
ONTOLOGY BASED INFORMATION RETRIEVAL

SYSTEM FOR HIDDEN WEB
THESIS

submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSOPHY
to

YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY

by

MANVI

Registration No: YMCAUST/Ph15/2010

Under the Supervision of

Dr. KOMAL KUMAR BHATIA Dr. ASHUTOSH DIXIT

 PROFESSOR ASSOCIATE PROFESSOR

Department of Computer Engineering

Faculty of Engineering and Technology

YMCA University of Science &Technology

Sector-6, Mathura Road, Faridabad, Haryana, INDIA

February, 2017

i

DECLARATION

I hereby declare that this thesis entitled “ONTOLOGY BASED INFORMATION

RETRIEVAL SYSTEM FOR HIDDEN WEB” by MANVI, being submitted in fulfilment

of the requirements for the Degree of Doctor of Philosophy in Department of Computer

Engineering under Faculty of Engineering and Technology of YMCA University of Science

& Technology, Faridabad, during the academic year 2016-2017, is a bona fide record of my

original work carried out under the guidance and supervision of Dr. KOMAL KUMAR

BHATIA, PROFESSOR and Dr. ASHUTOSH DIXIT, ASSOCIATE PROFESSOR,

DEPARTMENT OF COMPUTER ENGINEERING, YMCA UNIVERSITY OF

SCIENCE & TECHNOLOGY, FARIDABAD and has not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been

submitted for the award of any degree either in this university or in any other university.

 (MANVI)

 Registration No: YMCAUST/Ph15/2010

ii

CERTIFICATE

This is to certify that this thesis entitled “ONTOLOGY BASED INFORMATION

RETRIEVAL SYSTEM FOR HIDDEN WEB” by MANVI submitted in fulfillment of the

requirements for the award of Degree of Doctor of Philosophy in Department of Computer

Engineering, under Faculty of Engineering and Technology of YMCA University of Science

and Technology, Faridabad, during the academic year 2016-17, is a bona fide record of work

carried out under our guidance and supervision.

We further declare that to the best of our knowledge, the thesis does not contain any part of

any work which has been submitted for the award of any degree either in this university or in

any other university.

Dr. KOMAL KUMAR BHATIA
 Professor

Department of Computer Engineering
 Faculty of Engineering and Technology

 YMCA University of Science & Technology, Faridabad

 Dr. ASHUTOSH DIXIT

 Associate Professor
 Department of Computer Engineering

 Faculty of Engineering and Technology
 YMCA University of Science & Technology, Faridabad

Dated:

iii

ACKNOWLEDGEMENT

I express my gratitude to almighty God for giving me strength and courage to complete this

thesis.

I would like to express my sincere and deep gratitude to my Gurus Dr. Komal Kumar

Bhatia, Professor, Department of Computer Engineering and Dr. Ashutosh Dixit, Associate

Professor, Department of Computer Engineering, YMCA University of Science &

Technology, Faridabad for giving me the opportunity to work in this area. It would never be

possible for me to take this thesis to this level without their innovative ideas, invaluable

guidance, continuous support and encouragement. Their knowledge of different perspectives

of research provided me with the opportunity to broaden my knowledge and to make

significant progress. At times when was I stumbled upon big obstacles, both my mentors

encouraged me to look further and keep sailing through tough times.

I gratefully acknowledge my university colleagues for their encouragement, support and

invaluable suggestions in completing this research. I am also thankful to my students who

helped me directly and indirectly in completing my research work.

Words fail to express my heartfelt thanks to my better half Mr. Pramesh Dahiya for his

technological assistance and unparalled availability at all times during the course of my work.

I would also like to thank my mother Mrs. Santosh Siwach and sister Ms. Shashi Siwach

for being a constant source of support and motivation which help me to reach here.

My special thanks to my lovely daughter, Vasundhara for understanding me and giving me

time for doing my research work. A word of special thanks is due to my niece Ms. Ankita

Gill for baby sitting my three months old lovely son Maanvendra, so that i can complete the

writingesis. I would also like to express my thanks to my YMCAUST friends for being there

always in my tough times.

Thank you all!

(Manvi)

iv

ABSTRACT

Hidden web data is the huge and high quality data which is hidden behind form interfaces.

This data is very dynamic and is increasing in volume tremendously. The simple crawler

which downloads web pages by following hyperlink structure is not able to extract these

hidden web contents. For extracting this data special crawlers are designed which works on

two basis. The first type of crawlers download all the form interfaces integrate them and

produce a new interface where a user enters query. The query terms then are submitted to

form interfaces individually and corresponding pages are downloaded. The second type of

crawlers does not integrate the form interfaces. After getting the query terms by user, these

crawlers fill in each interface with the terms and extract the hidden web data.

Both types of crawlers traditionally use simple label value technique to find the values that

are required to fill in various fields of a form interface. These crawlers maintain a simple

table as database to store the values corresponding to different labels. This scheme is not an

efficient method as crawler has a finite set of values to choose from. Moreover basic hidden

web crawlers do not have any process to decide which values from the domain are

semantically correct.

Hence there is a requirement of designing an information retrieval system which is so

intelligent that it chooses the exact and correct values to be filled on the interfaces. This

system crawler can be made intelligent by attaching meaning to the data. The semantics or

meaning to data can be attached in form of relations with other terms with the help of

ontology. This ontology can also be used during indexing of hidden web data retrieved and

downloaded by the system. To present the data to users efficiently a ranking technique is also

needed to be developed.

Ontology is a way to define any entity with help of relationship this entity holds with other

entities. Ontology defines any entity in form of classes and attaches meaning to the data by

attaching the relationship with other classes. By involving ontology for extracting hidden web

data the exact values for various fields in form interfaces are found. The work is targeted to

design an information retrieval system based upon ontology to extract hidden web data.

The thrust of the thesis is to extract hidden web data using ontology and present it to the end

user efficiently. For this, first of all a domain specific ontology is constructed using Protégé

v

for book domain. Protégé is an open source tool available to construct ontology developed by

Stanford. The book domain ontology developed serve as prototype for further generating

domain specific ontology from web pages automatically.

A novel technique for generating ontology automatically has been proposed and

implemented. This ontology solves the purpose of creating a semantic database. The semantic

database is created in oracle in form of Subject, Predicate and Object triples. This database is

used to store various instance values from ontology. These values are used by the proposed

ontology based hidden web crawler (OHWC) to generate queries for hidden web interfaces.

The queries thus generated are having the exact match of values corresponding to each field

of interface. The above said ontology is also used in mapping process of hidden web crawler

designed in this thesis.

The work has also put forward a solution to the inefficiency in ontology mapping by

proposing a new method which removes the irrelevant pairing of nodes. The OHWC

downloads the hidden web pages by mapping the form interface with the developed domain

specific ontology. The implementation of this crawler offered improved results as compared

to previous hidden web crawlers.

The next module of the thesis is motivated by the fact that petite work has been done towards

indexing of hidden web data. The indexing schemes developed so far are not developed

keeping hidden web in mind. These techniques are also not able to resolve the ambiguity

problem in terms. Hence an ontology based indexing technique is proposed which not only

attaches the concept with indexed term but also saves the context in which the term is used.

During the course of this research, the need of a new ranking technique identified. In this

context the thesis provides a novel ranking approach for hidden web data. The ranking

method proposed here uses both query independent and query dependent factors to calculate

the final rank score.

The multifold contributions of the thesis include: i) Automatic generation of domain specific
ontology ii) Design and implementation of ontology based hidden web crawler iii) Proposed
novel ontology based indexing technique for hidden web and iv) A new ranking technique for
hidden web data.

vi

TABLE OF CONTENTS

Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Table of Contents vi

List of Tables x

List of Figures xi

List of Abbreviations xvi

CHAPTER I: INTRODUCTION 1-8

1.1 GENERAL 1

1.2 MOTIVATION 1

1.3 EXPLORING THE NEED OF ONTOLOGY IN HIDDEN WEB 3

1.4 PROBLEMS IN EXISITING LITERATURE 4

1.5 OBJECTIVES 5

1.6 ORGANIZATION OF THE THESIS 8

CHAPTER II: HIDDEN WEB RETRIEVAL AND ONTOLOGY:
A REVIEW 11-59

2.1 WWW (WORLD WIDE WEB) 11

2.1.1 History of WWW 11

2.1.2 Basics of WWW 12

2.2 IR (INFORMATION RETRIEVAL) 13

2.2.1Types of IR 13

2.2.2 Goal of IR 14

2.3 SEARCH ENGINE 14

2.3.1 Search Engine Architecture 15

2.4 CRAWLER 17

2.5 TYPES OF CRAWLER 19

2.5.1 Incremental Crawler 19

vii

2.5.2 Parallel Web Crawler 20

2.5.3 Focused Crawler 21

2.5.4 Distributed Crawler 22

2.6 HIDDEN WEB 23

2.7 HIDDEN WEB CRAWLER 26

2.7.1 Basic Architecture of a Hidden Web Crawler 26

2.8 TYPES OF HIDDEN WEB CRAWLER 28

2.9 EXPLORING THE NEED OF ONTOLOGY IN RETRIEVING

 HIDDEN WEB 34

2.10 ONTOLOGY 35

2.10.1 XML 36

2.10.2 RDF 37

2.10.3 RDFS 38

2.10.4 Defining Ontology 40

2.10.5 Ontology Development Tools 44

2.11 ONTOLOGY MAPPING 47

2.11.1 Ontology Mapping Techniques 48

2.12 INDEXING THE HIDDEN WEB 52

2.13 RANKING TECHNIQUES IN HIDDEN WEB 54

2.14 PROBLEM IDENTIFIED IN EXISTING APPROACHES 59

CHAPTER III: ONTOLOGY BASED INFORMATION RETRIEVAL
SYSTEM FOR HIDDEN WEB 61-67

3.1 INTRODUCTION 61

3.2 DESIGN OF ONTOLOGY BASED INFORMATION RETRIEVAL

SYSTEM FOR HIDDEN WEB 61

3.2.1 Ontology Builder 63

3.2.2 Ontology Based Hidden Web Crawler 64

3.2.3 Ontology Based Indexer 66

3.2.4 Rank Calculator 67

CHAPTER IV: GENERATION OF DOMAIN SPECIFIC ONTOLOGY
FOR HIDDEN WEB RETRIEVAL USING PROTÉGE 71-84

4.1 INTRODUCTION 71

4.2 GENERATING DOMAIN SPECIFIC ONTOLOGY USING PROTÉGÉ

FOR BOOK DOMAIN 71

viii

4.3 ONTOLOGICAL MODEL FOR BOOK DOMAIN 72

4.3.1 Defining Author Class 72

4.3.2 Defining Award Class 72

4.3.3 Defining Publication Class 73

4.3.4 Defining Book Class 73

4.4 PROTÉGÉ ONTOLOGY TOOL 74

4.4.1 Domain Ontology Construction Steps: Using Protege 4.2 74

4.4.2 Viewing Ontology 80

4.5 INSTANCE EXAMPLES 82

4.6 ONTOLOGY BASED QUERY PROCESSING AND RESULTS 83

4.6.1 Ontology Based Query System: SPARQL Query Language 84

4.6.2 Query Processing 84

CHAPTER V: GENERATION OF AUTOMATIC ONTOLOGY FROM HIDDEN
WEB INTERFACES 89-102

5.1 GENERAL 89

5.2 THE PROPOSED ARCHITECTURE OF AUTOMATIC GENERATION

OF ONTOLOGY FROM SEARCH INTERFACES 89

5.2.1 Form Downloader 90

5.2.2 Search Interface Repository 90

5.2.3 Ontology Converter 90

5.2.4 SPO Annotator 101

5.3 IMPLEMENTATION AND EVALUATION OF DEVELOPED

ONTOLOGY 102

CHAPTER VI: OHWC: ONTOLOGY BASED HIDDEN WEB CRAWLER 105-124

6.1 INTRODUCTION 105

6.2 PROPOSED ONTOLOGY BASED HIDDEN WEB CRAWLER 105

6.3 MAPPING MODULE 109

6.3.1 Central Coordinator 112

6.3.2 Pre-Processor 112

6.3.3 Main Mapper 115

6.4 PERFORMANCE EVALUATION OF MAPPING MODULE 119

ix

6.5 PERFORMANCE EVALUATION OF OHWC 124

CHAPTER VII: ONTOLOGY BASED INDEXING TECHNIQUE
AND NOVEL RANKING TECHNIQUE FOR HIDDEN
WEB PAGES 129-143

7.1 INTRODUCTION 129

7.2 PROPOSED ONTOLOGY BASED INDEXING TECHNIQUE 130

7.2.1 Keyword Extractor 131

7.2.2 Weight Calculator 132

7.2.3 Concept Annotator 135

7.2.4 Context Annotator 136

7.2.5 Implementation Ontology Based Indexing Scheme for

 Hidden Web 137

7.3 RANKING MODULE 138

7.3.1 Weight Calculator 139

7.3.2 Frequency Calculation Module 142

7.3.3 Rank Assigner 143

7.4 EXPERIMENTAL RESULTS 143

CHAPTER VIII: CONCLUSION AND FUTURE SCOPE 147-148

8.1 CONCLUSION 147

8.2 FUTURE WORK 148

REFERENCES 150-157

APPENDIX 158-163

BRIEF PROFILE OF RESEARCH SCHOLAR 164

LIST OF PUBLICATIONS 165

x

LIST OF TABLES

Table Title Page No.

Table 2.1 Comparison of Different Hidden Web Crawlers 34

Table 2.2 Comparison Table between Basic Search and Ontology

Based Search 35

Table 2.3 A Comparison Table of RDF/RDFS/OWL Languages 40

Table 2.4 Comparison of Various Ontology Development Tools 46

Table 2.5 A Comparison of Ontology Mapping Techniques 51

Table 2.6 A Comparison Table of Various Indexing Techniques 53

Table 2.7 A Comparison Table of Various Ranking Techniques 58

Table 3.1 Table of Final Index Created by Proposed Ontology

Based Indexing Technique 67

Table 4.1 Objectproperty Table 78

Table 5.1 Evaluation of Proposed Ontology 104

Table 6.1 Performance Of Proposed And Traditional Model 122

Table 6.2 Table Showing Evaluation Data of Precision Recall and

F-measures for Book and Airline domain 125

Table 7.1 Frequency Based Weights 133

Table 7.2 Position Based Weights 133

Table 7.3 Tag Based Weights 134

Table 7.4 Final Weight Table 135

Table 7.5 Final Index Table having Concept as Well as Context

Associated with a Term 137

xi

LIST OF FIGURES

Figure Title Page No.

Fig. 1.1 Basic Architecture of a Crawler 1

Fig. 1.2 Diagram showing % of Hidden Web Pages 2

Fig. 1.3 Examples of Hidden Web Page Interfaces 2

Fig. 1.4 Example showing Animal Ontology having Alsation as

Instance of Dog Class. 3

Fig. 2.1 Overview of WWW 12

Fig. 2.2 Basic Architecture of Search Engine 15

Fig. 2.3 Detailed Module Description of a Search Engine 16

Fig. 2.4 Web Crawler Architecture 17

Fig. 2.5 Algorithm of Basic Crawler 18

Fig. 2.6 Examples of Hidden web interfaces 24

Fig. 2.7 Hidden Web Content Distribution 25

Fig. 2.8 Architecture of Hidden Web Crawler 27

Fig. 2.9 Architecture of HiWE Crawler 29

Fig. 2.10 Set Formalization for Query Selection 30

Fig. 2.11 Architecture of Adaptive Crawler for locating Hidden Web 30

Fig. 2.12 Algorithm of Incremental Search for Informative

Query Templates (ISIT) 31

Fig. 2.13 Architecture of DSHWC 33

Fig. 2.14 Example Showing XML Tags and Hierarchal Structure

of the Same 36

Fig. 2.15 Example showing <S,P,O> triple 38

Fig. 2.16 RDF of Example Showing <S,P,O> Triple of Figure 2.15 39

Fig. 2.17 A Simple Example of Book Ontology Developed in

This Research 41

Fig. 2.18 Steps for Creating Ontology 43

Fig. 2.19 Sample Ontology Mapping 47

Fig. 2.20 Architecture of QOM Ontology Mapping Technique 49

Fig. 2.21 Concept Hierarchy based Ontology Matching Approach 50

Fig. 3.1 The Proposed Architecture of Ontology based

Information Retrieval System for Hidden Web 62

xii

Fig. 3.2 Class Hierarchy in Book Domain Ontology developed

Using Protége 63

Fig. 3.3 Ontograph of Book Domain Ontology Developed

In Protégé 63

Fig. 3.4 Architecture of Ontology based Hidden Web Crawler 64

Fig. 3.5 Proposed Architecture of Ontology Mapping System 65

Fig. 3.6 Basic Diagram Showing Indexing and Ranking

 of The System 66

Fig. 4.1 Author Sub-domain 72

Fig. 4.2 Award Sub-domain 73

Fig. 4.3 Publication Sub-domain 73

Fig. 4.4 Class-Sublass Hierarchy 74

Fig. 4.5 Snapshot of Opening a File in Protégé 75

Fig. 4.6 Snapshot of ACE View of Editor 76

Fig. 4.7 Snapshot of Classes Hierarchy 76

Fig. 4.8 Snapshot of Individual view 77

Fig. 4.9 Snapshot Showing Object Properties 79

Fig. 4.10 Snapshot Showing Property Matrix 79

Fig. 4.11 Snapshot Showing Data Property 80

Fig. 4.12 Snapshot Showing OWL Class Hierarchy 81

Fig. 4.13 Snapshot showing Ontograf 81

Fig. 4.14 Ontograf for Instance Dr._A_K_Sharma 82

Fig. 4.15 Ontograf for Instance Dr._Komal_Kumar_Bhatia 83

Fig. 4.16 Ontograf for Instance Dr._Ashutosh_Dixit 83

Fig. 4.17 Knowledge Base in RDF Triples 85

Fig. 4.18 Class Hierarchy of Book Domain OWL 85

Fig. 4.19 Displaying SubClassOf relation 86

Fig. 4.20 Concepts of Book Domain OWL 86

Fig. 4.21 Transitive Query Over Book Domain OWL 87

Fig. 4.22 Writtenby Relation of Book Domain OWL 87

Fig. 4.23 Concepts Related to Dr Komal Kumar Bhatia 88

Fig. 5.1 The Proposed Architecture of Automatic Generation of

Ontology From Search Interfaces 89

Fig. 5.2 The Architecture Showing Components of Ontology

xiii

Converter Module 91

Fig. 5.3 Example Source Code from the Website

 www.Cheapesttestbooks.Com 92

Fig. 5.4 Tree Structure by DOM Parser for XML Code Shown

in Square Box 93

Fig. 5.5 Flow Chart Showing the Working of XML Analyser 94

Fig. 5.6 Snapshot of extraction of <S,P,O> triples from XML/HTML

 File 95

Fig. 5.7 Snapshot of Saved <S,P,O> Triples in Oracle

Database for XML/HTML File 95

Fig. 5.8a RDF/XML Format 96

Fig. 5.8b Pure RDF Format 96

Fig. 5.9 Example Source Code Taken for RDF Format 98

Fig. 5.10 Snapshot of Extraction of RDF triples 99

Fig. 5.11 Example of Web Page in OWL 99

Fig. 5.12 Algorithm for SPO Annotator 101

Fig. 5.13 Database in Form of SPO for Book Domain 103

Fig. 5.14 Database in Form of SPO for Airline Domain 103

Fig. 6.1 Proposed Architecture of Ontology Based Hidden Web

Crawler 106

Fig. 6.2 Algorithm of form_downloader 106

Fig. 6.3 Algorithm of form_analyzer 107

Fig. 6.4 Algorithm for Query Generator 108

Fig. 6.5 Algorithm for Revisit Frequency Calculator 109

Fig. 6.6 Algorithm for Dispatcher 109

Fig. 6.7 Two Ontologies of Same Class Person with Different

Vocabularies 110

Fig. 6.8 Diagram showing Mapping of Two Book Domain Ontology110

Fig. 6.9 Proposed Architecture of Ontology Mapping System 111

Fig. 6.10 The Algorithm for Central Coordinator Module 112

Fig. 6.11 Pre_processor’s Sub-Components 113

Fig. 6.12 Algorithm for Pre processor Module 113

Fig. 6.13 Algorithm for Node Selector Subcomponent 114

Fig. 6.14 Algorithm for Random_Fille 114

http://www.cheapesttestbooks.com/

xiv

Fig. 6.15 Algorithm for Pair_Constructor 115

Fig. 6.16 Architecture of Main Mapper Component 116

Fig. 6.17 Algorithm of Main Mapper 116

Fig. 6.18 Algorithm for Synonym Mapper 118

Fig. 6.19 Algorithm for Relation_Analyser 118

Fig. 6.20 Algorithm for Sibling & Child Pairing 119

Fig. 6.21 Venn Diagram Illustrating Sample Evaluation 121

Fig. 6.22 Precision of Proposed & Traditional system at various

thresholds 122

Fig. 6.23 Recall of Proposed System & Traditional System at

Various Threshold 123

Fig. 6.24 F-Measure of Proposed and Traditional System at Different

Threshold 123

Fig. 6.25 Comparison Graph of Precision between Traditional

Crawler and OHWC 126

Fig. 6.26 Comparison Graph of Recall between Traditional

Crawler and OHWC 126

Fig. 6.27 Comparison Graph of F-measure between Traditional

Crawler and OHWC 127

Fig. 7.1 Basic Architecture of Search Engine Showing Indexing

and Ranking of Documents 129

Fig. 7.2 The Proposed Architecture of Ontology Based Indexing

Technique for Hidden Web 131

Fig. 7.3a Snapshot of Hidden Web Page of YMCA

University Website 134

Fig. 7.3b HTML Code for the Same 134

Fig. 7.4 Example Showing Two Classes Matching for Ambiguous Term

Apple 136

Fig. 7.5 Snapshot of Experimental setup of indexing system 138

Fig. 7.6 Architecture of Proposed Ranking Technique for Hidden Web

Pages 139

Fig. 7.7 Components of Weight Calculator Module 140

Fig. 7.8 Algorithm for Total Weight Calculator Module 142

Fig. 7.9 Algorithm for Frequency Calculator Module 143

xv

Fig. 7.10 Algorithm for Final Rank Assigner 143

Fig. 7.11 Indexed Data with all the Calculated Intermediate Weight

Values 144

Fig. 7.12 Frequency and Rank Value 144

Fig. 7.13 Ranked Results to User Along with the Rank Value of Each

URL 145

Fig. 7.14 Result on Google for the same Query Book on Java 145

xvi

LIST OF ABBREVIATIONS

WWW: World Wide Web

HTTP: Hypertext Transfer Protocol

URL: Uniform Resource Locator

BFS: Breadth First Search

DFS: Depth First Search

HITS: Hyperlink Induced Topic Search

PR: Page Rank

LVS: Label Value Set

XML:

PIW:

IR:

Mark-up Language

Publically Indexable web

Information Retrieval

D: Domain

DNS:

URL:

Domain Name Resolver

Uniform Resource Locator

URI: Uniform Resource Identifier

FTP: File Transfer Protocol

IP: Internet Protocol

DUST:

PARCAHYD:

Different URLs Same Text

Parallel Crawler using Augmented Hypertext Documents

SIG: Signature

DOM: Document Object Model

HTML:

HiWE:

Hyper Text Mark-up Language

Hidden Web Extractor

XHTML: Extensible Hyper Text Mark-up Language

xvii

DTD: Document Type Definition

AHP:

OHWC:

Analytical Hierarchy Process

Ontology based Hidden Web Crawler

RDF:

OWL:

SPO:

Resource Description Framework

Ontology Web Language

Subject,Predicate,Object

N/W:

DSIM:

Network

Domain-Specific Interface Mapper

LOC: Location

LDB: Local Database

DOC: Document

OC: Occurrence Count

PDF Portable Document Format

DB Database

SQL Structured Query Language

1

Chapter 1

INTRODUCTION

1.1 GENERAL

Crawlers [1] are the programs that browse the World Wide Web (WWW) in a

methodical and automated manner. They automatically traverse the web graph

retrieving pages and building a local repository of web they visit. Current day

Crawlers as shown in figure 1.1, have only targeted a portion of web called publicly

index able web (PIW) [8]. PIW is the set of web pages reachable by crawlers by

following hyperlinks; ignoring search forms and pages that require authentication. In

particular they ignore the tremendous amount of high quality information hidden

beneath search forms and electronic databases.

Figure 1.1 Basic Architecture of a Crawler

1.2 MOTIVATION

An ever increasing amount of information on the Web today is available only through

search interfaces; the users have to type in a set of keywords in search forms in order

to access the pages from certain websites. These pages are often referred to as Hidden

Web. Recent studies [8,9,10] have estimated the size of this hidden web at around 500

times the size of PIW. Simple crawlers are not capable of discovering and indexing

these pages because of the following reasons:

Text and
Metadata

World Wide
Web

Downloader Scheduler

Queue

 Storage

Web Pages

URLs

URLs

2

i) There are no static links to hidden web pages.

ii) The large amount of high quality information is buried under dynamically

generated sites as depicted by figure 1.2.

iii) The only entry point to hidden web site is a query interface.

Figure 1.2 Diagram showing % of Hidden Web Pages

Sources/Examples of the Hidden Web can be Publication databases, Library

catalogues, Yellow Pages, Books sites, ecommerce sites, airline and railway

reservation etc and other directories, Weather services, Geolocalization services, US

Census Bureau data etc. as shown in figure 1.3.

Figure 1.3 Examples of Hidden Web Page Interfaces.

For developing a hidden web information retrieval system, following are the main

challenges that exist:

3

i) Discovery: Finding the search interfaces that contain hidden web information

behind them i.e. discovering the appropriate entry point for the hidden web.

ii) Analysis: Analyzing those interfaces to find out which method should be

used for filling these interfaces e.g. these interfaces should be merged to

develop a new interface or each interface is filled one by one to get the

desired result.

iii) Filling values in the form/interface: Finding the exact

method/algorithm/process to fill those interfaces with relevant values.

iv) Generating queries: After finding the exact algorithm for filling form

interfaces; there is a need of constructing the queries with appropriate values

to get the desired result.

v) Indexing: After getting the resultant downloaded pages they should be

indexed properly for efficient retrieval.

vi) Ranking: For providing relevant results to the user there should be an

efficient ranking mechanism that will return result according to the rank

assigned.

1.3 EXPLORING THE NEED OF ONTOLOGY IN HIDDEN WEB

The objective of the proposed research work is to develop an information retrieval

system where user type in queries and get the desired result from downloaded hidden

web content more effectively and efficiently. The proposed work will do ontology

based data extraction and information integration.

Ontology provides a common vocabulary of an area and defines, with different level

of formality, the meaning of terms and relationships between them [15].

 Figure 1.4 Example Showing Animal Ontology having Alsation as Instance of
Dog Class.

Animal

Dog

Cat

Alsation Poodle

4

Use of ontology increases the relevance by involving the relationship and context in

the search. Earlier hidden web crawlers [12, 13] use attribute based matching

processes to fill the search interface. This work can be done more precisely and

efficiently by using ontology which is a formal, explicit specification of a shared

conceptualization [11].

Conceptualization refers to an abstract model of phenomena in the world by having

identified the relevant concepts of those phenomena. Explicit means that the type of

concepts used and the constraints on their use are explicitly defined. Formal refers to

the fact that the ontology should be machine-readable. Shared reflects that an

ontology should capture consensual knowledge accepted by different communities.

By combining the hidden web retrieval problem with domain specific ontology, the

proposed work automatically fills in the text boxes with values from predefined

ontology. This not only made the retrieval process task specific, but also increased the

likelihood of being able to extract just the relevant subset of data.

1.4 PROBLEMS IN EXISITING LITERATURE

A critical look at the available literature [8, 9, 17, 18, 65, 78] indicates that the

following issues need to be addressed towards building an effective information

retrieval model for Hidden Web.

i) Relevance: Hidden Web crawlers developed till now are based upon label value

matching scheme which is simple keyword searching for retrieving data. This is not

an effective way because it does not involve context of the data and making it difficult

to obtain good results with high precision.

ii) Database Selection and Implementation: For finding appropriate values which

are required to be filled in form interface, a domain specific semantic database is

required to be created. The available literature [20] indicates how the hidden web data

is collected to create databases but not on how that particular databases are stored so

that it may satisfy users queries more suitably.

iii) Automatic and Rich Ontology: Hidden Web services which are mostly form-

based interfaces need to be described using new approach that involves attaching

5

meaning to the data. No technique for automatic generation of Ontology with the help

of web pages is developed till now.

iv) Efficiency in Mapping: Lack of an effective mapping approach due to pairing of

irrelevant nodes during ontology mapping [64, 66]. This issue needs to be addressed

towards the efficient design of Ontology Mapping System also considering the proper

utilization of resources (mainly in terms of time).

v) Synchronization due to non integration of various phases for developing a whole

information retrieval system for hidden web i.e. till now no frame work has been

designed which coordinates all the processes like form filling, submitting,

downloading the web pages, indexing them and presenting to user that are needed for

a system.

vi) Ambiguity in Indexing: The work done so far tried to make indexing scheme

based upon semantics but none was able to resolve ambiguities in words.

vii) Ranking: There are no proper algorithm defined till now for Indexing and

ranking of hidden web pages.

1.5 OBJECTIVES

As the quantity and quality of hidden web is increasing, it becomes more difficult to

extract it. This research has focused on following techniques of its retrieval.

1. To generate Ontology for specific Domain automatically: For generating and

responding to user query, a database that is populated knowledge base which

satisfies the user’s need of information is needed. Ontology is one of the best ways

for creating such knowledge base.

 It has been observed that various researchers have proposed algorithms to access

deep web using various techniques for automating the task of extraction of form

pages and crawling form pages but none has described the way to automatically

find the values that need to be filled in the form page. Also no method till now has

been devised to create and populate the values in a database so that more and more

values are available to fill various forms.

