 0.001561567 0.87454923 1.177806602

188 DE time
51 best imf.mat

Ball
Bearing

0.043607085 1.45481856 1.010113852

212 FE time
31 best imf.mat

Inner
Race

0.016988761 1.549122899 1.073225708

199 FE time
82 best imf.mat

Outer
Race

0.007167253 1.683912138 1.040435214

131 DE time
8 best imf.mat

Outer
Race

0.309513337 1.499372493 1.02141219
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3. Feature T30 was replaced with its Gaussian Mixture Model variant, labelled as

T30*. This was done because on selecting some random samples from the set of

representative IMF signals and plotting their frequency distribution histograms with

fitting curves (shown in Figure 5.2.), it was found that the idea of fitting a single

Gaussian curve is not working well with some of the signals. Some signals, like

samples 1 and 2 in Figure 5.2.a) and Figure 5.2.b) respectively, have more than one

distinct maxima and a single Gaussian curve was not be able to accurately model

these signals.

This trend was mostly seen for samples belonging to faulty classes. The Normal

Negative Log Likelihood for GMM values obtained for the 3 samples are plotted in

Figure 5.2. The values shown are taken before Min-Max scaling was applied to the

data.

Figure 5.2: Frequency Distribution Histograms with fitting curves for selected samples.
(a) Sample 1. (b) Sample 2. (c) Sample 3.
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Table 5.5: Comparison of Normal Negative Log Likelihood for Gaussian Mixture
Models with Normal Negative Log Likelihood for Single Gaussian for selected samples.

Sample
No.

Normal Negative Log
Likelihood for Single Gaussian

(T30)

Normal Negative Log
Likelihood for GMM (T30*)

1 -143.347 -466.000

2 -567.550 -987.950

3 901.479 901.479

The Normal Negative Log Likelihood for GMM values obtained for the 3 samples are

also recorded in Table 5.5. The Normal Negative Log Likelihood for GMM for Sample 1

is -466, which is far better than its Normal Negative Log Likelihood for Single Gaussian

equal to -143.347, in terms of fitting of the model. Same is the case with Sample 2.

Sample 3 shows no change in value because it can be fitted well with a Single Gaussian.

In general, it is concluded that proposed feature T30* has better fault sensitivity as

compared to T30.

5.3 FREQUENCY DOMAIN FEATURES

The first and second order statistics completely describe the properties of a

stationary signal with a Gaussian probability density function. But occurrence of faults

causes non-linearities in the machine vibration signals and that’s why signal

processing techniques based on Higher Order Spectra (HOS) for vibration signature

analysis, are used as they provide more diagnostic information even more than that

provided by the power spectrum. Hence higher order statistical measures are used for

vibration based condition monitoring to get details about the signal which the

conventional second order statistics cannot provide. In this research, Bispectrum (the

3rd order cumulant, or 2-D Fourier transform of Triple auto-correlation function) of

the vibration signals is generated. Bispectrum helps retain phase and amplitude

information of the signals and thus helps in accurate fault detection.

5.3.1 Higher Order Spectral Feature: Bispectrum

Bispectrum analysis examines the relationship between the underlying sinusoidal

components of the vibration signal at two primary frequencies, f1 and f2, and a
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modulation component at the frequency (f1 + f2). Compared to power spectrum

analysis, this analysis is superior because due to correlation calculation between the

frequency components, the phase coupling between vibration signals can be identified.

For each triplet (f1, f2, and f1 + f2), the Bispectrum, B (f1, f2), a quantity

incorporating both phase and power information, can be calculated as given in

Equation 5.13 [159, 160].

B( f1, f2) = |X( f1)X( f2)X⇤( f1 + f2)| (5.13)

Where B (f1, f2) is the Bispectrum at frequencies f1 and f2, X( f1) and X( f2) are

discrete Fourier transform coefficients at frequencies fl and f2 respectively. X⇤ is the

complex conjugate of X.

5.3.2 Results and Discussion

In this research, bispectrum arrays were estimated for each of the data samples and

were stored as RGB Bispectrum images i.e. Bispectral colour contour maps. The dataset

derived from original CWRU dataset has four fault types (Normal, Inner race, Outer

race, Ball bearing) with two fault size diameters (0.007 inch, 0.014 inch). Hence, total

seven classes (Normal, IR 07, IR 14, OR 07, OR 14, BB 07, BB 14) were considered.

First, data samples of size 1024 points each were extracted from four types of

CWRU vibration signals, that are Normal, Inner Race, Outer Race and Ball Bearing.

These signals are further divided according to the fault sizes, resulting in 7 classes -

Normal class, Inner race with 0.007 inch and 0.014 inch, Outer race with 0.007 inch

and 0.014 inch, and finally Ball bearing with 0.007 inch and 0.014 inch.

Bispectrum arrays were then estimated for each of the data samples using the

MATLAB HOSA toolbox for direct fast fourier transform (FFT) based approach with

origin at the centre of the array and axis pointing down and towards right. FFT length

and overlap were taken as 128 and 0 respectively. The Bispectrum arrays were stored

as RGB images. Bispectrum Images obtained for Ball Bearing and Normal classes are

875x656 in size and that for Inner Race and Outer Race are 1200 x 900 in size.

Sample Bispectrum images for seven cases of bearing faults mentioned above are

shown in Figure 5.3.
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(a) Ball bearing with 0.007” fault (b) Ball bearing with 0.014” fault

(c) Inner Race with 0.007” fault (d) Inner Race with 0.014” fault

(e) Outer Race with 0.007” fault (f) Outer Race with 0.014” fault

(g) Normal class

Figure 5.3: Bispectrum Images of Bearing Fault Signals.
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5.4 CHAPTER SUMMARY

This chapter discusses time and frequency domain fault-sensitive features extracted

from best IMF obtained from pre-processing of vibration signals. Since each IMF

represents the natural oscillatory mode embedded in the raw vibration signal, the

features extracted from such components are more effective for fault diagnosis than

those extracted directly from the raw signal. Hence to acquire more accurate fault

information, fault sensitive features were extracted not directly from raw vibration

signals but from the best IMF produced by EMD of vibration signal. Definition,

mathematical formula and significance of conventional statistical features and

proposed novel statistical features from time domain has been explained. The values of

these statistical features for some sample vibration signals representing different types

of faults are presented in tabular form. Effectiveness of proposed novel features is

justified with the help of graphical plots. From frequency domain, framework of higher

order spectral feature, bispectrum, has been discussed and sample bispectrums have

been shown in image form for various types and severity of bearing faults.
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CHAPTER VI

FEATURE SELECTION FOR DIMENSIONALITY

REDUCTION

6.1 INTRODUCTION

The performance of machine learning algorithms, in terms of accuracy and

efficiency, largely depends on the number of features used and their discriminating

capability. For this reason, Researchers have proposed many dimensionality reduction

techniques in the past. Selecting the right set of features has been shown to improve

the performance of machine learning classifiers, in the case of high-dimensional input

data, to mitigate the curse of dimensionality. This chapter proposes a methodology for

“Optimal feature subset selection” and discusses its results when applied on 31

extracted statistical time domain features.

There are three types of feature selection methods as shown in Figure 6.1.

1. Filter methods that apply a statistical measure for assigning a score to each feature.

2. Wrapper methods that consider the selection of a set of features as a search

problem, where different combinations are prepared, evaluated and compared to

other combinations.

3. Embedded methods that learn which features best contribute to the accuracy of the

model while the model is being created.

Filter based feature ranking and feature subset selection techniques have been used

in this research work. The proposed methodology for “Optimal feature subset selection”

based on filter based feature ranking and feature subset selection techniques is explained

in detail in the following sections.

6.2 FEATURE RANKING

Feature-ranking techniques rank every individual feature of the given set according

to some mathematical criteria. The reduced set of features can then be selected manually

as per the ranks generated. These feature ranking techniques use different statistical

ranking metrics like Chi-square, Information Gain, Gain ratio etc.
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6.2.1 Filter Based Feature Ranking

Filter-based feature selection algorithms have been used effectively in fault

diagnosis [161, 162]. Filter based techniques work well with any classification model

producing accurate results with shorter run times [161]. Moreover, these techniques

perform well for identification of dominant features for both fault type and severity

detection [162].

In this research, following three filter-based ranking metrics have been used to rank

the features for identifying important features for bearing fault diagnosis:

1. Chi-square: In Chi-square feature selection, the value of a statistic called chi-square

(c2
c ), is calculated for the feature and response variables. Those features that have

high chi-square values are then selected. The chi-square value is calculated as:

c2
c = Â (Oi�Ei)2

Ei
(6.1)

where c = degrees of freedom, Oi = observed value, Ei = expected value.

2. Information Gain: Information Gain test uses the value of a statistic called

information gain, that is computed for each feature (L) in the context of a response

variable (R), ultimately selecting features with high information gain values.

Higher the information gain score for an attribute, more is the information about the

response variable that the attribute can contribute.

Information gain can be understood as the reduction in entropy (H) and is calculated

as:

In f ormation Gain = DH = H � mL

m
HL �

mR

m
HR (6.2)

where,

Entropy(H) =�ÂK
i=1 pklog2 pk (6.3)

and m = total number of instances, mk = number of instances belonging to class k,

where i = 1, . . . , K.

3. Gain Ratio: The third metric of Gain Ratio is a ratio of information gain to the

intrinsic information as given below:
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GainRatio(S,A) =
Gain(S,A)

SplitEntropy(S,A)
(6.4)

where

SplitEntropy(S,A) =�ÂV2Values(A)
|SY |
|S| log |SY |

|S| (6.5)

where A = candidate attribute, V = possible values of A, S = set of all training

examples X, SV = subset where XA = V.

In this method, the attribute with the highest gain ratio is selected as the splitting

attribute.

6.2.2 Experimental Description

Three feature ranking techniques, based on the statistical metrics of ChiSquared,

Info gain and Gain Ratio, were applied to the data. These techniques ranked the features

according to their importance in classifying the samples into 4 classes for Dataset A

[Table 3.3] and likewise into 12 classes for Dataset B [Table 3.4]. The threshold for the

search method used by the feature ranking techniques was set in a way to ensure none

of the features gets discarded.

6.2.3 Results and Discussion

The ranking of the features is shown in Table 6.1 and Table 6.2. The 3rd, 4th and

5th columns list the rank obtained by ranker methods ChiSquared, Info gain and Gain

Ratio respectively, for the feature in the corresponding row. The last column shows the

average rank score calculated by averaging out the ranks of features over all the three

ranking metrics.

6.3 FEATURE SUBSET SELECTION

Feature subset selection process identifies a subset of features that will provide the

same results as the original full set of features. The process checks the relative

importance of the features so that fault-sensitive features can be retained and irrelevant

or redundant features can be removed. Selecting the optimal set of features reduces the

complexity and improves the accuracy of a model. It also enables the model to train
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Table 6.1: Feature ranking of statistical features for CWRU dataset A.

Feature Feature Chi- Info Gain Average
Description Squared Gain Ratio Rank

Statistics Score

T22 Zero crossing rate 1 1 1 1

T27 Hjorth Parameter - Mobility 2 2 3 2.33

T30 Normal Neg Log Likelihood 3 3 4 3.33

T26 Hjorth Parameter - Activity 4 4 7 5

T2 Root Mean Square 6 6 5 5.67

T6 Standard Deviation 5 5 8 6

T19 Root-sum-of-squares 7 7 6 6.67

T18 Geometric Mean 12 12 2 8.67

T20 Mean Absolute Deviation 9 9 9 9

T23 Entropy 8 8 14 10

T29 Weibull Neg Log Likelihood 10 11 12 11

T3 Root 11 10 13 11.33

T21 Median Absolute Deviation 13 13 11 12.33

T9 75th Percentile 16 15 15 15.33

T17 Kurtosis Factor 15 14 17 15.33

T24 Histogram upper bound 14 16 16 15.33

T8 25th Percentile 20 19 10 16.33

T5 Peak-to-Peak 17 18 19 18

T4 Max 18 17 20 18.33

T25 Histogram lower bound 19 20 18 19

T28 Hjorth-Complexity 21 21 21 21

T16 Skewness Factor 22 22 22 22

T15 Clearance factor 23 23 23 23

T11 Kurtosis 24 24 24 24

T10 Skewness 25 26 25 25.33

T12 Crest Factor 27 25 26 26

T13 Shape Factor 26 27 27 26.67

T14 Impulse Factor 28 28 28 28

T7 Median 29 29 29 29

T1 Mean 30 30 30 30
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Table 6.2: Feature ranking of statistical features for CWRU dataset B.

