Jan. 2022

B.Sc. (Phy) - III SEMESTER Mathematical Physics-II (BPH-301)

[Max. Marks: 25 Time: 90 Minutes]

Instructions:

- It is compulsory to answer all the questions (1 mark each) of Part-A in short.
- Answer any three questions from Part-B in detail.
- Different sub-parts of a question are to be attempted 3. adjacent to each other.

PART-A

(1)(a) What is a periodic function? 1.

(b) Evaluate
$$\Gamma\left(-\frac{3}{2}\right)$$
 (1)

Determine the value of a_0 for a periodic function (c) (1)defines as $f(x) = x - x^2$; $-\pi < x < \pi$.

(1)What is an odd function? (d)

Write the orthogonality relation for Bessel's function. (e)

(1)

- Prove that $J_n(-x) = -J_n(x)$. (1)
- (g) What is generating function of Legendre's polynomial.

(1)

- (h) Prove that $P_n(1) = 1$. (1)
- Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. (1)
- Prove that $\beta(p, q) = \beta(p + 1, q) + \beta(p, q + 1)$. (1) (1)

PART-B

- (a) Obtain a Fourier series to represent the function 2. $f(x) = |\sin x| \quad \text{for } -\pi < x < \pi.$ (3)
 - (b) Prove Parseval's Indentity for fourier series. (2)
- (a) Prove that $J_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(n\theta x \sin \theta) d\theta$, using 3. generating function for Bessel's function. (3)
 - (b) Prove that $xJ'_n = -nJ_n + xJ_{n-1}$. (2)
- 4. Find the deflection u(x, y, t) of the square membrane with a = b = c = 1, if the initial velocity is zero and the initial deflection is $f(x, y) = A \sin \pi x \sin 2\pi y$. (5)

- 5. (a) Derive the Rodrigue's formula for Legendre's polynomial $P_n(x)$. (3)
 - (b) Prove that $P'_n(1) = \frac{1}{2}n(n+1)$. (2)
- 6. (a) Express the integral $\int_{a}^{b} (b-x)^{m-1} (x-a)^{n-1} dx$ with b>a. m>0, n>0 in terms of gamma and beta functions. (2)
 - (b) Derive the relationship between gamma and beta functions. (3)