6

Solution: In order to find appropriate values that are needed to fill the form

interfaces of hidden web; book domain ontology has been constructed in Protégé

initially as a model. Book Domain contains the collection of books that are related

to Author, Publication, Award and many more. For proposing the idea four sub

domain has been chosen to generate book domain ontology that are Book, Author,

Award and Publication. Protégé is used to create the ontology as it is free, open

source ontology editor and knowledge-base framework.

After this a database using ontology has been constructed which is contextual or

semantically rich, which is used to fill various label values in a search form. With

the help of RDF [50] attached with web pages, ontology is created and stored in

database. Thus accurate and meaningful information is retrieved and used for

filling up web interfaces.

2. To Design Ontology based Hidden Web Crawler: In order to download the

Hidden Web contents from the WWW the crawler needs a mechanism for Search

Interface interaction i.e. it should be able to download the search interfaces,

automatically fill them and submit them to get the Hidden Web pages. Many

researchers are trying to develop novel ideas to access hidden web in order to

improve searching experience for users.

Previous hidden web crawlers [17, 18, 19] uses attribute based matching processes

to fill the search interface. This work can be done more precisely and efficiently by

using ontology.

Solution: In order to resolve the identified problems Ontology based data

extraction and information integration need to be developed. By combining the

hidden web retrieval with domain specific ontology, the proposed work

automatically fills in the text boxes with values from ontology. This will make not

only the retrieval process task specific, but will increase the likelihood of being

able to extract just the relevant subset of data. Hence a novel design of ontology

based hidden web crawler is proposed and implemented.

3. To Design mapping technique to map the Domain Specific Ontology with

form interface: Hidden web is accessible only after submitting the queries on

7

form interfaces. Prior to this; exact values must be filled-in to various fields of

query interface, which in turn requires matching the fields present on the form

interface to the concepts from the predefined Ontology database of the same

domain.

 Existing ontology mapping system has the improper identification of matching

concept pair as well as the lack of an efficient mapping approach when matching

between two ontologies.

Solution: In proposed work ontology mapping system, primary focus is on making

the process more efficient in terms of resources consumed during the process. The

complexity of matching (in a pair-wise set up) is usually proportional to the size of

the ontology under consideration. A straightforward approach is used to reduce

the number of pair-wise comparisons. Out of so many possible concept-pairs only

a few are considered for mapping based on the depth of the query-form ontology.

These concept-pairs are further reduced to a minimal set by eliminating irrelevant

pairs.

4. To find ontology based indexing technique for hidden web data: Indexing is

performed on the web pages after they have been gathered into a repository by the

crawler. The existing architecture of search engine shows that the index is built on

the basis of the terms of the document and consists of an array of the posting lists

where each posting list is associated with a term and contains the term as well as

the identifiers of the documents containing the term.

 The current information retrieval systems use terms to describe documents and

search engines consider term frequency as a factor to determine its importance in a

page and does not take into account the context(sense) in which term appears in

document and how much a term represent a page, which can be done by analysing

its relation with other terns by using concept of ontology. Most current search

engines [76, 77] use indexes that are built at the syntactical level and return hits

based on simple string comparisons.

Solution: The context of a word to be indexed is compared to the context of

Concept in ontology. For each individual word, a mapping score ms(w,c) that

8

indicates how good the word w is mapped to ontological concept has been

calculated. Each word is replaced by the best matching concept. So all information

like synonyms, relations with other words and context in which word is used is

available due to use of ontology.

5. To find a novel ranking technique for hidden web data: Search engines use two

different kinds of ranking factors: query-dependent factors and query Independent

Factors. Query-dependent factors are specific to a given query are measures such

as word documents frequency, the position of the query terms within the result

page or the inverted document frequency etc. Query independent factors are

attached to the results, regardless of a given query like Link popularity, Click

popularity and upto-dateness etc. The PageRank algorithms that are commonly

used by the conventional search engines are not effective for Hidden Web pages.

Solution: The proposed algorithm for ranking uses both factors of query

dependent such as page frequency , query – page content matching are used and

factors which are independent such as page content popularity , page source rank,

user feedback are to design a novel and efficient ranking technique.

1.6 ORGANIZATION OF THESIS

The thesis has been organized in the following chapters:

Chapter 2: This chapter provides the details about the background study carried out

to pursue this research work. A detailed review of selected Hidden Web Crawlers

developed so far has been provided. Comparison of different techniques is also been

provided in a table. The concept of ontology is introduced here and the exploration of

ontology usage for extracting hidden web information has been discussed. This

chapter also throws light on various indexing and ranking techniques along with table

of comparisons.

Chapter 3: In this chapter a novel architecture of an ontology based information

retrieval system for hidden web has been designed and proposed. The architecture

depicts different functional modules that are proposed and discussed in next chapters.

The basic flow of the system has also been discussed in detail in this chapter

9

Chapter 4: The first module that is generation of ontology is described in this chapter

in detail. The ontology has been designed and generated using Protégé[49] for Book

Domain by taking instance values of faculty of YMCA and their publications. The

basics of class, properties and attributes has been described and explained in detail.

<S,P,O> triples has been defined for book domain.

Chapter 5: This chapter proposes a novel technique for automatic generation of

ontology from web pages. The architecture of this module along with procedure to

find subject, object and predicate from the source code of web pages is described

here. This ontology is more generic as compared to the Ontology generated manually

using Protege. Hence both ontologies are merged and a database of <S,P,O> has been

designed and created here.

Chapter 6: This Chapter proposes a novel architecture of ontology based hidden web

crawler. The details of various modules of this crawler and basic flow with algorithms

have been discussed. This crawler is used to extract the hidden web information form

the web using ontology. For making the hidden web crawler work, the form interfaces

are mapped to predefined ontology to get the exact values to fill various fields on the

interface. This chapter also proposes a novel technique for mapping two ontologies.

Chapter 7: In this chapter a new ontology based indexing technique for hidden web

contents is proposed. This resolves the problem of ambiguities in terms by attaching

both the concept and context of words with each term. This indexing scheme provides

an efficient and fast access to the end user. To provide user with a list of relevant

pages as a result of query entered a new ranking technique for hidden web data is also

proposed and developed here in this chapter.

Chapter 8: This chapter gives a conclusion and provides guidelines for future work

in this area.

In Appendix the implementation and snapshots of two domains i.e. Book and Airlines

are discussed.

Finally, the bibliography includes references to publications in this area.

10

11

Chapter 2

HIDDEN WEB RETRIEVAL AND ONTOLOGY: A

REVIEW

2.1 WWW (WORLD WIDE WEB)

Today is the world of information and for getting information user rely upon World

Wide Web. The World Wide Web is a global information medium of interlinked

hypertext documents accessed via computers connected to the internet. It allows

people to share information globally. Internet and WWW are terms used side by side

but they are quite different, the web is a service that operates over the Internet.

Internet came first then the WWW was developed. WWW allows anyone to read,

write and publish documents freely hiding all the details of which protocol is used,

exactly where the machine is located geographically, which operating system and

software’s are installed etc. [2, 22]. It allows users to point to any other Web pages

without any restrictions.

WWW is generally divided into two parts: Surface Web and Hidden Web. The

Surface Web consists of billions of browsable pages, while the Hidden Web contains

hundreds of thousands of data sources. The surface Web refers to the part of the Web

that can be crawled and indexed by general purpose search engines, while the hidden

Web refers to the abundant information that is hidden behind the query interfaces and

not directly accessible to the search engines.

2.1.1 History of WWW

Brin defines the Web as follows (1998) “The Web is a vast collection of completely

uncontrolled heterogeneous documents” [23]. When a user requests for a web page

the page’s HTML text is first requested and parsed by the browser, if page contains

some pictures of graphics then browser makes additional requests. The Web browser

then understands and shows the page to the user as described by the HTML, CSS and

incorporating the images and other resources as necessary.

The World Wide Web (WWW) is a huge network of distributed system which contain

millions of clients and servers maintained at same or distant geographical positions.

12

Servers maintain collections of documents, while clients are there to provide access of

these documents easily to end user without worrying about where the information or

document is present [24]. The Web started as a project at CERN, the European

Particle Physics Laboratory in Geneva [25]. It was developed to let its large and

geographically dispersed group of researchers provide access to shared documents

using a simple hypertext system.

2.1.2 Basics of WWW

The WWW is basically a client-server system with millions of servers distributed

around the world. Each server has huge collection of documents and each document

whether text, pdf, media etc. is stored in form of file. A client interacts with Web

servers through a special application known as a browser. A browser is responsible

for displaying a document in exact format as given by server. The Client Server

architecture is described in figure 2.1 below.

Figure 2.1 Overview of WWW

When a user searches for a document it enters the request through browser to the

client requests for fetching a document. The client further sends the request to the

corresponding server. The Server then sends a copy of the document back to the

Repository
Browser Web

Server

1. Get document request

2. Server fetches
documents from local file Client machine

3. Response

Server machine

13

client. Also the server adds more documents to its repository coming from clients as a

request for storage.

The document or a file is refereed by means of a reference called a Uniform Resource

Locator (URL). URL specifies the name of the document along with where a

document is located.

2.2 IR (INFORMATION RETREIVAL)

Information retrieval (IR) is an activity by which user can obtain information

resources that are relevant to his/her need. In terms of WWW or Internet, it is finding

material document of structured/unstructured nature that satisfies an information need

from within large collections (usually stored on computers) [4, 6, 7].

Initially information retrieval was use in index searching for example searching

authors, title and subjects in library card catalogs or computers. Now a days IR has

emerged in new techniques which includes modelling, user interfaces, data

visualization, classification and categorization of documents and filtering of data. IR

is used these days to represent data, organize the information and also in storage

data/information. The most important task information retrieval is dealing with is

information extraction i.e. when a user wants some information what techniques

should be applied so that he/she retrieve accurate that information easily.

2.2.1 Types of IR

IR can be divided in to two retrieval techniques, one is information retrieval and the

other is data retrieval[28]. In data retrieval, the result corresponding to a query entered

by user is always precise returning the exactly match records corresponding to a given

query. However in information retrieval result can differ along with mild errors

because information retrieval deals with natural language documents. These types of

documents do not have proper structure and one query may relate to more than one

tuple in database.

The data used in Data retrieval is always structured and not ambiguous. The data

retrieval cannot provide a solution given a subject or topic, but information retrieval is

able to do so. In order to satisfy the user’s information needs, the IR system must find

14

a way to interpret the contents of the information items and be able to rank them

according to a degree of relevance to the user query [22]. This interpretation involves

how to extract information in syntactic and semantic ways.

2.2.2 Goal of IR

The goal of an IR system is to retrieve all the documents, which are relevant to a

query while retrieving as few non-relevant documents as possible[29]. To achieve this

goal, IR needs users to provide a set of words which convey the semantics of the

information need. Also, a document is represented by a set of keywords or index

terms for IR to extract. These keywords or index terms are extracted by i) eliminating

stop words like articles and connectives, ii) the use of stemming (which reduces

distinct words to their common grammatical root), and iii) identifying nouns (which

eliminates adjectives, adverbs, and verbs).

2.3 SEARCH ENGINE

WWW is huge and to deal with it is a challenging task. Several studies have estimated

the size of the Web, and while they report slightly different numbers, most of them

agree that over a billion pages are available. New data and information is uploaded

daily on WWW. Today in world of social media tremendous information is flowing at

WWW. Keeping aside the newly created pages, the existing pages are continuously

updated. For example, in a study of over half a million pages over 4 months, it was

found that about 23% of pages changed daily[2, 16]. In the .com domain 40% of the

pages changed daily, and the half-life of pages is about 10 days (in 10 days half of the

pages are gone, i.e., their URLs are no longer valid).

The World Wide Web allows people to share information globally. The amount of

information grows without bound. In order to extract information that user is

interested in, a tool to search the Web is needed. This tool is called a search engine.

The users search documents by keywords. AltaVista, Excite, Google and Northern

Light are few examples of search engines are. However, there are also other type of

search engines that are specialized in other languages such as Chinese, Korean, and

Japanese.

15

There are differences in the ways various search engines work, but they all perform

three basic tasks:

• They search the Internet based on important words.

• They keep an index of the words they find, and where they find them.

• They allow users to look for words or combinations of words found in that

index.

2.3.1 Search Engine Architecture

A search engine is an information retrieval system that has been developed to help the

user to find information on WWW easily, accurately and quickly. As WWW is vast

Web of hyperlinked documents search engines try to help to reduce the time and

efforts required to find information. Search engines provide a user interface that

enables the users to specify what user wants in form of a query. The query entered by

user is typically expressed as a set of words that identify the desired information.

Some text search engines require users to enter two or three words separated by white

spaces for the search of required information contained in text documents, pictures

files, sounds files etc.

The architecture of conventional search engines roughly consists of three components

[3] - a crawler, an indexer, and a searcher as shown in figure 2.2. The crawler starts

with a set of seed URLs and repeatedly downloads pages, extracts hyperlinks from the

pages, and crawls the extracted links. Every engine relies on a crawler module to

provide the grist for its operation.

Figure 2.2 Basic Architecture of Search Engine

WEB

Crawler
Indexer

User

Disks

Indexing

Look up

16

Crawlers are small programs that ‘browse’ the Web on the search engine’s behalf,

similarly to how a human user would follow links to reach different pages. The

programs are given a starting set of URLs, whose pages they retrieve from the Web.

The indexer performs an indexing function. It reads the repository, uncompresses the

documents, and parses them. Each page is converted into a set of word occurrences

called hits. The hits contain information about a word: position in document, an

approximation of font size, and capitalization.

The detailed architecture of search engine is shown in figure 2.3, which contains the

following modules:

i) The publicly available search engine: This includes the HTML interface where

the users submit their queries, and the mechanism for serving these queries. This part

is very important for the search engines, since this is the only visible part to the end-

users. This part is actually more complex than it sounds, but it is completely out of the

scope of this work to elaborate on it.

ii) The database: The database stores all the crawled data from the web crawlers.

The search engine queries the database in order to answer to any user’s request.

Furthermore, the database feeds the downloader with URLs to download. The

information stored in the database is usually updated from the processor.

Figure 2.3 Detailed Module Description of a Search Engine.

Download
pages

 Q
ue

ry

 S
Q

L

Database
Web Crawling

Processor

Downloader Public Search
Engine

Internet

Users
Web

Server

Processing
Results

URL to
download

Query

17

iii) The web crawling system: The web crawling system is the subsystem responsible

for maintaining the search engine database and incorporating the changes from the

web. Most of the times multiple instances of this component run in parallel to reduce

network bandwidth. The web crawlers download and process as many web pages

from the web as possible, by using the standard HTTP protocol.

iv) The query engine: This module is responsible for receiving and fulfilling search

requests from users. The engine relies heavily on the indexes, and sometimes on the

page repository. Because the size of the web is very large and the user enters one or

two keywords which returns a very large set of results.

2.4 CRAWLER

Crawlers are also called robots, spiders, worms, wanderers, walkers, and know bots.

The First crawler, Wanderer was developed by Matthew Gray in 1993 [31]. Due to

the competitive nature of the search engine business, the designs of these crawlers

have not been publicly described. Crawlers are basically programs that automatically

traverse the web, retrieve pages and from the part of visited pages build a repository

as shown in figure 2.4.

Figure 2.4 Web Crawler Architecture

A Crawler starts by taking an initial list of URL’s to visit called seeds. These seeds

are initially added to an empty data structure which is either stack or queue depending

on whether depth first search or breadth first search traversal is applied respectively.

Downloader

Storage

WWW

URL
Queue

Scheduler

URLs

Pages

18

From each URL, crawler finds other linked URL’s in the page and after downloading

those links store them also in repository.

Apart from adding new URL’s to the data structure (URL queue) for downloading a

crawler also performs some ordering to these links based on their importance. Web

crawlers can copy all the pages they visit for later processing by a search engine.

Search engine indexes those downloaded pages so that users can search them much

more quickly.

The behaviour of a Web crawler is the outcome of a combination of policies:

• a selection policy that states which pages to download,

• a re-visit policy that states when to check for changes to the pages,

• a politeness policy that states how to avoid overloading Web sites, and

• a parallelization policy that states how to coordinate distributed web crawlers.

Crawlers continue visiting the Web, until local resources, such as storage, are

exhausted. Once the search engine, has been through at least one complete crawling

cycle, it may be informed by several indexes that were created during the earlier

crawls. The algorithm for a typical crawler is shown in figure 2.5.

Figure 2.5 Algorithm of Basic Crawler

Crawler ()
Step 1. read a URL from the set of seed URLs;
 2. determine the IP address for the host name;
 3. download the Robot.txt file that carries downloading permissions
 and also specifies the files to be excluded by the crawler;
 4. determine the protocol of underlying host like http, ftp, gopher
 etc.; based on the protocol of the host, download the document;
 5. identify the document format like doc, html, or pdf etc.;
 6. check whether the document has already been downloaded or not;
 7. if the document is fresh one
 read it and extract the links to the other cites from that document;
 else
 continue;
 8. convert the URL links into their absolute URL equivalents;

 9. add the URLs to set of seed URLs;

19

A crawler identifies a document from its URL, it picks up a seed URL and downloads

corresponding Robot.txt file, which contains downloading permissions and the

information about the files that should be excluded by the crawler. On the basis of the

host protocol, it downloads the document and stores the related pages in its database.

It then repeats the whole process. .

2.5 TYPES OF CRAWLER

The crawler has many types of traversing algorithm. Based on their working the

crawler may be categorized in many types. Brief discussions of some are given in

next sections.

2.5.1 Incremental Crawler

An incremental crawler [32, 41] updates an existing set of downloaded pages instead

of restarting the crawl from scratch each time. This involves some way of determining

whether a page has changed since the last time it was crawled. A crawler, which will

continually crawl the entire web, based on some set of crawling cycles. The

incremental crawler continuously crawls the web, revisiting pages periodically.

During its continuous crawl, it may also purge some pages in the local collection, in

order to make room for newly crawled pages.

There are basically two goals for an incremental crawler first is to keep the local

collection fresh and second is to improve quality of the local collection. For keeping

local collection fresh the crawler uses some revisit policies in order to download the

updated information. In order to improve the quality of data the less important page

from the repository are deleted and new pages are added.

Operational model of an incremental crawler: When the crawler decides to crawl a

new page, it has to discard a page from the collection to make room for the new page.

Now crawler has to decide which page to discard. This selection/discard decision is

termed as the refinement decision. This refinement is dependent upon the importance

of pages. To measure importance, the crawler can use a number of metrics, including

Page Rank and Authority. The discarded page should have the lowest importance in

the collection in order to ensure quality[61].

20

Now talking about freshness of the repository there are many algorithms developed by

researchers the basic idea is decide on which page to update and when the updation is

required. Here the idea is that instead of visiting a new page, the crawler may decide

to visit an existing page to refresh its image. This is termed as update decision. To

estimate how often a particular page changes, the Update Module records the

checksum of the page from the last crawl and compares that checksum with the one

from the current crawl. From this comparison, the Update Module can tell whether the

page has changed or not.

2.5.2 Parallel Web Crawler

 As the size of the Web grows, it becomes more difficult to retrieve the whole or a

significant portion of the Web using a single process. Therefore, many search engines

often run multiple processes in parallel to perform the above task, so that download

rate is maximized. This type of crawler is known as a parallel crawler. Junghoo Cho

[33] has suggested a general architecture of a parallel crawler which used multiple

crawling processes. Each crawling process performed the same task as is done by a

normal crawler i.e. they downloaded pages from the Web, stored them in repository,

extracts URLs from them and followed those hyperlinks.

Then came Parallel Crawler using Augmented Hypertext Documents (PARCAHYD)

[34] where parallelization of crawling system was done in order to download

documents in a reasonable amount of time. It was a scalable parallel crawler. The

following issues are significant in a parallel crawler:

• Overlap: When multiple processes run in parallel to download pages, it is

possible that different processes download the same page multiple times. One

process may not be aware that another process has already downloaded the

page. Clearly, such multiple downloads should be minimized to save network

bandwidth and increase the crawler’s effectiveness.

• Quality: Often, a crawler wants to download “important” pages first, in order

to maximize the “quality” of the downloaded collection. However, in a

parallel crawler, each process may not be aware of the whole image of the

Web that they have collectively downloaded so far. For this reason, each

21

process may make a crawling decision solely based on its own image of the

Web (that itself has downloaded) and thus make a poor crawling decision.

• Communication bandwidth: In order to prevent overlap, or to improve the

quality of the downloaded pages, crawling processes need to periodically

communicate to coordinate with each other. However, this communication

may grow significantly as the number of crawling processes increases.

While challenging to implement, a parallel crawler has many important advantages,

compared to a single-process crawler:

• Scalability: Due to enormous size of the Web, it is often imperative to run a

parallel crawler. A single-process crawler simply cannot achieve the required

download rate in certain cases.

• Network-load dispersion: Multiple crawling processes of a parallel crawler

may run at geographically distant locations, each downloading

“geographically-adjacent” pages. For example, a process in Germany may

download all European pages, while another one in Japan crawls all Asian

pages. In this way, we can disperse the network load to multiple regions. In

particular, this dispersion might be necessary when a single network cannot

handle the heavy load from a large-scale crawl.

• Network-load reduction: In addition to the dispersing load, a parallel crawler

may actually reduce the network load. For example, assume that a crawler in

North America retrieves a page from Europe. To be downloaded by the

crawler, the page first has to go through the network in Europe, then the

Europe-to-North America inter-continental network and finally the network in

North America. Instead, if a crawling process in Europe collects all European

pages, and if another process in North America crawls all North American

pages, the overall network load will be reduced, because pages go through

only “local” networks.

2.5.3 Focused Crawler

A focused crawler is a type of topic sensitive crawler, which returns pages based on a

given topic. It takes as input related web pages and tries to find out similar pages on

the web, by r following hyper links [30, 35]. The topics are specified not using

22

keywords, but using exemplary documents. The focused strategy is based on an

assumption that a page under a certain topic (or region) is likely to be linked from

another page with the same topic.

 The focused crawler should return all similar pages while downloading minimum

number of irrelevant documents. The goal of a focused crawler is to selectively find

out pages that are related to a pre-defined set of topics. The focused crawler saves the

network bandwidth and various resources by concentrating on making a crawl

boundary so as to avoid irrelevant regions [36, 56].

A focused crawler has two main components:

(a) one is to determine if a particular web page is relevant to the given topic or not

 (b) second is to find out how to proceed from a known set of pages.

Advantages of the focused crawling includes i) Higher Concentration of Relevant

Pages by extracting only those pages which are specific to a particular topic the

concentration of relevant pages is increased .ii) Efficiency in Crawling –The crawler

saves both the network bandwidth and resource utilization by limiting the number of

pages to be downloaded. iii) Reducing ambiguity by tracing down links only when

there was a keyword found in the page, only the pages that are linked by another

relevant page are collected. This will reduce ambiguity, since the page under

consideration is guaranteed to be linked from the page related to the topic.

2.5.4 Distributed Crawler

In distributed crawling there are a number of crawler entities, which run on distributed

sites and interact with each other equally. Distributed web crawling is a distributed

computing technique where search engines engage many computers distributed

among various places to index web pages. These systems allow users to offer their

own computing and bandwidth resources for crawling web pages. By spreading the

load across many computers, costs of maintaining large system is reduced.

The architecture of the distributed crawler [37] has been partitioned into two major

components - crawling system and crawling application. The crawling system itself

consists of several specialized components, in particular a crawl manager, one or

23

more downloader’s, and one or more DNS resolvers. All of these components, plus

the crawling application, can run on different machines (and operating systems) and

can be replicated to increase the system performance.

The crawl manager is responsible for receiving the URL input stream from the

applications and forwarding it to the available downloader’s and DNS resolvers while

enforcing rules about robot exclusion and crawl speed. A downloader is a high-

performance asynchronous HTTP client capable of downloading hundreds of web

pages in parallel, while a DNS resolver is an optimized stub DNS resolver that

forwards queries to local DNS servers.

2.6 HIDDEN WEB

Hidden web is that part of World Wide Web which cannot be directly accessed by

simple search mechanism or by surfing from one page to another following a

hyperlink. It is hidden because user has to fill in the form interfaces to extract the

particular information. The part of the web which can be directly accessed by simply

following hyperlinks on the web pages is termed as Surface Web. A large part of the

Web is hidden behind search forms and is reachable only when users type in a set of

keywords, or queries, to the forms. These pages are often referred to as the Hidden

Web or the Deep Web [8, 9, 10].

Examples of Hidden Web from interfaces are shown in figure 2.6. They can be:

1. Certain file formats (PDF, Flash, Office files, and streaming media) because

they aren’t HTML text.

2. Most real-time data (stock quotes, weather, airline flight info) because this

type of data is transient & storage intensive.

3. Dynamically generated pages (cgi, JavaScript, asp, or most pages with “?” in

URL) because the simple crawler cannot create queries to fire for generating

dynamic web pages.

4. Web accessible databases because crawlers can’t type and fill forms for

retrieving these databases.

24

Public information on the hidden web is currently around 500 times larger than the

surface web as stated by Bergman [8]. It has also been stated that there are around

96000 Hidden Web sites which contain 7500 terabytes of data.

Figure 2.6 Examples of Hidden web interfaces.

As the volume of hidden information grows, there has been increased interest in

techniques that allow users and applications to leverage this information. It is not easy

to access this high quality information because this hidden web data is not indexed by

normal crawler which follows hyperlink structure. In hidden web a large amount of

data is generated dynamically by servers with the help of backend databases [48].

These dynamically generated pages are user dependent and information on these

pages changes very quickly.

A survey done by Madhvan in [38] stated that there are around 647000 hidden web

resources identified by Google’s index. In UIUC [39] survey 3,00,000 hidden web

databases and 4,50,000 query interfaces have been found.

25

Figure 2.7 shows the distribution of various types of contents in overall hidden web. It

shows that Topical databases i.e. large internal site documents and archived

publications make up nearly 54% of all Hidden Web, whereas about 13% of Hidden

Web sites are related to internal sites (including shopping sites with auctions and

classifieds) and 11% are publication sites. The remaining categories collectively

comprise remaining 22% of hidden Web sites[9, 14].

Figure 2.7 Hidden Web Content Distribution

The major information resources stored in the invisible web are normally in non-

textual formats and free content-rich databases created by Government agencies,

educational institutions and other organizations around the world. They include

patents, digital exhibits, laws, dictionaries, phone books, people finders, items in web

stores or auctions, multimedia and geographical files. Further, the information is

usually new and dynamically changing in content such as news, job postings, flight

schedules, accommodation reservation, stock prices, etc.

Simple crawlers are not capable of discovering and indexing these pages because of

the following reasons:

1. Simple crawlers follow basic hyperlink structure to download pages but

there are no static links to hidden web pages.

2. Hidden web has structured as well as the large volume of unstructured

data that need to be indexed.

26

3. The only entry point to hidden web site is a query interface; multi

attribute query interfaces have more than one attribute and require their

respective values to be submitted by user.

4. Also web pages are created dynamically by firing user query; they cannot

be indexed by traditional search engines. The large amount of high

quality information is buried under dynamically generated sites.

For these reasons the Research is in progress on how to "get into” the hidden web and

extract the information.

 2.7 HIDDEN WEB CRAWLER

Hidden Web Pages are accessible only after submitting queries. There is no direct link

available for such kind of web so, typical crawlers are not able to find them. Hidden

Web Crawler is one that can crawl and extract content from the hidden web databases.

Such crawlers are enabled with indexing, analysis and mining of hidden web contents.

These crawlers have to interact with the query form in order to find the contents of

Hidden Web. Apart from this these crawlers are used to classify and categorise hidden

database based on the extracted contents. In order to access hidden web these special

crawlers go through a query interface and after filling fields value that interface form

is submitted which in turn generate a response page. This response page makes the

crawler able to access the linked urls which enables the search engines to perform

indexing and make this possible for further access.

The only way to extract hidden web information is by inputting the values for each

field in the form interface which is termed as the entry point to Hidden Web pages;

there are two main issues that need to be resolved to implement an effective Hidden

Web crawler. These are

 i) The crawler has to be able to understand and model a query interface, and

ii) The crawler has to come up with meaningful queries to issue to the query

interface.

2.7.1 Basic Architecture of a Hidden Web Crawler

A basic Hidden Web Crawler consists of four components as shown in figure 2.8 and

are described as follows:

27

i) Internal Form Representation which is internal representation of search form and

it is built from form page.

ii) Task Specific Database is encompassed with every Hidden Web Crawler and this

database contains all the necessary information required to formulate search queries

relevant with the particular task.

Figure 2.8 Architecture of Hidden Web Crawler

iii) Matching Function takes as input, an internal form representation & the database

contents and as an output it produces a set of value assignment. Basically this function

associates each element in the internal form representation to a value, which is used to

fill-up and submit the form.

iv) Response Analysis stores the generated response page into crawler’s repository.

In addition to this it distinguishes between pages containing error messages and

search results. It also analyses the feedback which helps in tuning the matching

function and updating the set of value assignment.

Hidden web crawler [19] performs the following sequence of actions for each

identified form on a page:

Step 1: Parse and process the form to build an internal representation.

Domain
Specific
Database

Internal form
representation

Matching Function

Set of value-
Assignments

Response Analysis

Form
Page

• -
-

www

Respons
e page

--

Hidden
Web

Repositor

Form submission

28

Step 2: Generate the best values to be assigned to the various form elements and

submit the completed form using the assignment.

Step 3: Wait for response pages.

Step 4: Analyze the response page. Report errors if any, else use the received

information as feedback for next iteration. If the response page contains

hypertext links, follow them immediately and recursively, to a pre-specified

depth.

It may be noted that the links in the response page are also added to the URL queue.

However, for ease of implementation, the response pages are also navigated

immediately and that too, only up to a depth of 1.

2.8 TYPES OF HIDDEN WEB CRAWLER

In order to download the Hidden Web contents from the WWW the crawler needs a

mechanism for Search Interface interaction i.e. it should be able to download the

search interfaces, automatically fill them and submit them to get the Hidden Web

pages. Many researchers are trying to develop novel ideas to access hidden web in

order to improve searching experience for users [43, 54, 55].