Feature Feature Chi- Info Gain Average
Description Squared Gain Ratio Rank

Statistics Score

T2 Root Mean Square 3 4 4 3.67

T18 Geometric Mean 4 6 2 4.00

T20 Mean Absolute Deviation 1 3 8 4.00

T30 Normal Neg Log Likelihood 2 5 9 5.33

T22 Zero crossing rate 15 2 1 6.00

T27 Hjorth Parameter - Mobility 16 1 3 6.67

T17 Kurtosis Factor 5 13 5 7.67

T19 Root-sum-of-squares 6 14 6 8.67

T9 75th Percentile 7 15 7 9.67

T23 Entropy 8 12 11 10.33

T26 Hjorth Parameter - Activity 10 7 16 11.00

T29 Weibull Neg Log Likelihood 11 8 15 11.33

T6 Standard deviation 12 9 14 11.67

T21 Median Absolute Deviation 13 10 12 11.67

T8 25th Percentile 9 16 10 11.67

T3 Root 14 11 13 12.67

T24 Histogram upper bound 17 17 19 17.67

T4 Max 18 18 18 18.00

T5 Peak-to-peak 19 19 17 18.33

T25 Histogram lower bound 20 20 20 20.00

T28 Hjorth-Complexity 22 21 22 21.67

T11 Kurtosis 23 22 21 22.00

T16 Skewness Factor 21 23 24 22.67

T15 Clearance Factor 24 24 23 23.67

T12 Crest factor 25 25 25 25.00

T7 Median 26 26 27 26.33

T1 Mean 27 27 26 26.67

T10 Skewness 28 28 28 28.00

T14 Impulse Factor 29 29 30 29.33

T13 Shape factor 30 30 29 29.67
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faster and reduces overfitting. Filter based feature subset selection techniques use

conventional search techniques (Best first, Greedy search etc.) and the newly

introduced swarm search techniques (Ant, Bat, Bee, Cuckoo, Elephant etc.) [163].

6.3.1 Conventional Search Techniques

In this research, two conventional search techniques have been performed:

1. Best first search: This is a conventional greedy search technique that finds subsets

by backtracking and provides flexibility of searching in forward, backward and bi-

directions.

2. Greedy stepwise search: This is similar to best first search as it also searches for

subsets in a greedy manner but instead of backtracking, it searches in a stepwise

fashion and stops when a decrease of evaluation occurs after an addition or deletion

of an attribute.

6.3.2 Swarm Search Techniques

Swarm search methods are metaheuristics-based search methods that are nature-

inspired optimization algorithms. Nine Swarm search techniques have been performed

in this research:

1. Ant search is a stochastic combinatorial optimization technique that is modelled

on how the ant colonies work. It finds solutions in the early stages of the search

process [164].

2. Bat search is based on how bats determine object location by using sound waves

[165].

3. Bee search is inspired by the foraging behaviour of honeybees. It solves

optimization problems by doing exploitative neighbourhood search and random

explorative search together [166].

4. Cuckoo search algorithm models the parasitic behaviour of cuckoos and the Levy

flight behaviour of fruit flies [167].

5. Elephant search models the behavioural characteristics of elephant herds [168].

6. Firefly search is inspired by the flashing patterns of fireflies and offers the advantage

of automatic subdivision and the ability to deal with multi-modality [169] .

7. Flower Search follows the survival of the fittest rule based on the process of
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pollination of flowers [170].

8. Wolf search models how wolves hunt for prey and survive by avoiding their

enemies. It is known to give good results when used on large search spaces [171].

9. Rhinoceros search models the herding behaviour of rhinos and can be used for

solving global continuous optimization problems [172].

6.3.3 Experimental Description

Correlation based feature subset evaluator (CfsSubsetEval) is used to obtain a

subset of features which show high correlation with ground truth labels but low

correlation to each other. 11 search techniques, including both conventional search

techniques (best first search and greedy stepwise search) and the newly introduced

swarm search techniques were performed. The controlling parameters for search

methods are as follows: for implementing Best first search, bidirectional search was

used while in Greedy stepwise, forward search was used. The number of particles in

the swarm, chaotic coefficient and mutation probability were set as 20, 4.0, 0.01

respectively for all searches. In Bee search, the discount factor for crossover was set as

0.8 and in Cuckoo search, the sigma rate was kept as 0.69. For Firefly search, zero

distance attractiveness for the firefly population was set as 0.33. The same value was

taken for wolf search. In Flower search, a pollination rate of 0.33 was used.

Table 6.3 and Table 6.4 show the set of features selected with these techniques for

Dataset A and Dataset B.

6.3.4 Results and Discussion

The results can be concluded as below:

1. It is observed that T22 (Zero Crossing Rate) has highest rank followed by T27

(Hjorth parameter - Mobility), T30 (Normal Negative log likelihood), T26 (Hjorth

parameter - Activity), T2 (RMS), T6 (Standard deviation), T19 (RSSQ), T18

(Geometric Mean), T20 (Mean Absolute Deviation) and T23 (Entropy) among the

top 10 rank features for fault type detection. [Table 6.1].

2. Top 10 rank features for fault severity detection are T2 (RMS), T18 (Geometric

Mean), T20 (Mean Absolute Deviation) , T30 (Normal Negative log likelihood),

T22 (Zero Crossing Rate) , T17 (Kurtosis factor), T19 (RSSQ), T9 ( 75th percentile)

74



and T23 ( Entropy). [Table 6.2]

3. It is observed that the subset of T2 (Root Mean Square), T18 (Geometric Mean), T22

(Zero Crossing Rate), T27 (Hjorth parameter - Mobility), T30 (Normal Negative log

likelihood for Single Gaussian) is selected by majority of search techniques [Table

6.3]. It is also observed that these five features in the subset are among the top ten

Table 6.3: Feature subset selection results for CWRU dataset A.

Technique Set of features selected

Best First T2, T18, T22, T27, T30

Greedy Stepwise Search T2, T18, T22, T27, T30

Ant Search T2, T18, T22, T27, T30

Bat Search T18, T22, T26, T27, T30

Bee Search T18, T19, T22, T27, T30

Cuckoo Search T2, T18, T22, T27, T30

Elephant Search T18, T22, T26, T27, T30

Firefly Search T6, T22, T26, T27, T30

Flower Search T18, T19, T22, T27, T30

Rhinoceros Search T2, T18, T22, T27, T30

Wolf Search T2, T18, T22, T27, T30

Table 6.4: Feature subset selection results for CWRU dataset B.

Technique Set of features selected

Best First T2, T9, T17, T18, T19, T22, T27, T30

Greedy stepwise T2, T9, T17, T18, T19, T22, T27, T30

Ant Search T2, T9, T17, T18, T19, T22, T27, T30

Bat Search T9, T17, T18, T22, T26, T27, T30

Bee Search T2, T17, T18, T21, T22, T27, T30

Cuckoo Search T9, T19, T18, T22, T26, T27, T29, T30

Elephant Search T2, T9, T17, T19, T22, T27, T30

Firefly Search T17, T18, T20, T21, T22, T26, T27

Flower Search T2, T15, T17, T18, T22, T27, T19

Rhinoceros Search T2, T3, T9, T19, T22, T27, T30

Wolf Search T9, T17, T18, T20, T22, T27, T30
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average rank scorers as shown in Table 6.1, hence validating the importance of these

5 features for fault type diagnosis. After replacing T30 by T30*, the selected optimal

feature subset becomes [ T2, T18, T22, T27, T30*]. It is noted that the features T6

(Standard Deviation),T19 (RSSQ) and T26 (Hjorth Parameter - Activity) are ranked

well by the ranking metrics but get selected by only a few subset search techniques.

This could be due to the way subset selection works. Since one of the criteria for a

good subset is that the subset elements should have very less correlation among each

other, features like T6, T19 and T26 got rejected by most of the search techniques

as they may be showing some correlation with an already chosen member of the set.

Since the aim is to select the best performing subset for fault diagnosis, the set of

only the 5 features stated above was selected.

4. For fault severity detection, from Table 6.4, it is observed that the subset of features -

T2 ( RMS), T19 (RSSQ), T17 (Kurtosis Factor), T18 (Geometric Mean), T22 (Rate

of zero crossing), T27 (Hjorth parameter - Mobility), T30 (Normal Negative log

likelihood for Single Gaussian) and T9 (75th Percentile) - are selected by majority

of search techniques, where these 8 features are also among the top 10 average rank

scorers as shown in Table 6.2. After replacing T30 by T30*, the selected optimal

feature subset becomes [ T2, T9, T17, T18, T19, T22, T27, T30*].

6.4 CHAPTER SUMMARY

In this chapter, the proposed methodology for “Optimal feature subset” selection

based on filter based feature ranking and feature subset selection techniques is explained

and implemented on two types of dataset for fault type and fault severity detection.

An in-depth two-step approach, based on Filter-based Ranking with three

statistical ranking metrics (Chi-square Information Gain and Gain ratio) and Feature

Subset selection with 11 search techniques (two conventional search techniques and

nine swarm search techniques) was developed to select an optimal feature subset for

bearing fault type detection and severity estimation. Filter based selection techniques

being model-agnostic, make sure that the selected features work efficiently with any

machine learning classifier.

Obtained results have been tabulated and discussed to obtain an optimal feature

subset. Results show that features Root Mean Square, Geometric Mean, Rate of zero
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crossing, Hjorth parameter Mobility, and Normal Negative log likelihood are

important statistical features for bearing fault diagnosis. For fault severity detection,

these five parameters and three additional parameters - 75th Percentile, Kurtosis Factor

and RSSQ, collectively form an important and useful feature subset.

Improvement in one of the selected high ranked features, Normal Negative log

likelihood for single Gaussian is also proposed by suggesting its replacement with its

Gaussian Mixture Model (GMM) variant.

The performance of the proposed optimal feature subset with the Machine Learning

classifiers has been validated and discussed in detail in the next chapter.
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CHAPTER VII

FAULT DIAGNOSIS USING MACHINE LEARNING

CLASSIFIERS

7.1 INTRODUCTION

Fault diagnosis and prognosis in power-plant components is often a

labour-intensive and time-consuming practice and conducting effective and efficient

fault diagnosis remains a challenge for plant maintenance technicians. Hence

researchers are increasingly interested in automating the diagnosis procedure using

artificial intelligence techniques along with advanced signal processing techniques.

Tools and techniques from machine learning and deep learning domains, that can be

used in conjunction with effective signal processing techniques, are being researched

for effective decision making.

Automatic fault diagnosis using machine learning is conducted typically in the

following order: Data Acquisition, Pre-processing, Feature Extraction, Feature

Selection for Dimensionality Reduction and Fault Classification. These are discussed

in Chapter 3, Chapter 4, Chapter 5, Chapter 6 & Chapter 7 respectively.

There are a variety of machine learning algorithms that have been used for

intelligent fault diagnosis for many years. Literature review summarizing the use of

various artificial intelligence techniques on fault diagnostics has been covered in depth

in Chapter 2. The potential of Rule based classifiers in the domain of bearing fault

diagnosis has been proved promising according to the literature review. Literature

shows a growing research interest in combining a set of learning algorithms to

generate ensembles for investigating complex problems. These ensemble algorithms

tend to exploit the strengths of the base classifiers to enhance the overall accuracy.

Hence in this research work a methodology for vibration signature analysis for fault

type fault severity classification using Ensemble Rule Base Classifiers is proposed.

This chapter discusses fault classification using optimal feature subset and

ensemble rule based classifiers. A feature vector is created using derived optimal

feature subset, which is sent as an input to ensemble rule based Classifiers for
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achieving fault classification. All steps of the proposed methodology (pre-processing,

feature extraction, feature subset selection, along with fault classification using

ensemble classifiers are shown in Figure 7.1.

7.2 FAULT CLASSIFICATION

This section discusses the classifiers used in this research as well the metrics used

for comparing their performance.

7.2.1 Rule Based Classifiers

Rule based classifiers use “if. . . then...else rules” to do classification. If the set of

feature values in a test sample conforms to a set of rules, then the sample is classified

as belonging to the class associated with that set of rules.

The classification rules can be built either by directly extracting them from the data

(Direct method) or from other classification models (Indirect Method). These classifiers

are very expressive in their results as the rules learnt by them can help understand the

underlying mechanics of the classification. Some of the rules generated by one of the

classifiers in Exp-1 “Fault Type Detection with Feature Selection” are tabulated in Table

7.4. Four Rule-based classifiers used in this work are explained below:

1. Decision Table: DecisionTable is a rule-based classifier that evaluates feature

subsets using best-first search cross-validation. A decision table maps conditions

against actions. Actions are chosen depending on the conditions which are satisfied.

The information presented by decision tables can be represented either as decision

trees or as if-then-else rules. Decision tables are popularly used for multi-label

classification as they are easy to interpret and understand.

2. JRip: JRip is an implementation of the RIPPER (Repeated Incremental Pruning to

Produce Error Reduction) algorithm that builds association rules using reduced error

pruning (REP). First a rule is added with conjuncts to improve the information gain,

then the rules in the set are pruned using incremental REP. This is repeated until the

criteria for discretion length is achieved. The rule set is then optimized [173] .

3. OneR: OneR (one rule) classification algorithm follows the direct method where

rules are extracted directly from data. For each predictor in the data it generates one

rule.
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Figure 7.1: Flowchart of proposed Methodology I for vibration signal preprocessing,
feature subset selection, fault type & fault severity classification using ML Classifiers
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4. PART: PART is an efficient and accurate rule based algorithm based on partial

decision trees. It follows the indirect method where rules are extracted from other

classification models, decision trees in this case. PART builds rules in a recursive

fashion by combining the features of divide-and-conquer and rule learning

strategies. It forms a rule, then removes the instances that rule covers and again

creates a rule for remaining instances, and these steps repeat till the number of

remaining samples becomes zero [174] .

7.2.2 Rough-Set Based Classifiers

The Rough set is composed of two crisp sets, out of which one represents the lower

boundary and second represents the upper boundary of target set. Following three

classification algorithms based on rough set theory are used in this research:

1. RoughSet Classifier: This is a rule based classifier whose rule induction is based

on rough sets theory. Its classification algorithm is based on the principles of

discernibility matrix, reducts and rules generated from reducts. A discretization

method (e.g. equal width, equal frequency static or dynamic entropy minimization),

a type of discernibility matrix and an algorithm generating reducts (e.g. local/global

and all/partial) is selected and then the classifier computes a set of decision rules.

If “O” is the object to be classified, then the classifier calculates the vote of each

decision class and the decision with the greatest vote is assigned to “O”

votei(O) = Â
{q!(s1,s2...,sm)2Rules:O matches q}

si.support(q ! (s1,s2...,sm)) (7.1)

The decision with greatest vote is assigned to the object “O” [96], [175].

2. LocalKnn Classifier: The second classifier LocalKnn is the extended version of

the KNN classifier that utilizes local metric induction for each classified object. It

applies a global metric to find a large set of neighbours and then generates a local

metric to select k nearest neighbours. Then it generates a new, local metric from this

large set of neighbours.The selected k nearest neighbours are used to vote for the

decision. This classifier can handle large data sets reasonably well and gives better

accuracy if data contains nominal attributes [96], [175].
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3. RseslibKnn Classifier: This is a modified K nearest neighbours classifier that

provides variety of distance measures and has built-in feature to compute optimal

value of k. It can classify large datasets because of its very fast neighbour search

algorithm. In the learning phase a distance measure is induced from a training set

and an indexing tree is built to achieve fast neighbour search. The algorithm can

also learn the optimal value of k from the training set. The classifier provides two

distance metrics for nominal attributes: Hamming distance (HD) and Value

Difference Metric (VDM). There are three metrics for numerical attributes: The

City-block distance (CBD), Density-Based Value (DBVDM) and Interpolated

Value Difference Metric (IVDM). Weights computation in the distance measure is

done by three methods: method using perceptron, method based on distance and

method based on accuracy. The classifier applies induced distance measure to find k

nearest neighbours in the training set and applies one of the three methods of voting

(equally weighted, with inverse square distance weights or with inverse distance

weights) to get the decision by the neighbours. [96], [175].

A research involving rough set based classifiers with CWRU dataset was performed.

Though the research proved that rough set based classifiers are not bad in performing

fault diagnosis, the results derived from the experiments were not promising enough

in the presence of other more convincing classifiers and hence these classifiers were

dropped from the case studies.

7.2.3 Ensemble of Classifiers

There are many ways by which base classifiers can be combined together to generate

Ensemble Classifiers, which are proven to outperform any single classifier within the

ensemble. Ensemble methods combine the predictions from multiple models and have

emerged as a powerful machine learning technique for improving the accuracy and

robustness of classification.

In this research work five ensemble machine learning algorithms are used:

1. Bagging: Bagging (Bootstrap Aggregation) is based on estimation of a statistical

parameter like mean from numerous random samples of data. From the training

data set, numerous random samples are drawn (and later replaced) to train multiple

machine learning models. Prediction is made by each model and the results are
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averaged to reduce the variance of predictions [176].

2. Random Forest: It is an extension of bagging ensemble classifier [177]. Bagged

decision trees have a shortcoming that greedy algorithm is used to select the best

split point for building trees. Because of this generated trees look quite similar and

the variance of the predictions from different bags gets reduced, which ultimately

effects the robustness of the predictions. Random Forest decreases the similarity

between the bagged trees by disrupting the greedy algorithm during tree generation.

This leads to the use of random subset of the input attributes to generate split points.

3. Boosting: Boosting ensemble method uses machine learning models in succession

to boost the prediction outcomes by removing the errors in predicted outcomes by

previous models.

(a) AdaBoost: It uses decision tree models having a single decision point. The

construction of first model done by weighing each instance in the training

dataset and continuously updating the weights based on the overall accuracy of

the model. Next models are trained and added in succession. The process

continues until no further improvements are possible [178].

(b) LogiBoost: It performs classification using additive logistic regression scheme

and can handle multi-class problems.

(c) MultiBoost: It is a combination of AdaBoost and an improved version of

bagging called wagging. MultiBoost uses base learning algorithm C4.5 to

generate decision tree. It combines the high bias and variance reduction

properties of AdaBoost with excellent variance reduction property of

wagging [179].

4. Voting: Voting works by taking two or more sub-models for making predictions.

Finally, the predictions are combined based on some criteria e.g. by taking the

average of the predictions. J. Kittler and L. Kuncheva have discussed Voting

algorithm in detail in their works [180, 181] respectively.

5. Stacking: An extension to voting ensembles is stacking. In this ensemble method

multiple sub-models are selected and instead of taking the average of predictions

another supervisor model is trained to combine the predictions from the sub-models

to give best outcome.
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7.2.4 Evaluation Metrics

Following evaluation metrics are used to compare the performance of various

classifiers:

1. Accuracy: It is defined as the ratio of correctly classified instances (i.e. sum of True

Positive and True Negative instances) to the total number of instances.

Accuracy =
T P+T N

T P+T N +FP+FN
(7.2)

where, TP - True Positive, FP - False Positive, FN - False Negative and TN - True

Negative

2. Mean Absolute Error(MAE): Sum of absolute errors for all instances divided by

the number of instances is called mean absolute error.

MAE =
1
N Â

i
|x̂i � xi| (7.3)

where x̂i : predicted label, xi: true label, N: number of instances.

3. Matthews Correlation Coefficient (MCC): It is a correlation coefficient that

indicates the correlation between predicted class and actual class. It can be

calculated mathematically using TP, FP, TN and FN values as:

MCC =
T P⇤T N �FP⇤FNp

(T P+FP)(T N +FN)(T N +FP)(T P+FN)
(7.4)

4. F1 Score: It is calculated by taking the harmonic mean of the precision and recall.

Given a threshold value the F1 score provides a measure for goodness of classifier.

F1 = 2⇤ Precision⇤Recall
Precision+Recall

(7.5)

5. Mean Scheme Entropy: This is the entropy per instance for the classification

scheme. The cross-entropy for the classification model across the entire training

dataset is required to be minimized. So this is calculated by calculating the average

cross-entropy across all training examples.
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Cross-entropy for classification of multi class problem can be calculated as:

�
C

Â
l=1

yo,l log(po,l) (7.6)

Where C: number of classes, l: class label, o: observation and p: predicted probability

for observation o of class l and y: binary indicator

6. Area under the ROC curve (AUROC): This metric calculates the area under the

ROC curve, which is a graph plotted between sensitivity and (1-specificity) of a

classifier.

7. Time taken to build model: This is the time elapsed since the training of the

classifier model started and before it ended.

7.3 FAULT DIAGNOSIS USING MFPT BEARING DATA

The aim of this experimental study is to investigate Ensemble classification

approach for rolling element bearing fault diagnosis. The proposed approach has been

validated on Machinery Failure Prevention Technology (MFPT) dataset using six

simple conventional statistical features. These include two Histogram features:

Histogram Upper Bound (HU) and Histogram Lower Bound (HL); and four Moments:

1st moment (arithmetic mean, AM), 2nd moment (variance, VAR), 3rd moment

(skewness, SK) and 4th moment (kurtosis, KU). Description of these features is given

in Table 5.2.

7.3.1 Experimental Description

For validation and comparative evaluation of various ensemble classifiers, data

samples of size 2048 points are extracted from the vibration signals obtained from

MFPT dataset [134], giving a total of 1423 samples consisting of 429 normal (healthy)

and 994 (faulty). Out of 994 samples obtained through faulty bearing, 497 samples are

with fault in inner race and 497 samples are with fault in outer race of bearing. This

distribution is shown in Table 3.7. The 1423 signals are first individually decomposed

into a set of IMFs by applying EMD algorithm. The best IMF, i.e. the IMF having the

highest correlation with the parent signal, is referred to as the representative signal.

Only representative signals are considered for the remaining steps.
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To increase the number of instances in the dataset in a well-balanced manner,

Synthetic Minority Oversampling Technique (SMOTE), developed by N. Chawla,

Bowyer K.W. et al. is used [182]. This statistical technique increased the number of

instances in the dataset in a balanced way by generating new instances from originally

existing minority cases in the training dataset. The amount of SMOTE percentage

taken is 25% and number of nearest neighbours is taken as 5. The algorithm took

samples and its 5 nearest neighbours for each fault class, and combined features of the

target case with features of its neighbours to generate new cases.

Proposed ensemble classifiers are used to diagnose three types of conditions in

rolling element bearings: normal (faultless), fault in inner race and fault in outer race

and performance evaluation is done using 7 evaluation metrics; Training accuracy, Test

accuracy, Mean Absolute Error (MAE), Matthews Correlation Coefficient (MCC),

F1-Score, Mean Entropy and Area under the ROC curve (AUROC).

The training data is fed to Weka’s package for Meta classifiers. In bagging, a

standard decision tree based on reduced error pruning (REPTree) is configured as the

model being bagged. REPTree builds a decision tree using either information gain or

variance and prunes it by reduced-error pruning. The size of each bag is taken as 100%

to generate a new sample of different composition but of same size as that of the

training dataset. The 100 number of iterations are performed on the dataset. Keeping

all these parameters same for Random Forest classifier, the model is trained on training

data set. In all of three boosting models i.e. AdaBoost, Logiboost and Multiboost,

weak learner is chosen as REPTree algorithm and total 10 number of iterations are

performed.

In Vote ensemble four classification model that can make uncorrelated predictions

are selected. The selected sub models are KNN. PART, Logistic Regression and

Random Forest. For combining the predictions of the sub models the parameter chosen

is average of probabilities. In the proposed stacked ensemble classifier, four sub

models are chosen; one lazy classifier- KNN, one rule based classifier- PART, one

function classifier - Logistic Regression and Random Forest which is a tree based

classifier. The supervisor model taken is Multilayer Perceptron which is trained to

combine the predictions from the sub models in the best possible way. It uses

backpropagation to classify instances.
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7.3.2 Results and Discussion

In this experimental study, the statistical significance of ensemble classifiers is

validated on MFPT dataset. Seven metrics are used to compare the efficacy of the

models. The classification accuracy on Training dataset is estimated by stratified

10-fold cross validation. In every trial, a classifier is trained on any 9 folds and

validated on the remaining fold. For each classifier, Training & Testing accuracy and

time required to build classifier model are recorded in Table 7.1. and graphically

plotted in Figure 7.2.

Table 7.1: Accuracy and time taken for model building for the different classifiers.

Classifier
Accuracy Time taken for

model buildingTraining Testing

Random Forest 94.9378% 91.5789% 0.15 seconds

Bagging 94.9378% 91.9298% 0.13 seconds

AdaBoost 93.7759% 90.8772% 0.06 seconds

Logiboost 94.1909% 90.5263% 0.57 seconds

Multiboost 94.2739% 91.5789% 0.05 seconds

Voting 94.8548% 92.2807% 0.26 seconds

Proposed Stacked
Ensemble

95.1867% 92.6316% 4.20 seconds

Figure 7.2: Comparison of Training and Testing Accuracies of Ensemble Classifiers
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Following observations and conclusions are made:

i) From Table 7.1 and Figure 7.2., it is observed that the performance of proposed

stacked ensemble classifier is the best with respect to accuracy although the time

taken for building this ensemble classifier model is highest. The 10-fold cross

validation accuracy obtained with training dataset is 95.1867% white accuracy

obtained with test dataset is 92.6316%. Although with reference to MAE

Multiboost gives better performance but its accuracy is very low as compared to

proposed classifier.

ii) Five additional evaluation metrics (MAE, MCC, F1-Score, Entropy, AUC) are

calculated on Test dataset and are recorded in Table 7.2. From Table 7.2, It is

inferred that Proposed ensemble classifier performs decently well in this metric

too. It outperforms other ensembles in MCC with the highest value of 0.927. As

MCC value “1” indicates a perfect classifier it can be said that proposed classifier

is performing very well.

Table 7.2: Metric values obtained for the different classifiers on Test dataset.

Classifier MAE MCC F1 Score Mean
Entropy AUROC

Random Forest 0.0704 0.874 0.916 1.53 0.974

Bagging 0.0738 0.879 0.920 0.23 0.968

AdaBoost 0.0645 0.862 0.909 0.42 0.955

Logiboost 0.0817 0.858 0.906 0.27 0.965

Multiboost 0.0557 0.874 0.916 0.84 0.963

Voting 0.0737 0.884 0.916 0.22 0.978

Proposed
Stacked

Ensemble
0.0656 0.927 0.923 0.25 0.978

iii) As F1-score value 1 indicates perfect precision and recall and the proposed model

gives a F1-score of 0.923, it is verified that the model is a good model that correctly

distinguishes the three bearing fault classes.

iv) Often, choosing the best model is a trade-off between sensitivity and specificity.

Therefore it is best to have some metric that captures both of these aspects. This is
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effectively captured by the Receiver operating Characteristics (ROC) curve. The

area under the ROC curve (AUROC) is a good indicator of a model’s performance.

In addition to this, AUROC score also considers the rank of each prediction instead

of its absolute value, hence it is independent of the threshold set for classification.

The AUROC value for the proposed model is 0.978, highest amongst all classifiers.

The proposed classifier also shows remarkably good mean entropy value.

This experimental study gave a research direction that effective fault sensitive features

extracted from vibration signals can serve the purpose of vibration signature analysis,

if used along with efficient and robust ensemble machine learning classifiers.