A brief overview at few of them is given in the following section:

i) Hidden Web Exposer (HiWE): Raghavan and Garcia-Molina proposed HiWE

[19], a task-specific hidden-Web crawler, the main focus of this work was on learning

Hidden-Web query interfaces. A prototype hidden Web crawler called HiWE (Hidden

Web Exposer) was developed at Stanford. The architecture of HiWE is shown in

figure 2.9.

HiWE automatically processes, analyses, and submit forms by using an internal

model for forms and their submissions. A new technique named as layout-based

information extraction (LITE) is used to extract useful information. The first

advantage of HiWE is that it was task specific and the crawler was extracting only

relevant pages. The automatic form filling was there but with some human assistance.

Talking about limitations first is that the HiWE‟s is not able to recognize and respond

to simple dependencies between form elements (e.g., given two form element

29

corresponding to states and cities, the values assigned to the „city‟ element must be

cities that are located in the state assigned to the „state‟ element).

Figure 2.9 Architecture of HiWE Crawler

The second limitation is HiWE‟s lack of support for partially filling out forms; i.e.,

providing values only for some of the elements in a form.

ii) Query Generation for Downloading Hidden Web Content: Ntoulas et al. [12]

differ from the previous studies, that, it provided a theoretical framework for

analyzing the process of generating queries. In his work it was concluded that the only

“entry” to Hidden Web pages is through querying a search form, there are two core

challenges to implementing an effective Hidden Web crawler: (a) The crawler has to

be able to understand and model a query interface, and (b) The crawler has to come

up with meaningful queries to issue to the query interface.

The first challenge was addressed by Raghavan and Garcia-Molina in, where a

method for learning search interfaces was presented. Here, they gave solution to the

second challenge, i.e. how a crawler can automatically generate queries so that it can

discover hidden information.

URL List

Fo
rm

 S
ub

m
is

si
on

R

es
po

ns
e

Label Value Set

LVS Manager

Parser

Form Processor

Form Analyzer

Crawl
Manager

Response Analyzer

WWW

Data sources

Label Value Set Table(LVS)

Feedback

30

Figure 2.10 Set Formalization for Query Selection.

By predicting which query to fire next depending on the current query was the main

motive of the work. They performed set formalization technique for query selection

shown in figure 2.10. This body of work was often referred to as database selection

problem over the Hidden Web. The disadvantage was that the work only supported

single attribute queries.

iii) Adaptive Crawler for Locating Hidden Web: Barbosa and Freire [17]

experimentally evaluated methods for building multi-keyword queries that could

return a large fraction of a document collection. New adaptive crawling strategies to

efficiently locate the entry points to hidden-Web sources were proposed. A

framework was designed as shown in figure 2.11 whereby crawlers automatically

learn patterns of promising links and adapt their focus as the crawl progresses.

 Figure 2.11 Architecture of Adaptive Crawler for Locating Hidden Web.

Form

Relevant forms

Links

Link
Relevance

Page
Crawler

Page
Classifier

Frontier
Manager

Link
Classifier

Adaptive
link Lerner

Feature
Selection

Form
DB

Most
Relevant
Link

Searchable Forms

Form Filtering

Searchable
Form
Classifier

Domain
Specific
Form

S

Q4

Q1
Q2

Q3

31

This strategy effectively balances the exploration of links with previously unknown

patterns, making it robust and able to correct biases introduced in the learning

process.The disadvantage is that the link classifier here used takes the training data

manually hence is not exhaustive and very time consuming.

iv) Hidden web data Extraction using Wrappers: Lage et al.[20] claimed to

automatically generate agents to collect hidden web pages by filling HTML forms.

They introduced the concept of web wrappers in this research. To extract the

unstructured data from web, wrappers are used. Wrapper is nothing but a set of

programs which takes a set of target pages from the web source as an input. These set

of target pages are extracted by “Spiders” which automatically crawls the web for

web pages. Hidden web agents assist the wrappers to deal with the data available on

the hidden web. The advantage of this technique is that it can access a large number

of web sites of diverse domains. However, the limitation of this technique is that it

can access only that web site that follows common navigation pattern.

v) Google’s DeepWeb Crawl: Madhvan et al.. in 2009 discusses the approach used

by Google in filling Web forms [38]. HTML forms usually offer more than one input

and hence a layman’s strategy of enumerating the Cartesian product to identify of all

possible inputs can result in a very large search space. They have presented an

algorithm (figure 2.12) that appropriately chooses the input combinations so as to

efficiently navigate the search space by including only those generated URLs which

seem suitable for inclusion in the web search index.

Figure 2.12 Algorithm of Incremental Search for Informative Query Templates
(ISIT)

GetInformativeQueryTemplates (W: WebForm)
 I: Set of Input = GetCandidateInputs(W)

candidates: Set of Template = { T: Template | T.binding = {I}, I2 I}
informative: Set of Template = while (candidates 6=)
newcands: Set of Template = foreach (T: Template in candidates)
 if (CheckInformative(T, W))

 informative = informative [{ T }
 newcands = newcands [Augment(T, I)
 candidates = newcands

return informative
Augment (T: Template, I: Set of Input)
 return { T’ | T’.binding = T.binding [{I},I2 P, I 62 T.binding }

32

The first step of the approach contributes the in formativeness test for evaluating the

query templates, i.e., combinations of form inputs. The basic idea of the in

formativeness test is that all templates are probed to check which can return

sufficiently distinct documents. The next step develops an algorithm that efficiently

traverses the space of query templates to identify the ones suitable for surfacing. A

template that returns enough distinct documents is deemed a good candidate for

crawling. As a last step the approach contributes to an algorithm which predicts

appropriate input values for the various form fields. They have described how the

identification of typed inputs in web forms (e.g. zip codes, dates, prices) contributes

to better results. The main advantage is that it efficiently navigates the search space of

possible input combinations by selecting query templates. Limitation is that the

efficiency of crawling technique was not considered.

vi) A Framework for Domain-Specific Interface Mapper (DSIM): Komal Kumar

Bhatia [13]: Here a domain specific crawler for the hidden web, DSHWC that

considers multi-input search forms has been developed. The working of DSHWC has

been divided into several phases with the first one concerning the automatic

downloading of the search forms. Phase 2 describes the most important component

Domain-specific Interface Mapper that automatically identifies the semantic

relationships between attributes of different search interfaces and guides the next step

of merging the interfaces so as to form a Unified Search Interface (USI). The USI

produced thereof is filled automatically and submitted to the Web as shown in figure

2.13.

After obtaining response pages, the DSHWC stores the downloaded pages into Page

repository that maintains the documents crawled/updated by the DSHWC along with

their URLs. DSHWC is a fully automated crawler which aims to obtain the response

pages from Hidden Web by submitting filled form pages.

Advantages of DSHWC: 1) Multi-strategy interface matching 2) use of mapping

knowledge base to avoid repetition for minimizing the mapping effort 3) Enhances the

scope of developing a specialized search engine for the Hidden Web.

33

Figure 2.13 Architecture of DSHWC

Limitations of DSHWC: 1) Indexing technique was not specified for storing pages in

the repository. 2) Defined the performance only for crawling while the efficiency of

schema matching and merging procedures over variety of query interfaces has not

been quantified.

vii) A Framework for Incremental Hidden Web Crawler: Rosy et al. [41] a

framework has been proposed that updates the repository of search engine by re-

crawling the web pages that are updated more frequently. It uses a mechanism for

adjusting the time period between two successive revisits of the crawler based on

probability of the web page.

Parsed SI’s

SI’s

Mapping
Element

Search interface
Repository

Match Interfaces

Interface
 Form Identifier

SI Parser

Domain Specific interface Matching Library

Fuzzy Mapping

EVS Buffer

Matcher

Domain Specific

Data Type

Mapping
Knowledgebase SVM Selector

SVM
Generator

Parsing

Matching

Mapping
Generatio

SVM generator and

Mapping element with
estimated similarity values

34

A comparison of different techniques based on some important attributes is given in

Table 2.1.

Table 2.1 Comparison of Different Hidden Web Crawlers

Techniques

Support

for

Structured

docs

Unstructured

Simple

Search

Interface

Classification

Query

Probing

Use of

Ontology

Dynamic

revisit

Raghavan

et al.

Yes

No

Yes

Yes

No

No

No

Ntoulas et

al.

Yes

No

Yes

No

Yes

No

No

Barbosa

and Freire

Yes

Yes

Yes

Yes

No

No

No

Madvan et

al.

Yes

Yes

Yes

No

Yes

No

No

Lage et al.

Yes

Yes

Yes

No

Yes

No

Yes

Komal
Kumar
Bhatia

Yes

Yes

Yes

No

No

No

No

Rosy et al.

Yes

Yes

Yes

No

Yes

No

Yes

It can be easily observed from the above comparison table that some of the crawlers

are supporting unstructured documents. Also none of the hidden web crawlers

developed so far use ontology to find appropriate values for form interfaces.

2.9 EXPLORING THE NEED OF ONTOLOGY IN RETRIEVING HIDDEN

WEB

Traditional crawlers do not help in retrieving this hidden web data and search results

given by traditional crawlers have low precision. This scenario leads to requirement

of new crawler that can perform search process efficient and avoid visiting large

irrelevant portions of web. New crawler termed as hidden web crawler should be able

to download the search interfaces, automatically fill them and submit them to get the

35

hidden web pages. By combining the hidden web retrieval problem with domain

specific ontology, we automatically fill in the text boxes with values of instances

present in ontology. Table 2.2 gives a comparison between basic search system and

the system developed using ontology.

Table 2.2 Comparison Table between Basic Search and Ontology Based Search

 Basic Search Ontology Based
Search

Relevancy Low High

Effort of User
Navigation

High Low

Semantics Not Used Semantics used

Understanding of
User Requirement

Low Better than Simple
search

Space Requirement Low High

Cost of
Implementation

Low High

Time to respond Low High

Retrieving hidden web using ontology mainly consists of following major tasks in

proposed work:

1. Generating ontology for a particular domain.

2. Creating database of ontology.

3. Developing a hidden web crawler.

4. Mapping of interface with ontology for filling up the interfaces.

5. Indexing and Ranking of the data retrieved

2.10 ONTOLOGY

Ontology[46] defines a common vocabulary that is used as information source for any

specific domain. It defines a domain with objects or concepts and their properties and

relations with each other. Ontology is used for knowledge sharing and reuse, and also

for representing knowledge in building “intelligent” applications.

36

Before describing more about ontology we must know the background why it has

been developed and how it is better than previous concepts of HTML and XML in

specifying web pages.

2.10.1 XML

XML is already widely known in the Internet community, and is the basis for a

rapidly growing number of software development activities. It is designed for markup

in documents of arbitrary structure, as opposed to HTML, which was designed for

hypertext documents with fixed structures. XML uses tags embedded in the content of

a document to delimit and label parts of the document, and those parts are known as

XML elements. The start and end tags include an XML element type name and may

also contain XML attributes.

Figure 2.14 Example Showing XML Tags and Hierarchal Structure of the same

An XML attribute is a pair made up of an attribute name and an attribute values.

Multiple XML attributes can occur within the start tag of an element, but each start

tag can contain only one XML attribute with a given attribute name. XML attribute

values can contain only character data.

A well-formed XML document creates a balanced tree of nested sets of open and

close tags, each of which can include several attribute-value pairs as shown in figure

2.14. There is no fixed tag vocabulary or set of allowable combinations, so these can

be defined for each application.

 Course

title teacher student

name http

<course>

 <title>...</title>

 <teacher>...</teacher>

 <name>...</name>

 <http>...</http>

 <students>...</students>

</course>

37

In XML 1.0 this is done using a document type definition to enforce constraints on

which tags to use and how they should be nested within a document. A DTD defines a

grammar to specify allowable combinations and nestings of tag names, attribute

names, and so on.

XML Document Type Definitions (DTDs) and XML Schemas provide means of

describing/defining constraints on the structure of a class of XML documents, the

structural relationships that can exist between components i.e. XML Schemas and

XML DTDs describe content models for named XML element types and attributes.

An XML document which conforms to the rules of the XML specification and to the

structural constraints described by an XML DTD or XML Schema is described as

valid.

Although XML schema offer several advantages over DTDs, their role is essentially

the same: to define a grammar for XML documents. XML is used to serve a range of

purposes:

1. Serialization syntax for other markup languages. The DTD is useful because

it facilitates a common understanding of the meaning of the DTD elements and

the structure of the DTD.

2. Semantic markup of Web pages. An XML serialization (such as the example

above) can be used in a Web page with an XSL style sheet to render the

different elements appropriately.

3. Uniform data-exchange format. An XML serialization can also be transferred

as a data object between two applications.

It is important to note that a DTD only specifies syntactic conventions; any intended

semantics are outside the realm of the XML specification.

2.10.2 RDF

The Resource Description Framework (RDF)[50] set of specifications describe a

means of constructing simple statements about resources. The Resource Description

Framework is a recent W3C recommendation designed to standardize the definition

38

and use of metadata—descriptions of Web-based resources. However, RDF is equally

well suited to representing data.

Central to RDF is the idea of the resource, which can be anything you wish to

describe - a document, a physical object, a person, an imaginary being, a concept,

anything at all - and the idea of identifying resources using Uniform Resource

Identifiers (URIs). The basic building block of the RDF data model is the triple,

consisting of a subject, a predicate and an object as depicted in figure 2.15 below. The

subject is a URI reference (or a "blank node"), the predicate is a URI reference, and

the object is a URI reference, a blank node or a literal.

The following triples represent three statements, each one stating a relationship

between two resources:

Subject Predicate Object

http://example.org/doc/123 http://purl.org/dc/elements/1.1/creator http://example.org/person/manvi

http://example.org/person/manvi http://xmlns.com/foaf/0.1/name "Manvi Siwach"

http://example.org/person/manvi http://xmlns.com/foaf/0.1/knows http://example.org/person/pramesh

Figure 2.15 Example showing <S,P,O> triple

2.10.3 RDFS

• RDF gives a language for meta data annotation, and a way to write it down in

XML, but it does not provide any way to structure the annotations

• RDF Schema augments RDF to allow you to define vocabulary terms and the

relations between those terms

– it gives “extra meaning” to particular RDF predicates and resources

– e.g., Class, subClassOf, Property, domain, range

• These terms are the RDF Schema building blocks (constructors) used to create

vocabularies

Just as XML schema provides a vocabulary-definition facility, RDF schema lets

developers define a particular vocabulary for RDF data and specify the kinds of

object to which these attributes can be applied. In other words, the RDF schema

39

mechanism provides a basic type system for RDF models. This type system uses some

predefined terms, such as Class, subPropertyOf, and subClassOf, for application-

specific schema. RDF schema expressions are also valid RDF expressions (just as

XML schema expressions are valid XML). The triples in above example of figure

2.15 can be represented in RDF/XML as shown in figure 2.16.

Figure 2.16 RDF of Example Showing <S,P,O> Triple of Figure 2.15

• RDFS defines the ontology

– classes and their properties and relationships

– what concepts do we want to reason about and how are they related

– there are authors, and authors write books

• RDF defines the instances of these classes and their properties

– Mark Twain is an author

– Mark Twain wrote “Adventures of Tom Sawyer”

– “Adventures of Tom Sawyer” is a book

Notation: RDF(S) = RDF + RDFSIn order to exchange RDF data between

applications, the data must be represented in some digital format. This process is

referred to as serialisation. The RDF data model is independent of any specific

serialisation syntax. In particular RDF does not rely on XML.

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:foaf="http://xmlns.com/foaf/0.1/">

 <rdf:Description rdf:about="http://example.org/doc/123">

 <dc:creator rdf:resource="http://example.org/person/manvi"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://example.org/person/manvi">

 <foaf:name>Manvi Siwach</foaf:name>

 <foaf:knows rdf:resource="http://example.org/person/pramesh"/>

 </rdf:Description>

</rdf:RDF>

40

Table 2.3 A Comparison Table of RDF/RDFS/OWL Languages

 Characteristics RDF (Resource

Description

Framework)

RDFS (RDF

Schema)

OWL (Ontology web

language)

Level of

expressivity

Lowest level to build

ontologies and cannot

express more

complex relations.

RDFS extends RDF

with schema

vocabulary and can

better express more

relation properties as

compared to RDF but

less rich than OWL.

It is topmost level to build

ontologies or schema on the

top of RDF dataset.

Degree of

Inferencing

RDF cannot define

special meaning to

vocabulary such as

type, subclassof

relationships.

RDF Schema allow to

define vocabulary

terms and the relations

between those terms,

it gives “extra

meaning” to particular

RDF predicates.

OWL adds more semantics to

the schema. It allows to

specify far more about the

properties and classes.

Richness in

Tag Property

RDF provides few

predicates to define

classes relations i.e

rdf:type, rdf:class.

RDFS provides a new

predicate

rdfs:subClassOf,

rdfs:subPropertyO,

rdfs:domain and

rdfs:range

OWL provides

owl:disjointwith,

owl:FunctionalProperty,

owl:InverseFunctionalPropert,

owl:inverseOf, owl:Sym-

metricProperty

Validity of

Ontology

RDF defines way

how to write stuff,

however it may

sometimes be wrong

and not a valid

ontology.

 OWL defines way to write

stuff and its specification

defines what exactly can be

written with RDF in order to

have valid ontology.

It can be concluded that OWL[51] provides better way to represent knowledge and

relationships between various entities of knowledge. OWL provides various functions

to express and infer.

2.10.4 Defining Ontology

Definition: Ontology is an explicit representation of concepts of some domain of

interest,with their characteristics and their relationships[15].

41

 More formally speaking, “Ontology is a formal explicit description of concepts in a

domain of discourse (classes called concepts), properties of each concept describing

various features and attributes of the concept (slots sometimes called roles or

properties), and restrictions on slots (facets called role restriction). Ontology together

with a set of individual instances of classes constitutes a knowledge base.

 Sharing common understanding of the structure of information among people or

software agents is one of the common goal in developing ontology by Musen 1992,

Gruber 1993[44, 46].

An example of book domain ontology is shown in figure 2.17. All the oval shaped

nodes are classes and subclasses whereas the square shaped nodes are relationship

between the classes.

Figure 2.17 An Example of Developed Book Ontology Developed

Ontology is one of the best ways for creating Domain knowledge that has common

understanding of the structure of information among people. Ontology technology

allows arbitrary user-defined relationships among classes and allows adding

properties to relationships such as symmetry, transitivity, and inversion. These

properties are used in reasoning that’s why Ontology supports inference process in

knowledge base. Ontologies can play a crucial role in enabling Web-based knowledge

processing, sharing, and reuse between applications. Generally defined as shared

formal conceptualizations of particular domains, ontologies provide a common

Thing

ISBN

Field

Cost

Name

WriterWritten-by/
Writes

Has / Is-of

Valued-by

Has / Is-of

Has / Is-of

Measured-in Currency

42

understanding of topics that can be communicated between people and application

systems.

Following are the few usages of developing an Ontology:

1. To share common understanding of the structure of information among

people or software agents.

2. To enable reuse of domain knowledge.

3. To separate domain knowledge from operational knowledge

4. To analyze domain knowledge.

Ontologies can be very useful in improving the process of information retrieval [57,

62] in two ways:

1. It allows to abstract the information and represent it explicitly- highlighting

the concepts and relations and not the words used to describe them.

2. Ontologies can possess inference functions, allowing more intelligent

retrieval. For example a "basketball player" is also a "professional athlete", and

an ontology that defines the relations between these concepts can retrieve one

when the other is queried.

3. For using Ontology in information retrieval systems and applications several

research activities have been done in the area of ontology construction because

it provides a richer knowledge representation that improves machine

interpretation of data.

i) Ontology Components: Common components of ontology include:

(i) Individuals: It may refer as instances or objects.

(ii) Classes: sets, collections or concepts.

(iii) Attributes: aspects, properties, features, characteristics.

(iv) Function terms: complex structures formed from certain relations that

can be used in place of an individual term in a statement.

(iv) Restrictions: formally stated descriptions of what must be true in order

for some assertion to be accepted as input.

43

(v) Rules: statements in the form of an if-then (antecedent-consequent) sentence

that describe the logical inferences that can be drawn from an assertion in a

particular form.

(vi) Events: The changing of attributes values or relation.

ii) Domain Ontology

Domain-specific ontology models a specific domain, which represents part of the

world. Particular meanings of terms applied to that domain are provided by domain

ontology.

The general stages in the design and development of ontology are shown in figure

2.18 and are summarised as follows [47]:

Figure 2.18 Steps for creating Ontology

1. Concept Identification

The knowledge acquisition activity is done with the requirements specification phase.

The knowledge acquisition was extremely important, because this activity defines the

extent to which we can create ontology. The knowledge acquisition, the first step of

the building process, begins with the reading and selection of domain source. The

knowledge sources had different views about subjects, but they all agreed on the

44

separation of concepts. The first step to organize the concepts was this structured

knowledge.

2. Relationship and Properties Identification

During conceptualization the acquired knowledge was structured. The domain is sub

divided into sub domains, then module for each sub domain is created and proper

interfacing is to be done. The main activities of the conceptualization in the

development of each module are

1. Classification of groups of concepts in classification trees.

2. Description of properties.

3. Identification and definition of instances:

After specifying all the classes and subclasses the instances which are the object

of classes are defined. One can create a knowledgebase with the help of ontology.

For creating knowledge base the instance values are stored and queries are fired.

4. Reasoning

After creating Ontology of domain we may find relationship, attribute values and

can infer any reasoning about that domain. The different tools have different

query format where user can ask a question and get the desired result.

Protégé [49] IDE is capable of generating, for example, OWL or RDF. In addition

to this capability, the creation of a database with Domain information transforms

the formalized model into an implemented one. There are examples of it in the

current version of the ontology. One problem that came up is a consequence of

dividing the ontology into modules.

2.10.5 Ontology Development Tools

Ontology tools can be used for generating, validating and maintenance of domain

specific knowledge, So that we can further use this knowledge base for information

sharing and information retrieval. The language that can be used for creating

ontology for any domain are XML, RDF, DAML-OIL and OWL and these are used

to maintain the metadata of ontology.

45

Various tool for ontology development are available but first we have to analyse and

evaluate them before use. Tools are protégé, oiled, Ontolingua, Onto Edit, ICOM,

RDF edt and Web ODE [58,75].

Table 2.4 shown below give details about comparative study and analysis of various

tools.

Table 2.4 Comparison of Various Ontology Development Tools

Import
Format

Export
Format

Graph
view of
ontology

Reasoning
and
consistency
Check

User
Environment

Support
for web
services

Ontolog
y
merging

Protégé XML,
RDF(S),

XML
Schema

XML,
RDF(S),
XML
Schema,
Java
html

Via plug-
ins like

GraphViz

Via plug-
ins like

PAL and
FaCT

RacePro ,
hermit

Limited
(Multi-user
capability
added to it in
latest version)

Via
Protégé-

OWL
plug-in

Via
Anchor-
PROMP
T plug-

in

Oiled RDF(S),
OIL,

DAML-
OIL

RDF(S),
OIL,
DAML
OIL

No Via FaCT No Very
limited
namespa
ce

No

Onto
lingua

IDL, KIF KIF,CL
IPS,
IDL,
Prolog
syntax

No Via
Chimaera

Via write only
locking,

Yes No

Onto
Edit

XML,
RDF(S),
FLogic

and
DAML+

OIL

XML,
RDF(S),
FLogic
and
DAML
+ OIL

Yes Yes No Yes No

RDF
Edit

RDF(S),
OIL,

DAML,
SHOE

RDF(S),
OIL,

DAML,
SHOE

No Only
checks
writing

mistakes

No Via RSS
RDF Site
Summary

No

Web
ODE

RDF(S),
UML,

DAML+

RDF(S),
UML,
DAML

Form
based

graphical

Yes By
synchronization
,

Yes Via
ODE
merge

46

We used various criteria like Import Format, Export Format, Graphical view of

ontology, User environment, support for web services, Consistency check and

Reasoning and ontology merging.

1. Import Format: This defines the languages supported by tool by loading

any external ontology.

2. Export Format: This defines the languages supported by tool while

exporting any ontology file.

3. Graphical View of Ontology: Tools support various plug ins to support

ontological structure in graph format.

4. User Environment: It means number of users that can support tool at a time

make incremental changes in ontology and notify others about the

modification.

5. Support for web services: Tools that provide direct access to knowledge

base stored in web.

6. Consistency Check and Reasoning: Feature of tool that maintain

consistency in knowledge base and allow Reasoner tool for inference from

knowledge base.

7. Ontology Merging: It is a method of bringing two conceptually divergent

ontology.

It can be concluded from the comparison table that Protégé provides graph view of

ontology by graphviz plugin. Also it can be seen that protégé supports web services

and can be easily imported and exported. Using protégé reasoning can be done with

help of SPARQL [52] query language. Most importantly it is open source and can be

easily installed on single machine.

2.11 ONTOLOGY MAPPING

Given two ontology’s O1 and O2, mapping one ontology onto another means that for

each entity (concept, relation or instance) in Ontology O1, a corresponding entity,

which has the same intended meaning, in Ontology O2 is found.

 It is not possible in real world to provide a same name for a concept or object having

same meaning also it may be possible that two different names point to same concept,

47

so there is always a gap between expressing knowledge by two individuals. Humans

can very well map this difference.

But in order to make machine understand this gap, we need to bridge the knowledge

gaps between different systems during their communication. Ontology mapping

serves to bridge this knowledge gap. When ontologies are mapped, applications can

query data from different data sources transparently; applications can treat each data

source the same irrespective of their differing underlying representations.

An example of ontology mapping is shown in figure 2.19 below. Here two ontology

are mentioned both belongs to same (book) domain. As it is clearly depicted from the

diagram some concepts in ontology1 like “Author”, “Title” and “Price” are equivalent

to “Writer”, “Name” and “Cost” respectively from the ontology2.

Figure 2.19 Sample Ontology Mapping

Majority of ontology mapping tools developed so far are used to finds a one-to one

corresponding mapping between concepts in two ontology. These mapping tools are

classified into two categories: source-based and instance-based.

In source-based mapping tools, the similarity of the concepts (based on the concept

properties) and the structure of the ontology (as described in source ontology) are

compared. Examples of source-based mapping tools are PROMPT [70], Chimaera

[McGuinness et al., 2000], and ONION [73]. PROMPT and Chimaera merge two

Book

ISBN Subjec

Price Title Autho

ISBN Field Cost Name Write

Thing

L_Name F_Name
Currency

48

source ontologies into a new one. The merged ontology contains concepts from both

sources. They compare similarity of concept names to generate a match list of

concepts. Users decide which concepts should be mapped based on the match list.

In instance-based mapping tools the similarity of the concepts based on the source

ontologies and their data instances are compared. Examples of instance-based

ontology mapping tools are FCA-Merge [Stumme & Madche, 2001] and GLUE [71].

FCA-Merge merges two source ontologies into a new ontology. FCA-Merge

generates a pruned concept lattice by analyzing the frequencies of usage of concepts.

Merging decisions are made based on the pruned concept lattice. FCA-Merge suits

best the mapping of text documents: it requires a set of common instances for the

mapping ontologies. For example, the instances are in the form of documents or

homepages. GLUE gives a set of pairs of related concepts with some certainty factor

associated with each pair. It analyzes the distributions of the concepts in data

instances of the source ontologies and uses joint probability distribution to calculate

the similarity between two concepts. GLUE, however, does not consider the structure

of the ontologies (i.e., the relationships between concepts) during mapping.

 Once the task of ontology mapping is done corresponding terms (node) in one

ontology whose values are known are used to make entries into the fields of query

interface. After successful submission of query interface form a response page is

generated and this makes possible to access the hidden web.

2.11.1 Ontology Mapping Techniques

Different approaches to the matching problem have been proposed in the literature,

for example [64, 65, 66, 71, 73] of the past approaches.

1) Doan et al. [71] developed GLUE with the recognition that many measures of

similarity can be employed to determine mappings between ontologies. They

articulate three goals for their approach: first, the notions of similarity employed

in the system should be well defined so as to enable evaluation and the application

of, “special-purpose techniques”; second, similarity measures should correspond

to some intuitive notion of similarity relying primarily on the semantic content of

the concepts presented rather than their syntactic attributes; and finally, the

authors recognize that many useful similarity measures exist, each being

49

appropriate to particular situations, and that the best approach is to be able to

employ the most appropriate measures where needed.

2) Prasenjit Mitra et. al. developed ONION [73] it was one of the first tools for

ontology merging. In their tool ONION the authors use rules and inferencing to

execute mappings, but is based on manually assigned mappings or very simple

heuristics. ONION results in a set of mappings (articulation rules using their

terms) between two ontologies. It transforms source ontologies into graphs. The

nodes and the edges are used to match two graphs. Nodes are matched based on

their names and a set of user-defined synonyms words.

3) Marc and Steffen proposed Quick Ontology mapping (QOM) [65] which is

very efficient in terms of time taken to perform mapping but it suffers from poor

mapping quality. Since this approach largely focuses on instance matching which

cannot be provided, they refrained from running the tests on a poorly trained

estimator which would immediately result in poor quality results. The architecture

for the same is shown in figure 2.20.

Figure 2.20 Architecture of QOM Ontology Mapping Technique

 In addition to this, QOM works well only with those ontologies that are having a

specialized terminology and its matching accuracy decreases when mapping

ontology with more general terminologies.

4) A Concept hierarchy based Ontology Matching Approach by Ying, Liu and

Bell [66]: They proposed such a model that may contain complex mapping

results, i.e. several entities in ontology(O1) map to the same entity in

ontology(O2).In this approach even after the completion of mapping process

Feature
Engineering

Similarity
Aggregation

Similarity
Computation

Search Step
Selection

Interpretation

Input

Output

Iteration

50

additional work has to be done for selecting the best mapping pair among multiple

matching pair for a single.

Figure 2.21 Concept hierarchy based Ontology Matching Approach

This post-matching process makes this approach inefficient in terms of time taken to

perform the entire mapping process node.