7.4 FAULT DIAGNOSIS USING CWRU BEARING DATA

For the experimental validation of proposed methodology of “Optimal Statistical

Feature Subset Selection for Bearing Fault Detection and Severity Estimation”, Case

Western Reserve University (CWRU) dataset [133] was used and following five

experiments were performed using Ensemble classification approach. Rule Based

Classifiers, PART and JRIP, were used with ensemble techniques boosting (Multiboost

in this case) and bagging for performing fault type detection of the 4 classes- Normal,

Inner Race, Outer Race and Ball Bearing. The ensemble techniques make use of a

single learning algorithm to train multiple models on the dataset and then average out

these models to get a final prediction. While bagging helps in getting an ensemble

model with less variance by assigning equal weights to individual models for

averaging, boosting works by reducing both variance and bias. Both of them help in

increasing the stability of the models.

For training PART, the value of pruning confidence factor was taken as 0.25, while

in JRIP, the minimum of the instances in a rule was taken as 2 and two optimization runs

were performed. These classifiers were trained on the reduced dataset obtained by only

retaining those features that were included in the optimal feature subset, as discussed

in the previous chapter. To further analyze the efficiency of the proposed methodology,

these classifiers were also run on the entire dataset with all the features in order to

compare the results with those obtained with reduced dataset. The data augmentation

achieved by the initial splitting of vibration signals into signals of 1024 length resulted

in a large enough dataset, removing the need to perform cross validation while training
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the classifiers. For implementing Bagging and Multiboost, 10 iterations were performed

with a batch size of 100.

7.4.1 Experiment-1: Fault Type Detection using Optimal Feature Subset and

Ensemble Rule Based Classifiers

In this experiment CWRU Dataset A is used for bearing fault type detection using

optimal subset of 5 features (T2, T18, T22, T27, T30) derived in Chapter 6 and

Ensemble Rule Based Classifiers. Table 7.3 reports the performance of the classifiers

in terms of accuracy obtained on the train and test dataset. Two cases have been

considered -

i) When the selected feature set contains T2, T18, T22, T27, T30 corresponding to

column 1 of Table 7.3 and

ii) When T30 is replaced with its Gaussian Mixture Model equivalent T30*, the

feature set in this case being T2, T18, T22, T27, T30* corresponding to column 2

of Table 7.3.

Table 7.3: Classifier performance in terms of Train accuracy and Test accuracy values
for Exp-1.

Classifier Train Accuracy Test Accuracy
T30 T30* T30 T30*

PART 98.11 98.36 95.43 95.43
PART + Multiboost 100 100 96.51 96.75

PART + Bagging 98.72 98.81 96.49 96.72
JRIP 96.15 96.41 94.28 94.37

JRIP + Multiboost 99.37 99.99 96.22 96.37
JRIP + Bagging 98.10 98.21 96.04 96.25

It is observed that PART when used with Multiboost outperforms all the 5

classifiers and gives the best performance with an accuracy of 96.51% on test dataset

and 100% on the train dataset. The performance of the features is further studied by

inspecting the rules generated by them. Rules are propositional formulae consisting of

one or more atomic formulae (enclosed in parenthesis as shown below) that are joined

together using logical connectives AND ^ and IMPLIES !. The number at the end of

a rule indicates the number of instances correctly classified by that rule. PART with

91



Multiboost generates a total of 87 rules from the 5 important features. With just a

small number of rules the entire training data of 13648 samples is fully and accurately

classified. Some of the rules generated are listed in Table 7.4.

Table 7.4: Examples of Rules generated by PART+ Multiboost classifier

Rule
No. Rule

No. of
Instances
classified

R1 (T 22 > 0.358398)^(T 27  0.318614)^(T 18 >
0.025684)^(T 2  0.477539)! InnerRace 660

R2 (T 22 > 0.416992)^(T 18 > 0.439639)! BallBearing 375

R3
(T 22 > 0.416992)^(T 18 > 0.086578)^(T 2 >
0.333767)^(T 18  0.177064)! OuterRace 350

R4 (T 2  0.050631)^(T 22 > 0.291016)^(T 22  0.357422)!
Normal 1635

From these rules, it can be observed that a total of 1635 out of 2649 dataset instances

were correctly classified as Normal using just one rule R4 generated by the features T2

and T22. Each of the three remaining rules also classify significant portions of samples

in the dataset, thus showing the good performance of the features forming these rules.

The rules are also very simple in structure, for instance, R2 constructed with the help

of just 2 atomic formulae, correctly classifies 375 Ball Bearing instances. The ability to

easily distribute the samples into the 4 classes using simple rules shows the efficiency

of the selected time domain features.

Since the number of samples belonging to Normal class is 2649, which is less than

the number of samples in each of the faulty classes (around 3500 for each), the dataset

is slightly class unbalanced. Hence, evaluating the performance of the rule based

classifiers on accuracy alone may not be comprehensive and therefore the performance

of the classifiers on the test dataset has been further studied by calculating two other

metrics: F-measure and Geometric Mean (G-Mean).

Table 7.5 reports the performance of the classifiers on Dataset A using F-measure

and G-Mean scores. The F-measure and G-Mean scores for all the classifiers are

significantly high, in particular, PART + Multiboost classifier outperforms the other

classifiers. Hence, the rule based classifiers are able to classify the slightly unbalanced

dataset very well, in turn showing the good performance of the selected features.
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Table 7.5: Classifier performance in terms of F-Measure and G-Mean values for Exp-1.

Classifier F-measure Geometric Mean (G-Mean)
Normal Inner Outer Ball Normal Inner Outer Ball

Race Race Bearing Race Race Bearing

PART 0.990 0.955 0.949 0.932 0.994 0.970 0.969 0.949

PART +
Multiboost

0.995 0.967 0.958 0.948 0.997 0.977 0.974 0.962

PART +
Bagging

0.994 0.966 0.957 0.946 0.995 0.976 0.973 0.961

JRIP 0.987 0.931 0.929 0.934 0.992 0.958 0.947 0.951
JRIP +
Multiboost

0.993 0.965 0.955 0.944 0.995 0.972 0.973 0.961

JRIP +
Bagging

0.991 0.958 0.957 0.944 0.995 0.971 0.973 0.960

To further validate the good performance of the selected features in fault type

detection, confusion matrices were built as shown in Figure 7.3. Figure 7.3.(a) shows

the confusion matrix obtained on test dataset with T30 parameter for PART with

Multiboost and Figure 7.3.(b) shows the confusion matrix obtained on test dataset with

T30* parameter for PART with Multiboost classifier. From the first confusion matrix,

it is observed that the Normal instances were accurately classified (with only 2

misclassifications), further confirming they are well classified by the 5 important

features selected in this research even though Normal class is slightly

underrepresented. Another important observation is that most of the misclassifications

involve Ball Bearing class. 22 instances each of Inner Race and Outer Race got

misclassified as Ball Bearing. Also, a total of 56 Ball Bearing instances were

incorrectly classified.

To validate these observations, 3 features - T22, T27, T30 - were plotted pairwise

using scatter plots as shown in Figure 7.4. It can be seen that for Normal class, the plots

show mostly non-overlapping clusters, hereby confirming that the selected features are

playing a very good role in classifying fault vs. no fault. The plots also show a lot of

overlapping between Ball Bearing, Inner Race and Outer Race clusters, confirming the

observation about Ball Bearing class. This indicates a lot of diversity in the Ball Bearing

instances that is unhandled by the selected features.
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Hence, features which can accurately distinguish this class from other classes are

needed. A modification in feature T30 (Normal Negative log likelihood for Single

Gaussian), resulting in a better classification for ball bearing instances, has been

discussed in the results of Experiment 5.

(a) with T30.

(b) with T30*

Figure 7.3: Confusion matrices for Exp-1 using Multiboost + PART on Test dataset
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(a) Between T27 and T30.

(b) Between T27 and T22.

Figure 7.4: Pairwise Scatter plots for the top 3 ranked features. Here T22, T27 and
T30 are Rate of zero crossing, Hjorth parameter Mobility and Normal Negative log
likelihood for Single Gaussian respectively

95



(c) Between T22 and T30.

Figure 7.4: Pairwise Scatter plots for the top 3 ranked features. Here T22, T27 and
T30 are Rate of zero crossing, Hjorth parameter Mobility and Normal Negative log
likelihood for Single Gaussian respectively (Contd.)

7.4.2 Experiment-2: Fault Type Detection using 30 Features and Ensemble Rule

Based Classifiers

In this experiment CWRU Dataset A is used for bearing fault type detection using

all 30 features i.e. feature selection is not performed. Table 7.6 reports the performance

of the classifiers in fault type detection in terms of accuracy obtained on Dataset A

without feature selection.

Table 7.6: Classifier performance in terms of Train accuracy and Test accuracy values
for Exp-2.

Classifier Train Accuracy Test Accuracy
T30 T30* T30 T30*

PART 98.63 98.82 96.04 96.25

PART + Multiboost 100 100 99.13 99.63
PART + Bagging 99.47 99.8 98.6 98.81

JRIP 97.71 97.82 96.6 95.96

JRIP + Multiboost 99.8 99.99 97.04 97.27

JRIP + Bagging 98.82 98.9 97.04 97.25
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These classifiers perform better than their feature selected counterparts, in terms

of accuracies obtained. Again, in terms of overall performance, PART + Multiboost

outperforms all the 5 classifiers, giving the highest train and test accuracies of 100% and

99.13% respectively. On comparing these with the train and test accuracies of 100% and

96.51% obtained with feature selection, it is observed that on the train data the selected

features were alone sufficient for attaining a perfect accuracy, while in the case of test

data too, a major contribution in achieving the high accuracy can be credited to the

selected features.

7.4.3 Experiment-3: Fault Severity Detection using Optimal Feature Subset and

Ensemble Rule Based Classifiers

This experiment detects the severity of fault types by performing a 12 class

classification using Rule Based Classifiers on the selected 8 features obtained for

Dataset B [Table 3.4]. The 12 labels are used for severity detection, where the severity

of a fault has been characterized by its size in inches.

Table 7.7 shows the results obtained wherein, once again PART, when used with

Multiboost, outperforms all the 5 classifiers and gives the best performance accuracy

of 100% on train dataset and 97.92% on test dataset. The results obtained with the

parameter T30* are discussed later in Experiment 5 results.

Table 7.7: Classifier performance in terms of Train accuracy and Test accuracy values
for Exp-3.

Classifier Train Accuracy Test Accuracy
T30 T30* T30 T30*

PART 96.1 96.14 94.42 95.18

PART + Multiboost 100 100 97.92 98.56
PART + Bagging 97.9 97.96 97.41 97.53

JRIP 91.22 91.83 90.99 91.9

JRIP + Multiboost 96.1 96.29 96.03 96.15

JRIP + Bagging 95.63 95.94 95.35 95.82

Having few IR 028 and BB 028 samples and almost thrice the count for other

severity labels, the dataset is unbalanced class wise and hence the F-measure and

G-Mean values were obtained to further investigate the performance of the selected
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features. Table 7.8 reports the F-measure and G-Mean values obtained with PART +

Multiboost for fault severity detection. It is observed that both the underrepresented

classes and the remaining classes are accurately classified. Hence, the selected features

for fault severity detection are performing well despite the data being class

unbalanced.

Table 7.8: PART + Multiboost performance in terms of F-Measure and G-Mean values
for Exp-3.

Metric Norm IR IR IR IR OR OR OR BB BB BB BB
-al 007 014 021 028 007 014 021 007 014 021 028

F-
Meas-
ure

0.998 0.988 0.982 0.980 1.00 0.998 0.965 0.981 0.962 0.951 0.953 1.00

G-
Mean 0.999 0.994 0.987 0.993 1.00 1.00 0.984 0.992 0.976 0.972 0.968 1.00

7.4.4 Experiment-4: Fault Severity Detection using 30 Features and Ensemble

Rule Based Classifiers

In this experiment Dataset B, with all the 30 statistical features, was fed to the rule

based classifiers to again investigate fault severity detection. Results for this

experimental study are shown in Table 7.9. On comparison with Table 7.7 results, it is

observed that the highest train accuracy of 100% remains unaltered while the test

accuracy sees a gain of 0.76%. The perfect train accuracy and the small gain in test

accuracy shows the superior performance of the selected eight features over the other

features, confirming their large contribution towards the accurate classification results.

This is in line with the observation for the selected features for fault type detection in

Experiment 2.

7.4.5 Experiment-5: Replacing Normal Negative Log-Likelihood for Single

Gaussian Parameter with its Gaussian Mixture Model Variant for

Experiments 1-4

In feature ranking results, the feature T30: Normal Negative Log-Likelihood for

Single Gaussian comes in the set of important features for both fault type and fault

severity detection [Section 6.2.2]. For instance, in the case of fault type detection, it

occupies rank 3 in the list of average ranks given by feature ranking methods and is
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Table 7.9: Classifier performance in terms of Train accuracy and Test accuracy values
for Exp-4.

Classifier
Train Accuracy Test Accuracy

T30 T30* T30 T30*

PART 98.01 98.15 95.68 95.71

PART +
Multiboost 100 100 98.68 99.12

PART + Bagging 99.36 99.39 97.5 97.56

JRIP 93.92 94.61 93.77 94.21

JRIP + Multiboost 98.78 98.98 96.32 96.59

JRIP + Bagging 97.73 97.79 96.08 96.35

selected by all the 5 feature subset methods. This feature gives the negative of the

likelihood that a normal distribution of given mean and standard deviation fits the

sample data, in this case, the sample data being the representative IMF of bearing

vibration signal. Experiments 1-4 were repeated by replacing the Normal Negative

Log-Likelihood for Single Gaussian parameter (T30) with its proposed Gaussian

Mixture Model variant (T30*).

Table 7.3 shows the results obtained for fault type detection when T30 was taken as

one of the 5 selected features and when it was replaced by T30*. According to Table

7.3, PART with Multiboost gives an accuracy of 100% on train dataset for both T30 and

T30* and shows a slight jump in test accuracy from 96.51% with T30 to 96.75% with

T30*. For the rest of the classifiers, a slight improvement in train and test accuracy with

T30* over T30 is seen. From the two confusion matrices in Figure 7.3, the number of

true positives for the Ball Bearing class has increased from 931 with T30 to 939 with

T30*, accompanied by a decrease in the missclassified instances of Ball Bearing into

Inner Race and Outer Race classes from 24 to 22 and 28 to 22 respectively. This further

confirms the better performance of T30* as compared to T30. Similarly, the accuracy

values obtained in Table 7.6 shows better accuracy values with parameter T30* than the

values obtained with T30 for all the classifiers. This again shows the effectiveness of

T30* over T30.

A similar trend is observed for fault severity detection. From Table 7.7 it is seen that

on comparing T30 with T30*, the train accuracy remains at its peak of 100% while test
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accuracy increases by 0.64% to become 98.56%. T30* performs better than T30 in the

case of without feature selection as well, as can be seen from Table 7.9.

A more clear picture is provided by the confusion matrices in Figure 7.5, where

it can be seen that for T30, the misclassifications are more than that for T30*. It is

believed that for bearing datasets having a majority of vibration signals with multiple

peaks, this feature can prove to be a key performer because of its ability to represent

such signals well. Hence, Normal Negative log likelihood of GMMs has the potential of

being a more accurate and reasonable parameter for feature selection and bearing fault

diagnosis than the Normal Negative log Likelihood of Single Gaussian.

7.4.6 Results and Discussion

The following points discuss and summarize the obtained results from the five

experiments:

i) For the 4-class fault type detection problem, a subset of the features - Root Mean

Square (T2), Geometric Mean (T18), Rate of zero crossing (T22), Hjorth

parameter Mobility (T27) and Normal Negative log likelihood for Gaussian

Mixture Model (T30*) perform well with Ensemble Rule based classifiers, giving

the maximum test accuracy of 96.75% obtained with PART + Multiboost.

ii) For the 12-class fault severity estimation problem, a subset of the features - Root

Mean Square (T2), 75th Percentile (T9), Kurtosis Factor (T17), Geometric

Mean(T18), RSSQ (T19), Rate of zero crossing(T22), Hjorth parameter

Mobility(T27) and Normal Negative log likelihood for Single Gaussian (T30*)

perform very well producing the maximum test accuracy of 98.56% with PART +

Multiboost.

iii) An improvement in classification accuracy is observed when Normal Negative

log likelihood for Single Gaussian (T30) is replaced by it’s GMM variant (T30*).

This is because some signals have more than one distinct maxima and a single

Gaussian curve cannot model these signals accurately. Thus instead of a single

Gaussian curve, it is better to fit these signals with a Gaussian Mixture Model.

iv) The F-measure and G-Mean scores for all the rule based classifiers are

significantly high, confirming the potential of the chosen features to accurately

classify the unbalanced dataset.
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(a) with T30.

(b) with T30*

Figure 7.5: Confusion matrices for Exp-3 using PART+ Multiboost on Test dataset
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v) On comparing the results with feature selection vs. without feature selection, the

latter performs better for both fault diagnosis and fault severity estimation giving

99.63% and 99.12% test accuracies respectively. Despite this observation, the

good accuracy values obtained with the selected features show that a major

contribution in achieving the high accuracy in the case of without feature

selection can be credited to the selected features. Hence, these selected features

play a major role in the diagnostic ability of the classifiers.

7.5 FAULT DIAGNOSIS USING REAL POWER PLANT DATA

In this experiment, bearing data from 500 MW Kosti Thermal Power Plant

commissioned by Bharat Heavy Electricals Limited, India [Figure 3.6.] has been used

to validate the proposed methodology. Because the bearing configuration of the pump

of Kosti Thermal Power Plant matched with that used in CWRU dataset, the test

samples acquired from the power-plant are appropriate to validate the trained model.

7.5.1 Experimental Description

Data for normal baseline bearings was recorded using the deep groove ball bearing

SKF6303-2Z/C3 with dimensions 17mm X 47mm X 14mm at drive-end with motor

speed of 3000 RPM. Vibration data was collected at 12,000 samples/second. Vibration

data was taken for 2 different timestamps and for both vertical and horizontal positions,

leading to a total of 4 vibration signals. These test samples are mixed with the 20%

test set separated from the CWRU Dataset A. The trained model of PART + Multiboost

for fault type detection with feature selection, obtained in Experiment 1 of Section 7.4,

is chosen for labelling instances as outer raceway defect, inner raceway defect, ball

defect, and the normal. The same data pre-processing, including bifurcating the signals

to sub signals of length 1024, Empirical Mode Decomposition and feature extraction,

is performed on these samples as done for the CWRU dataset.

7.5.2 Results and Discussion

The overall accuracy and average F-measure achieved were 96.75% and 0.972

respectively. Furthermore, per instance classification results were obtained and it was

observed that all the normal samples taken from the power plant were correctly
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classified. Hence, the results were reasonably good. The mixing of power plant

samples with CWRU test samples ensured that the good accuracy was not due to any

bias shown by the classifier towards the normal class. This is also confirmed by the

good F-measure value. Furthermore, when T30 was replaced by T30* for this dataset,

no improvements were seen in the accuracy and F-measure values. This might be due

to the mostly Single Gaussian nature of the newly added Normal vibration signals

taken from the power plant.

7.6 CONCLUSIONS

So far research in bearing fault diagnosis and severity estimation has majorly

focussed on improving the performance of classification algorithms. However, the

applicability of these approaches mainly depends upon the quality of features extracted

from the bearing signals. In light of this, the research performed in Methodology I

focused on optimizing the input features fed to these classification systems with the

belief that if new input features are proposed and/or the input features are selected

comprehensively using an in-depth analysis, they can contribute more in bearing fault

diagnosis, covering all types of fault samples in an exhaustive manner. This can in turn

lead to the existing classification methods to perform much better. In an attempt to

achieve this, this methodology proposed the usefulness of Hjorth Parameters and

Normal negative log likelihood for Gaussian Mixture Model (GMM) for rolling

element ball bearing fault detection and severity estimation.

The performance of the feature set was validated by running experiments for

different conditions - with and without feature selection - and comparing their results.

The dataset being class unbalanced proved that the good performance of the feature set

is independent of the class distributions of the dataset. Since in real world scenarios

one can never exactly replicate the experimental conditions of a class-balanced dataset,

these results guarantee that the selected features are independent of class balanced

scenarios.

In addition to CWRU test rig dataset, the performance was further validated on a

bearing dataset obtained from an operational power plant. The results show that the

methodology is robust, aligns well with the real world situation of class unbalanced

datasets and achieves good performance for both fault diagnosis and fault severity
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estimation. The results obtained from this methodology can pave the way for

researchers to change their current method of developing diagnostic systems by first

analyzing the feature set comprehensively and then shifting their focus to the next step

of classification.

7.7 CHAPTER SUMMARY

This chapter discusses the last step of the proposed methodology for fault diagnosis

using vibration signature analysis using optimal feature subset and ensemble rule-based

classifiers. The classifiers used in the proposed methodology are elaborated and the

concept of “Ensemble of classifiers” is also presented. The fault classification results

obtained for different experimental studies involving different datasets using various

classifiers have been compared using different evaluation metrics in order to find the

best performing ensemble classifier. The efficacy of the selected time domain statistical

features and ensemble classifiers is further confirmed by their good performance in

classifying samples taken from an operating power plant.
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CHAPTER VIII

FAULT DIAGNOSIS USING DEEP TRANSFER

LEARNING

8.1 INTRODUCTION

Researchers have been using different techniques to convert vibration signals into

vibration images in order to apply image processing techniques to extract fault sensitive

features, which can later be used to efficiently classify these images for detection of

faults.

Some of the studies that used different types of vibration images and classification

techniques are discussed in literature review in Section 2.4. Literature survey also shows

that higher order spectral analysis methods, like Bispectrum analysis, are becoming

very popular over traditional methods, like power spectrum, in fault diagnosis of rolling

element bearings since higher order spectrum can provide more diagnostic information

than power spectrum for vibration signals. In particular, Bispectrum helps retain phase

and amplitude information of vibration signals, which is useful for fault detection. The

phase retention advantage provided by Bispectrum is used to identify phase coupling

effects. Researchers have also explored application of image processing techniques to

analyze Bispectrum in the form of images.

With the advancements in deep learning, research in the field of fault diagnosis

using vibration images has progressed tremendously. In this chapter, a methodology for

bearing fault diagnosis and classification using Bispectrum images of fault signals and

Deep Transfer Learning is proposed. This chapter discusses the experimental validation

of the proposed methodology. The detailed flowchart of the proposed methodology is

given in Figure 8.1.

8.2 IMAGE BASED FAULT DIAGNOSIS USING DEEP LEARNING

Deep Neural Network Architectures, specifically Convolutional Neural Networks

(CNN), and Transfer Learning have revolutionized image based fault diagnosis. These

concepts along with Bispectral contour maps are explained in the following pages.
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Figure 8.1: Flowchart of Proposed Methodology II for Fault Diagnosis and
Classification using Bispectrum Images and Deep Transfer Learning

8.2.1 Bispectral Contour Maps

The first step of the proposed methodology is to generate Bispectral Contour maps

i.e. Bispectrum images from the acquired vibration signals. Bispectrum, B(f1, f2), is

the 3rd order cumulant and was calculated as given in equation 5.13 in chapter 5.

Bispectrum arrays were estimated for each of the data samples using MATLAB HOSA

toolbox and stored as RGB images so that deep learning models can learn useful

insights from the color intensities. Sample Bispectral Contour Maps for seven classes

are shown in Figure 5.3 in chapter 5.

8.2.2 Convolutional Neural Networks and their Architectures

Artificial Neural Networks can be categorized as Shallow or Deep. Shallow

networks have one hidden layer between input layer and output layer, while deep

networks have multiple hidden layers between input and output layers. Convolutional

Neural Network (CNN), one of the most popular neural network, is a class of Deep
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Neural Networks (DNN), mostly used for image classification.

CNNs, at a very high level, are a concatenation of convolutional layers, activation

(non-linear) layers, pooling layers and fully connected layers. Different layers of CNN

are explained as below:

Convolutional layers – These layers, also the reason why these networks are hence

named, are based on the mathematical concept of convolution involving 2- dimensional

digital signals or images. Taking the example of 2-D signals, a 2-D mask is run over an

image, wherein for every position of the center of the mask, mask weights are multiplied

with the corresponding pixel values of image and those products are added to get the

result for that position as depicted in Figure 8.2.

Figure 8.2: Convolution with 5x5 kernel

The output image, also called feature map, is determined by computing these results

for all such positions. This simple operation gives the possibility of doing any image

processing technique on the input image like image blurring, edge detection and many

others, which in turn helps in achieving the final goal of image classification or object

detection. The output image, in the case of convolutional neural networks, becomes a

part of the input of succeeding hidden layer. The step size by which the filter is moved

from one position to the next position is called the stride. The mask is called a kernel or

a filter.

Activation layers – These layers are mostly for introducing non-linearity in the

network. This is needed for backpropagation of weights during training. In a CNN,

activation layers are placed after convolution layers and linear layers. Examples of non-

linear activation functions are ReLU, TanH, Sigmoid, Softmax.
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Pooling Layers- As their name suggests, these layers pool a set of pixels or data points

in the input image to give a single value. This is equivalent to down sampling. Pooling

layers perform typical aggregation operations like finding maximum value or average

value for a set of data points.

Fully Connected layers – Once the combination of the above 3 layers have achieved

the task of finding the important high-level features crucial for classification, the n-

dimensional vector generated by these layers needs to be mapped to the most likely

class or label. This mapping is performed by fully connected layers. The n-dimensional

vector is first flattened to a 1-D vector which is then converted to another 1-D vector

of size equal to the number of classes in the dataset. The 1-D vector has score values

corresponding to every class. The class having the highest score is the prediction of the

network for that input.

Four popular CNN architectures used in this research work are explained below :

i) AlexNet

Alex Krizhevsky et al. designed the AlexNet model that won the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) in 2012 by a large margin in

classification accuracy. Their work started a new area of hot research focusing on

the application of CNNs in computer vision. Alexnet is a deep convolution neural

network consisting of 8 layers, of which first five are convolutional layers and

last 3 are fully connected layers. The last layer’s result is passed through a

softmax activation and then finally the output of the model is generated as the

probability vector of N classes [183] .

ii) VGGNet

VGGNet, introduced by Simonyan et al of the Visual Geometry Group Lab of

Oxford University in 2014. The model was developed out of research for

understanding the effect of depth of a CNN in its performance. VGGNet has

multiple variants differing in the number of convolution layers in them. All VGG

networks have the same configuration of the fully connected layers. In this

research work, VGG-19 has been implemented. VGG-19 is 19 layers deep and

takes 224x224 RGB input images. The last 3 layers of this model are fully

connected layers, with the output of the last layer being fed to a softmax layer at

the end. This model has ReLU non-linearity in all hidden layers [184] .
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iii) GoogLeNet

GoogLeNet is a 22-layer deep architecture based on the deep convolutional

neural network architecture codenamed ‘Inception’ that won the ILSVRC 2014

challenge and set up a new state of the art for classification and detection of

ImageNet dataset [185]. This network offers improved utilization of computing

resources and was built based on the idea of having multi-sized filters at the same

level in a network. In this research work, the pre-trained version for ImageNet

has been used to perform transfer learning with an image input size of 224 by

224.

iv) ResNet

Residual network (ResNet), introduced by He, Kaiming et al., won the 1st place

in the ILSVRC 2015 classification task [186]. ResNet was designed to ease the

training process of very deep networks while achieving a lower error rate of

classification than state of the art deep CNNs at that time. ResNets were an

alternative to the vanishing gradient problem of other deep CNNs. ResNets are

different from VGGNet and AlexNet because they have ‘identity shortcut

connections’ that skip one or more layers. In this research work, ResNet-50,

which has 50 layers, has been implemented.