5) PROMPT: Algorithm and Tool for Automated Ontology Merging and

Alignment by Noy and Musen, 2000[70]: It compares all entity pairs based on

their labels. In a postprocessing step an acknowledgement of the user becomes

necessary. –The consequence are results with a lower quality. PROMPT,

Chimaera and ONION use similarity between concept names for mapping. They

work well for ontologies having a specialized terminology like medical ontology

where each concept is a disease and each disease has a unique name. Their

matching accuracy decreases when mapping ontologies with more general

terminologies.

6) A mapping framework for distributed ontologies (MAFRA) [72]: They

developed a multi-strategy process that calculates similarities between ontology

entities using different algorithms. The first strategy focuses on acquiring a lexical

similarity between each entity in source entity with each and all entities in target

entity. Subsequently, a next step calculates the so called property similarity, that

is responsible to acquire the similarity between concepts based on their properties,

either attributes or relations. The bottom-up similarity intends to propagate the

CS

Courses People

Graduate

Under
Graduate
Courses

Student Faculty CS,People
Faculty

(CS)

(CS,Courses
)

(CS,People)

CS,People
,Student CS,Course

Under
Graduate

CS,
Courses
,Graduate
Courses

51

similarity (or dissimilarity) from lower parts of the taxonomy to the upper

concepts. It uses the property similarity as input and propagates the values to the

top. This similarity gives a good overall view of similarity between taxonomies.

Table 2.5 A Comparison of Ontology Mapping Techniques

2.12 INDEXING THE HIDDEN WEB

Indexing is a way used to represent information from a document so that those

conducting searches can retrieve the information easily. Without an index, the search

engine would scan every document in the corpus, which would require considerable

time and computing power. Ontology based web indexing system attaches different

class (concept) to the keyword and does a mapping between keyword and ontology

class. But having attached the concept does not solve the whole problem. Using

WordNet context with every keyword in which it is used is attached. Due to

 GLUE MAFRA QOM ONION PROMPT

Input Two taxonomies
with their data
instances in
ontologies

Two ontologies Two list of terms
from two
ontologies

Terms in two
ontologies

Two input
ontologies

Output A set of pairs of
similar concepts

Mapping of
two ontologies
by the
semantic
bridge
ontology

A list of
matched pairs of
terms with score
ranking
similarity

Set of
Articulation
rules between
two
ontologies

A merged
ontology

User
Interaction

User-defined
mappings for
training data ,
similarity
measure, setting
up the learner
weight, and
analyzing
system’s match
suggestion

The domain
expert interface
with the
similarity and
semantic
bridging
modules and it
has graphical
user interface

It requires
human
validation at
the end of the
process.

A human
expert
chooses or
deletes or
modifies
suggested
matches
using a
GUI tools

The user
accepts,
rejects or
adjusts
System
suggestions.

Mapping
strategy

Multi-strategy
Learning
approach
(machine
learning
technique)

Semantic
bridge

Lexical
similarity
whole term,
word
constituent,
synset, and
type matching.

Linguistic
Structure
matcher,
inference
based
heuristics

Heuristic
 based
analyzer.

Domain
knowledge

Yes Yes No Yes Yes

52

attachment of context with keyword, more relevant results are retrieved in optimized

way in lesser time response to a search query.

Ding et al. [76] introduces a double indexing mechanism for search engines, which

means, it has document index as well as word index. The so-called document index is

based on the documents clustering, and ordered by the position in each document.

During the retrieval process, the search engine first gets the document id of the word

in the word index, and then goes to the position of corresponding word in the

document index. The mechanism proposed by them seems to be time consuming as

the index exists at two levels.

Mahapatra et al. [77] proposes an inverted indexing system. Here indexing words

are mapped to their location in document. The index is sorted by its keys and works

well with Boolean operators (AND, OR, NOT). Silvestri et al. [78] proposes the

reordering algorithm which partitions the set of documents into k ordered clusters on

the basis of similarity measure. According to this algorithm, the biggest document is

selected as centroid of the first cluster. The process keeps on repeating until all the k

clusters are formed. The drawback is that the biggest document may not have

similarity with any of the documents but still it is taken as the representative of the

cluster. Zamir et al.[79] proposes the threshold based clustering algorithm in which

the number of clusters is unknown. However, two documents are classified to the

same cluster if the similarity between them is below a specified threshold. This

threshold is defined by the user before the algorithm starts.

Table 2.6 A Comparison Table of Various Indexing Techniques

Indexing Technique Methodology Advantages Limitations

Double indexing
mechanism, Ding et.al.
[76]

The index is based on
the documents
clustering, and ordered
by the position in each
document.

 Simple and relevant
indexing mechanism.

Time consuming as

the index exists at two

levels.

53

Inverted indexing,
Mahapatra1 et.al. [77]

This technique has
terms marked as keys
and these terms are
mapped to the
document they appear
in. The index is sorted
by its keys and works
well with Boolean
operators.

1. Very simple
2.No complexity
involved

It can only tell
whether a word occurs
in a document or not.
It can't tell how often
it occurs or its
location.

Document identifiers
to enhance
Compressibility,
Silvestri et. al. [78],

This technique gave a
reordering algorithm to
compress the inverted
index.

1 Due to compression
index takes less space.
2. The algorithm has
linear complexity.

1.No new algorithm
given to improve
index
2. No involvement of
meaning or semantics
of keywords.

Fast and Intuitive
Clustering of Web
Documents, Zamir et.
al. [79]

A clustering methods
that intersect the
documents in a cluster
to determine the set of
words (or phrases).

Fast and quick
navigation through the
results.

Theortical framework
given only, no
experimentation done.
Preprocessing for
clustering is required

Context based
Indexing using
Ontology, Parul et.al.
[80]

1. Thesaurus is used to
obtain the context in
which term is used.
2.Index has three
columns
a)Context (eg apple is
fruit and apple is i-
phone)
b)Term
c)Doc id

1. As Context is stored
with every term so
results relevant to users
are retrieved.

1.As index is linear
time required in
retrieving result is
O(n).
2. One word may
belong to different
concepts this work
didn’t focus on that.

Ontology based
Indexing using BST
tree, Pooja et.al. [81]

Same as above except
Index is not stored in
linear array. It is stored
in the form of Binary
Search tree.

Better than Linear array
as Best case time
complexity: O(logn)

As all the terms(node)
are not at same level
time to retrieve result
in Worst case: (n)

Ontology based
Indexing using AVL
Tree, Nidhi et.al. [82]

Same as above Except
Index is stored in form
of AVL tree

Better than BST Time
Complexity is O(n) in
all cases.
As all leaf nodes are at
same level.

Every node can have
only maximum two
children.

From the above table it can be concluded that indexing scheme starting from simple

keyword to ontology. Some of the techniques tried to attach classes using ontology

but none of the techniques gave evaluation supporting the same. Also the ambiguity in

various terms were not resolved.

2.13 RANKING TECHNIQUES IN HIDDEN WEB

To present the results to the user in an ordered manner, Page Ranking methods are

applied, which can arrange the results in order of their relevance, importance and

content score[83,84]. Search engines use two different kinds of ranking factors:

Query-dependent factors and Query Independent Factors to calculate the rank of a

54

web page. Query-dependent factors are all ranking factors that are specific to a given

query, while query-independent factors are attached to the results, regardless of a

given query. Query-dependent factors used measures word documents frequency, the

position of the query terms within the result page or the inverted document frequency,

that are used commonly in any basic search engine. Some of the query independent

factors are Link popularity, Click popularity and up to-datedness of the page etc. The

aim of this section is to comparatively analyze the existing ranking algorithms or

techniques for hidden web pages.

A) Content Based Hidden Web Ranking Algorithm (CHWRA) [85]: In this paper

proposed a ranking algorithm which consists of four different attributes. These are: a)

Page Rank , b) Term Weighting Technique [TWT], c) User’s Feedback, d) Visitor

Count.

a) Page Rank: The PageRank component checks the entire link structure of the

network and calculates the PR value of web page and redistributes it to the links

within the web page. The formula used in calculation of pagerank value is given as:

 PR(A) = (1-d) + d [PR(T1)/C(T1)+...+ PR(Tn)/C(Tn)]

 Where PR(A) – pagerank value of page A

 d – is the damping factor, set to 0.85
 T1….Tn – set of pages pointing to A
 PR(Tn) – pagerank of page Tn

 C (Tn) – number of hyperlinks pointing out from page Tn.

b) Term Weighting Technique: The term weighting technique is based on

probabilistic and vector space model. There are three main parameters used in

calculating TWT. The parameters are document length, document frequency and

term frequency.

c) User’s Feedback: This method takes user’s feedback into account in the form like

and dislikes count. Like and dislike count are taken as the positive or negative

response respectively to the web page and affects the popularity of the web page,

thus affecting the rank value of the web page.

55

d) Visitor Count: In this method hits on the web page are considered as the visitor

count. It is assumed that more the number of hits on the web page and higher the

popularity of the web page.

Limitations of CHWRA

• The page rank algorithm is commonly used by the conventional search

engines. It is not effective for Hidden Web pages.

• Some fraud websites knowingly add a lot of popular keywords which are not

related to the content in the title or the content of the page to cheat search

engines.

• This technique do not emphasis on ranking of hidden web pages rather it does

ranking of general surface web pages.

• This technique uses user feedback and visitor count for ranking but it didn’t

explained well how these are taken into consideration.

B) SCUM: A Hidden Web Page Ranking Technique [87] proposed ranking of

Hidden Web pages using three steps as follows:

a) Structure Page Rank Calculation

b) Content Page Rank Calculation

c) Usage Page Rank Calculation

• Structure Page Rank Calculation: The web pages from the WWW are highly

connected. Graph databases are used, the nodes represent the entities (web pages) and

edges represents the relationships (here inlinks and outlinks). The graph is created by

using NEO4J and cypher query language. The pattern recognition is done very easily

in the case of graph database. For ex: it is very easy to extract the pattern that the node

no. 699 of domain car receives all the inlinks from the web pages of different domain

i.e. property. Interconnection among web pages is shown in fig. below. Most of the

newbie websites gave their advertisements on the high rank popular websites. Mostly

the domains of these websites are far apart from each other. The popular websites get

financial benefit from it. So they promote the newbie websites. These new websites

then are able to share the page rank of the popular websites. So in order to avoid such

type of page rank sharing the new technique should be developed which will avoid

this incorrect page rank sharing policy. So new formulae for calculating the page

56

rank. For calculating the rank of page “A” which assume that it receive “n” inlinks

from same domain and “m” inlinks from different domains. The pagerank will be

shared using the formulae given below.

Rank(s) A= (Rank(s) P1 / (OS P 1) + Rank (structure) P n / (OS P n)) if OSP1>0

Here Rank(s) A is structure rank of page A, OSP1 is the no of outlinks of web page

P1 to web pages of same domain.

• Content Page Rank Calculation: The content mining is extraction of

knowledge from text in the web pages. In this the content of extracted web pages will

be analyzed and on the basis of the contents the pages will be ranked. The relevance

of the page will be analyzed on the basis of the domain, the quality of content, spam

detection. In order to make the content present on the web page machine

understandable Resource Description file (RDF) is created for every web page .

Query will be fired on the RDF and relevance and quality of data on the web page is

calculated.

Rank(c)A = Relevance + Quality

Advantages of the SCUM

• It not only considers the links but also the contents of the web pages for the

rank calculation.

• The interest of the users is also considered. So every user is able to see the

pages of its own interest at the top.

• The algorithm makes use of all aspects of web mining to calculate the page

rank.

• The proposed algorithm will rank the pages from the hidden web and surface

both.

Limitations of SCUM

• This algorithm in structure rank calculation focus on inlinks and outlinks on

the page. No. of inlinks are not relevant for calculating hidden web page

ranking.

57

• In usage rank calculation emphasis is on particular user. Thus this algorithm is

more user based but user priority may change with time.

• This algorithm is not efficient for hidden web page ranking.

• Proper design and implementation of algorithm is not given.

C) Deep-Web Search Engine Ranking Algorithm : Brian Wong in et al[88] gave

ranking algorithm which utilizes best-fit scoring functions using quality factors and

a dynamic weighting algorithm that changes the factor weighting based on user

behavior. Search engine utilizes two factor scoring function to rank results – a

combination of distance score d and referral score r. The distance score is inversely

proportional to the physical distance between search result and location of interest.

The referral score represent the popularity of the result amongst the searched

websites.

Advantages

• This algorithm is scalable and requires minimal pre-processing to generate the

factor weightings.

• It rank results considering user behaviour and requirements .

• This technique efficiently ranks the hidden web pages.

D) Rank Discovery over Hidden Web Databases [89] introduced problem of This

paper define a comprehensive spectrum of ranking functions according to various

dimensions such as query-dependent vs. static, observable vs. proprietary, and

whether the scoring attribute can be queried or not. This paper discuss the feasibility

of rank discovery for each type of ranking function, and show that different types of

ranking functions require fundamentally different approaches for rank discovery. For

proprietary and observable ranking functions, they developed RANK-EST(algorithm)

which interleaves two separate procedures for handling high and low ranked tuples,

respectively.

E) Trust and Profit Sensitive Ranking for the Deep Web and On-line

Advertisements [90] considered the emerging problem of ranking the deep web data

considering trustworthiness and relevance. In this paper end-to-end deep web ranking

by focusing on: (i) ranking and selection of the deep web databases (ii) topic sensitive

58

ranking of the sources (iii) ranking the result tuples from the selected databases has

been discussed.

Table 2.7 A Comparison Table of Various Ranking Techniques

Ranking Algo

Use of
Query

Dependent
factors

Use of
Query

Independent
Factor

Technique Used

Relevancy
to Hidden

Web

Remarks

Content based
hidden web
ranking

NO

YES

Pagerank and
Term Weighting
Technique

LESS

This
technique
does not
emphasise on
ranking of
hidden web
pages.

SCUM: A
Hidden Web
Page Ranking
Technique

NO

YES

Web structure,
content and usage
mining

MORE

Deep-Web
Search Engine
Ranking
Algorithm

YES

YES

Best-fit scoring
functions using
ten quality factors
and a dynamic
weighting
algorithm.

MORE

This
algorithm is
scalable and
requires
minimal pre-
processing to
generate the
factor
weighting

Rank Discovery
by Saravanan et
al

YES

NO

Developed
RANK-
EST(algorithm)
which interleaves
two separate
procedures for
handling high and
low ranked tuples,

PARTIAL

It discuss the
feasibility of
rank
discovery for
each type of
ranking
function.

Raju
Balakrishnan et.
al.

YES

NO

Various score
functions are used.

MORE

The table shows that few of the ranking techniques use query dependent factors,

others use query independent factors. Only one technique is using both factors for

calculating ranking of web. It can also be observed that the ranking techniques

developed so far are not developed keeping hidden web in mind.

59

2.14 PROBLEM IDENTIFIED IN EXISTING APPROACHES

A critical look at the available approaches indicates the following issues need to be

deal with towards building an effective ontology based information retrieval system

for hidden web:

i) In present approaches the high quality data hidden behind form interfaces is

extracted using basic label value matching techniques. These techniques are

inefficient and lack in data relevancy. The hidden web data need to be extracted using

new approach which involves attaching meaning to the data hence it support to get

more relevant results.

ii) A very petite work has been done in direction of creating semantic database and

using the same for extracting hidden web data.

iii) There is a need of automatic generation of ontology which is not addressed by any

of the work.

iv) Ontology Mapping System which will map the form interface with predefined

ontology are: a) Pairing irrelevant node for mapping. b) Lack of an effective mapping

approach while matching between ontology c) Poor resource (mainly time) utilization.

v) The available systems are not fully automated, there is no work done towards

synchronizing the processes of form filling, submitting, downloading the hidden

web data.

vi)The indexing schemes developed so far do not take context of the term in to

account reducing the efficiency in searching. They also cannot disambiguate the

ambiguous terms.

vii) The ranking techniques so far have not been developed considering hidden web

data. Specialized technique need to be developed for ranking hidden web data.

A design of a novel ontology based information retrieval system for retrieving hidden

web deals with all the identified shortcomings/problems found in existing work. The

60

architecture of the proposed system with brief discussion on each component is given

in next chapters.

61

Chapter 3

ONTOLOGY BASED INFORMATION RETRIEVAL

SYSTEM FOR HIDDEN WEB

3.1 INTRODUCTION

In order to download the Hidden Web contents from the WWW the crawler needs a

mechanism for Search Interface interaction i.e. it should be able to download the

search interfaces in order to automatically fill them and submit them to get the Hidden

Web pages. Crawler must be so intelligent that it chooses the exact values to be filled.

Secondly a common search interface should be provided to the user, where user type

in the query and get the desired hidden web information efficiently without filling up

the form interfaces manually.

Traditional hidden web crawler try to download this data based upon simple Label-

Value matching mechanism which is not suffice for this high quality tremendous

information lying behind the form interfaces available.

In order to synchronize the processes like form filling, submitting, downloading the

web pages and indexing etc. for hidden web crawling, domain knowledge is required.

This domain knowledge can be represented in the form of ontology. Ontology

provides a common vocabulary of an area and defines, with different level of

formality, the meaning of terms and relationships between them. By combining the

hidden web retrieval with domain specific ontology, the proposed work automatically

fills in the text boxes with values from the developed ontology. This will make not

only the retrieval process task specific, but will increase the likelihood of being able

to extract just the relevant subset of data.

3.2 DESIGN OF ONTOLOGY BASED INFORMATION RETRIEVAL

SYSTEM FOR HIDDEN WEB

The objective of the work is to automate the process of searching, viewing, filling in

and submitting the search forms followed by analysis of the response pages, along

with a common search interface to the user. The architecture of the whole system is

62

divided into four modules designed to separately handle the various groups of actions

as listed.

i) Ontology Builder
ii) Hidden Web Crawler
iii) Ontology based Indexer
iv) Rank Calculator

These modules further contain various sub modules described as shown in figure 3.1

HIDDEN WEB CRAWLER

Form
Analyzer

Form
Ontology

Query Generator Dispatcher

WWW

Revisit
frequency

Node
Constructor

Random
Filler

Pair
Constructor

Stemmer

S-S C-C
Pairing

Synonym
Mapping

Relation
Analyser

T

T

F

Seed URL

WWW

Form
Downloader

Classifier

OWL Analyser

RDF Analyser

XML/HTML
Analyser

SPO
Annotator

Domain Specific
Ontology Database

Query
Rank Calculator

Interface

Keyword
Extractor

Weight
Calculator

Concept (Class)
Annotator

Context
Annotator

Index of Pages

HW Page
Repository

Figure 3.1The Proposed Architecture of Ontology based Information Retrieval System

for Hidden Web

I

II

III

IV

Ontology Builder

Mapping Module

63

A brief discussion on each of the major modules is given below:

3.2.1. Ontology Builder: The first component of the system is generation of ontology

which is described in this phase in detail. Firstly ontology has been designed and

generated manually using Protégé for Book Domain by taking instance values from

faculty of YMCA and their publications [94]. The basics of Class, Properties and

Attributes has been described and explained in this module. Subject, Predicate, Object

<S,P,O> triples has been defined for book domain as shown by figure 3.2. This

ontology serves as a prototype for generating automatic ontology.

Figure 3.2 Class Hierarchy in Book Domain Ontology developed Using

Protégé

The ontograph view of the developed book domain ontology is shown in figure 3.3.

Figure 3.3 Ontograph of Book Domain Ontology Developed In Protégé.

 Book

Book_ISBN

Academics

Book_Category

Book Price

Research
Sports

Journal Conference

Book_Title

Author

Auth Name Auth_email

64

This module proposes a novel technique for automatic generation of Ontology from

available web pages on WWW. The Ontology generated automatically using web

pages is more generic and rich as compared to the ontology generated manually using

Protégé. Both ontologies are merged and a database of <S,P,O> has been designed

and created here. The architecture of this module along with algorithms is described

in chapter 5. The subcomponents of ontology builder module are as follows:

i) Form Downloader

ii) Classifier

iii) XML/HTML Anlayser

iv) RDF Analyser

v) OWL Analyser

vi) SPO Annotator.

The form downloader downloads the form interfaces from WWW. The classifier

according to the format of the page sends the page to corresponding analyser. Each

analyser extracts the information from the form pages to create Subject, Predicate and

Object. Analyser further send this extracted information to SPO annotator which after

cleaning the data store it in semantic database.

3.2.2. Ontology Based Hidden Web Crawler (OHWC): This is the main

component of the system. The (OHWC) crawler [96] extracts the hidden web

information from WWW using ontology. The architecture for the same is shown in

figure 3.4.

Figure 3.4 Architecture of Ontology based Hidden Web Crawler

Revisit Frequency
Calculator

Mapping
Module

 WWW

Ontology in
Form of <SPO>

 Form Analyzer

Query
Generator

Dispatcher

Form Ontology

Form
Downloader

Hidden Web
Repository

 WWW
From Ontology

65

The major components of OHWC are:

i) Form Analyzer

ii) Mapping Module

iii) Query Generator

iv) Revisit Frequency Calculator

v) Dispatcher

For making the hidden web crawler work, the form interfaces available on WWW are

first downloaded and then analysed. To fill these interfaces with appropriate values;

the form ontology is created using the same algorithms defined in chapter 4 for

generating ontology. This small ontology is then mapped with the ontology database

created before to get the exact values that are needed to fill in those interfaces. So this

phase also proposes a novel technique for mapping two ontologies. The component

diagram of proposed ontology mapping technique [96] is shown in figure 3.4 below.

Figure 3.5 Proposed Architecture of Ontology Mapping System.

The technique here maps form interfaces with predefined domain specific ontology

database developed by ontology builder. These values once found are used to generate

 Pre-Processor

Central
Coordinator

Form
Ontolog

Node
Constructor

Random
Filler

Pair
Constructo

Domain Specific
Ontology
Database

Domain Specific
Ontology Database

Stemme
r

SS,CC
Pairing

Synonym
Mapping

Relation
Analyze
r

Fals

True

Main Mapper

66

different sets of queries which are fired on WWW and resultant hidden web pages are

retrieved.

3.2.3 Ontology Based Indexer: Indexing is a way to represent information from a

document so that those conducting searches can retrieve the information easily.

Without an index, the search engine would scan every document in the corpus, which

would require considerable time and computing power. The pages retrieved by

OHWC are stored in a repository; they are needed to be shown to user according to

the query fired. To increase the efficiency of the system and to increase the speed of

showing result to user, a novel ontology based indexing technique [97] has been

proposed. The basic diagram showing indexer module of the system is shown in

figure 3.6 below.

Figure 3.6 Basic Diagram Showing Indexing and Ranking of The System

There are four major components of the proposed ontology based indexing scheme for

hidden web namely:

i) Keyword Extractor

ii) Weight Calculator

iii) Concept Annotator

iv) Context Annotator

Index Table

Keyword List

web d2,d4,d8

crawler d1,d3,d6

Web Pages
Repository

WWW

Crawler Indexer

Query Processor

Ranking Module

URLs of top ranked
web pages Query

67

Ontology based web indexing system attaches different class (concept) to the

keyword and does a mapping between keyword and ontology class. But having

attached the concept only does not solve the whole problem. Using WordNet the

context with every keyword in which it is used is also attached. Due to attachment of

context with keyword, more relevant results are retrieved in optimized way in lesser

time response to a search query. The final index table which comes after applying the

proposed technique is shown in table 3.1 below.

Table 3.1 Table of final index created by proposed ontology based indexing

technique.

Keyword Concept(class) DocId’s Context(Meaning)

Mouse Computer 1,4,6,7 Pointing Device

Mouse Animal 2,3,5,8 Rodent

jaguar Animal 1,3,4,7,11 Panther

jaguar Fighter plane 2,6,8,10 Name

jaguar Car 1,2,4 Brand Name

The proposed model takes the hidden web pages previously downloaded by OHWC to

create index. In first step the web pages are indexed word by word. In this step,

normal keyword based indexing is used. This results in a cleaned up wordlist for each

document, which is stored in a table. Now the keyword to be indexed is mapped to a

concepts present in the Ontology.

Each word is now stored with the best matching concept. There are words that map to

more than one concepts of ontology which are termed as ambiguous words. Those

ambiguous words are analysed and processed further to attach the context in which

the word is used. Ontology is updated on regular basis by adding new terms and

removing terms stored earlier whenever the pages we are indexing changes and also

on regular pages.

3.2.4. Rank Calculator: Page Ranking methods are applied to arrange the results in

order of their relevance and importance. These ranking methods can be query

68

dependent or query independent methods. Query-dependent are all ranking methods

that are specific to a given query such as word documents frequency, the position of

the query terms within the result page, while query-independent factors are attached

to the results, regardless of a given query like page content popularity, updated

information(in form of last update date/time) etc.

A novel ranking technique for hidden web is proposed here [98] uses factors for both

query dependent and query independent ranking methods. It works when user enters

queries and the system returns the result according to the indexed data saved as above.

Factors of query dependent such as page frequency , query – page content matching

are used and factors of query independent such as page content popularity , page

source rank, user feedback are also used to design a novel and efficient ranking

technique.

The proposed ranking technique comprises of following components:

i) Weight Calculator

ii) Frequency Calculator

iii) Rank Assigner

Brief description of each component is as follows:

i) Weight Calculator (W): In this module weight W is assigned to each url/web page

on basis of three factors. One is rating on the web page (W1), second Users Feedback

present on the web page (W2) and third is Query-Page Content Matching (W3). These

factors are important in hidden web for example in book domain the rating of a book

and user’s feedback for a book plays important role in finding an important book. The

URL having good rating should come above in the list and same is true for user’s

feedback.

ii) Frequency Calculation Module: As the hidden web crawler hidden web pages by

filling HTML form on the various websites. It is possible that hidden web crawler fill

same set of values in HTML form on more than one website. It may result in

generation of web pages having same content from two different websites. Such as

two websites of book domain may generate two web pages with different url having

69

description of same book. Frequency calculator will calculate such number of pages

and set this as frequency of web page. This frequency is taken in to account to

calculate rank as the pages having higher frequency are given preferences hence given

higher ranks.

iii) Rank Assigner: In this module final rank value is assigned to each URL. Rank

value is used to arrange all URL’s in a ranked list. This rank value, Rv is calculated

on basis of weight assigned to each URL (W), and frequency of the web page (f).

Ontology based information retrieval system is designed and implemented for two

major domains i) BOOK and ii) Airlines. The implementation and results are

discussed and analysed in last chapters.

70

71

Chapter 4

GENERATION OF DOMAIN SPECIFIC ONTOLOGY FOR

HIDDEN WEB RETRIEVAL USING PROTÉGÉ

4.1 INTRODUCTION

Hidden web is part of WWW that is not part of surface web. It is came in to notice

that the Hidden web contain large amount of high quality information that are hidden

behind search forms. Majority of hidden web repositories contain files with format

pdf, flash, streaming media which contains most real time data and dynamically

generated web pages. This kind of information cannot be retrieved by simply

traversing the web using keyword searching.

To retrieve those hidden web pages user fill manually in various fields of form pages

manually. To automatically extract all this hidden information the crawler (hidden

web crawler) must be so intelligent that it understands the interface and fill the

required information accurately. This process of understanding and filling the forms

automatically can only be efficiently done with the help of ontology. For this purpose,

it is required to generate domain specific ontology.

In this chapter detailed description of generating book domain ontology using Protégé

[31] has been given and later a novel technique for automatic generation of ontology

has been proposed, designed and implemented. The chapter begins with the

introduction of idea why book domain has been chosen to generate ontology, and then

the hierarchal model used to create knowledge base for the generated ontology is

introduced.

4.2 GENERATING DOMAIN SPECIFIC ONTOLOGY USING PROTÉGÉ

FOR BOOK DOMAIN

This research work focus on generating the domain specific ontology for retrieving

hidden web content. Digital library is one of the domains that contains hidden web.

Analysis shows 60 to 70 percent of hidden web information can full fill day to day

required information [21]. So it will be useful for users if one can create common

72

search interface through which all online available books can be accessed, leading to

generation of book domain ontology. In day to day life a user deals with the books for

gathering information or to be in touch with latest news technology and research

information. The proposed work try to create proper knowledge base using book

domain ontology instead of relational database as to alleviate data redundancy, allow

sharing and reuse of information of information. Ontology also gives common

understanding of domain structure and easy reasoning in terms of subject, predicate

and object (<S, P, O>) triples that are not possible with relational database.

4.3 ONTOLOGICAL MODEL FOR BOOK DOMAIN

Book domain contains the collection of books that are related to Author, Publication,

Award etc. For proposing the idea four sub-domains have been identified to generate

book domain ontology that are Author, Award, Publication and Book.

4.3.1 Defining Author class: Author is the entity that originates or writes books of

his interest. Two fields of Author as shown in figure 4.1 are related to book: i)

Author _Name: The name of the author who has written this book/paper and

ii) Author_Email Id that may describe contact point of the author.

 Figure 4.1 Author Sub-domain

4.3.2 Defining Award class: Award is materialistic thing that may be given to any

book or any author for his book/paper to recognise its excellence in particular

field. Here Award is related to: i) Award Name and ii) Award Year as shown

in figure 4.2. Award name is the name associated with award and the

Award_year is the year in which it has been given to the author for particular

book/paper.

Author_Email_Id Author_Name

Author

73

Figure 4.2 Award Sub-domain

4.3.3 Defining Publication class: Publication is an Authority that makes content

available to general public by publishing it. The preparation and issuing of a

book, journal, piece of music, or other work for public sale is done by

publication only as shown in figure 4.3. It is associated with two properties

further: i) Publication _Name is the name of the publisher who has published

the book and ii) Publication_Year when represents the timestamp date/year of

publishing.