Figure 8.3. shows the architectures of models. The layers that were kept frozen while

training have been marked. All of the models were implemented in Python using the

Pytorch framework. The architectures have been shown as they are defined in the Python

library for easy understanding. In the figure, BLOCK, Inception Block, Bottleneck-1

and Bottleneck-2 represent sets of layers that are repetitive in the model architecture.

8.2.3 Transfer Learning

Transfer learning is a technique that utilises what has been learnt in one setting,

called source problem, to improve generalization in another setting, called target

problem. The output can be of different nature in the two settings. In the case of

CNNs, the network is first trained on a source dataset and task and then the learned

weights of the model are transferred to the target network to be trained on a target

dataset and task. While dealing with deep convolutional networks that have millions of

trainable parameters, this optimization technique works like a shortcut to save time,
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(a) AlexNet

(b) VGG-19

Figure 8.3: Model Architectures
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(c) GoogLeNet

Figure 8.3: Model Architectures (Contd.)
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(d) ResNet-50

Figure 8.3: Model Architectures (Contd.)
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resources and to achieve better performance. Since the technique tries to repurpose the

learned weights from the source dataset to fit the target dataset, it can work well on

small target datasets. Transfer learning can also speed up the model convergence

during training and boost prediction accuracy.

The sub-problem of Transfer Learning within Deep Learning focuses on learning

from massive datasets and applies the learned knowledge in other domains. For fault

diagnosis of power plant components, Transfer Learning has been applied to datasets

of various kinds.

Researchers have worked on vibration signals taken from Case Western Reserve

University (CWRU) bearing dataset wherein they have performed transfer learning for

bearing fault diagnosis [187, 188]. C. Che et al. have validated through their

experiments that deep transfer learning is effective for classifying multi-dimensional

graph samples produced from rolling bearing signals [189]. A joint distribution

adaptation method based on feature-transfer learning has been verified by Z. Wu. et

al.for bearing fault diagnosis on frequency spectra of two types of bearing vibration

datasets [190]. Vibration signal images are also highly favoured since image

classification with neural networks has seen a lot of advancements.

Researchers have explored transfer learning with vibration signal images generated

from CWRU bearing signals [112], [191, 192]. Researchers have also focused on gear

fault diagnosis system that uses adaptive feature extractions from images created from

a small gear dataset [193] . With only 104 samples per health condition of the gear,

they achieved an accuracy of 95.88% with 20% as training data, hence removing the

requirement of sufficiently labelled samples. Deep CNNs have revolutionised the state

of the art results in many research studies. The four CNNs - AlexNet, VGG-19,

GoogLeNet, ResNet-50 - have been applied previously on images in computer vision

related research and have been found to be very effective in n-class classification

problems. In this research, transfer learning of these four CNNs has been implemented

on bispectrum images generated from CWRU bearing fault signals. These networks

are first initialized with their corresponding pre-trained weights on the ImageNet

dataset and then fine-tuned on bispectrum image dataset. The training details of the

models are explained in Section 8.3. Rolling element bearings used in rotating

machinery of power plant have 3 common types of faults: Ball bearing, Inner race and
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Outer race. In this research work, bearing faults are diagnosed by taking into account

both fault type and fault diameter size. Two fault sizes of 0.007” and 0.014” are

considered for each kind of fault, resulting in 6 fault classes. Combining these with the

Normal class, a 7-class classification has been performed.

8.3 FAULT DIAGNOSIS USING CWRU BEARING DATA

Bispectrum images were generated from bearing fault signals to create the dataset

for the classification models. For the pre-processing phase, resizing and normalization

were performed on these images. These pre-processed images were used to form the

train, test and validation sets.

The train and validation set images were then passed through the pre-trained CNN

models to perform transfer learning based training of these models. Figure 8.4.

describes the proposed methodology.

The train, validation and test data are derived from Case Western Reserve

University (CWRU) Bearing Dataset [133]. Bispectrum arrays are estimated for each

of the data samples using the MATLAB toolbox for direct fast fourier transform (FFT)

based approach with origin at the centre of the array and axis pointing down and

towards right. FFT length and overlap are taken as 128 and 0 respectively. The

bispectrum arrays are stored as RGB images so that deep learning models can learn

useful insights from the color intensities. Bispectrum images obtained for Ball Bearing

and Normal classes are 875x656 in size and that for Inner Race and Outer Race are

1200x900 in size. Some of these images are shown in Figure 5.3 in chapter 5. These

images are divided into train, test and validation sets as depicted in Table 3.5.

Each of the bispectrum images is then preprocessed, as shown in Figure 8.5., before

being passed to the networks in order to match the pretrained models’ implementation

structure. For this, the images are first resized to 224 by 224 size and are then normalised

to mean = 0 and standard deviation = 1.

In order to underscore the effectiveness of the proposed approach, 4 popular deep

transfer networks namely AlexNet, VGG19, GoogLeNet and ResNet-50 were

leveraged. All the models were implemented in Python using the Pytorch framework.

They were first initialised with their corresponding pretrained weights on ImageNet

dataset and then fine-tuned on the bispectrum dataset for a mini-batch of 128 images
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Figure 8.5: Pre-processing of images before feeding them to the Deep CNN model.
Here a sample image of size 875 by 656 is first resized to 224 by 224 size and then
normalized.

for 30 epochs. This means that for every model, the entire dataset was passed through

the network 30 times wherein every pass was further divided into smaller batches of

size 128. The last layer of each network was modified to a probability vector of size 7,

in order to customize the models to the 7-class bearing dataset. Each model was

trained using 3 different optimizers - Stochastic Gradient Descent (SGD), Adaptive

Moment Estimation (Adam) and Adamax - making a total of 12 models that were

experimented on the dataset. The selected three optimizers are popular gradient

descent optimization algorithms that are known to achieve good convergence. In all the

experiments, the learning rates for SGD, Adam and Adamax were set to 1e-2, 1e-3 and

2e-3 respectively and the momentum was set to 0.5 for SGD. These values were

decided upon after repetitive experiments.

A popular learning rate annealing method of step decay was also used for gradually

decreasing the learning rate (lr) over the course of training so as to avoid a noisy

convergence. The lr rate scheduler for the same was set to a decay factor of 0.1 every 7

epochs. Gradient clipping was also set to enforce a maximum gradient value of 0.25 to

stop the gradient from going above this threshold thereby avoiding gradient explosion.

The loss criterion chosen for all models was Cross Entropy Loss as this criterion is

commonly used for n-class classification and also it combines LogSoftmax non

linearity and NLL (Negative Log Likelihood) loss in one single class in Pytorch. The

models have been trained using a CUDA enabled NVIDIA P40 GPU with 20 GB

memory.

In transfer learning, there are different ways of transferring knowledge from pre-
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trained models. In this research work, two transfer learning methods were analyzed:

i) Transfer Learning Method -1 (TLM-1): Fine-tuning without Freezing

ii) Transfer Learning Method -2 (TLM-2): Fine-tuning with Freezing

The first method involves taking the pre-trained model and fine-tuning it from head-

to-toe for the bearing dataset. The second method also involves fine-tuning but it fine-

tunes only selected block of layers, which are towards the end of the model, keeping

the rest of the layers frozen.

8.3.1 Transfer Learning Method -1 : Fine-tuning Without Freezing

In this experiment, each model was first initialized with the corresponding

pretrained weights for ImageNet and then the entire model was retrained on

bispectrum images of bearing fault signals. During every epoch of training, the

network was first trained on the train set and then validated against the validation set.

Table 8.1 reports the classification results in terms of the metrics - validation accuracy,

test accuracy, test loss and AUPRC (Area under Precision Recall Curve) values.

Accuracy can be defined as the number of correctly predicted samples over the total

number of samples in the dataset. Accuracy obtained for validation set is validation

accuracy and likewise for test accuracy. The model state with the highest validation

accuracy across all epochs was used to make predictions on the test set. This best

validation accuracy value has been reported in Table 8.1. Average loss is the mean loss

over losses from all the mini batches in one pass through network. All the loss values

reported are average loss values. Accuracy values may not be a good metric in cases of

class imbalanced datasets. Moreover, another commonly used metric, called area under

the ROC (AUROC), can produce optimistic values on imbalanced datasets and is a

preferred metric for balanced class data. Since the dataset is imbalanced, the area

under the Precision-Recall curve (AUPRC) has been instead computed, which is

preferred over AUROC when dealing with imbalanced datasets, for evaluating the

performance of the models. Higher the value of AUPRC, better is the classification

performance of the model.

GoogLeNet and ResNet-50 with Adam and Adamax optimizers perform the best

with very high validation accuracies of 99.85%, 99.70%, 99.55%, 99.85% in this order

and high test accuracies of 99.55%, 99.55%, 99.70%, 99.55% in this order and very
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Table 8.1: Validation and Test results for the CNN models without freezing layers.

Model Optimizer
Validation
accuracy

(%)
Test loss

Test
accuracy

(%)

AUPRC
(Micro-
average)

AlexNet

SGD

Adam

Adamax

95.42

99.85

98.67

0.2468

0.0277

0.0617

94.96

98.96

97.63

0.9856

0.9994

0.9982

VGG-19

SGD

Adam

Adamax

94.10

99.70

99.70

0.2594

0.0831

0.0132

93.77

99.26

99.11

0.9810

0.9963

0.9998

GoogLeNet

SGD

Adam

Adamax

92.62

99.85

99.70

0.7691

0.0076

0.0096

90.65

99.55

99.55

0.9639

0.9999

0.9999

ResNet-50

SGD

Adam

Adamax

97.19

99.55

99.85

0.3601

0.0051

0.0106

94.51

99.70

99.55

0.9914

0.9999

0.9999

low loss values of 0.0076, 0.0096, 0.0051, 0.0106. Following very closely behind this

model is VGG-19 with Adam and Adamax optimizers. From the corresponding scores

of AlexNet, it can be deduced that it is also performing very well.

The very high test accuracies of these models further confirms their excellent

classification performance and absence of overfitting on train set. This excellent

performance can be attributed to the fact that even though all the layers of the models

were re-trained on the bearing dataset, the models were already initialized with the

weights of the pre-trained models thereby already storing most of the important

information for curves and edges needed by the models to distinguish basic shapes,

hence making it easier and quicker for these models to customize their weights for the

bearing dataset.
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The area under the Precision-Recall curve (AUPRC) is a useful tool for evaluating

soft classifiers like CNNs in terms of their quality of class separation. Since this is a

multiclass classification setting, averaged AUPRC values have been computed by the

micro-average method. Table 8.1 shows the micro-averaged values of AUPRC for the

models. This metric has been computed by aggregating the contribution of all the classes

by the one-vs-all technique and does not treat all classes equally, which again helps to

avoid getting misleading results for an imbalanced dataset. Since high averaged values

are obtained for AUPRC for all the models, it can be concluded that the trained models

are able to separate the 7 classes well. These also show that the models are performing

well on an imbalanced dataset.

Figure 8.6. contains the accuracy vs epochs and average loss vs epochs plots for

training and validation. From the graphs, it is observed that the accuracy and loss

curves converge very fast, each of them converging by the 15th epoch. This shows that

models are able to transfer the knowledge they learnt from the ImageNet dataset to the

bispectrum images of CWRU vibration signals and further improve their learning in

just 15 passes of the entire dataset.

Another factor contributing to the good performance of the deep transfer networks,

is the noiseless smooth convergence of both accuracy and loss observed from these

graphs, highlighting their low dependence on big datasets and preventing researchers

from worrying about sufficiency of data samples.

The AUPRC values can also be interpreted by plotting the precision recall curve.

The nearer the area of the precision-recall curve to one, better is the predictive power

of the model. The precision-recall curve for one of the models, i.e., AlexNet trained

with SGD optimizer has been shown in Figure 8.7. The plot shows the AUPRC score

micro-averaged over all the seven classes. It can be observed that the curve is almost

aligning with the edges of the 1 by 1 plot area. This represents the high micro-averaged

AUPRC score of 0.9856 and shows the model’s strong ability to perform classification

on imbalanced datasets.

The total time taken for training the models for 30 epochs is reported in Table 8.4.

It is observed that models take less time to train when their layers are frozen. The time

values are decent considering the best accuracy and loss were achieved in half the time

i.e. by the 15th epoch and the weights were not being learning from scratch.
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(a) Accuracy vs epochs plots

Figure 8.6: Train and Validation plots for TLM-1. Blue curve represents Train results
and orange curve represents Validation results.
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(b) Average loss vs epochs plots

Figure 8.6: Train and Validation plots for TLM-1. Blue curve represents Train results
and orange curve represents Validation results (Contd.)
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Figure 8.7: Precision-Recall curve for AlexNet model trained with SGD optimizer in
TLM-1.

8.3.2 Transfer Learning Method -2 : Fine-tuning With Freezing

In this experiment, the models were again initialized with the corresponding

pretrained weights for ImageNet but the fine-tuning process involved updation of

weights of few selected layers. The models were fine-tuned by freezing the model

layers closer to the input layer and training the layers closer to the classification output

layer.

During the training of a convnet, the layers which come first in contact with the input

perform the task of extracting basic edges and curves whereas the subsequent layers are

responsible for detecting more complex shapes and figures and other visual information

that the model finds to be popular in a class, thereby associating that information with

that class.

Since any image can be disintegrated to a set of basic edges and curves, the initial

layers are usually kept frozen so that their pretrained weights can be directly utilized

and the computational resources can be used for training the remaining layers which are

more important in terms of customising the model training to the dataset in hand. This

approach accelerates training and also prevents overfitting of models on the dataset. For

all the 4 networks, all the layers till the AdaptiveAvgPool2d layer were frozen and the

rest of the layers were trained as depicted in Figure 8.3.

Table 8.2 tabulates the results when transfer learning was performed with the CNN

models after freezing the initial set of layers. Unlike experiments in TLM-1; AlexNet
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with Adamax clearly outperforms other models achieving a very high validation

accuracy 99.11%, low test loss of 0.0659 and high test accuracy 98.96%. Its results

with Adam optimizer are also good achieving the scores of 98.96%, 0.1584 and

98.07% in the same order. VGG-19 exhibits similar performance with these two

optimizers. GoogLeNet and ResNet-50 are not far behind, both producing decent

accuracies and losses with Adam and Adamax optimizers.

For GoogLeNet and ResNet-50, a slight dip in performance before freezing and

after freezing layers is observed. From 99.85% validation accuracy and 0.0076 test loss

value obtained before freezing to 95.57% and 0.1979 after freezing, GoogLeNet with

Adam sees this dip in performance because now only some of its weights are trained to

fit the bearing dataset.

Table 8.2: Validation and Test results for the CNN models after freezing layers.

Model Optimizer Validation
accuracy

(%)

Test loss Test
accuracy

(%)

AUPRC
(Micro-
average)

AlexNet

SGD

Adam

Adamax

88.64

98.96

99.11

0.5795

0.1584

0.0659

87.39

98.07

98.96

0.9426

0.9950

0.9992

VGG-19

SGD

Adam

Adamax

86.57

98.82

98.96

0.7166

0.1561

0.1148

85.46

98.22

97.92

0.9316

0.9967

0.9962

GoogLeNet

SGD

Adam

Adamax

85.10

95.57

95.42

0.9940

0.1979

0.2163

86.05

95.25

94.66

0.9234

0.9853

0.9838

ResNet-50

SGD

Adam

Adamax

92.47

97.93

97.93

0.7465

0.1289

0.1313

90.50

96.44

95.99

0.9635

0.9944

0.9946
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Table 8.3: Number of trainable parameters in the models

Model Total parameters trained

without freezing layers

Total parameters trained

with freezing layers

AlexNet 57,032,519 54,562,823

VGG-19 139,598,919 119,574,535

GoogLeNet 5,607,079 7,175

ResNet-50 23,522,375 14,343

One can also see this from the number of parameters trained by these models as

reported in Table 8.3. For GoogLeNet, the trainable parameters reduce from the order

of 1e6 before freezing to 1e3 after freezing. For the same reason as discussed above,

in the case of ResNet50 with Adamax, validation accuracy and test loss change from

99.85% to 97.93% and 0.0106 to 0.1313. However, in AlexNet and VGG-19 significant

change in result scores is not seen. This is due to a larger proportion of weights being

re-trained in the latter case as can be seen from Table 8.3.

In the former case consisting of ResNet-50 and GoogLeNet, the layers which were

open to training were relatively less than the total number of layers in these networks,

thus accounting to a visible effect on the training scores. Thus the performance of

transfer learning depends on the number of layers or blocks kept unfrozen and this can

be further experimented and explored in future.

Table 8.2 also shows the micro-averaged values of AUPRC for the models. It can be

observed that the AUPRC scores for the models are again very high, hence showing their

superior performance on the imbalanced dataset and high ability of class separation.

The accuracy vs epochs and loss vs epochs plots, in Figure 8.8, for training and

validation with freezing layers show similar trends as in Figure 8.6, but it is observed

that convergence is smoother and more stable this time with lesser fluctuations.

From the time scores in Table 8.4, it is seen that models take less time to train when

their layers are frozen, for example, GoogLeNet with Adam takes 13m 50s to train for

30 epochs with freezing the layers, a total of 6m 27s less than the 20m 17s it took to

train for the same number of epochs when layers were not frozen. In AlexNet, this delta

is less for the same reason discussed above for loss and accuracy scores.
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(a) Accuracy vs epochs plots

Figure 8.8: Train and Validation plots for TLM-2. Blue curve represents Train results
and orange curve represents Validation results.
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(b) Average loss vs epochs plots

Figure 8.8: Train and Validation plots for TLM-2. Blue curve represents Train results
and orange curve represents Validation results. (Contd.)
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Table 8.4: Time taken for training the models over 30 epochs.

Model Optimizer Training time without
freezing layers

Training time with
freezing layers

AlexNet

SGD

Adam

Adamax

14 min 51 sec

14 min 57 sec

14 min 57 sec

13 min 51 sec

13 min 50 sec

13 min 45 sec

VGG-19

SGD

Adam

Adamax

17 min 43 sec

18 min 19 sec

18 min 22 sec

13 min 40 sec

15 min 2 sec

13 min 44 sec

GoogLeNet

SGD

Adam

Adamax

18 min 8 sec

20 min 17 sec

20 min 28 sec

11 min 11 sec

13 min 50 sec

13 min 35 sec

ResNet-50

SGD

Adam

Adamax

13 min 17 sec

14 min 45 sec

15 min 29 sec

11 min 19 sec

13 min 20 sec

14 min 5 sec

8.3.3 Visualization of Feature Maps

Convolution neural networks learn to classify input images by mapping the input

image’s pixel values to a set of weights stored in the form of grids that are called kernels

or filters. These filters, when applied on an image, convert the image into an array, called

a feature map, that contains all the important discerning features.

Researchers have used visualization techniques to give insight into the function of

intermediate feature layers of CNNs [194, 195]. These techniques offer a useful way of

interpreting the contribution from different model layers towards the overall

performance of the model and can also be useful for comprehending the learning

process of a CNN model.

In this section, the feature maps generated by successive convolution layers when a

model is trained on the bearing dataset, are visualized and attempted to be analyzed.

Feature maps can be useful in understanding the discerning features in bispectrum

images that the model thinks are contributing the most in bearing fault and severity

classification, thus providing an insight into the performance of the trained deep CNN

models. They also help in understanding the role of intermediate convolution layers in

classification.
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For this research work, the feature maps generated by the 5 convolution layers

present in AlexNet architecture (in Figure 8.3) are plotted for TLM-1. This was

performed by forwarding test images of each class through the AlexNet network that

got trained with Adamax optimizer. When an input test image passes through a

convolution network like AlexNet, every convolution layer outputs a three dimensional

tensor which can be viewed as a stack of feature maps. From such a tensor of

dimension, let’s say (k,m,n), a (1,m,n) feature map is extracted and is plotted as a two

dimensional image. So for the 224x224 input RGB image, the feature maps generated

by the first 5 layers are of sizes 55x55, 27x27, 13x13, 13x13, 13x13 in the order. The

1st feature map for each of these convolution layers were generated as images. These

feature map images were extracted for a bispectrum image per class.

Figure 8.9. shows seven bispectrum input images (one per class) and their

corresponding feature map visualizations generated from the first 5 convolution layers

while classifying these images. As discussed earlier and also evident from the figure,

the 1st convolutional layer has all the basic edge and color detectors. As one goes

deeper into the network, the abstraction level of the feature maps increases. The

subsequent convolution layers appear to be detecting more complex shapes, textures

and mesh patterns, all the time focusing more on the outline of the central ring and its

surrounding objects present in these images.

From colors and basic curves to complex shapes and mesh patterns, it can be

observed that these visualisations have a hierarchical nature. But still it is difficult for

the human eye to discern and understand the complex feature maps learned by layers

as one goes deeper in the architecture. A possible future study to further understand

these visualizations can involve visualizing filter maps of these convolution layers.

8.3.4 Results and Discussion

i) The results from experiments TLM-1 and TLM-2 are reasonably good. From the

results in Table 8.1 for TLM-1, GoogLeNet and ResNet-50 with Adam and

Adamax optimizers perform the best with very high test accuracies of 99.55%,

99.55%, 99.70%, 99.55% in this order and very low loss values of 0.0076,

0.0096, 0.0051, 0.0106. In TLM-2 on the other hand, AlexNet with Adamax

clearly outperforms other models achieving a very high test accuracy of 98.96%
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(a) Ball bearing with 0.007” fault

(b) Ball bearing with 0.014” fault

(c) Inner Race with 0.007” fault

(d) Inner Race with 0.014” fault

(e) Outer Race with 0.007” fault

(f) Outer Race with 0.014” fault

(g) Normal class

Figure 8.9: Feature maps produced by the trained model - AlexNet + Adamax - in TLM-
1 for Test images. Each row has images arranged from left to right as: Test input image,
feature maps from 1st, 2nd, 3rd, 4th and 5th convolution layers.
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and low test loss of 0.0659, as can be seen in Table 8.2. From these obtained test

accuracy values, it is observed that the concern of overfitting for the experiments

excluding freezing of layers, doesn’t hold true and for a not so large dataset like

ours, transfer learning can perform well and is robust even when retraining all the

layers. Thus, transfer learning based CNN, trained with or without freezing,

forms an excellent and robust classifier for small and class imbalanced bearing

dataset.

ii) From observing the feature detection being performed by the network layer by

layer, a small insight into how these transfer learning networks are discerning the

important features and narrowing down the class associated with that image, is

gained. It also highlights the efficiency and power of transfer learning in

transferring knowledge gained from a dataset to classifying a different dataset.

8.4 FAULT DIAGNOSIS USING REAL POWER PLANT DATA

In this experiment, bearing data from 500 MW Kosti Thermal Power Plant

commissioned by Bharat Heavy Electricals Limited, India [Figure 3.6.] has been used

to test the proposed methodology. Because the bearing configuration of the pump of

Kosti Thermal Power Plant matched with that used in CWRU dataset, the test samples

acquired from the power-plant are appropriate to validate the trained model. So far, the

diagnostic performance of higher order spectrum of vibration signals with deep

transfer learning has not been explored on bearing data acquired from a Power Plant.

This section attempts to do that.

8.4.1 Experimental Description

Data for normal baseline bearings was recorded using the deep groove ball bearing

SKF6303-2Z/C3 with dimensions 17mm X 47mm X 14mm at drive-end with motor

speed of 3000 RPM. Vibration data was collected at 12,000 samples/second. Vibration

data was taken for 2 different timestamps and for both vertical and horizontal positions,

leading to a total of 4 vibration signals.

These signals were bifurcated into sub signals of length 1024 and the same

pre-processing steps were performed on these sub signals as done for CWRU dataset.

Bispectrum arrays were constructed and the corresponding images were stored as
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RGB images. These images were resized and normalized and were mixed with the test

set images separated from the CWRU Dataset C. This new set of test images was then

passed through the trained network model of AlexNet with Adamax, obtained by

performing TLM -1 experiment on CWRU dataset. For one of the Power plant

samples, feature maps were generated as done while experimenting on CWRU dataset.

Figure 8.10 shows the feature map visualizations generated by the first 5 convolution

layers while classifying the chosen power plant sample.

Figure 8.10: Feature maps produced by the trained model - AlexNet + Adamax - in
TLM-1 for a sample Bispectrum Test image constructed from signal acquired from the
Power Plant. Images are arranged from left to right as: Test input image, feature maps
from 1st, 2nd, 3rd, 4th and 5th convolution layers.

8.4.2 Results and Discussion

The test accuracy, test loss and AUPRC scores achieved were 98.3%, 0.0561 and

0.9986 respectively. Furthermore, per instance classification results were obtained and

it was observed that all the normal samples taken from the power plant were correctly

classified. Hence, the performance of this methodology is further confirmed. Also,

similar to the discussion on the visualization of feature maps generated for CWRU

dataset samples, the feature maps generated for the power plant sample provide an

insight into how the prominent features are being narrowed down as the image goes

through the network.

8.5 CONCLUSION

Bearing fault diagnosis based on hand crafted features demands prior knowledge

and might be unsuitable for detecting higher level abstract features that could be out

of scope for the human mind. With the introduction of convolutional neural networks,

the dependence on hand crafted features is removed but a requirement for a reasonable

sized dataset is still there to ensure unbiased and robust training of the network. This

section proposed a novel method based on deep neural network transfer learning and
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higher spectral analysis such as Bispectrum with the goal of performing bearing fault

and severity detection on small datasets, eliminating the need for hand tailored features

or large datasets. Experiments involved popular network architectures - AlexNet, VGG-

19, GoogLeNet and ResNet-50 - wherein these models were loaded with pre-trained

weights and further trained on bispectrum images obtained from CWRU bearing fault

dataset for the two cases of with and without freezing layers. Each model was trained

using 3 optimizers - SGD, Adam and Adamax.