Figure 4.3 Publication Sub-domain

4.3.4 Defining Book class: Book is the main entity to which all above entities are

related. It refers to source of information or work of literature. Here book is

identified by various properties(fields) like i) Book_Title that represents its

unique name, ii) Book_Price that provide information that at what amount it is

available to user of interest, iii) Book_category that details about the type of

book and iv) Book_ISBN that defines International standard Book number

described in figure 4.4. Book category may contain vast varieties of books so

proper organisation of books under book category is required. Here it is

Publication

Publication_Year Publication_Name

Award

Award_Year Award_Name

74

divided into Academics, Sports, Research category, Computer , Internet, story,

Novels etc.

Figure 4.4 Class-Sublass Hierarchy

4.4 PROTÉGÉ ONTOLOGY TOOL

Protégé is a free, open source ontology editor and knowledge-base framework. It is

based on Java, is extensible, and provides a plug-and-play environment that makes it

is flexible base for application development that also provide for web services. In this

work we use Protégé 4.2 latest version of s/w for desktop environment has been used

to develop knowledge base for book domain.

4.4.1 Domain Ontology Construction Steps: Using Protege 4.2

Basic steps to create book domain ontology in protégé:

Step 1: Start Protégé 4.2.

Step 2: When Editor Opens either click File New to create new empty ontology

or load the existing ontology by browsing its path.

Step 3: After opening the OWL file its ACE view appears in the editor that uses

Attempto Controlled English (ACE) in order to create, view and edit ontology. It

display rule set in English language.

Step 4: Define Class Hierarchy: There are two possible approaches in developing a

class hierarchy. A top-down development process starts with the definition of the

most general concepts in the domain and subsequent specialization of the concepts.

A bottom-up development process starts with the definition of the most specific

BOOK

Book_ISBN

Academics

Book_Category

Book_Price

Research
Sports

Journal Conference

Book_Title

Author

Auth_Name Auth_email

http://bmir.stanford.edu/
http://protege.stanford.edu/download/download.html
http://www.mozilla.org/MPL/MPL-1.1.html

75

classes, the leaves of the hierarchy, with subsequent grouping of these classes into

more general concepts.

Step 5: Define Class Attributes/Instances which contributes to data entry to

knowledge base. Defining an individual instance of a class requires choosing a class,

creating an individual instance of that class, and filling in the slot values

Step 6: Define object Property which specifies the relationship among class-

sublcass and class-attributes. Here domain and range is also specified for particular

relation.

Step 7: Creation of property matrix: After object properties characteristics of object

properties like it may be functional, inverse functional, reflexive, symmetric, anti-

symmetric or transitive are defined.

Step 8: Define data property: For specifying data type associated with different

objects data property is used which can be defined under data properties tab.

Description with corresponding illustration of each of these steps is given in

subsequent sections below.

Step 1 and Step 2: Opening Protege

Figure 4.5 Snapshot of Opening a File in Protégé

Step 3: ACE view of editor: Ace view is used to create, view and edit ontology. It

display rule set in English language describing the important things ontology is made

up of.

76

Figure 4.6 Snapshot of ACE View of Editor

Step 4: Defining Classes Hierarchy: All the classes along with their corresponding

hierarchies are described first. Then super class and sub class relationships are

defined. Here Thing is the super class of all concepts defined for particular domain. In

the proposed work, everything comes under Thing class. The classes Author, Book,

Publications are the superclasses. The Author_name ,Email_id are the sublasses of

Author as defined in Figure 4.7. Further Book is the super class having

book_category, ISBN,Price and Title as subclasses. Similarly Publication is super

class and publication_name and publication_year are the subclasses.

Figure 4.7 Snapshot of Classes Hierarchy

77

Step 5: Creating Individual view: After Class Hierarchy individuals/attributes are

assigned to particular concept (class) which contributes to data in knowledge base.

Individuals are the instances of concepts in domain ontology. These instances have

particular property attached with concept for which they have been defined. Attributes

are the properties associated between two classes or a class and a subclass. For each

attribute one class is Subject and the other is Object. Each class and subclass have

individuals and attributes associated to them. Individual view shows all the classes,

subclasses and corresponding properties associated with each instance. As an example

figure 4.8 below describes the class and subclass hierarchies for the instance

Dr._A_K_Sharma as Author’s instance.

i) It is instance of Author_Name.

ii) Related with object property hasPublished , hasWritten and hasId.

The author having Author_name is associated with has_written and has_published

properties. Here for each instance values are stored.

Figure 4.8 Snapshot of Individual view

Step 6: Defining Object Property: Property states the relationship between two

entities, it is also known as predicate. The relation specified in ontology is in the form

78

of <S, P, O > triple. Here subject and object are entity from concepts set and predicate

links the subject and objects. The instances defined above contribute to Subject,

attributes contribute to Object and properties contribute to Predicate for each tuple.

Book Domain Ontology defined here uses various object properties as defined in table

4.1 and the snapshot is shown in figure 4.9 for the same. Here Domain is defined as

collection of subject and range defines collection on object. Objectproperty maps the

Domain and Range, as mapping done in functional mapping.

Table 4.1 Objectproperty Table

Object
Property

 Subject
 (Domain)

 Object
 (Range)

datedOn Author_Name Author_Year

hasAmount Book_Title Book_Price

hasId Author_Name Author_EmailID

hasISBN Book_Title
Book_Ctaegory

Book_ISBN

hasName Book_Category Book_Title

hasPublished Author_Name or
Publication_Name

Research_Title or
Book_Title

hasWritten Author_Name Book_Title

publishedBy Book_Title
Research_Title

Publication_Name

publishedIn Book_Title
Research_Title

Published_Year

 wonAward Book_Title
Author_Name

Award_Name

writtenBy Book_title Author_Name

For each particular property database have more than one entries of subject and

object. At one time for one predicate one instance may behave as Subject and for the

other predicate value it may behave as Object in another tuple.

79

Figure 4.9 Snapshot Showing Object Properties

Step 7: Creating Property matrix: After object properties characteristics of object

properties are defined. These may be functional, inverse functional, reflexive,

symmetric, anti-symmetric or transitive figure 4.10. These properties are defined

under property matrix tab. For Example writtenBy is inverse of hasWritten and have

inverse functional relationship.

Figure 4.10 Snapshot Showing Property Matrix

Step 8: Define Data property: For specifying data type associated with different

objects data property is used. Data properties are defined under data properties tab.

Data property specifies the range of instance associated with individual concept. For

80

example Name has range String, Amount has range type integer, ISBN has

alphanumeric value shown in figure 4.11 below.

Figure 4.11 Snapshot Showing Data Property

4.4.2 Viewing Ontology

There are two methods to see the whole graphical view of the ontology including

classes, subclasses, instances and relationships among them first is i) OWL Viz and

second is ii) Ontograf. These are two different tabs available in Protégé. Using OWL

Viz the overall class hierarchy can be seen and by using Ontograf tab for a particular

instance one can see all the classes, subclasses and properties the instance is related

to.

i) OWL Viz: After completing the ontology one can view the overall OWL class

hierarchy view under OWL Viz tab. For viewing the graphical view of the ontology

GraphViz need to be installed on the system. OWL Viz basically depicts the “is-a”

relationship by showing the class and subclass relationships graphically. The

hierarchy view of our domain is depicted in the figure 4.12 .

81

Figure 4.12 Snapshot Showing OWL Class Hierarchy

ii) Ontograf : To provide support for interactively navigating the relationship of

OWL created above, one can use ontograf utility that support display of individual,

domain, range, property, relationship along with the superclass-subclass relationship,.

This provides the familiar view to overall ontology generated as depicted by figure

4.13.

Figure 4.13 Snapshot showing Ontograf.

82

By clicking on particular individual/instance all the relations with other classes and

instances to which it is related can be easily seen in Ontograf. Putting the mouse on

any of the arrow shows the name of relation also as shown in figure above where

written by relation can be easily seen between author_name and actual name of the

author.

4.5 INSTANCE EXAMPLES

The snapshots of various scenarios that depict the proper relationship of any instances

to all other property, other instance and concepts have been taken and shown in

figures below. In figure 4.14 Dr. A_K_Sharma has been shown as instance showing

all its relationship to other concepts along with different properties and their values

Figure 4.14 Ontograf for Instance Dr._A_K_Sharma

After developing the entire book domain ontology the knowledge base is ready to

feed as input for reasoning.

Figure 4.15 shows Dr_Komal_Kumar_Bhatia as member of ontology and various

relationships with other concepts and also the ontograph shows various properties

attached with instances.

Figure 4.16 shows another instance Dr. Ashutosh dixit and all its properties.

83

Figure 4.15 Ontograf for Instance Dr._Komal_Kumar_Bhatia

Taking Dr._Ashutosh_Dixit as instance .

Figure 4.16 Ontograf for Instance Dr._Ashutosh_Dixit

4.6 ONTOLOGY BASED QUERY PROCESSING AND RESULTS

Now the system is having complete knowledge base of book domain for which

Ontology has been created which is ready to handle user’s book domain related query.

For available proposed ontology there is the need for designing of an ontology-based

84

querying system which maps the information asked by the user to the knowledge

stored in the ontology. Here in this section discussion on how to create query

interface, which query language can be use to answer user’s query is done. Also the

snapshots of various user queries and their results are described.

4.6.1 Ontology based query system: SPARQL query language

For creating query interface for user Netbeans IDE 6.9.1 and incorporate jena

API[100] that has java library is used to help system developer to provide storage

view and way to query over knowledge base. The queries that can extract information

in RDF triple which can display class hierarchy, display subject object relationship

and support SPARQL query over knowledge base have been created.

SPARQL is the query language of the Semantic Web. It lets us:

i) Pull values from structured and semi-structured data.

ii) Explore data by querying unknown relationships.

iii) Perform complex joins of disparate databases in a single, simple query.

iv) Transform RDF data from one vocabulary to another.

SPARQL is used to express queries across diverse data sources, whether the data is

stored natively as RDF or viewed as RDF. SPARQL contains capabilities for

querying required and optional graph patterns. SPARQL also supports extensible

value testing and constraining queries by source RDF graph. The results of SPARQL

queries can be results sets or RDF graphs.

4.6.2 Query Processing: In this section firstly the figures that show the

organisation of knowledge base in RDF triple, class hierarchy are described. Then

various user queries in SPARQL format that are given as inputs to system and result

obtained by executing those queries are shown in form of snapshots.

i) Knowledge Base Organisation: Knowledge base is stored in RDF triplets form.

Each triple has <S P O> subject predicate and object relationship. The same is shown

in figure 4.17 below.

85

Figure 4.17 Knowledge Base in RDF Triples

Figure 4.18 describes the class hierarchy relationship in NETBEANS IDE using

jena API over owl file.

Figure 4.18 Class Hierarchy of Book Domain OWL

ii) User Query and Result: In this subsection the snapshots showing the queries

entered and the corresponding result retrieved. If user wants to the list of all subjects

and objects which are related to each other? The query entered is shown as input and

the snapshot is shown as output for each query. The query shown here is taken in

86

same format as was written in code to get the desired result. The result is shown in

figure 4.19.

a) Input Query: "SELECT ?subject ?object WHERE { ?subject rdfs:subClassOf

?object }"

Output:

Figure 4.19 Displaying SubClassOf relation

a) If user wishes to know all concepts related to domain Input: " select distinct

?Concept where {[] a ?Concept}"
Output: the snapshot in figure 4.20.

Figure 4.20 Concepts of Book Domain OWL

b) If query type is transitive query List the amount of books written by Dr Naresh
Chauhan shown in figure 4.21.

87

Input : "SELECT ?object WHERE { ?property base:hasAmount ?object
{SELECT ?property WHERE {?property base:writtenBy
base:Dr._Naresh_Chauhan }}}"
Output:

Figure 4.21 Transitive Query Over Book Domain OWL

c) List the all subjects and objects that are related by writtenBy object property.

 Input : "SELECT ?subject ?object WHERE { ?subject base:writtenBy ?object

}"

Output: in figure 4.22

Figure 4.22 Writtenby Relation of Book Domain OWL

88

d) List the properties and object related to Dr. Komal Kumar Bhatia .

Input: " SELECT ?property ?object WHERE {

base:Dr_Komal_Kumar_Bhatia ?property ?object}"

Output: Figure 4.23

Figure 4.23 Concepts Related to Dr Komal Kumar Bhatia

Many systems have been developed to organize domain specific information into

relational table and perform user query over it but with the involvement of Ontology

we can create semantic knowledge base of domain specific information. The

contribution mainly focuses on process of building Book Domain Ontology for

readers and to show how effective the results of queries can be obtains by storing

knowledge base in RDF triplets in terms of Ontology.

The ontology created here is used by hidden web crawler to extract the information

hidden behind form interfaces by filling the form values from the ontology, discussed

in chapter 6.

89

Chapter 5

GENERATION OF AUTOMATIC ONTOLOGY FROM HIDDEN

WEB INTERFACES

5.1 GENERAL

Ontology is a data model defining the set of concepts within a domain and

representing an area of knowledge and relationship between those concepts. The

construction of ontology for book domain is shown in chapter 4. The various instance

values taken to fill the knowledge base have been taken from the examples of faculty

from YMCA University, Whereas the hidden web present on WWW is actually very

vast and cannot be fully retrieved using these limited values. In this chapter a novel

technique for creation of ontology with the help of form pages is proposed and

implemented. This technique is novel in the sense that it is using the information

present on the search interface to create the ontology. The ontology thus created is

stored as the semantic database in Oracle 10g in the form of triples <Subject,

Predicate, Object >.

5.2 THE PROPOSED ARCHITECTURE OF AUTOMATIC GENERATION OF

ONTOLOGY FROM SEARCH INTERFACES

The Architecture of the proposed system along with different components is shown in

figure 5.1 below.

Figure 5.1 The Proposed Architecture of Automatic Generation of Ontology
From Search Interfaces.

WWW

Search Interface
Repository

URL Extractor

Ontology
Converter

Domain specific
Ontology Database

Downloaded
Pages Form

Downloader

Pages

Form
interfaces

Seed
URL

<S,P,O>

URL’s

90

The architecture consists of following major components:

1. Form Downloader.

2. Search Interface Repository.

3. Ontology Converter.

4. Ontological Database.

The detailed description of each component is given below.

5.2.1 Form downloader: A form downloader is designed which starts with a seed

URL and downloads the form pages. Those web pages which are having entry point to

hidden web documents i.e. the search interfaces are downloaded and stored. For this

the downloader checks from the source code of the web page, whether the page

contain the <form> tag element or not. If source code of page contains the <form> tag

i.e. this page is actually the entry point for hidden web is downloaded and taken to the

next step. Hence those pages that contain fields to be filled by the user are considered

only rest are discarded. The source code of each form page is then stored in the

repository which is passed to next component for further processing.

5.2.2 Search Interface repository: This repository contains the downloaded form

pages above. These pages are then taken by ontology converter for creating ontology

with the help of information present within the tags and between a pair of tags in

source code of the page.

5.2.3 Ontology Converter: This component is the core component of the system. It

takes the source code of form pages stored in the repository as input and send them to

classifier which classifies them according to their format. The classifier further sends

them to corresponding analyzers. Each analyzer extracts the meaningful information

from various tags present in the page. Using this information ontology is constructed.

Different form pages are having different formats like RDF, XML, HTML, OWL etc.

According to the format of these pages, they are sent to different analyzing modules

in order to create a generic and well populated ontology. Following three type of

analyzer modules are proposed:

i) XML/HTML Analyser

ii) RDF Analyser

91

iii) OWL Analyser

The detailed description of each of these is given in next section. These analyzers

extract the required information from each page and convert it in the form of Subject,

Object and Predicate triples. These <S,P,O> triples are then stored in domain specific

ontology database (DSODB) . The architecture of ontology converter module is

shown in figure 5.2.

Figure 5.2 The Architecture Showing Components of Ontology Converter
Module.

The description of each of its sub components is given below:

i) Classifier: This component after getting the form pages from repository reads

different tags present in source code of the page and classifies them according to their

types/format. The different classifications available online till now are: i) HTML ii)

XML/HTML iii) RDF/XML iv) OWL/RDFS.

The web pages traditionally are created in HTML format. For dynamic page

generation the programmers started using scripts. To solve the serialisation problem

XML came. Then for adding more semantics to the text RDF was developed. Above

Repository of
web pages

OWL Analyser

RDF Analyser

Format of
web Page

Classifier

Ontology in form
of <S,P,O>

SPO Annotator

HTML/XML
Analyser

92

all of them comes is OWL adding more information. The classifier according to the

type of web page sends the page to the respective analyser for extracting further

information. If page contains Owl tags then is sent to OWL analyser similarly if page

contains RDF tag then sends to RDF analyser otherwise will send to XML analyser.

ii) XML Analyser

To analyse XML document DOM parser which is already available is used here.

DOM parser parses the entire XML document and loads it into memory, then models

it in form of a” Tree structure” for easy traversal or manipulation. After traversing the

tree node by node required information is gathered. According to DOM, everything in

XML document is in form of nodes. It says that the: i) Entire document is -a

document node, ii) Every Xml element is an element node and iii) Every attribute is

an attribute node.

For Book domain, here Book is the super class and is stored as Subject. The empty

nodes created by <dl> tag is defined as subclasses and also stored as Subject. Label to

empty nodes like author, title, price, ISBN, publication etc is given by <dt > tag.

Instances/values of these subclasses is found by<dd> tag and are treated as Object.

This process of extracting <dt> and dd tag continues until the count of dl tag does not

get null value and nlist variable is empty.

Figure 5.3 Example Source Code from the Website www.Cheapesttestbooks.Com

http://www.cheapesttestbooks.com/

93

Figure 5.4 shows the example of XML tags and conversion in Graph for source code

of Book domain from the website named www.cheapesttestbooks.com (figure 5.3) and

used for extraction of data from various tags and meta tags defined in XML/HTML

file in.

Figure 5.4 Tree Structure by DOM Parser for XML Code Shown in Square Box.

Here for XML documents according to algorithm firstly the root node is constructed

and then empty nodes are constructed by <dl> tags. Then <dt><dd> tags are taken

and information is extracted and saved in database

• Procedure for finding <S,P,O> triple from XML page format using DOM

parser is as follows:

 Finding Subject

i) The method getnodname() is used to find Subject. The value returned by

this function is stored as subject. This is the root element.

ii) The method getelementbytagname(dl) for <dl > tags is used to extract

the number of children nodes. This provides a number of empty nodes. All

these nodes are Subject.

iii) The labels of the nodes found above are extracted using

getelementsbytagname(dt) method for <dt> tag. All these values are stored

as Subject.

94

 Finding Object

Use method getelementsbytagname(dd) for finding objects. The values

returned by this function are treated as objects for above extracted subject

values.

 Finding Predicate

The method getattribute() is used to extract information associated with

labels and values. This information is used to find the relationship between

labels and values and is stored as predicate.

The flow chart showing the working of XML analyser is summarised in figure 5.5

below.

Figure 5.5 Flow Chart Showing the Working of XML Analyser.

 Storing Extracted Values in Semantic Database: Extraction of <SPO> triples

is done where xml file is taken as input file and traversed as nodes of tree step by

step as shown in figure 5.6. First of all, root node is found which is <BOOK>

here and treated as super class. Then number of children nodes has been extracted

and created like Author, Title, Price, ISBN, Publication etc. The subclasses and

further, instances of various subclasses have been created. All the classes,

subclasses and instances are then finally stored in database in form of <S,P,O>.

95

Figure 5.6 Snapshot of extraction of <S,P,O> triples from XML/HTML File

In figure 5.7 below <subject,predicate,object> with their corresponding urls find in

source file has been saved in database. The values associated as Subject and Object

depends upon the predicate stored with them. For one predicate one value may behave

as subject and for other predicate the same value may behave as object. For

example”Abraham haswritten operatingsystems and internalsdesignPrinciples”, Here

Abraham is subject and operatingsystems and internalsdesignPrinciples are objects.

But for predicate writtenby, operatingsystems and internalsdesignPrinciples became

subject and Abraham became object.

Figure 5.7 Snapshot of Saved <S,P,O> Triples in Oracle Database for

XML/HTML File

96

iii) RDF Analyser: RDF is a standard for describing resources. It is similar to

conceptual models such as entity-relationship model. It is based upon idea of making

statements about resources in form of subject-predicate-object expressions. These

expressions are known as triples in terms of RDF. The subject denotes the resource

and predicate denotes relationships of resource between subject and object. For

example “Book on operating system” can be represented in RDF as triple where

‘book’ denoting subject, ‘on’ denoting predicate, ’operating system’ denoting object.

The subject of an RDF statement is either a URI or blank node, both of which denote

resources. Resources indicated by blank nodes are called anonymous resources. The

predicate is a URI which also represents a resource relationship. The object can also

be a URI, blank node or string literal. For example given below are the two ways to

specify RDF. Where Figure 5.8 a) represent RDF/XML format and figure 5.8 b)

represents the pure RDF format.

Figure 5.8 a) RDF/XML Format b) Pure RDF Format

Where URI is string of characters used to identify a name of resource, such

identification enables interaction with representations of resource over network

(WWW).The most common form of URI is web page address. Basically, URI

describes:

1) The mechanism used to access resources.

2) Computer that contains resource.

3) A file name of resource on computer.

4) vCard ontology focus on describing people and organizations

including location info & group of such entities .vCard ontology use

http://www.w3.org/2006/vcard/ns# namespace URI for representing

vCard objects in RDF.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-
rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description
rdf:about="http://www.w3.org/">
<dc:title>World Wide Web
Consortium</dc:title> </rdf:Description>
</rdf:RDF>

<rdf:Property rdf:about="isbn" rdfs:la
bel="ISBN
Number" rdfs:comment="The ISBN
number of the book.">
</rdf:Property>
<rdf:Property rdf:about="authoredBy"
 rdfs:label="Authored
By" rdfs:comment="An author of this
book.">

97

RDF analyser proposed here, after getting the attached RDF of the web page analyses

its content and converts the data into <SPO> triple according to the procedure defined

below. RDF is usually embedded in an <rdf:RDF> tag element. Then there is an

<rdf:Description> tag which describes the resource whose URI is defined in

<rdf:about> tag and is represented as root node and becomes SUBJECT of <SPO>. If

the <rdf:about> is missing, the element would represent a blank node. Further, the

tags enclosed within description tag may have different names depending upon the

page like <rdf:property>, <dc>, <vCard:FN> which describes a property of resource

whose URI is described in rdf:about[] .

The property is treated as the OBJECT of <SPO> e.g. in above figure 5.8 a) the

description tag is associated with www.w3.org having title as World wide web

Consortium hence www.w3.org is treated as Subject and title is treated as Object. The

dc or property tag may contain a label and/or a comment associated with the

corresponding attribute e.g. title and label tags in above figures respectively.

In Figure 5.8 b) in the property tag we have label as ISBN treated as object of

rdf:about this rdf property is associated with some rdf :class which is book. Hence

book is subject and isbn is object here.

• Procedure for finding <SPO> in RDF format

 Finding Subject
Find <rdf:Description> tag element in <rdf:RDF> tag. Extract <rdf:about>

tag in <rdf:Description> tag to define resource of information and assigns it

as root node, The first element of Subject Set S.

 Finding Object

Extract </dc> or </rdf:property>or <vCard:FN> information enclosed in

between these tags and treat them as object value for defined property. Here

dc tag contain the value after : which is treated as object and property tag

contain other tags like comment and label, label is treated as object and

comment can be used to find the predicate. The values find are added to set

O and P correspondingly.

98

 Finding Predicate

Find <dc>, <rdf:property>,<vCard:FN> tags to describe property of resource

and store them as Predicate where <dc:> and <rdf: property> specifies

instance or attribute property, FN is property Name in vCard namespace.

These tags contain information that will help to find the relationship between

S and O.

As it is difficult to find out relation/predicate from RDF document the <dc/property>

tag value is useful for the same i.e. to find out the Predicate of <SPO>. In case of

<dc> tag it contains two things: 1. The attribute defined after colon “:” 2. text

between <dc> and </dc>.

After extracting these two things from <dc> the relation between element in

<rdf:description> and attribute in <dc> is found. In case of <rdf:property> this tag

may contain a label and comment tag which is parsed and used to find out the

predicate. Again there are not many live web pages defined in RDF format till now as

research is still going on, hence in this work the example URL

http://www.w3.org/2001/vcard-rdf#FN[] is taken as input (figure 5.9).

Figure 5.9 Example Source Code Taken for RDF Format

Extraction of RDF triples is done from input file where <rdf:Description> describes

resource or subject and enclosed meta tags within <rdf:Description> tag defines

99

property or predicate and object is literal value between each associated meta tags as

shown in figure 5.10.

Figure 5.10 Snapshot of Extraction of RDF Triples

iv) OWL Analyser: OWL format consist of RDFS tags as depicted in figure 5.11.

One can easily find the class, subclass and property tags from this. Also there are

range and domain tags available in the code itself. Few terms are used

interchangeably below but have same meaning/context like: Element=concept=class,

Property=attribute=relation, Entity=object=instance.

But there is not much information available online in OWL format currently i.e. there

is not any form page available in OWL format online. e.g. The URL

http://ebiquity.umbc.edu/ontology/publication.owl taken from SWOOGLE[103]

search engine is in OWL format figure 5.11, but it is not a form page.

Figure 5.11 Example of Web Page in OWL.

<owl:Ontology rdf:about="http://ebiquity.umbc.edu/ontology/publication.owl#publication"
>
 <owl:versionInfo>0.1</owl:versionInfo>
<owl:Class rdf:about= "http://swrc.ontoware.org /ontology#InBook">
*1 <rdfs:subClassOf>
 <owl:Class rdf:about=”http://swrc.ontoware.org/ontology#Publication”/>
 </rdfs:subClassOf>

*2<rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="http://swrc.ontoware.org/ontology#publisher"/>

<owl:allValuesFrom>
<owl:Class rdf:about="http://swrc.ontoware.org/ontology#Organization"/>
</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>*2

http://ebiquity.umbc.edu/ontology/publication.owl

100

As OWL format also contain RDF tags, one can use the same algorithm as for RDF

pages to annotate OWL pages.The parser reads the content of the web pages, filters

for various tags and give as output the subject, object and predicate of <S,P,O>

triples. The procedure for the same is discussed on below.

• Procedure for finding <S,P,O> triple from OWL page format is as follows:

 Finding Subject

i) Find the rdf:about tag, this contains the root of the page i.e. the main

class. This specifies the URL of the page we are going to consider for

parsing. This is stored as subject of <S,P,O> for which next predicate

and object will be discovered. Also added to a set U.

ii) Find the rdf:class tags which define the parent of all children nodes and

itself is the child of root node. The required information attached with

class tag may be a URI or an ID as specified in figure above. Class

specifies the element about which we are talking currently. An OWL

page may contain more than one class tags. Hence all becomes the

Subject in triples. All these attributes extracted as subject are added to a

set S of subjects.

 Finding Object

i) The subclassof tag in between <owl:class> tells about two things in an

OWL code. i) If the subclassof tag contains <Owl:class> tag then this

specifies that the above said class in <rdf:about> tag is the subclass of

resource specified in <Owl:class> tag*1. It means the about resource is

having an is-a relation with the Owl:class. All the above said <

rdf:about> elements are treated as object and <Owl:class > are taken as

subject with is_a relation. They further are treated as subject in case ii.

ii) The number of subclass tags enclosed in a class tag having property as

<owl:restriction> tag defines the number of children and the name of

each child node can be extracted from the onproperty/label tag. These

will be treated as OBJECT in SPO having has relationship with

<rdf:about> in Owl:class. The attributes extracted above are stored in a

set O of objects.

101

 Finding Predicate

Two relations have been derived from step 3 is-a.For deriving more

relations the data found in various other tags like <owl:dataproperty>

<rdfs:domain/range/label/id etc.> is parsed and required meaningful

information is extracted and used. The relations extracted are also stored in

a set P of predicates.

The data extracted from all steps above have been stored in different sets S, P and O.

These sets individually are given for further processing to SPO annotator like

removing duplicates stemming, lemmatization etc for getting cleaner information.

There is not a single Search interface present in OWL format till now. In future if the

dynamic web pages are constructed in OWL this algorithm can be directly used to

save the data in <SPO> format.

As there is not much information available in the form of web pages for OWL format,

the above algorithm is designed so as to cover as many things as possible. In future

new tags may come upon hence the algorithm can be extended for the same.

5.2.4 SPO Annotator: This module after getting the attribute values from the

classifier processes them and stores them because the values can not be directly used.

The attributes values found above are specific to particular web page they should be

converted in to more general forms For example one interface may contain author and

other may contain authors for the book domain so s from the second is truncated and

stored as author itself. Also to avoid repetition only one attribute is saved with the

same name.

Figure 5.12 Algorithm for SPO Annotator

Algorithm SPO _Annotator

Step 1: Get the set S and O of Subject and Object respectively from classifier
 2: For each Si€ S and Oi €O do

i) Remove special symbols like: (, -, _, @, $, &,#, ?, !, *,etc.) and
make two elements connected by special symbols.

ii) Remove duplicated in S and O.
iii) Expand abbreviations if any.

 3: Extend the synonym values above of both sets by utilizing WordNet and expand
the sets.

 4: Find Relation/Predicate if not present and store in P.
 5: Send to database for storage.

102

One thing here to be noted is that simple comparison of sets is employed with

syntactic analysis only. No semantic comparison is applied here at this step. Some

attributes may contain some special symbols like ‘leaving_from’,some may contain

plural form like ‘adults’ and others may contain some abbreviation e.g. dept_date for

departure date etc. Keeping these things in mind algorithm to annotate various terms

is designed and applied to each element of both sets S and O. E.g. one interface may

contain ‘leaving_from’ and other may contain ‘departure from’. Firstly all the values

are stored as elements of the set ‘leaving_from and departure, from ’. The special

symbols like underscore from leaving_from is removed and leaving and from are

disconnected as two elements in step 2(i). As from comes two times hence duplicate

term is removed in step 2(ii). In step 2(iii) if an attribute contains some abbreviation

then it is expanded. In step (iv), Wordnet is used to

i) Extend the attributes with the help of Synonyms present.

ii) To remove improper words, two rules are used to extend the attributes.

First, for each individual word of a candidate attribute if word has a noun meaning or

is a preposition then the word will be kept, otherwise, the word is discarded. E.g.

“from” and “to” will be taken as they come under proposition. All state city country

name in case of flight domain come under noun and are saved. For book domain

writer author and their names are nouns saved.

5.3 Implementation and Evaluation of developed ontology

This section gives the snapshots of various instance values of ontology stored in

semantic database in oracle in form of <S,P,O> triples. The ontology constructed has

also been evaluated on different metrics shown under evaluation sub section.

i) Implementation: The values after all this processing are stored in database in form

of Subject,Object, Predicate tuple in oracle 10 g using JENA API. JENA is a java API

which can be used to create and manipulate RDF graphs. Form pages of two domains

i) Book and ii) Airline domain are taken and information retrieved from various

interfaces is stored in semantic database Oracle 10g as shown in figure 5.13 and

figure 5.14 respectively.

103

Figure 5.13 Database in Form of SPO for Book Domain

Figure 5.14 Database in form Of SPO for Airline Domain

iii) Evaluation: The developed ontology is evaluated using various metrics of

ontology evaluation in table 5.1 below. The metrics used here are already

defined in works [104,105].The evaluation shows that the ontology

developed is complete, rich and computationaly efficient.

104

Table 5.1. Evaluation of Proposed Ontology

Evaluation
Perspective

Metric Measure Statistics of proposed
ontology

Ontology
Correctness

Pragmatic
quality(Accuracy,
Relevance)

Relevance is whether the
ontology satisfies the specific
requirements. Precision: total
number correctly found over
whole knowledge defined in
ontology
Recall: total correctly found
over all knowledge that should
be found

The ontology developed
here gives accurate and
relevant result as per the
query.

Completeness Coverage Complete. The ontology
developed here is
complete in the sense that
it tries to cover all
possible properties and
axioms of book domain.

Ontology
Quality

Computational
efficiency

Size The Ontology here makes
a complete Binary tree on
which the computation
cost is lg(n) as compared
to the traditional ontology
where the computation
was of the order O(n).

Syntactic
quality(Richness)

the proportion of features in the
ontology language that have
been used in an ontology

The richness of ontology
developed here is very
good. Our ontology
includes terms and axioms
both hence is richer.

Semantic
quality(Interpretability,
Consistency, Clarity)

Interpretability refers to the
meaning of terms in the
ontology.
Clarity is whether the context
of terms is clear

The knowledge provided
by our ontology is
mapping into meaningful
real world concepts e.g.
book,author,title etc. Also
the meaning of each term
is clear and consistent.

 The instance values stored in database are used by the proposed Ontology based

Hidden Web Crawler to fill the Hidden Web form interfaces.This database is also

used by the same crawler in proposing a novel technique to map two ontologies. The

ontology based hidden web crawler is discussed in next chapter.

105

Chapter 6

OHWC: ONTOLOGY BASED HIDDEN WEB CRAWLER

6.1 INTRODUCTION

Deep web refers to the contents hidden behind HTML forms. Since it represents a

large portion of the structured, unstructured and dynamic data on the web, accessing

these types of quality contents has been a long challenge for the database community.

This Chapter describes a crawler based on the ontology generated previously for

accessing Deep-Web.

Traditional Crawlers provided with a list of URLs picks up a URL called seed URL

and downloads the corresponding HTML document. The URL’s embedded therein

are appended in to the list of URL’s and the process is repeated. The information

which cannot be acquired by simply following hyperlinks and basic keyword

searching constitutes hidden web. Hence there is a need of developing a novel

architecture of hidden web crawler to extract this information.

In order to download the hidden web contents from the WWW the crawler needs a

mechanism for Search Interface interaction i.e. it should be able to download the

search interfaces, automatically fill them and submit them to get the hidden web

pages. By combining the hidden web retrieval with domain specific ontology, the

proposed work automatically fills in the text boxes with values from already defined

ontology. This not only makes the retrieval process task specific, but also increases

the likelihood of being able to extract just the relevant subset of data.

6.2 PROPOSED ONTOLOGY BASED HIDDEN WEB CRAWLER

The proposed architecture of Ontology based Hidden Web Crawler (OBHWC) consist

of following six major components as shown in figure 6.1:

i) Form Downloader

ii) Form Analyzer

iii) Mapping Module

iv) Query Generator

v) Revisit Frequency Calculator

vi) Dispatcher

106

Figure 6.1 Proposed Architecture of Ontology Based Hidden Web Crawler

Brief description of each component is as follows:

i) Form Downloader: The first component is form downloader which is responsible

for downloading form pages i.e. only those pages which contain interfaces to be filled

by user. These are also specified as entry points to hidden web from WWW. To do

this, a seed URL is given to form downloader to start downloading the web pages.

Form downloader checks the HTML code of the page and downloads the pages that

contain <form> tag in them as shown in figure 6.2.

Figure 6.2 Algorithm of Form_Downloader

Seed URL

Query
Dispatched

Ontology in
Form of <SPO>

Form
Ontology

Hidden Web
Repository

 WWW Form
Downloader

Form
Analyzer

Mapping
Module

Query
Generator

Revisit
Frequency

Dispatcher

 WWW

something_to_analyz

New URL

something_to_map

data ready

Pages

something_to_dispatch

Form
Pages

Algorithm:
Form_ Downlaoder()

Step 1: Begin
 2: do forever
 3: download web page corresponding to seed URL.
 4. check if <form> tag is present.
 5. if yes then store in temporary repository
 6. Extract URL’s from downloaded pages
 7. Signal(something_to_analyze);
 8. End

query_ready
repository

107

ii) Form Analyzer: This component of Hidden Web Crawler takes the form page

from the downloader as input and analyzes the page having different formats. It

creates the ontology for the form page using the same algorithm used in PHASE I,

(Part 2) to create the ontology from web pages. The ontology created here is also

stored in the form of <S,P,O> which is used by next component of OHWC. The

algorithm for the same is given in figure 6.3 below.

Figure 6.3 Algorithm of Form_Analyzer

iii) Mapping Module: This is an important module as the efficiency and output of the

OBHWC depends upon accuracy of this function. This module proposes an algorithm

to map two different to find exact values that need to be filled on form interfaces.

First ontology is the form ontology created by form analyzer above, which is mapped

to the domain specific ontology created before in chapter 4. Here semantic matching

between two ontologies has been proposed for determining the output mapping

function. It means not only two similar words give a matching but also if they are

having a relationship like synonyms, siblings, child and parent etc.; have also been

considered. This module is explained in detail further with design of a novel mapping

technique in section 6.3.

iv) Query Generator: After finding a match by mapping module between two

ontologies; queries are being generated for filling the form interfaces taking matched

values from domain specific ontology (DSODB). For each matched value a unique

query URL is generated here. These queries are then sent to next module to be fired

on WWW and obtain the desired result. These queries are temporarily stored in a

URL queue which is being accessed by dispatcher module going through revisit

frequency calculator. The algorithm for the same is shown in figure 6.4.

Algorithm:
 Form_ Analyzer()

 Step 1: Begin
 2: do forever
 3: Wait(something_to_analyze);
 4. call ontology_converter();
 5. store form ontology in buffer
 6. Signal(something_to_map);
 7. End

108

It is a post mapping component. It receives a set S of pairs of nodes that are found

equivalent during the mapping process of the system. On receiving this set S from

Central Coordinator component, it picks one pair at a time and generates the

instance/object value associated with particular subject for each mapped record in

database. Once these values are generated, a URL is constructed for each particular

value corresponding to the format of particular interface. In this way, from each

matched pair, a value is computed and placed in the corresponding field. Eventually

query URL is submitted by dispatcher through revisit calculator to get the response

page and thus enabling retrieval of hidden web.

Figure 6.4 Algorithm for Query Generator

v) Revisit Frequency Calculator: A URL queue is maintained which contains all the

queries generated above and with each URL, a value is associated in queue named

revisit frequency. This revisit frequency is calculated according to the domain of each

URL so as to save the network bandwidth.

All the queries generated in the form of URL’s from query generator are stored in a

URL queue. Before submitting these queries to WWW a revisit frequency is

associated to each URL depending upon the domain of the query. There are pages in

Hidden Web that contain current information, hence need to be updated continuously

e.g. in case of Airline reservation and Railway reservation System the current status is

required every time.

In contrast there are web pages that contain factual information e.g. ages that contain

history and pages that contain science theories etc. Hence they are not required to be

re-crawled frequently. Also there are pages that belong to book domain these websites

Algorithm Query_Generator(S) // S comprise matched pair of node
Step 1: Wait(data_ready);
 2: repeat step 3 to step 5 for each pair of node(n1,n2) in S do.
 3: Generate a value satisfying both domain & range constraint.
 4: Put the value generated in previous step into the query format of form.
 5: if all mandatory fields are filled then goto step 6.
 6: Signal(query_ready);
 7: Call Revisit_Calculator();
 8: Submit Query;
 9: End.

109

generally change their data fortnightly or weekly hence they are re-crawled

accordingly. For this a value called revisit frequency (rev_fre) is associated and being

sent to Dispatcher with each URL/query generated. The algorithm for revisit

frequency calculator is shown in figure 6.5.

Figure 6.5 Algorithm for Revisit Frequency Calculator.

vi) Dispatcher: A URL dispatcher is maintained here which takes the URL from

URL queue one by one. Then check each URL’s revisit frequency and according to

rev_freq if the page is required to be downloaded again (e.g. by checking the last

update time/date) then particular query is fired on WWW. The algorithm for the same

is given in figure 6.6 below.

The dispatcher here removes one URL from the queue constructed above and checks

the revisit_frequency associated with each. Depending upon the value of rev_fre

variable value the query is fired on WWW. The resultant Hidden web Pages are then

stored in Hidden Web Repository.

Figure 6.6 Algorithm for Dispatcher

6.3 MAPPING MODULE: Ontology defines common vocabulary for those who

need to share information in a domain. Because similar concepts in a specific

Algorithm Revisit_Calculator()

 Step 1: Wait(query_ready);
 2: Find the Domain of the query.
 if Book domain Set rev_fre to 15 days.

 if Airline domain set rev_fre to 30 mins.
 if factual sites set rev_fre to 30 days.

 3: Update the value of Rev_fre in array of queries.
 4: Add query to dispatcher() queue.
 5: Signal(something_to_dispatch);
 6: End;

Dispatcher()
Step 1: Wait(something_to_dispatch);
 2: While URL queue != null
 3: If new query then fetch URL from WWW.
 4: Else Check rev_fre and last updated date and time form the web page
 5: Depending on rev_fre dequeue and fetch URL from WWW.
 6: Store the result in Hidden Web Repository.
 7: End.

110

domain can be represented through different vocabulary there is a requirement to

map ontology’s (figure 6.8) belonging to same domain in order to make them

interoperable. For example, in a person domain both “Man” and “Male”

represents similar context (figure 6.7) and it is obvious for human beings but it

means different for computers because of different syntax.

Figure 6.7 Two Ontologies of Same Class Person with Different Vocabularies.

This work focuses on developing an effective and efficient source-based ontology

mapping technique for a specific domain, which finds the appropriate values that need

to be filled in the form interfaces.

Figure 6.8 Diagram Showing Mapping of Two Book Domain Ontology

Here in this module the form’s ontology is mapped to the domain specific ontology

generated before. For each mapping concept pair the values from predefined

ontology are extracted and filled in the interface. The primary focus is to make the

Ontology 1
Person

Man Woman

Ontology 2
Person

Male Female

111

process more efficient in terms of resources consumed during the process. The

complexity of matching process usually varies in accordance with the size of the

ontology under consideration.

A straightforward approach for ontology mapping is to reduce the number of pair-

wise comparisons. Out of so many possible concept-pairs only a few are considered

for mapping based on the depth of the query-form ontology. These concept-pairs are

further reduced to a minimal set by eliminating irrelevant pairs. Once a minimal set of

concept pairs is obtained, mapping between these pairs are performed in two steps:

First is linguistic mapping and second is structure mapping. The mapping technique

mainly consists of following components and the architecture of this novel technique

is shown in figure 6.9 above.

i) Central Coordinator

ii) Pre-Processor

iii) Main Mapper

Figure 6.9 Proposed Architecture of Ontology Mapping System

Central Coordinator

Preprocessor
Main Mapper

Form
Ontology

Domain Specific
Ontology

Node
Pairs Mapped

pairs

Node
Pairs

something_to_process data_ready

pair_ready value_ready

112

The detailed description of each sub component is as follows:

6.3.1 Central Coordinator: Central coordinator is the main processing component of

the proposed technique and it coordinates rest of the major components of the system.

It provides input to all main components and receives output from them. On receiving

output from one sub ordinate component, Central Coordinator module pass this

information to the next major subordinate module in the system and repeat the same

until the work is done. The algorithm for the central coordinator is shown below in

figure 6.10.
Central Coordinator provides form ontology as input to the Pre-processor component

which returns back a set of pairs of nodes as output. Output received from pre-

processor acts as input to the main-mapper component and output generated by main-

mapper is provided to central coordinator which transfers it to the query generator

component of OHWC which finally ends with a response page corresponding to a

query interface form.

Figure 6.10 The Algorithm for Central Coordinator Module

6.3.2 Pre-Processor: This module operates on two inputs provided by the

coordinating module. It encompasses three sub ordinate modules as shown in figure

6.11. The name of the subcomponents is:

 i) Node Selector

 ii) Random Filler

 iii) Pair Constructor

One of the input is form interface in form of form ontology and the second is ontology

database (of same domain) is taken for reference ontology. From these two inputs this

Central Coordinator ()
Step 1: Begin
 2. do forever
 3. Wait(something_to_map);
 4. Signal(something_to_process);
 5. Call Pre-Processor;
 6. Wait(pair_ready);
 7. Signal(data_ready);
 8. Call Main_Mapper();
 9. Wait(value_ready);
 10.Signal(query_ready);
 11. Call Query_Generator;
 12. End

113

module makes pairs of concepts (nodes) from both ontology for which mapping has to

be performed for equivalency. Prior to making pairs of concepts a component called

random-Filler is employed that randomly fills-in values in the query-form and submit

it. Subsequently, an error report is generated by Error-handler module, specifying

mismatch of data types if any. Once this knowledge is obtained regarding the data

types of the fields (concepts) in query-form, only concepts in ontology database with

similar data type are paired and thus eliminating the pairing of irrelevant concepts

from the both ontology. After making a set of pairs of nodes from both ontologies, it

returns this set to the Central Coordinating module for further processing.

Figure 6.11 Pre_Processor’s Sub-Components

The detailed description of each subcomponent along with their algorithms is given in

next section. The algorithm for pre-processor module is described in figure 6.12

below.

Figure 6.12 Algorithm for Pre processor Module

Pre_Processor (O1, O2)

 Step 1: Wait(something_to_process);
 2: Signal(nselect_ready);
 3: Signal(fill_data);

 4: Get data type mismatch form error report.
 5: Signal(pair_construct);
 6: return set of pair of nodes to central coordinator.
 7: Signal(pair_ready);

 8: End

Form
Ontology

Node
Selector

Random
Filler

Pair
Constructor

Domain Specific
Ontology Database

pair_construct fill_data

Preprocessor

Main
Mapper

pair_read

nselect ready

114

i) Node selector: This module receives as input form’s ontology which is represented

in the form of graph. As an output it produces some or all nodes of ontology

according to the levels of nodes in the graph. Output of this process is then provided

to Random Filler module for further processing. The algorithm for the same is shown

in figure 6.13.

Figure 6.13 Algorithm for Node Selector Subcomponent

ii) Random Filler: This component is developed to increase efficiency. In a pair wise

mapping major of the time complexity comes from the number of mapping pairs.

Keeping in mind this fact, only relevant pairs (having larger possibility of matching)

are considered for mapping. Random Generator deals with this task. For each

mandatory concept in the ontology1 a random value is generated and filled-in. After

submitting the query, usually an error report is produced by the interface describing

the data type discrepancy, if any. This report is supplied to pair Constructor module.

The algorithm of random filler subcomponent is shown in figure 6.14.

Figure 6.14 Algorithm for Random_Filler

Node_Selector (G, D)//G is a graph corresponding to ontology & D is a depth.
Step 1: Wait(nselect_ready);
 2: create and initialize a set S with root
 3: insert root into an initially empty queue Q.
 4: repeat step 4 to 8 while Q ≠ Φ and L ≠ 0
 5: extract a node u from Q
 6: repeat step 7 & 8 for each node v∈ Adj[u] do
 7: add v into S
 8: reduce L by one.
 9: return S.
 10: Signal(fill_data);
 11: End.

Random_Filler(O1)
 Step1: Wait(fill_data);
 2: Repeat step 3 & 4 for each concept C in ontology O1.
 3: Value = Random (); //function that generates a random number
 4: Fill-in the value into the field of C.
 5: Submit the form
 6: Receive error report if generated
 7: Analyze report for data type mismatch error.
 8: Return the data type of nodes to pair constructor.
 9: Signal(pair_construct);
 10: End

115

iii) Pair Constructor: It receives set of nodes S1 and S2 and a error report. This

discrepancy report describes appropriate data type for each node. For the nodes that

have similar data type pairing is done discarding mismatched data type values. For

example: integer fields should pair only with integer fields and string fields should

pair only with string fields. From these two sets S1 and S2 it generates another set S

(pair set) which includes Cartesian products of these two sets considering discrepancy

report. The algorithm of pair constructor is described in figure 6.15. Every pair

contains one node from each set that has to be matched.

 S1 = {a1, a2, .., an} and S2 = {b1, b2, ..,bn}

S = { (a1,b1), (a1,b2), …, (a1,bn), (a2,b1), (a2,b2),…, (a2,bn), .., (an,bn)}

In general S = (ai, bj) Where ai ∈ S1 and bj ∈ S2

The set of pairs of node are returned as output to the Central Coordinator module for

actual mapping between them.

Figure 6.15 Algorithm for Pair_Constructor

6.3.3 Main Mapper: The task of Main Mapping is broadly divided into two phases,

Linguistic matching and Structure matching. In linguistic matching name of the

concepts (nodes) are compared with some existing vocabulary (synonyms) whereas

during structure matching structure of the underlying nodes are examined. Main

Mapper receives input from central Coordinator module after the initial

pre_processing. The input received by it is a set S of pairs of nodes whose Linguistic

Matching & Structure matching is verified here for equivalency and thus it is

responsible for actual mapping task.

Pair_Constructor (S1, S2, DR)
Step 1: Wait (pair_construct);
 2: Make an empty set S
 3: Repeat step 4 for each node n1∈ S1
 4: Repeat step 5-7 for each node n2 ∈ S2
 5: If pair (n1, n2) both shares same data type, than goto step 7.
 6: goto step 4.
 7: Add pair (n1, n2) into set S.
 8: Return S.
 9: Signal (pair_ready);
 10: End.

116

Figure 6.16 Architecture of Main Mapper Component

 This module consists of four sub ordinate module to do the above mentioned task a

shown in figure 6.16.

i) Stemmer

ii) Synonym Mapper

iii) Relation Analyzer

iv) Sibling & Child Pairing

Figure 6.17 Algorithm of Main Mapper

Main_Mapper(S)
Step 1: Wait (pair_ready)
 2: Repeat step 3 to 10 for each pair of node (n1,n2)from S.
 3: Call Stemmer ({n1, n2});

 4: Signal (clean_data);
 5: Call Synonym_Mapper ({n1, n2}) which returns either true or false depending on

whether both nodes n1 & n2 are found equivalent or not by performing linguistic
matching.

 6: if step 5 returns false then goto step 8
 7: Call Sibling&Child_Pair (n1, n2) which makes some additional pair of child &

sibling of pair(n1, n2) and goto step 11
 8: Call Relation_Analyzer (n1, n2) which returns either True or False by performing

structure matching
 9: if step 8 returns false then goto step 12
 10: goto step 7
 11: Continue.
 12: Signal(value_ready);
 13: End

Stemmer

Preprocessor

match_relation

Sibling &
Child Pairing

pair_ready

Synonym
Mapper

true

false

Relation
Analyzer

clean_data

new-pairs

117

Main mapper’s algorithm is shown in figure 6.17. It is responsible for doing these

below specified tasks:

i) It is responsible for converting the concept (field name) into its base/stem

form.

ii) It involves the process of checking whether concept from ontology 2 contains

concept of ontology 1 as its synonym in Ontology database or not and returns

true or false respectively.

iii) If synonym is not found in the Ontology database than structure of both

concepts from the pair are examined. True value is returned if structure is

similar else false is returned.

iv) Finally, if pair is found to be equivalent (linguistically or structurally) than
their sibling and child are also paired for the same evaluation.

Detailed descriptions of its subordinate components are mentioned here:

i) Stemmer: It is a subordinate module of Main Mapper module. Stemmer module is

invoked just before performing linguistic matching. It involves the process for

reducing inflected (or sometimes derived) words to their stem, base or root form—

generally a written word form. All concepts from query interface ontology

(Ontology1) are goes through this component and their corresponding stems are

obtained. A temporary data structure records each concept from Ontology1 and their

corresponding stem. The data structure created by this process is utilized during

linguistic matching.

ii) Synonym Mapper: This component takes first input from stemmer module &

second input from centralized domain specific database. Synonym mapper checks out

whether the nodes in the pair S(n1,n2) are synonyms or not. The algorithm for the

same is given in figure 6.18. For this it matches the stemmed values of n1 in the

synonym table for n2 from DSDB. If an entry is found it means a match has occurred

and this pair of concepts are added to the database called Mapping_Vector. In this

case sibling & child of this equivalent pair need to be matched. To do so recently

matched pair is supplied to Sibling & Child Pairing component. If pair is not found to

be matched than they are passed to relation analyzer component for Semantic

mapping. If pair is not found to be matched than they are passed to relation analyzer

component for structure matching.

118

Figure 6.18 Algorithm for Synonym Mapper

iii) Relation Analyser: For any pair of node this module is invoked if there is no

linguistic matching found for them and structure matching is required for next level

examination. Upon receiving a pair of nodes this module performs a various quality

tasks.

Figure 6.19 Algorithm for Relation_Analyser

First of all it checks whether these two nodes are connected with their parent with the

same relation or not. If the relation with which they are connected with their parents

are found to be same then a specific weight is assigned to this pair. After done with

this step, the no of relations as well as their types with which these two nodes are

Synonym_Mapper(n1, n2)
Step 1: Wait(clean_data);

 2: Receive a location loc generated by a hash function by passing n1 to
this hash function.

 3: Repeat step 4 to 8 while loc ≠ Nil
 4: If information at loc is matched with that of n2 goto step 6
 5: Let loc now points to next node in the list
 6: Increment matched by one.

 7: Add this pair to Mapping_Vector by setting word1 = n1 & word2 =
n2 // Mapping_Vector is a database containing matched concepts

 8: Return true.
 9: Return false.

Relation_Analyser(n1, n2)
Step 1: If relation of node n1 with its parent is not same as that of n2 then goto step 3
 2: Assign W1=α1
 3: If cardinality of n1 is not same as that of n2 goto step5
 4: Assign W2 =α2
 5: Repeat step 6 and 7 for each type of relation
 6: Check whether no of relation in n1 is almost same as that of n2 goto step 8
 7: Goto step 9.
 8: Assign W3 =α3
 9: Compare W = W1 + W2+ W3 with a predefined threshold Th.
 10: If W is qualified then goto step 13
 11: Increment mismatch by one.
 12: Return false
 13: Add this pair to Mapping_Vector by setting word1 = n1 & word2 = n2
 14: Signal(match_realtion);
 15: Return true

119

associated are analyzed. If number of relations for each type is almost same for both

pair then a predefined weight is assigned to this pair.

Eventually the weight associated with each pair is compared with a threshold value. If

this weight is qualified for the threshold then that pair of node is considered as

equivalent and this pair is added to the Mapping-Vector (database), if the weight is

not qualified for threshold then this pair is discarded. The algorithm for relation

analyser is given in figure 6.19

iv) Sibling & Child Pairing: This module is invoked only when a match is found

between a pair of nodes. So, this component is connected with both Linguistic

Matcher & Structure Matcher. After receiving a node pair it calls Sibling Mapper &

Child Mapper that makes pairs of their sibling & child respectively. Since for every

new pair their parents are equivalent, there is a possibility that they too can be similar,

so by this assumption a predefined weight is assigned to them. Once pairing of all

possible siblings & child’s has been formed it invokes sstemmer module for the next

pair in the queue. The algorithm for sibling & child pairing is given in figure 6.20

below.

Figure 6.20 Algorithm for Sibling & Child Pairing

Algorithm
Sibling&Child_Pairing (n1, n2)

Step 1: Call Sibling_Pair(n1, n2)
 2: Call child_Pair(n1, n2)
 3: End

Sibling_Pair(n1, n2)
Step 1: Set p1 = π[n1].
 2: Set p2 = π[n2].
 3: Repeat step 4 for each node u1∈ Adj[p1] and u1 ≠ n1 do
 4: Repeat step 5 and 6 for each node u2 ∈ Adj[p2] and u2 ≠ n2 do
 5: Add pair(u1, u2) into set S.

 6: Increment Total by one. // Total contains total no of matched
concept-pairs.

 7: End.
Child_Pair(n1, n2)

Step 1: Repeat step 2 for each node u1∈ Adj[n1] and u1 ≠ n1 do
 2: Repeat step 3 and 4 for each node u2 ∈ Adj[n2] and u2 ≠ n2 do
 3: Add pair(u1, u2) into set S.
 4: Increment Total by one.
 5: End.

120

6.4 PERFORMANCE EVALUATION OF MAPPING MODULE

Evaluation of quality of matched result of the proposed system is based on the

Compliance Measures. Compliance Measures are used to evaluate the degree of

compliance of the results of matching algorithms. Compliance measures consist of

three measures Precision, Recall and F-measure. These three matrices are employed

to measure the performance of concepts (fields) mapping.

Precision is a measure of the number of correct mappings found versus the total

number of retrieved mappings (correct and wrong).

Recall describes the number of correct mappings found in comparison to the total

number of existing mappings. Suppose the number of correctly identified mappings is

C, the number of wrongly identified mappings is W and the number of unidentified

correct mappings is M. then the precision of the approach is given by the expression

given below:

and recall is formulized as:

The f-measure combines the two parameters precision and recall as a single efficiency

measure. The standard formula is defined as:

b is a factor used to quantify the value of precision and recall against each other.

For the consequent test runs b is considered 1. Thus taking b = 1, F-measure can be

given as:

 P = C / (C + W) (Eq. 6.1)

 R = C / (C + M) (Eq. 6.2)

 F = ((b2+1)*P*R) / (b2*P+R) (Eq. 6.3)

F = 2PR/ (P + R) (Eq. 6.4)

121

 Figure 6.21 Venn Diagram Illustrating Sample Evaluation

As mentioned in the above figure 6.21 in the Venn diagram, concept-pairs are

classified into four categories:

a. Correct and found: Pairs that has been identified and found as correct.

b. Correct and not found: Pairs that are not identified yet, but believed to

be correct.

c. Incorrect and found: Pairs which are identified but found to be

incorrect.

d. Incorrect and not found: Pairs neither identified nor believed to be

correct.

With these classification concept-pairs from ontology1 & ontology2 as represented in

figure 6.3 are categorised as follows:

Correct and found (a) = {(First name, Writer), (Last name, Writer), (Price,

Cost), (ISBN, ISBN)}

Incorrect and found (b) = {(First name, Name), (First name, Field), (Last name,

Name), (Last name, Field), (Title, Writer), (Title, Field), (Price, Writer), (Price,

Name), (Price, Field), (ISBN, Cost), (Price, ISBN)

Correct and not found(c) = {(Subject, Field), (Title, Name)}

Incorrect and not found (d) = {(Subject, Writer), (Subject, Name)}

i) Comparison: For the purpose of evaluating this work, another mapping system

called traditional mapping system is considered. This traditional system is based on

some existing mapping system that matches all fields (concepts) from first ontology to

the all fields of second ontology. The only objective of this traditional ontology

mapping system is to compare it with the proposed ontology mapping system.

Correct and
Not Found

Incorrect and
found

Correct and
Found

Incorrect and Not found

122

With the above mentioned classified concept pair’s compliance measures are

evaluated for both proposed and traditional system. For the traditional system correct

& found (a) and correct & not found (c) is same as that of proposed system. In the

proposed model only relevant pairs with similar data types are considered for

mapping, so there are relatively less concept-pairs as compare to traditional system

which comprises all possible concept-pairs from both ontology. All identified but

incorrect concept-pairs are referred as b. A table containing computation of

performance measures are mentioned in table 6.1.

Table 6.1: Performance of Proposed and Traditional Model

Figures 6.22, 6.23 and 6.24, present the average compliance measures results

(Precision, Recall and F-measure) of all the matched pairs of Book-domain

represented in figure 5.3. Result is obtained (manually) at different (0.5, 0.7, 0.85 and

1.0) threshold values.

Figure 6.22 Precision of Proposed & Traditional System at Various Thresholds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 0.7 0.85 1

Proposed
Traditional

Threshold a bproposed btraditional c PProposed Ptraditional Rproposed Rtraditional

0.50 4 11 23 2 4/15=0.27 4/27=0.14 4/6=0.67 4/6=0.67

0.70 3 12 24 2 3/15=0.20 3/27=0.12 3/4=0.75 2/4= 0.5

0.85 2 13 25 2 2/15=0.13 2/27=0.07 2/3=0.67 1/3=0.33

1.00 1 14 26 2 1/15=0.06 1/27=0.03 1/1=1 1/1=1

Threshol

Precision

123

As clearly depicted from the above graph, precision of the proposed system is always

found to be better than that of the traditional system. Hence the proposed system can

assumed to be more accurate than the existing one and at the same time it also returns

result more efficiently. Precision is highest at threshold 0.5 which implies that system

returns largest number of matched concepts. As threshold value is getting increased

precision decreases because less matched concepts are found at higher threshold.