The use of CNN for classifying bispectrum images has already been investigated.

[128] proposed a fault diagnosis method that is based on bispectrum analysis and CNN

for detection of bearing faults in CWRU dataset. They used the same three optimizers

and trained their CNN for 500 epochs on samples of one RPM and test them on samples

of remaining 3 RPM, classifying the samples into Normal, Inner Race, Outer Race and

Ball Bearing, obtaining average test accuracies of 91.97%, 96.27%, 96.74% and 90.10%

for 1796, 1772, 1748, 1722 RPM values respectively. Though in this research work,

experiments are performed wherein the train dataset has samples from all these RPM

values and is of similar size, the proposed approach achieves an accuracy 99.7% in only

30 epochs.

Thus transfer learning on bispectrum images has a very good potential for

diagnosing bearing faults and detecting fault severity . It can be used to speed up

network training and save computational resources by reusing the weights of

pre-trained models. Though the knowledge on the inner workings of these networks is

limited and complex to understand, the feature maps of convolutional layers can be

visualized to gain an insight into the same.

The efficacy of the proposed methodology is further confirmed by its good

performance in classifying samples taken from an operating power plant.

8.6 CHAPTER SUMMARY

In this chapter, a novel methodology for fault diagnosis and classification using

bispectrum images and deep transfer learning has been proposed and discussed. It is

proved that deep convolutional neural networks, when trained on Bispectrum images of

fault signals using transfer learning, provide highly accurate and reliable results for fault

diagnosis that are at par with the state of the art results. These transfer learning based
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models are able to quickly learn patterns from visual features of a vibration signal’s

bispectrum.

Four pretrained networks - Alexnet, VGG-19, GoogLeNet, ResNet-50 - have been

fine tuned on bispectrum images prepared from vibration signals of machine ball

bearing elements. Each network has been trained with 3 optimizers - Stochastic

Gradient Descent (SGD), Adaptive Moment Estimation (Adam) and Adamax. These

models are able to obtain high classification accuracy within a few epochs.

Furthermore, the feature maps associated with intermediate convolution layers for one

of these models have been generated and analysed.
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CHAPTER IX

CONCLUSIONS, CONTRIBUTIONS AND SCOPE

FOR FUTURE WORK

9.1 CONCLUSIONS

This research focused on fault diagnosis of power plant components using a range

of vibration signature analysis techniques. It proposed novel algorithms comprising

effective signal processing techniques in conjunction with advanced machine learning

and deep learning techniques. The proposed algorithms were experimentally validated

using bearing vibration data acquired from vibration lab and a real power plant. The

effectiveness of the techniques was assessed by the analysis of experimental results

concerning different types of faults.

This research was conducted in two phases to meet the research objectives. In the

first phase, this research work extracted a comprehensive set of conventional statistical

features, proposed novel statistical features and ranked them to find an optimal feature

subset thereby decreasing the number of computations involved in fault detection using

efficient machine learning techniques. In the second phase, a higher order spectrum,

Bispectrum, was investigated for its sensitivity and effectiveness in fault diagnosis by

applying deep transfer learning technique. Multiple conclusions were drawn from the

outcomes of the two phases of research. These are discussed below:

9.1.1 Vibration Signature Analysis using Statistical Features and Machine

Learning

In the first phase, extensive research was done to find advanced statistical

parameters having more sensitivity to faults; and on the selection of an ideal set of

dominant features from a comprehensive list of features in order to give them as input

feature vectors to efficient machine learning classifiers for fault diagnosis. Statistical

time domain features namely Hjorth Parameters and Normal negative log likelihood

for Gaussian Mixture Model (GMM) were proposed and analyzed for the first time.

Effectiveness of Hjorth parameters in the prediction of bearing faults was investigated
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by scatter plots for all possible pairs of the three Hjorth parameters. It was observed

that the pair of Hjorth Activity and Hjorth Mobility is capable of efficiently

distributing the bearing vibration data into clusters and have great potential to be used

as effective features for machine learning classifiers in performing accurate fault

diagnosis. One more advantage of using Hjorth parameters is that their calculation

involves variance, making cost of their computation very low. This accounts for their

suitability in real-time tasks.

The diagnostic performance of Normal Negative Log Likelihood for GMM was

compared with that of the established feature Normal negative log likelihood for Single

Gaussian and it was proved that Normal negative log likelihood for GMM has better

fault sensitivity as compared to its Single Gaussian counterpart.

These novel proposed features in addition to 27 other established statistical features

for identification of bearing fault type and severity were investigated using a two-step

approach to generate an optimal feature subset:

• Filter-based Ranking (using 3 ranking metrics)

• Filter-based Feature Subset Selection (using 11 search techniques)

The results obtained show that the newly proposed features (Hjorth parameters and

Normal negative log likelihood for GMM) occupy a prominent place in the optimal

subset and have a future potential of being used in a high dimensional dataset with

multi-domain features.

The selected set of statistical features were further validated using Ensemble

machine learning classifiers. It was observed that PART when used with Multiboost

outperforms all the classifiers and gives the best performance with an accuracy of

96.75% on test dataset and 100% on the train dataset for fault type detection and

98.56% on test dataset and 100% on the train dataset for fault severity detection using

optimal feature subset.

The performance of the features was further studied by inspecting the rules

generated by them.

The diagnostic effectiveness of the features was further validated on a bearing

dataset obtained from an operating thermal power plant. The overall accuracy and

average F-measure achieved were 96.75% and 0.972 respectively.
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9.1.2 Vibration Signature Analysis using Bispectrum Images and Deep Transfer

Learning

In the second phase of the research, a higher order spectrum (Bispectrum) was

investigated using Deep Transfer Learning for its sensitivity and effectiveness in fault

diagnosis on insufficient labelled data of bearing fault images. Different deep transfer

learning networks were used to analyze the performance of the proposed novel

method.

The performance of the proposed algorithm was evaluated using metrics of

validation accuracy, test accuracy, test loss and micro-averaged AUPRC scores. The

proposed method includes two aspects, first is the construction of Bispectrum images

from vibration signals followed by performing deep transfer learning on these images

for highlighting the fault features and diagnosing them. Bispectrum images of bearing

vibration signals were fed as input to four popular convolution neural networks

(AlexNet, VGG-19, GoogLeNet and ResNet-50). The training of the convolution

neural nets was performed using transfer learning to eliminate the requirement of large

dataset that is usually needed for training deep learning models. In this research work,

two Transfer Learning methods were implemented and analyzed:

• Transfer Learning Method -1 (TLM-1): Fine-tuning without Freezing

• Transfer Learning Method -2 (TLM-2): Fine-tuning with Freezing

The results proved that models take less time to train when their layers are frozen. The

proposed approach achieved an accuracy of 99.7% in only 30 epochs. The diagnostic

effectiveness of Deep Transfer Learning approach was further validated on a bearing

dataset obtained from an operating thermal power plant. The test accuracy, test loss

and AUPRC scores achieved were 98.3%, 0.0561 and 0.9986 respectively. The results

obtained validate the feasibility and effectiveness of applying deep convolution neural

networks trained on Bispectrum images of vibration signals using transfer learning for

bearing fault diagnostics.

Hence this approach has a very good potential for diagnosing bearing faults and

detecting fault severity. This approach also eliminated the need for manual feature

extraction. The proposed Machine Learning and Deep Learning frameworks for

Vibration Signature Analysis are compared in Table 9.1.
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Table 9.1: Comparison of Proposed Machine Learning and Deep Learning frameworks

Methodology I Methodology II
Vibration Signature Analysis
using Statistical Features and
Machine Learning

Vibration Signature Analysis
using Bispectrum Images and
Deep Transfer Learning

Data
dependencies

Machine learning algorithms
proposed in this methodology
perform well with handcrafted
advanced features and can be
applied on small and large
vibration datasets for fault
diagnosis.

Deep learning algorithms
need large amounts of data to
understand the problem domain.
To apply deep learning on
bispectrum image dataset, which
is small in size, a deep transfer
learning approach has been
proposed in this methodology.

Hardware
dependencies

This methodology can be
implemented on low-end
machines, like CPU, as the ML
algorithms used are not very
computationally expensive.
The models used in this
methodology have been
executed on a 8 GB RAM
machine with Intel Core i5-
7200U CPU having 2.50 GHz
speed.

This methodology involves
training of deep convolutional
neural networks. Since deep
convolutional neural networks
involve a large amount of
matrix multiplication operations,
high-end machines like GPU,
are required for efficiently
implementing this methodology.
The CNN models used in this
methodology have been trained
using a CUDA enabled NVIDIA
P40 GPU with 20 GB memory.

Execution
time

Machine Learning algorithms
used in this methodology are
not computationally expensive
and took very less time to train,
ranging from few seconds to few
minutes.

Deep learning models take a
long time to train. If training
from scratch, these networks can
sometimes take upto several days
to train. In this methodology the
training time was much feasible,
in the order of a few minutes,
because transfer learning was
used to train the models.
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Feature
engineering
and
dimensionality
reduction

Feature engineering, or
the process of extracting
meaningful features from the
dataset, requires time and
expertise. This process is also
crucial to reduce the complexity
of the data and make patterns
more visible to learning
algorithms. For the applied
Machine learning models used
in this methodology, advanced
fault sensitive hand-crafted
features have been proposed
and extracted, furthermore a
filter based strategy for optimal
feature subset selection is
proposed.

CNNs, while getting trained,
learn features from the input
dataset on their own. Input
images are convolved with
kernels to form feature maps.
These feature maps contain low-
level features in the initial layers
and high-level representations
in the subsequent layers.
Deep learning algorithms used
in this methodology try to
learn high-level features from
input Bispectrum, therefore,
eliminating the task of feature
selection for dimensionality
reduction.

In-class
performance

A best test accuracy of 96.75%
for fault type detection (4-class
classification) and 98.56% for
fault severity detection (12-class
classification) was achieved by
this methodology.

The proposed approach achieved
a best test accuracy of 99.7%
in 30 epochs for fault severity
detection (7 class classification).

Interpretability
of algorithms

Machine learning algorithms
are easy to interpret. This
methodology used Rule based
Classifiers that generate” IF
..THEN rules” which are easily
interpretable.

Deep learning algorithms can
be difficult to interpret. In this
methodology, an attempt to
visualize the generated feature
maps was made. It was noticed
that as one goes deeper into the
network, the abstraction level of
the feature maps increases. The
subsequent convolution layers
appear to be detecting more
complex shapes, textures and
mesh patterns, which are difficult
for the human eye to discern.
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9.2 SCIENTIFIC CONTRIBUTIONS

In view of the research outcomes, the main contributions of this research work are

as below:

i) Reviewing common faults in rotating machinery of power-plants to identify the

most vulnerable component, i.e. bearing, and surveying signal processing

techniques and artificial intelligence techniques for intelligent fault diagnosis

using vibration signature analysis.

ii) Employing Empirical Mode Decomposition for pre-processing of vibration

signals in order to make the proposed methodologies more effective and robust

towards data collected from a noisy environment such as a real power plant.

iii) Generating a comprehensive list of time-domain statistical features and proposing

new advanced statistical features, Hjorth Parameters and Normal negative log

likelihood for Gaussian Mixture Model (GMM) for rolling element ball bearing

fault detection and severity estimation.

iv) Devising a strategy to probe a comprehensive set of statistical time domain

features with the objective of identifying optimal feature subset to feed as input

to ensemble of Machine Learning classifiers for rolling element ball bearing

fault detection and severity estimation and validating the optimal feature subset

using data from real power plant. Proposed strategy can be used in future studies

as a possible guideline when newly proposed features are used for vibration

signature analysis along with machine learning algorithms.

v) Eliminating the need for manual feature extraction by proposing a Deep Transfer

Learning based methodology that can efficiently analyze Bispectrum images of

vibration signals for fault diagnosis. This methodology solves the most

omnipresent problem that is faced with diagnosing most of the datasets -

shortage of data samples - in this research, ball bearing vibration dataset.

vi) Visualizing the extracted feature maps, associated with intermediate convolution

layers for one of the Deep Transfer models, to investigate the feature extraction

ability of deep neural networks.

vii) Achieving Knowledge Transfer from laboratories to the real world by training the
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proposed methodologies on vibration lab data and testing it on operational power

plant data.

9.3 SCOPE FOR FUTURE WORK

Based on the findings of this research, following recommendations are made for

future research in the field of Fault Diagnosis of rotating machinery components of

Power Plant using Vibration Signature Analysis:

• In this research work, the fault detection capability of proposed novel algorithms

was validated using experimental data containing vibration signals of bearings with a

single type of fault. In future, vibration signals for multiple simultaneous faults in the

components can be acquired and classified.

• The research work can be extended to accommodate fault diagnosis of other faulty

components e.g. gear, rotor etc. by acquiring their vibration signals from vibration

labs and power plants and testing the robustness and effectiveness of the proposed

methodologies.

• Higher Order Spectral Analysis using Deep Transfer Learning can be further

investigated for fault diagnosis by shifting the focus to orders higher than

Bispectrum such as Trispectrum and Composite spectrum.

• An attempt is made in this research to visualize the feature maps to gain an insight into

the classification severity detection performed by it but more in-depth investigations

are necessary to have a better understanding of adaptive feature extraction capability

of Deep Learning algorithms.
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