Similarly recall of the proposed system is compared with that of traditional system as

given:

Figure 6.23 Recall of Proposed System & Traditional System at Various

Threshold

Since Recall depends on the correct concept-pairs either found or not found and does

not rely on incorrect pair (found or not found), hence there is no difference in the

result for proposed and traditional model, as proposed model only eliminates

irrelevant concept-pair which eventually found to be incorrect.

Figure 6.24 F-Measure of Proposed and Traditional System at Different
Threshold

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.5 0.7 0.85 1

Proposed

Traditional

Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.5 0.7 0.85 1

Proposed

Traditional

F-measure

Recall

Threshold

124

As depicted above, at all thresholds (0.5, 0.7, 0.85, 1.0) F-measure of proposed

system is always better than the F-measure of the traditional system. This reflects the

fact that the proposed system returns more accurate results in terms of total matched

concept and total correctly found concepts than the traditional system. In other words,

with the proposed system more correctly identified concepts are found as compared to

the traditional system.

6.5 PERFORMANCE EVALUATION OF ONTOLOGY BASED HIDDEN

WEB CRAWLER

The performance of OHWC is also measured via three metrics: Precision, Recall, and

F-measure, Let us define the following:

• number of correctly crawled hidden web pages are C,

• the number of wrongly crawled hidden web pages are W and

• the number of hidden web pages that are not crawled by OHWC are H.

With the help of above defined terms C, W and H, let us now further define the

various performance metrics:

1. Precision is defined as a fraction of correctly crawled hidden web pages over

all the web pages crawled by the OHWC. Mathematically, the Precision is

given by

2. Recall is defined as a fraction of correctly crawled hidden web pages by the

OHWC over all the hidden web pages as given by domain experts., then the

Recall of the proposed system is given by the expression given below

3. F-measure incorporates both precision and recall. F-measure is given by

where Precision P and Recall R are equally weighted.

For experimental evaluation of the proposed work, the two domains Books and

Airlines have been considered.

 P = C / (C + W) (Eq. 6.5)

R = C/ (C + H) (Eq. 6.6)

F = 2PR/ (P + R) (Eq. 6.7)

125

Table 6.2 Table Showing Evaluation Data of Precision Recall and F-measures

for Book and Airline domain

Domain Book Airline

Number of Websites on
which queries are fired

5 4

Total Number of Queries
Constructed

189 167

Number of Relevant Results
Retrieved

178 158

Number of Error Pages 5 4

Number of Irrelevant Pages
Retrieved

6 6

Total Number of Results
Retrieved

184 163

Precision 96.7% 96.9%

Recall 94.1% 94.6%

F-Measure 97.6% 95.5%

A. Result Analysis for Book Domain

• Precision : Calculated using formula in equation 6.5 = 178 = 96.7% (*100)
 184

• Recall : Calculated using formula in equation 6.6 = 178 = 94.1%

 189
• F-measure = Calculated using formula in equation 6.7 = 63368 = 97.6%

 64902

Result Analysis for Airline Domain

• Precision = 158 = 96.9% (*100)
 163

126

• Recall = 158 = 94.6%
 167

• F-measure = 49928 = 95.5%
 52140

Figures 6.25, 6.26 and 6.27 show comparison graphs of Precision, Recall and F-

measures for both Book and Airline Domains respectively. The comparison is done

between the proposed OHWC and traditional DSHWC.

Figure 6.25 Comparison Graph of Precision between Traditional Crawler and

OHWC

Figure 6.26 Comparison Graph of Recall between Traditional Crawler and

OHWC

92.08

87.4

96.7 96.9

82

84

86

88

90

92

94

96

98

Book Domain Airlines Domain

Traditional

OHWC

91.2

88.3

94.1
94.6

85
86
87
88
89
90
91
92
93
94
95
96

Book Domain Airlines Domain

Traditional

OHWC

127

Figure 6.27 Comparison Graph of F-measure between Traditional Crawler and

OHWC

From the results it can be observed that there is improvement in the percentage of

correct pages. Which in turn helps in improving all three compliance measures

Precision, Recall, and F-measure in comparison with traditional HW crawler

(DSHWC).

The Ontology based Hidden Web Crawler discussed in this chapter is used as an

effective tool to crawl large amount of high quality information hidden behind search

forms. It automates the downloading of search interfaces, finds the semantic

mappings between them using ontology and finally, the crawler submits the form to

obtain the response pages from the Hidden Web.

The hidden web pages downloaded by OHWC are indexed using proposed ontology

based indexing scheme. A novel ranking technique is applied on them to present the

same to user in an effective way. Both the proposed techniques are discussed in next

chapter.

89.3
87.9

97.6

95.5

82

84

86

88

90

92

94

96

98

100

Book Domain Airlines Domain

Traditional

OHWC

128

129

Chapter 7

ONTOLOGY BASED INDEXING TECHNIQUE AND

NOVEL RANKING TECHNIQUE FOR HIDDEN WEB

PAGES

7.1 INTRODUCTION

Indexing is a way to organise the information of a document so that the same may be

retrieved by the end user more efficiently. Without an index, the search engine would

scan every document available in the corpus, which would require considerable time

and computing power. So granting efficient and fast accesses to the index is a major

issue for performances of Web Search Engines.

The indexing process takes the detailed information collected by the crawler and

analyses it. The index built by the indexer is based upon the terms of the document. It

consist of an array of the posting lists where each posting list is associated with a term

and the identifiers of the document containing the term as shown in figure 7.1.

Figure 7.1 Basic Architecture of Search Engine Showing Indexing and Ranking

of Documents.

Index Table

Keyword List

web d2,d4,d8

crawler d1,d3,d6

Web Pages
Repository

WWW

Crawler Indexer

Query Processor

Ranking Module

URLs of top ranked
web pages

Query

130

The current information retrieval systems use terms to describe documents and search

engines consider keyword frequency as a major factor to determine its association

with a page and does not take into account the context (sense) in which that keyword

appears in document. By using ontology the concept with a term can be attached. But

having attached the concept only does not solve the whole problem, as there may be

some ambiguous terms also. Therefore a new ontology based indexing sheme is

proposed and implemented in this chapter.

After indexing user gets the URL’s of different web pages depending on the query

entered. A general query engine returns a number of pages that match the keywords

for a given query. But all of them may not be relevant and user has to scroll down to

next page for getting desired information. Therefore to provide better search result,

page ranking mechanisms are used by most search engines for putting the important

pages on top leaving the less important pages in the bottom of result list. There are

various page ranking algorithms for surface web. But there is a scarcity of ranking

algorithms for hidden web pages. In this chapter a novel efficient ranking technique

for Hidden web data is also discussed.

7.2 PROPOSED ONTOLOGY BASED INDEXING TECHNIQUE

The proposed ontology based web indexing system attaches different class (concept)

to the keyword and does a mapping between keyword and ontology class. For

resolving ambiguities the proposed system uses WORDNET to attach the context

with every keyword in which it is used is attached. Due to attachment of context with

keyword, more relevant results are retrieved in optimized way in lesser time response

to a search query.

The architecture of a new ontology based indexing technique, for the result set

retrieved by hidden web crawler is shown in figure 7.2 below. The components of the

proposed architecture are:

i) Keyword Extractor

ii) Weight Calculator

iii) Concept Annotator

iv) Context Annotator

131

The proposed model takes the domain specific pages to create index. A specific

domain is chosen because the ontology which is used is made for particular domain.

Two domains have been chosen, explored and ontology has been developed for them.

The ontology used here has already been constructed in chapter 3, 4 [74, 76].

Figure 7.2 The Proposed Architecture of Ontology Based Indexing
Technique for Hidden Web.

Now the previously downloaded web pages by OHCW are indexed word by word. In

first step, normal keyword based indexing is done. This results in a cleaned up

wordlist for each document, which is stored in a table. Now the keyword to be

indexed is mapped to a Concept in ontology. Further to remove the ambiguities in

concepts the context in which a word is used is also stored in index table.

The detailed description of each component along with illustration is given below:

 7.2.1 Keyword Extractor: This component parses the entire web page and extracts

all keywords from the text of the document, discarding stop words. After getting all

Keyword Concept(class) DocId’s Context(Meaning)

Mouse Computer 1,4,6,7 Pointing Device

Mouse Animal 2,3,5,8 Rodent

jaguar Animal 1,3,4,7,11 Panther

jaguar Fighter plane 2,6,8,10 Name

Weighted
keywords Keyword 1 Concept8

Keyword 2 Concept2

Keyword 3 Concept6

Concept
(Class)

Annotator

Context
Annotator

Word Net

HW Pages

Class/concept

Hidden Web
Crawler

HW Pages

Repository
of Hidden
Web Pages

keywords
Weight

Calculator
Keyword
Extractor

Definition of
keyword

Final index
Domain
Specific

Ontology
Database

132

keywords, stemming is applied to get the pure form of each keyword. These keywords

are sent further to weight calculator module for finding the important keywords.

Stemmer: In natural languages, inflection between words exists. Several different

words may have the same meaning. So, these words should be treated as one word.

Therefore we use stemming in indexing. It is the process of transforming a word into

their word stem or root form. For example ‘buses’ becomes ‘bus’ etc. It is used to

reduce the size of the index. The most common algorithm for stemming is PORTER’S

ALGORITHM [106]. It consists of 5 phases of word reduction. In all the phases rules

are selected. Some rules of stemming are:

 Rules Examples

 SSES→ SS businesses → business

 IES→I authorities → authoriti

 S → dogs → dog

 SS→SS progress → progress

7.2.2 Weight Calculator (W): This module after getting the keywords, assigns

weight to each depending upon various factors like frequency and the location of the

keyword in its HTML. Weight W is calculated according to equation 7.1 below.

Where WF is the weight assigned to the keyword calculated according to the

frequency of word in the document. WP is weight given to keyword according to its

position in the document. If the keyword is present in HEAD or TITLE then it is

assigned more weight, giving it more importance and when present in body then it is

assigned less weight. As this work is proposing a new indexing technique for hidden

web data, WT is taken in account. This is the weight assigned when keyword is

present in tags special to hidden web i.e. <table> and <div>.

Then according the average of values of total weights, the keywords having top ten

values are taken and rest are discarded. These keywords are also stored temporarily in

a set Surl corresponding to each page. This set Surl of keyword is enhanced with more

information in next steps. The different weights are assigned such that the values can

be normalised between 0 and 1.These values are chosen during experimentation after

 W= (WF +WP + WT)/ 3 (Eq. 7.1)

133

getting the hidden web pages by the Hidden Web Crawler. Detailed procedure to find

the Weights of keywords is given below:

i) Frequency based Weights (WF): As the name suggest it calculates weight of

keywords according to frequency of that word in particular document as shown in

Table 7.1. for the web page www.ymcaust.in shown in figure 7.3(a). Input for this

module is list of keywords generated by Keyword Extractor. Most frequently used

word will have more weights and so on. The output of this module is a list of

keywords having weights associated with them.

Table 7.1 Frequency Based Weights

Keyword Frequency WF (Log(Frequency))

YMCA 21 1.32

Student 10 1

Department 19 1.27

ii) Position based Weights (WP): Only Frequency based weights will not suffice as

there may be a possibility that some spammer who wants their document at top search

result can only write that word in the document. So, here the tag under which a

keyword is placed in document is also given importance depicted in Table 7.2. For

Example keywords which are enclosed under tags like <Title> and <Head> are given

more weights as compared to the words present in <body> tag.

Table 7.2 Position based Weights

Keyword Tag Position based

Weights(WP)

Department Title 0.5

YMCA Heading 0.3

Student Body 0.2

134

iii) Tag based Weights (WT): In this work the focus is toward the indexing of hidden

web data hence the tags present in hidden web pages are given importance and are

considered in table based weights.

In figure 7.3a) and 7.3 b) a snapshot of hidden web page of YMCA University is

shown along with the HTML code of the web page. Various Tags which contain the

desired information is present in* the below specified tags. The most common tags

among them are i) (ii) <div class> iii) <dt><dd> tags which contains important

information in between them.

As the data present in a table is of much importance in hidden web pages hence they

are given higher weights. The keywords present between these tags are provided the

highest value refer table 7.3.

Table 7.3 Tag based Weights

Keyword Tag Tag based

Weights (WT)

Department <.li> 0.9

YMCA <div class> 0.8

Student <dd> 0.6

Figure 7.3 a) Snapshot of Hidden Web
Page of YMCA University Website

Figure 7.3 b) HTML Code for
the Same.

135

Based upon the values of WF, WP, WT the final weight is calculated for the keywords

by using equation 7.1 as shown in table 7.4. The final weight will decide which

keywords will be taken to next phase for further analysis. The keywords which are

having a weight greater than the threshold value are stored and taken for further

processing in next module. The threshold value taken in this work is 0.8.

Table 7.4 Final Weight Table

Keyword Frequency

based weight

Position

based weight

Tag based

weight

Average

Weight

YMCA 1.32 0.3 0.8 .80

Department 1.27 0.5 0.9 .60

Student 1 0.2 0.6 0.89

So in above case the keywords ‘YMCA’ and ‘Student’ are taken to next step and also

a set of these keywords is made here.

 Surl = {YMCA, Student}

7.2.3 Concept Annotator

After getting top keywords from each web page they are matched with a predefined

Ontology and the matched concepts (class) is stored with the keyword in the form of a

table. These value plus class pairs are also stored in a set S’url also. There may be

words that are not directly matching with any class of ontology, then their synonyms

are find out with the help of WORDNET and matched with ontology class equation

7.3 and 7.4.

For example for the values above YMCA is the keyword and the class it matches with

is the University which is a child of education institute.

S’url = { keyword+ Class} If keyword exist in Ontology (Eq. 7.3.)

S’url = {Synonym(Keyword)+Class} if not in Ontology (Eq. 7.4.)

136

 S’= {YMCA, UNIVERSITY}

This approach works well until the keyword chosen is not an ambiguous term but if

we come across with an ambiguous term which matches to more than one classes in

an ontology, are taken to the next step of context annotator. Few examples of such

terms are: i) apple it is a fruit as well as a device name shown in figure 7.4 below ii)

jaguar both a cat name a car name and a fighter plane name. To solve this problem the

keywords are sent to next phase context Annotator. Example for concept annotation

of ambiguous word: Suppose user enters apple now apple can be fruit and apple can

be iphone. At this stage apple is mapped with both concepts device and fruit.

S’={apple, device, fruit }

Figure 7.4 Example Showing Two Classes Matching for Ambiguous Term Apple.

7.2.4 Context Annotator

Context is any information attached with a word that is used to disambiguate or to

find the situation where it is used. When the same word denotes two concepts (as in

"red" color and "red" Communist), it is the context that differentiates between the

two. It provides user with more relevant information.

Context of a keyword here is found by considering the superconcept(C),

subconcept(C) and sibling(C) of a concept C and taking a union of each sub, super

and concept itself as depicted in equation 7.5. Also the synonyms of concepts are

taken with union operation.

Context(W) = Synonym(W) U Concept(W) U Parent(Concept(W)) U
Sibling(Concept(W)) U Ancestor(Concept(W). (Eq. 7.5)

Fruit

Red

Apple

Sweet Kashmir

name

taste found in

color

Device

Red

Apple

In ghz 60K

name

speed

color

price

137

The synonyms can be found with the help of Wordnet[107] or thesaurus[108].

Example: If user inputs sweet or red apple then result should show the pages

containing the information about fruit. If user enters fast apple then search system

should provide user with apple iphones. Here this disambiguation is done by looking

at the ontology graph where the parent node’s information is stored as context of the

keyword along with the keyword itself (table 7.5 for example).

Table 7.5 Final Index Table having Concept as Well as Context Associated with

a Term

Keyword Concept(class) DocId’s Context(Meaning)

Mouse Computer 1,4,6,7 Pointing Device

Mouse Animal 2,3,5,8 Rodent

jaguar Animal 1,3,4,7,11 Panther

jaguar Fighter plane 2,6,8,10 Name

jaguar Car 1,2,4 Automobile

7.2.5 IMPLEMENTATION OF ONTOLOGY BASED INDEXING SCHEME
FOR HIDDEN WEB

A test set of web pages downloaded by hidden web crawler that contained synonyms

and ambiguous words were selected and indexed. Figure 7.5 below shows the

working of our experimental ontology based Web Indexing System.

1. First a Keyword is entered into the search interface of search engine.

2. Search Engine returns all contexts (semantics) attached with keyword.

3. User selects the desired context (semantic).

4. On the basis of context user choose, only the documents corresponding to the

same context are chosen.

The indexing module indexes the documents provided and creates the index table

conataining concept and context with each URL. The implementation screen shot

shows that corresponding to one word there are more than one context

138

Figure 7.5. Snapshot of Experimental Setup of Indexing System.

Depending upon the context the inbdexer had already classified the URL’s.When a

user selects a particular context only those URLs are displayed which have the similar

context.The implementation shows that the indexing tables are correctly made at the

backened.

7.3 RANKING MODULE

Page ranking is the process of arranging the URL’s of pages in an ordered manner to

present them to user. The ordering can be in order of relevance and importance of the

web pages. Without ranking the user has to traverse many pages in order to get

desired result. Researchers have given many ideas to improve the ranking but most of

the ideas are given for surface web. Very little work has been done for the high

quality hidden web pages. Also some of the works done so far are using query

dependent factors for ranking and some uses query independent factors. None has

tried to use both factors for improving the relevancy.

The algorithm developed in this work is considering the hidden web data as a factor

for ranking. The architecture of the proposed ranking technique is shown in figure 7.6.

This algorithm uses factors for both query dependent and query independent ranking

methods. Query dependent factors such as page frequency , query – page content

matching are used and query independent factors such as page content popularity ,

user feedback are also used to develop a novel architecture.

139

Figure 7.6 Architecture of Proposed Ranking Technique for Hidden Web

Pages

The major components of proposed Architecture are as follows:

i) Weight Calculator

ii) Frequency Calculator

iii) Rank Assigner

The details of each component are discussed below:

7.3.1 Weight Calculator (W): In this module weight W is assigned to each url/web

page on basis of three factors. One is rating on the web page (W1), second Users

Feedback present on the web page (W2) and third is Query-Page Content Matching

(W3), as shown in figure 7.7 below. These factors are important in hidden web for

example in book domain the rating of a book and user’s feedback for a book plays

important role in finding an important book. The URL having good rating should

come above in the list and same is true for user’s feedback. The detailed explanation

on how to calculate the same is given in below subsection.

User Interface

Frequency Calculator

Weight Calculator

Rank
Assigner

Indexed Pages

Ranked
Pages

Query

From Indexer

140

Figure 7.7 Components of Weight Calculator Module

i) Meta Information Extractor: This subcomponent takes the URL from index table.

Match the URL to the documents present in the repository and extract all the

information attached with the document. This information is used by other

subcomponents to calculate weight and other factors required for ranking.

ii) Rating Analyser (W1): Rating on any web page shows the popularity of the

website owner or service provider on web. There can be ratings given to individual

book also whether the book is worth reading or not. In case of e-commerce websites

ratings are given by users/buyers for any product they had already purchased. This

rating is helpful in calculating the relevancy of the desired result retrieved by

submitting the query.

Otherwise rating on book web page may be a bookseller’s/publisher’s rating which is

based on seller’s completion rate. Completion rate represents a seller's percentage of

successfully completed orders that is the number of orders a seller receives versus the

number of orders cancelled or returned. Booksellers with a higher Bookseller Rating

have cancelled fewer orders and received fewer returns. Ratings on various websites

are normally shown in form of stars. Meaning of these star rating is as follows.

New weighted
list of URLs

User Query

User Feedback
Analyser

Meta
Information

Extractor

Query-Page
Content Matcher

Total Weight
Calculator

Indexed pages
from indexer

Rating
Analyser

To Rank Assigner

141

5 full stars :- W1 is assigned maximum weight taken 5 here.

4 full stars :- W1=4.

3 full stars :- W1=3 and so on.

Thus rating analyser will extract this rating present on the web page and assign these

values.

iii) Users Feedback Analyser (W2): On web pages there are some sort of user’s

feedbacks available also, which users have provided in form of likes/ dislikes, user

reviews etc. These feedback shows the usability of the page content means whether

the information/product available on the webpage is up to the requirement or not,

whether user liked it or not. User Feedback analyzer will extract these reviews from

the web page and try to analyze them and set W2 which is a combination of two

weights W21 an W22 a numerical value as shown

W2 = W21 + W22

i) if no. of likes>no. of dislikes then set W21=1

if no. of dislikes>no. of likes then set W21=0.

ii) set W22=1 for +ve reviews otherwise set W22=0.

For analysing positive reviews or likes on a page few words like good, Excellent and

worth are considered. Similarly for taking dislikes counts the negative words like bad,

weak, poor and not worth are taken into consideration.

iv) Query-Page Content Matching (W3): This is simple keyword matching scheme

as traditionally applied to calculate rank according to the query. In this sub module

the query entered by user is matched with the content of the web page. The similarity

percentage between query and web page’s indexed information is calculated. Such as

web page having a book shows its title as ‘computer programming’ and author as ‘Y.

S. Singh’ and user enters a query having book title ‘computer’ and author ‘Singh’

then the matching % is calculated between user query and title and author on the

webpage.

This matching is done by using the Levenshtein distance (edit distance) method [].

The Levenshtein distance is a string metric for measuring the difference between two

sequences. Informally, the Levenshtein distance between two words is the minimum

142

number of single-character edits (i.e. insertions, deletions or substitutions) required to

change one word into the other. Percentage matching is calculated by following

formula:

v) Total Weight Calculator (W): Weight W can be calculated as a total of W1,W2

and W3 as shown by algorithm below in figure 7.8

Figure 6.9. Final weight calculating algorithm.

Figure 7.8 Algorithm for Total Weight Calculator Module

7.3.2 Frequency Calculation Module: As the hidden web crawler hidden web pages

by filling HTML form on the various websites. It is possible that hidden web crawler

fill same set of values in HTML form on more than one website. It may result in

generation of web pages having same content from two different websites. Such as

two websites of book domain may generate two web pages with different url having

description of same book. Frequency calculator will calculate such number of pages

and set this as frequency of web page. This frequency is taken in to account to

calculate rank as the pages having higher frequency are given preferences hence given

higher ranks. Other URL’s will be assigned less ranks as shown in figure 7.9 below.

Step 1: Take New URL Lists and extract their meta information such as Title ,
Authors, Rating, Like/dislike of Product or Webpage content .

 2: Set values of sub-weight W1 ,W2,W3 as following -

a) Check rating of web page , Set weight w1 according to rating as-
W1=5 for 5 star rating W1= 4 for 4 star rating and so on.

b) Check for like/dislikes or reviews given by user as-
if likes and dislikes are given then set W2 as-

if no. of likes>no. of dislikes then set W21=1
if no. of dislikes>no. of likes then set W21=0

If reviews given then try to analyze some reviews and if reviews are
positive then set W22=1 otherwise W22=0

 Set W2=W21+W22

 3: Match the respective content of web page with query entered by user. If
80% matches then set W3=80/10 and so on.

 4: Calculate total weight as W=W1+W2+W3

 5: Return the url_lists having weights assigned to each url.

% matching= (Total characters in query-Number of character edits) (Eq. 7.6)
 Total number of characters in query

143

Figure 7.9 Algorithm for Frequency Calculator Module

Here the frequency of web pages having similar result is higher as compared to the

URLS having different results. This factor is especially taken in to consideration for

hidden web.

7.3.3 Rank Assigner: In this module final rank value is assigned to each URL. Rank

value is used to arrange all URL’s in a ranked list. This rank value, Rv is calculated

on basis of weight assigned to each URL(W), and frequency of the web page(f) as:

Rv = W *f

Figure 7.10 Algorithms for Final Rank Assigner

After calculating rank value of each retrieved url , store the rank value and display the

results to the user after arranging the rank value in descending order which means the

url or web page having highest rank value will get maximum priority and will be

ranked at first position.

7.4 EXPERIMENTAL RESULTS

The proposed ranking technique is implemented for book domain. Below are some

important screenshots showing illustration of the proposed technique. Hidden web

index repository has already been created to store all the crawled or downloaded

Step 1: Arrange the weighted url lists in decreasing order of weight.

 2: Set frequency of every url as 1.

 3: Take urls having similar weight, check for the content of a url
and match it with others having similar weight, if content/book
is same then increase the frequency, f by the number of urls
having same result.

 4 : Return a url list having frequency attached with them..

Step 1: Take Url list , each url having Weight (W) and Frequency(f).

 2: Calculate Rank Value (Rv) for each url as-

 Rv=(W*f)

 3: Arrange All Urls in descending order of Rank value (Rv). Url having Highest
value of Rv will be ranked higher.

 4: Store & Display the Ranked Urls to user.

144

pages by hidden web crawler. The indexed data is shown in figure 7.11. It is showing

all the information of web pages such as Author name, Title, Rating, feedback related

to a keyword. The keyword here is java which is being entered by user at the interface

provided.

Figure 7.11 Indexed Data with All the Calculated Intermediate Weight Values

Along with the above said information the weight calculated according to equation

7.7 and frequency of the page according to similar content is also stored. The total

weight W is calculated as total of sub weights i.e ranking factor, feedback factor and

query content matching factors. Now Frequency of the pages is calculated and stored

as shown in figure 7.12.

Figure 7.12 Frequency and Rank Value.

145

Rank Value Calculation: After Frequency calculation, using all the factors rank

value is assigned to each page. Now urls be ranked in descending order means higher

the value higher will be priority of the page. Figure 7.13 shows the final rank along

with each URL which is presented to user.

Figure 7.13 Ranked Results to User Along with the Rank Value of Each URL.

The results of proposed ranking technique are compared with general ranking

technique used for general web.

Figure 7.14 Result on Google for The Same Query Book on Java.

146

It can be easily observed by figure 7.14 that Google doesn’t provide the book name as

such as a result. It is showing the links of various websites further where user has to

visit and fill all the necessary fields then only will get the desired result. Whereas in

proposed system the user is getting the name, author, URL and all the other

information on the first page. The URL can be clicked and the system will take the

user to the corresponding book improving the relevancy and user satisfaction. The

next chapter discusses the conclusion and future work of the system.

147

Chapter 8

CONCLUSION AND FUTURE WORK

8.1 CONCLUSION

In this dissertation, ontology based information retrieval system for retrieving hidden

web data has been developed. The rich and efficient ontology has been developed

using a novel approach. A new ontology based hidden web crawler has been deployed

to collect the hidden web data efficiently. More specifically, the main challenges

involved in developing a crawler for the Hidden Web have been addressed and

resolved. For making the crawler work properly an effective ontology mapping

technique has been devised. This technique improves the efficiency and reduces the

resources (time and network bandwidth) required. The proposal and implementation

of novel indexing and ranking technique has resolved the issue of ambiguity and

improved the relevancy of the system. The whole system is developed which also

resolve the issue of synchronization.

The proposed work meets the following objectives:

• Relevance: Ontology involves the context of the data and relationship

between terms, which improves the process of finding the exact values to be

filled on form interfaces. Getting the appropriate values to be filled obtain

good results with high precision, thereby improving the relevance of the

system.

• Database Selection and Implementation: A domain specific semantic

database has been selected and created for finding appropriate values which

are required to be filled in form interface. This semantic database is stored in

Oracle 10g in form of Subject, Predicate and Object triples. These records in

form of <S,P,O> are satisfy users queries more suitably.

• Automatic and Rich Ontology: A new technique for automatic generation of

ontology with the help of web pages is developed. This approach attaches

meaning to the data for extracting data hidden behind form interfaces. A

scalable approach to gather hidden web data by filling forms automatically has

been designed and develop

148

• Efficiency in Mapping: A new effective mapping technique has been

proposed which improves efficiency of the hidden web crawler by removing

pairing of irrelevant nodes during ontology mapping. Ontology Mapping

System developed here also considering the proper utilization of resources like

time and space.

• Synchronization: The integration of various phases for developing a whole

information retrieval system for hidden web has been designed and

implemented. All the processes like form filling, submitting, downloading the

web pages, indexing them and presenting to user has been done in various

phases.

• Ambiguity in Indexing: A novel ontology based indexing scheme has been

designed which not only attaches the concept with terms, but also removes

ambiguities between terms using the context for the same. A well formed

index table constructed as a result of indexing proves that the indexing is well

suited for hidden web data.

• Ranking: A new ranking technique that involves both query dependent and

query independent factors for hidden web has been proposed and

implemented. This technique improves the precision and recall of the overall

system.

The performance of hidden web crawler has improved significantly as Precision,

Recall and F-measure are found to be improved than the traditional hidden web

Crawler.

Comparing with previous DSHWC [40] there is 3.9% improvement in Precision,

2.9% improvement in Recall and 8.8% of improvement in f-measures for book

domain. Similarly there is an improvement of 9.5% increase in Precision, 6.3% in

Recall and 7.6% of improvement in f-measures for airline domain.

8.2 SCOPE FOR FUTURE WORK: Some of the possible issues that could be

further explored or extended in future are as follows:

i) Query Prediction: In this work Hidden web Crawler is generating queries so

as to download the required page. To reduce the load for the crawler a query

149

prediction technique can be proposed and applied so as to find which query

should be fired in the next round.

ii) Learning/Training of the system: The whole system can be made more

efficient if it will apply some training schemes. These schemes can be

applied at the crawler part during matching process so that the high precision

can be gained while finding values to be filled at form interface. Also during

query formation the training data can be used to predict the next query to be

fired reducing network bottleneck.

APPENDIX

IMPLEMENTATION SNAPSHOTS OF OVERALL SYSTEM

Implementation of the whole system is done using Netbeans 8.0 IDE and Microsoft SQL

server. The already developed ontology is saved as semantic database in Oracle10g. The

database constructed is in the form of Subject, Object and Predicate triples. Given below are

few snapshots of developed Ontology based Information Retrieval System for Hidden Web.

1. Startup Screen: Figure 1 below shows the startup screen where two options to work

further are given.

i) First by clicking on Admin we start the backend processes of ontology creation,

hidden web crawling and indexing. And by clicking on User an interface interface

is provided to user to enter query and the results are shown as per query entered

Figure 1 The startup screen of Ontology based Information Retrieval System

ii) The next screen by clicking on admin comes where there are again two buttons one

for ontology master and second for DB creation. The ontology master module contains the

ontology created by Protégé in chapter 4. This ontology is merged with the ontology created

by DB creation button. On clicking the ontology master the screen shows the graph of

ontology created manually having various instances.

Figure 2 Admin Screen for two backend processes

2. Database Creation: Figure below shows that the system is taking two major domains

of pages for generating the ontology i) Book ii) Airline. This screen shows the 5 interfaces of

book domain taken upto extract the information in form of subject, object, predicate i.e.

<S,P,O>. The snapshot shows various book domain websites. By clicking of any website the

data from that particular site is extracted and stored in the table of <S,P,O> triples.

Figure 3 Form Interfaces of Book Domain and Extracting Information from Them

3. The Crawling process of the system

Figure 4 shows crawling process of the system where the information stored above is

used to generate queries and those queries are fired on WWW to get the desired hidden

web data which is further and indexed and also presented to user according to user’s

query. The data is taken from <S,P,O> table and the queries are constructed from the

same using the format of the corresponding website where query is to be fired.

Figure 4 The Crawling Process of OHWC

4. Indexing of the pages Retrieved by Hidden Web Crawler

A local repository of the web pages retrieved has been made. Keywords from the pages are

extracted and indexing technique as mentioned in proposed work has been applied to find the

class and context for each important keyword.

Figure 4 The Indexing Process of OHWC

REFRENCES

[1] “Web Crawling and Indexing”, The Stanford natural language and processing,

http://nlp.stanford.edu/IR-book/pdf/20crawl.pdf.

[2] Google, ”Google search engine” http://www.google.com.

[3] Sergey Brin and Lawrence Page, “The anatomy web search engine”, Proc. of 7th

International World Wide Web Conference, volume 30, Computer Networks and

ISDN Systems, pp 107-117, April 1998

[4] Ricardo Baeza-Yates and Berthier Ribeirmobileo-Neto, “Modem Information

Retrieval”, ACM Press/ Addison-Wesley, 1999.

[5] Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, and Sriram

Raghavan, “Searching the Web”, ACM Transactions on Internet Technology (TOIT),

l(l):2-43, August 2001 Terrence

[6] A. Brooks, “Web Search: How the Web has changed information retrieval”,

Information Research, April 2003.

[7] Peter Haase, Nenad Stojanovic, York Sure, and Johanna Volker, “Personalized

Information Retrieval in Bibster,a Semantics-Based Bibliographic Peer-to-Peer

System

[8] M.K. Bergman, “The Deep Web: Surfacing Hidden Value”, September 2001,

http://www.brightplanet.com/deepcontent/tutorials/DeepWeb/deepwebwhitepaper.pdf

[9] Bin He, Mitesh Patel, Zhen Zhang, Kevin Chen-Chuan Chang, “Accessing the Deep

Web: A Survey”, Communications of ACM version: 50, April 2004.

[10] Chris Sherman and Garyprice : “The invisible web: uncovering sources search

engines can’t see “

[11] B. Chandrasekaran and John R. Josephson,” What Are Ontologies, and Why Do We

Need Them?”, Owl web ontology language reference. http://www.w3.org/TR/owl-

ref/.

[12] Alexandro Ntoulas, “Downloading Textual Hidden-Web Content through Keyword

Queries”, University of California Los Angeles, Computer Science Department, In

Proceedings of the Joint Conference on Digital Libraries (JCDL), 2005, Denver, USA.

[13] A. K. Sharma, Komal Kumar Bhatia, “A Framework for Domain-Specific Interface

Mapper (DSIM)”, International Journal of Computer Science and Network Security,

VOL.8 No.12, December 2008.

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

[14] J. Cope, N. Craswell, and D. Hawking, “Automated Discovery of Search Interfaces

on the Web”, In Proc. of ADC, pages 181-189, 2003.

[15] Ian Horrocks, “Ontologies and the Semantic Web”, Communication ACM

2008;51:58–67.

[16] Mike Burner, “Crawling towards Eternity: Building an archive of the World Wide

Web” Web TechniquesMagazine, 2[5], May 1997.

[17] Luciano Barbosa, Juliana Freire, “An Adaptive Crawler for Locating Hidden Web

Entry Points”, IW3C2 2007, May 8–12, 2007, Banff, Alberta, Canada.

[18] A. K. Sharma, Komal Kumar Bhatia, “Automated Discovery of Task Oriented Search

Interfaces through Augmented Hypertext Documents”, Proc. First International

Conference on Web Engineering & Application (ICWA2006).

[19] S.Raghavan and H. Garcia-Molina, “Crawling the hidden web”, in VLDB, 2001,

Stanford Digital Libraries Technical Report. Retrieved 2008-12-27.

[20] J. Lage, A. Silva, P. Golgher, and A. Laender. “Automatic generation of agents for

collecting hidden web pages for data extraction”, Data & Knowledge Engineering

Volume 49, Issue 2 (May 2004).

[21] Ricardo Baeza-Yates and Carlos Castillo, “Crawling the infinite Web: five levels are

enough”, In Proceedings of the third Workshop on Web Graphs (WAW), volume

3243 of Lecture Notes in Computer Science, pages 156-167, Rome, Italy, October

2004. Springer

[22] Sunny Lam, “The Overview of Web Search Engines”, 2009-04-15, ai:

CiteSeerX.psu:10.1.1.28.6344.

[23] S. Brin and L. Page. “The Anatomy of a Large-Scale Hypertextual Web Search

Engine”, Proc. 7th WWW Conference, 1998.

[24] Andrew S. Tanenebaum, “Distributed Systems: Principles & Paradigms”,

www.cs.vu.nl/~ast/books/ds1/11.pdf

[25] McPherson, Stephanie Sammartino, “Tim Berners-Lee: Inventor of the World Wide

Web”, Twenty-First Century Books, 2009.

[26] J. Cho and A. Ntoulas. “Effective Change Detection Using Sampling.” In

Proceedings of the International Conference on Very Large Databases (VLDB), 2002.

[27] Anuradha and A.K.Sharma : “A Novel Technique for Data Extraction from Hidden

Web Databases” in International Journal of Computer Applications, 2011.

[28] Ricardo Baeza-Yates and Berthier Ribeirmobileo-Neto, “Modem Information

Retrieval”, ACM Press/ Addison-Wesley, 1999.IR

http://www.cs.vu.nl/%7East/books/ds1/11.pdf

[29] Christopher D.Mannig , Prabhakar Raghavan and Hinrich Schutze, “Chapter 8:

Evaluation in information retrieval”, 2009.

[30] S. Chakrabarti, K. Punera, and M. Subramanyam, “Accelerated focused crawling

through online relevance feedback”, In Proc. of WWW, pages 148-159, 2002

[31] M. Gray. “The World-Wide Web Wanderer”, Available from URL:

http://www.mit.edu:8001/people/mkgray/web-growth.html.

[32] J. Cho and H. Garcia-Molina, “The evolution of the web and implications for an

incremental crawler”, In Proc. of the 26th International Conference on Very Large

Databases, Sep. 2000

[33] Junghoo Cho, Hector Garcia-Molina, “Parallel Crawlers”, WWW2002, May 7-11,

2002, Honolulu, Hawaii, USA.

[34] A. K. Sharma, J. P. Gupta, “Design of a Parallel Crawler based on Augmented

Hypertext Documents (PARCAHYD)”, Ph.D. Thesis, HIT & M, Gwalior, Aug. 2003.

[35] S. Chakrabarti, M. van den Berg, and B. Dom, “Focused Crawling: A New Approach

to Topic-Specific Web Resource Discovery” Computer Networks, 31(11-16): 1623-

1640, 1999.

[36] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori, “Focused Crawling

Using Context Graphs” In Proc. of VLDB, pages 527-534, 2000.

[37] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna, “Ubicrawler:

A scalablefully distributed web crawler”, Proc. of Australian World Wide Web

Conference (AusWeb), 2002

[38] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, A. Halevy , “Google’s

Deep-Web Crawl”, In proceedings of Very large data bases VLDB endowment, pp.

1241-1252, Aug. 2008.

[39] UIUC, “http://metaquerier.cs.uiuc.edu/repository/datasets/bamm/index.htm , Web

repository.

[40] Komal Kumar Bhatia, A.K. Sharma, “AKSHR: A Novel Framework of a Domain-

specific Hidden Web Crawler”, IEEE International Conference of Advanced

Computing 2009

[41] Rosy et al., “A Framework for Incremental Hidden Web Crawler”, (IJCSE)

International Journal on Computer Science and Engineering, Vol. 02, No. 03, 2010,

753-758.

[42] Gustavo et .al.,” Automatic Filling of Hidden Web Forms: A Survey”, ACM

SIGMOD Record, Volume 44 Issue 1, March 2015

http://www.mit.edu:8001/people/mkgray/web-growth.html

[43] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive clustering-based approach to

integrating source query interfaces on the deep web. In SIGMOD, 2004

[44] Musen, M.A. (1992). “Dimensions of knowledge sharing and reuse”, Computers and

Biomedical Research 25, pp. 435-467

[45] Dinesh Sharma, Komal Kumar Bhatia, A.K.Sharma,"Extraction of the Hidden Web

Pages Through Single Attribute Forms with Automated Discovery Process",

International Conference of Information Technology (ICIT-2007)

[46] Gruber, T.R. (1993). “A Translation Approach to Portable Ontology Specification

Knowledge Acquisition 5”, pp. 199-220.

[47] Natalya F. Noy and Deborah L. McGuinness, “Ontology Development 101: A Guide

to Creating Your First Ontology”, Stanford University, Stanford, CA.

[48] Cheng Sheng, Nan Zhang, Yufei Tao, Xin Jin : “Optimal Algorithms for Crawling a

Hidden Database in the Web” in proceedings of the VLDB Endowment (PVLDB),

5(11): pno. 1112-1123, 2012.

[49] Protégé, http://protege.stanford.edu/.

[50] Resource Description Framework (RDF). http://www.w3.org/RDF/.

[51] OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/.

[52] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/.

[53] René Bernardo et. al. “Developing Ontology Systems as a Base of an Environmental

Quality Management Model in México”, Journal of Environmental Protection, 2015,

6, 1084-1093 Published Online September 2015 in SciRe.

[54] Z. Zhang, B. He, and K. Chang. Understanding Web Query Interfaces: Best-Effort

Parsing with Hidden Syntax. In SIGMOD Conference , 2004.

[55] Feng Zhao, Jingyu Zhou, Chang Nie, Heqing Huang, Hai Jin, “Smart Crawler: A

Two-stage Crawler for Efficiently Harvesting DeepWeb Interfaces”, IEEE

Transactions on Services Computing Volume: PP Year: 2015.

[56] Alexandros Ntoulas,” Focused crawling for the hidden web”, Springer Journal World

Wide Web Volume 19, Issue 4, 2016.

[57] L.Reyes et al ,” Ontological models for information retrieval of product-service:

Trends and open issues”, Proceedings of the 4th Spanish conferece on Information

retrieval,June 14-16,2016

[58] A. Stolz, B. Rodriguez-Castro, A. Radinger, and M. Hepp. Pcs2owl: A generic

approach for deriving web ontologies from product classification systems. In The

Semantic Web: Trends and Challenges, pages 644--658. Springer, 2014.

http://protege.stanford.edu/
http://www.w3.org/TR/rdf-sparql-query/

[59] Deng, X. B., Ye, Y. M., Li, H. B., & Huang, J. Z. (2008). An Improved Random

Forest Approach For Detection Of Hidden Web Search Interfaces. In Proceedings of

the Seventh International Conference on Machine Learning and Cybernetics,

Kunming, China.

[60] Rosy Madaan, Ashutosh Dixit, A.K. Sharma, Komal Kumar Bhatia, “ Framework for

Incremental Domain-specific Hidden Web Crawler”, Proc. of third International

Conference on Contemporary Computing (IC3), Jaypee Institute of Information

Technology and University of Florida,May2010, published in Springer, LCNS.

[61] Ying wang,” Automatic filling forms of deep web entries based on ontology” 2009

International conference on web information systems and mining.

[62] Uthayan, K. R., and G. S. Anandha Mala. "Hybrid Ontology for Semantic

Information Retrieval Model Using Keyword Matching Indexing System." The

Scientific World Journal 2015 (2015).

[63] R. Deepa, R Manicka Chezian An Involuntary Data Extraction And Information

Summarization Expending Ontology International Journal of Applied Engineering

Research, ISSN 0973-4562 Vol. 10 No.44 (2015)

[64] Davis Marques, “A Survey of Recent Research in Ontology Mapping”, Simon Fraser

University, School of Interactive Arts & Technology, 2005.

[65] Marc Ehrig and Steffen Staab, “QOM - Quick Ontology Mapping” ,The Semantic

Web, ISWC, Volume 3298, 2004

[66] Wang, Y., Liu, W., Bell, D, “A concept hierarchy based ontology mapping

approach”, In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS, vol. 6291, pp. 101–

113. Springer, Heidelberg (2010)

[67] Wordnet : https://wordnet.princeton.edu/

[68] Lin, D, “An information-theoretic definition of similarity”, In: Proceedings of the

15th International Conference on Machine Learning (ICML’98), pp. 296–304 (1998)

[69] M. E. Okasha “Exploiting Ontology for Retrieving Data Behind Searchable Web

Forms”, ©2009 IEEE, Dept. of Computers and Systems, Mansoura University, Egypt

[70] Noy, N.F. and Musen, M.A. (2000). PROMPT: “Algorithm and Tool for Automated

Ontology Merging and Alignment”, In: Proceedings of the Seventeenth National

Conference on Artificial Intelligence (AAAI-2000), Austin, TX

[71] An Hai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy, “Learning to

Map between Ontologies on the Semantic Web”, In The Eleventh International

WWW Conference, Hawaii, US, 2002.

[72] Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. Mafra - “a

mapping framework for distributed ontologies”, In Proceedings of the EKAW 2002,

2002

[73] Prasenjit Mitra, Gio Wiederhold, and Martin Kersten, “A graph-oriented model for

articulation of ontology interdependencies”, Lecture Notes in Computer Science,

1777:86+, 2000.

[74] Jian, N., Hu, W., Cheng, G., and Qu, Y. (2005). FalconAO: “aligning ontologies with

Falcon. In Proceedings of K-CAP Workshop on Integrating Ontologies”, pp. 85–91

[75] Shvaiko, P., & Euzenat, J. (2013), “Ontology Matching: State art and Future

Challenges”, IEEE , pp.1-15. Li W, Clifton C, Liu S (2000) Database integration

using neural network: implementation and experiences. Inf Syst 2(1): 73-96.

[76] Wei Ding, Changshang Zhou and Na Yang, “Double Indexing Mechanism of Search

Engine based on Campus Net”, Proceedings of the 2006 IEEE Asia-Pacific

Conference on Services Computing (APSCC'06), 2006.

[77] Ajit Kumar Mahapatra1, Sitanath Biswas2, “Inverted indexes: Types and

techniques”, IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4,

No 1, July 2011 ISSN (Online)

[78] Fabrizio Silvestri, RaffaelePerego and Salvatore Orlando, “Assigning Document

Identifiers to Enhance Compressibility of Web Search Engines Indexes”, In the

proceedings of SAC,2004

[79] O. Zamir, O. Etzioni, O. Madanim, and R.M. Karp, “Fast and Intuitive Clustering of

Web Documents”, Proc. Third Int’l Conf. Knowledge Discovery and Data Mining,

pp. 287-290, Aug. 1997

[80] Parul Gupta, Dr. A.K.Sharma, “Context based Indexing in Search Engines using

Ontology”, International Journal of Computer Applications (0975 – 8887) Volume 1 –

No. 14,2010.

[81] Pooja et.al. , “A New Approach for Context Based Indexing in IR System Using BST

“, International Journal of Engineering Trends and Technology (IJETT) – Volume 11

Number 8 - May 2014

[82] Nidhi Tyagi & Jain Anchal, “Context Based Web Indexing For Semantic Web” IOSR

Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-

8727Volume 12, Issue 4 (Jul. - Aug. 2013), PP 89-93 www.iosrjournals.org

[83] Larry Page, and Sergey Brin, Rajeev Motwani, Terry Winograd, ‘The PageRank

Citation Ranking: Bring Order to the Technical report in Stanford University, 1998

http://www.iosrjournals.org/

[84] Wenpu Xing and Ghorbani Ali, ‘Weighted PageRankAlgorithm’, Proceedings of the

Second Annual Conference on Communication Networks and Services Research

(CNSR ’04), IEEE, 2004

[85] N. Batra, A. Kumar, Dr. D. Singh and Dr. R.N. Rajotia “Content Based Hidden Web

Ranking Algorithm (CHWRA)”, Advance Computing Conference (IACC), 2014

IEEE International, 2014 IEEE, DOI 10.1109/IAdCC.2014.6779390 Page(s): 586 –

589.

[86] G.Kumar; N. Duhan; A.K. Sharma, ‘Page Ranking Based on Number of Visits of

Links of Web Page ‘, International Conference on Computer & Communication

Technology, (ICCCT), 2011

[87] Babita Ahuja , Dr. Anuradha, “SCUM: A Hidden Web Page Ranking Technique”,

International Journal of Innovative Research in Advanced Engineering (IJIRAE)

ISSN: 2349-2163 Volume 1 Issue 10 (November 2014).

[88] Brian Wai Fung Wong’s, “Deep-Web Search Engine Ranking Algorithm”, MIT

[89] Saravanan Thirumuruganathan, Nan Zhang, Gautam Das, “Rank Discovery From

Web Databases” by University of Texas at Arlington; George Washington University

published in Proceedings of the VLDB Endowment, Vol. 6, No. 13Copyright 2013

VLDB Endowment 21508097/13/13.

[90] Raju Balakrishnan’s, “Trust and Profit Sensitive Ranking for the Deep Web and On-

line Advertisements ”, Arizona State University August 2012.

[91] thesaurus : http://www.thesaurus.com/

[92] Jena API Tutorial http://jena.sourceforge.net/tutorial/RDF_API/.

[93] Manvi, Ashutosh Dixit, Komal Kumar Bhatia, Bhumika Wadhwa, “Generating

domain specific ontology for retrieving hidden web data”, IEEE International

Conference ISCON,2014, GLA University, Mathura,1-2 March 2014.

[94] Manvi, Komal Kumar Bhatia and Ashutosh Dixit, “Automatic Generation of

Ontology from Hidden Web Pages”, 50th Golden jubilee international annual

convention of Computer Society of India (CSI-2015) theme Digital Life, organised by

BVICAM New Delhi, 2nd to 5th December 2015.

[95] Manvi, Komal Kumar Bhatia and Ashutosh Dixit, “A novel design of hidden web

crawler using ontology”, International Journal of Engineering Trends & Technology

(IJETT), August 2015, ISSN: 2231-5381 DOI: 10.14445/22315381/IJETT-V26P204.

DBLP indexed.

[96] Manvi, Ashutosh Dixit, Komal Kumar Bhatia, Rajiv Mishra, “A Novel Architecture

of Ontology Mapping System for Hidden Web Retrieval", IEEE International

Conference (ICROIT-2014), on Feb 6-8, 2014.at Manav Rachna International

University Faridabad.

[97] Manvi, Komal Kumar Bhatia and Ashutosh Dixit, “Ontology based Indexing

Technique for Hidden Web”, 2nd International conference on Recent Development in

Sciences Engineering and Technology organised by GD Goenka University,

Guragaon, 30-31, 2015.

[98] Manvi, Jyoti Yadav, “Design of a novel Ranking Technique for Hidden Web pages”,

in Advances in Computer Science and Information Technology (ACSIT), Volume 2,

Number 9; April-June, 2015 pp. 48-51.

[99] Jianguo Lu, “Ranking Bias in Deep Web Size Estimation Using Capture Recapture

Method”, School of Computer Science, University of Windsor, Canada.

[100] DatabasLayout,http://jena.sourceforge.net/DB/index.html, (as of02/24/2005).Jena

API.

[101] Manvi, Jyoti Yadav, “Design of a novel Ranking Technique for Hidden Web pages”

in Advances in Computer Science and Information Technology (ACSIT), Volume 2,

Number 9; April-June, 2015 pp. 48-51.

[102] Manvi, Komal Kumar Bhatia and Ashutosh Dixit “Annotating Ranking Techniques

for Hidden Web: A Review” in Journal of Network Communications & Emerging

Technologies (JNCET), Volume 5, Special Issue 2, December (2015).

[103] Swoogle : http://swoogle.umbc.edu/

[104] A. Gangemi, C. Catenaccia, M. Ciaramita, and J. Lehmann. “Modelling ontology

evaluation and validation”, In Y. Sure and J. Domingue, editors, Proceedings of the

3rd European Semantic Web Conference (ESWC2006), number 4011 in LNCS,

Budva, Montenegro, June 2006. Springer-Verlag.

[105] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann. “Ontology evaluation and

validation: an integrated formal model for the quality diagnostic task”, Technical

report, Laboratory of Applied Ontologies – CNR, Rome, Italy, 2005. available at

http://www.loacnr.it/Publications.html.

[106] PORTER’S ALGORITHM : https://www.eecis.udel.edu/~trnka/CISC889-

11S/lectures/dan-porters.pdf

[107] Ping Wu, Ji-Rong Wen, Huan Liu, Wei-Ying Ma :“Query Selection Techniques for

Efficient Crawling of Structured Web Sources” in proceedings of the 22nd

International Conference on Data Engineering (2006), Pages 47, IEEE Computer

Society, Washington

[108] Sergey Melink, Hector Garcia-Molina, Erhard Rahm. Similarity Flooding: A Versatile

Graph Matching\ Algorithm and its Application to Schema Matching. In Proc. 18th

International.Conf. On Data Engineering, San Jose CA, 2002

BRIEF PROFILE OF RESEARCH SCHOLAR

Manvi is pursuing her Ph.D in Computer Engineering from YMCA University of

Science and Technology, Faridabad .She did her M.Tech.(Computer

Engineering)from YMCA University of Science and Technology in year 2008,and

B.Tech.(Computer Science) from Kurukshetra University, Kurukshetra in 2005.

Ms.Manvi has over 10 years of experience in teaching B.Tech ,MCA and M.Tech

courses. Her areas of interests includes Information Retrieval, Programming

Languages(C,C++ etc.),Data structures and Web Technologies. She has published 14

research papers in various journals and conferences of international fame. She is a

recipient of Best paper Award in 2nd International conference on Recent Development

in Sciences Engineering and Technology organised by GD Goenka University,

Gurgaon. Currently, she is working as Assistant Professor in the department of

Computer Engineering at YMCAUST, Faridabad.

LIST OF PUBLICATIONS OUT OF THESIS

(i) List of Published Papers

S.No Title of the
paper

Name of
Journal where
Published

No.
Volume &

Issue Year Pages

1 A novel
Technique for
creating
Semantic
database for
hidden web

International
Journal of
Innovative research
in Science &
Technology(IJIRST

Volume 1 Issue 11 2015 299-305

2 Design and
Implementation
of Domain based
Semantic Hidden
Web Crawler

 International
Journal of
Innovations and
Advancement in
Computer Science

Volume 1 Special
Issue

2015 2347-8616

3 A novel design
of hidden web
crawler using
ontology

International
Journal of
Engineering Trends
& Technology
(IJETT),

Volume 26 Issue 2 2015 204

4 Design of a
novel Ranking
Technique for
Hidden Web
page

Advances in
Computer Science
and Information
Technology
(ACSIT),

Volume 2 Issue 1 2015 48-51.

5 Annotating
Ranking
Techniques for
Hidden Web: A
Review

in Journal of
Network
Communications &
Emerging
Technologies

Volume 5 Special
Issue 2

2015

LIST OF PUBLICATIONS

INTERNATIONAL JOURNALS
1. Manvi, Ashutosh Dixit, Komal Bhatia and Rinki Kardam, “A novel Technique for

creating Semantic database for hidden web”, in International Journal of Innovative

research in Science & Technology(IJIRST), Volume 1,Issue

11,ISSN(online):2349-6010,April 2015, pp 299-305.

2. Manvi, Ashutosh Dixit, Komal Bhatia and Jyoti Yadav, “Design and

Implementation of Domain based Semantic Hidden Web Crawler” in volume 4,

Special Issue, May 2015 of International Journal of Innovations and Advancement

in Computer Science ISSN 2347-8616. DBLP indexed.

3. Manvi, Komal Kumar Bhatia and Ashutosh Dixit, “A novel design of hidden web

crawler using ontology”, in International Journal of Engineering Trends &

Technology (IJETT), August 2015, ISSN: 2231-5381 DOI:

10.14445/22315381/IJETT-V26P204. DBLP indexed.

4. Manvi, Jyoti Yadav, “Design of a novel Ranking Technique for Hidden Web

pages” in Advances in Computer Science and Information Technology (ACSIT),

Volume 2, Number 9; April-June, 2015 pp. 48-51.

5. Manvi, Komal Kumar Bhatia and Ashutosh Dixit “Annotating Ranking

Techniques for Hidden Web: A Review” in Journal of Network Communications

& Emerging Technologies (JNCET), Volume 5, Special Issue 2, December (2015).

INTERNATIONAL CONFERENCES

1. Manvi, Ashutosh Dixit, Komal Kumar Bhatia, “Design of an Ontology based

Adaptive Crawler for Hidden Web” In the proceedings of IEEE International

Conference on Communication Systems and Network Technologies (CSNT-2013) Apr

6-8, 2013 at MIR Labs Gwalior India pp 659-663. Print ISBN: 978-1-4673-5603-9.

(Scopus Indexed)

2. Manvi, Ashutosh Dixit, Komal Kumar Bhatia, Rajiv Mishra, “A Novel Architecture of

Ontology Mapping System for Hidden Web Retrieval", IEEE International

Conference (ICROIT-2014), on Feb 6-8, 2014.at Manav Rachna International

University Faridabad. (Scopus Indexed)

3. Manvi, Ashutosh Dixit, Komal Kumar Bhatia, Bhumika Wadhwa, “Generating domain

specific ontology for retrieving hidden web data”, IEEE International Conference

ISCON,2014, GLA University, Mathura,1-2 March 2014. (Scopus Indexed).

4. Manvi, Komal Kumar Bhatia and Ashutosh Dixit, “Automatic Generation of Ontology

from Hidden Web Pages”, 50th Golden jubilee international annual convention of

Computer Society of India (CSI-2015) theme Digital Life, organised by BVICAM

New Delhi, 2nd to 5th December 2015. Conference proceedings published by

Springer.

5. Manvi, Komal Kumar Bhatia and Ashutosh Dixit, “Ontology based Indexing

Technique for Hidden Web”, 2nd International conference on Recent Development in

Sciences Engineering and Technology organised by GD Goenka University,

Guragaon, 30-31, 2015. Proc published with ISBN no. 978-93-84869-85-4. (This

paper received best paper award)

NATIONAL CONFERENCES
1. Manvi, Ashutosh Dixit, Komal Kumar Bhatia, “Deep web annotation through hidden

web crawlers: a review”, SIM 2012 at YMCAUST, Faridabad 3- 4th Dec, 2012.

Indexed on International Journal of Multidisciplinary Research Studies, Dec 2012.

2. Manvi, Pramesh Dahiya, "Issues and Challenges in Design of an effective Search

Engine", Contemporary Issues in Commerce, Economics, Management and IT held

on 15-16 November, 2013 at Govt. College, Jind.

ACHIVEMENTS

1. Won Best Paper Award for the paper “Ontology based Indexing Technique for

Hidden Web”, at 2nd International conference on Recent Development in Sciences

Engineering and Technology organised by GD Goenka University, Gurgaon.

	MANVI
	Under the Supervision of

	1.4 PROBLEMS IN EXISITING LITERATURE 4
	1.5 OBJECTIVES 5
	1.6 ORGANIZATION OF THE THESIS 8
	Chapter 1
	INTRODUCTION
	1.1 GENERAL
	1.2 MOTIVATION
	1.3 EXPLORING THE NEED OF ONTOLOGY IN HIDDEN WEB
	1.4 PROBLEMS IN EXISITING LITERATURE
	1.5 OBJECTIVES
	1.6 ORGANIZATION OF THESIS

	Chapter 2
	HIDDEN WEB RETRIEVAL AND ONTOLOGY: A REVIEW
	2.1 WWW (WORLD WIDE WEB)
	2.1.1 History of WWW
	2.1.2 Basics of WWW

	2.2 IR (INFORMATION RETREIVAL)
	2.2
	2.2.1 Types of IR
	2.2.2 Goal of IR

	2.3 SEARCH ENGINE
	i)
	2.3.1 Search Engine Architecture

	2.4 CRAWLER
	2.5 TYPES OF CRAWLER
	ii)
	iii)
	2.5.1 Incremental Crawler
	2.5.2 Parallel Web Crawler
	2.5.3 Focused Crawler
	2.5.4 Distributed Crawler

	2.6 HIDDEN WEB
	2.7 HIDDEN WEB CRAWLER
	iv)
	v)
	2.7.1 Basic Architecture of a Hidden Web Crawler
	A basic Hidden Web Crawler consists of four components as shown in figure 2.8 and are described as follows:

	2.8 TYPES OF HIDDEN WEB CRAWLER
	2.9 EXPLORING THE NEED OF ONTOLOGY IN RETRIEVING HIDDEN WEB
	2.10 ONTOLOGY
	a.
	b.
	2.10.1 XML
	2.10.2 RDF
	2.10.3 RDFS
	2.10.4 Defining Ontology
	2.10.5 Ontology Development Tools

	2.11 ONTOLOGY MAPPING
	2.12 INDEXING THE HIDDEN WEB
	2.13 RANKING TECHNIQUES IN HIDDEN WEB
	2.14 PROBLEM IDENTIFIED IN EXISTING APPROACHES

	3.1 INTRODUCTION
	[57] L.Reyes et al ,” Ontological models for information retrieval of product-service: Trends and open issues”, Proceedings of the 4th Spanish conferece on Information retrieval,June 14-16,2016

